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ABSTRACT

The COVID-19 pandemic has catalyzed the application of advanced digital
technologies such as artificial intelligence (AI) to predict mortality in adult patients.
However, the development of machine learning (ML) models for predicting
outcomes in children and adolescents with COVID-19 remains limited. This study
aimed to evaluate the performance of multiple machine learning models in
forecasting mortality among hospitalized pediatric COVID-19 patients. In this
cohort study, we used the SIVEP-Gripe dataset, a public resource maintained by the
Ministry of Health, to track severe acute respiratory syndrome (SARS) in Brazil. To
create subsets for training and testing the machine learning (ML) models, we divided
the primary dataset into three parts. Using these subsets, we developed and trained
12 ML algorithms to predict the outcomes. We assessed the performance of these
models using various metrics such as accuracy, precision, sensitivity, recall, and area
under the receiver operating characteristic curve (AUC).

Among the 37 variables examined, 24 were found to be potential indicators of
mortality, as determined by the chi-square test of independence. The Logistic
Regression (LR) algorithm achieved the highest performance, with an accuracy of
92.5% and an AUC of 80.1%, on the optimized dataset. Gradient boosting classifier
(GBC) and AdaBoost (ADA), closely followed the LR algorithm, producing similar
results. Our study also revealed that baseline reduced oxygen saturation, presence of
comorbidities, and older age were the most relevant factors in predicting mortality in
children and adolescents hospitalized with SARS-CoV-2 infection. The use of ML
models can be an asset in making clinical decisions and implementing
evidence-based patient management strategies, which can enhance patient outcomes
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and overall quality of medical care. LR, GBC, and ADA models have demonstrated
efficiency in accurately predicting mortality in COVID-19 pediatric patients.

Subjects Bioinformatics, Artificial Intelligence, Data Mining and Machine Learning, Data Science
Keywords COVID-19, Artificial intelligence, Machine learning, Healthcare, Children, Death
prediction, Mortality, Risk

INTRODUCTION

Since the onset of the COVID-19 pandemic, the global community has witnessed
remarkable progress in artificial intelligence (AI), particularly in machine learning (ML)
algorithms such as large language models (LLMs) (Thirunavukarasu et al., 2023; Yu et al.,
2023). These models have played a crucial role in assisting researchers globally in devising
innovative solutions to the diverse challenges in the healthcare field (Howell, Corrado ¢
DeSalvo, 2024; Li et al., 2024; Zhang et al., 2023). The utilization of generative Al to provide
diagnoses and prognoses for various diseases across different medical specialties has
experienced substantial growth in recent years (Bohr ¢» Memarzadeh, 2020; Elias et al.,
2024; Gurcan, 2025; Jain et al., 2024; Yip et al., 2023).

AT has been rapidly and extensively implemented in routine clinical care, encompassing
enhanced prognosis and diagnosis, robot-assisted surgery, rehabilitation, data science, and
precision medicine, all of which have benefited from advancements in computer hardware
and big data development. Numerous studies have been conducted utilizing AT tools to
predict various outcomes in different medical domains using diverse types of data, such as
text and images (Buch, Ahmed ¢ Maruthappu, 2018; Ching et al., 2018; Li et al., 2024; Xu
et al., 2023). The COVID-19 pandemic has accelerated the adoption of AI and big-data
technologies in healthcare, epidemiology, and public health. With COVID-19 impacting
communities in different ways, research has increasingly turned to big data analytics and
AT tools to track and monitor the spread of the virus and its effects on public health and the
global economy (Galetsi, Katsaliaki ¢» Kumar, 2022; Sipior, 2020). These technologies have
played a crucial role in understanding, managing, and mitigating the impact of the virus by
addressing the various challenges posed by the pandemic, including diagnosis, treatment,
and vaccine development (Roosli, Rice ¢» Hernandez-Boussard, 2021).

More than four years have elapsed since the initial declaration of the COVID-19
pandemic. According to the World Health Organization (WHO), as of February 2024,
the global count of confirmed COVID-19 cases has surpassed 826 million, with
COVID-19-related fatalities reaching 7 million worldwide (https://data.who.int/
dashboards/covid19/cases?n=c).

Approximately 10-20% of confirmed SARS-CoV-2 infections and less than 0.5% of
fatalities occur in people under 18 years of age (Silverberg et al., 2024; Swann et al., 2020).
While the virus generally results in less severe illness and fewer deaths among children and
adolescents than among adults, some pediatric cases still lead to serious outcomes
(Howard-Jones et al., 2022). Importantly, a comprehensive study found that over 90% of
COVID-19-related deaths in young individuals were reported in low-middle-income
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countries (LMICs) (Kitano et al., 2021). In this meta-analysis that included a cohort of
3,379,049 children, Kitano et al. (2021) reported an estimated case fatality rate of 0.29%
(95%CI, [0.28-0.31%]) in LMIC, which was significantly higher than that reported in
high-income countries (HIC) (0.03% [0.03-0.03%]). Consistent with these findings, we
have demonstrated in a series of studies since the onset of the pandemic that the mortality
rate has increased to 7.9% among children hospitalized for COVID-19 in Brazil.
Furthermore, using conventional statistical methodologies, we have demonstrated
increased mortality and a significant impact of the social determinants of health and
ethnicity on COVID-19 outcomes in Brazil’s pediatric population (Oliveira et al., 2021,
2023a, 2024, 2022). Additional studies from developing countries have corroborated the
trend of unfavorable outcomes among hospitalized children in LMICs (Nachega et al.,
2022). In contrast, data from HIC exhibited substantially more favorable outcomes in
hospitalized children, with mortality rates ranging from 0.1% (Swann et al., 2020) to 0.4%
(Doenhardt et al., 2024), which was predominantly observed in patients with complex
diseases and comorbidities.

These observations underscore the significance of acquiring comprehensive data on
COVID-19 clinical outcomes in young individuals from LMICs to accurately assess the
overall impact of the disease on pediatric patients. However, there has been a paucity of
population-based studies examining COVID-19 incidence and outcomes in children and
adolescents, particularly in LMICs (Rankin et al., 2021).

As the COVID-19 pandemic wanes, it is crucial to accurately quantify its impact on
children and adolescents to develop targeted prevention strategies against future public
health threats for this vulnerable group (Chiotos ¢ Fitzgerald, 2023). Nevertheless, a
comprehensive understanding of the complex interplay between individual factors and
social inequities in shaping the outcomes of COVID-19 in children and adolescents
remains to be fully elucidated (Oliveira, Colosimo &~ Simoes, 2022). In this context,

Al techniques can provide valuable insights into decision-making processes, including the
development of effective public health policies with the ultimate aim of reducing morbidity
and mortality. Although ML algorithms have been widely applied to diagnose and predict
COVID-19 outcomes in adults, their utilization in pediatric populations remains
underexplored (Dos Santos et al., 2024).

Nevertheless, a significant gap remains regarding the utilization of Al tools in pediatrics.
For instance, in a recent systematic review, we demonstrated that within the context of the
COVID-19 pandemic, there has been a notable scarcity of studies on the development of
clinical models for predicting outcomes in children and adolescents using Al algorithms,
particularly when compared to the literature encompassing adult patients. Furthermore,
our study revealed the substantial limitations of pediatric studies in this domain, including
insufficient sample sizes, inconsistent reporting methodologies, biases in data sources, and
ethical considerations (Dos Santos et al., 2024).

The subsequent sections of this article are structured as follows. “Related Work”
presents a review of previous research on Al technologies in pediatrics. “Materials and
Methods” elucidates the study’s methodology in detail. The “Results” section presents the
main findings of the study, and the “Discussion” section provides a comprehensive
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analysis of our findings in relation to the existing literature. The key findings and future
research directions are summarized in “Conclusions.”

RELATED WORK

This section reviews and presents the literature on predicting mortality and other
outcomes in children and adolescents (including COVID-19-related deaths) using
machine learning techniques.

Zhang, Xiao & Luo (2023) employed ML techniques to estimate infant mortality rates in
the United States, considering various factors related to birth facilities, prenatal care, labor
and delivery conditions, and neonatal characteristics. This study analyzed data spanning
from 2016 to 2021, encompassing 116,309 infant deaths out of 22,669,736 live births.
Among the five ML models evaluated, XGBoost demonstrated the highest predictive
accuracy, achieving an area under the curve (AUC) of 93% and an average precision (AP)
score of 0.55. The findings underscored the advantages of utilizing the original imbalanced
dataset rather than artificially balanced datasets generated through oversampling
techniques, as the former produced superior predictive outcomes. Furthermore, the
model’s validation using data from 2020 to 2021 confirmed its robustness, maintaining an
AUC of 93% and AP score of 0.52. The model’s consistent performance across both the
pre-pandemic (2016-2019) and pandemic (2020-2021) periods suggests its potential
utility in shaping public health strategies aimed at reducing infant mortality rates.

A study conducted by Byeon (2022) employed a population-based cross-sectional survey
to assess the impact of the COVID-19 pandemic on the prevalence of obesity among
adolescents in South Korea. To develop a predictive model for adolescent obesity,
researchers have utilized categorical boosting, specifically the CatBoost algorithm. The
performance of the model was assessed using multiple evaluation metrics, revealing an
AUC of 68% and an overall accuracy of 82%. The analysis incorporated various factors,
including physical activity level, academic performance, and lifestyle habits, to identify
potential risk factors associated with adolescent obesity. This study’s methodological rigor,
demonstrated through the use of the CatBoost algorithm and comprehensive performance
evaluation, highlights its contribution to understanding obesity risk among South Korean
adolescents in the post-pandemic context.

Gao et al. (2022) proposed a hybrid approach that integrates domain knowledge-based
features with data-driven methodologies to predict pediatric COVID-19 hospitalization
and disease severity. The study utilized two cohorts, which were divided into training,
validation, and testing sets at a 6:1:3 ratio. The training set was used for model fitting, the
validation set for hyperparameter tuning, and the testing set for performance evaluation.
The models were assessed using the area under the receiver operating characteristic curve
(AUROC), area under the precision-recall curve (AUPRC), and minimum value between
recall and precision (Min [Re, Pr]). The best-performing model, MedML, demonstrated a
3% improvement in AUROC and a 4% increase in AUPRC for predicting hospitalization.
For severity prediction, it outperformed the best baseline model by 7% in the AUROC and
14% in the AUPRC. The researchers employed N3C Data Enclave with Code Workbook
and mini-batch gradient descent for model training, setting the batch size to 128. The
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findings indicate that MedML maintains generalizability across all nine national
geographical regions of the United States and remains robust throughout the different
pandemic phases. The authors highlighted MedML’s role as a bridge between clinicians,
data engineers, and computer scientists, enhancing clinical decision-making through
intuitive knowledge representation, explainable model construction, and advanced
computational capabilities.

Pavliuk & Kolesnyk (2023) developed an ML model to analyze and predict
hospitalization rates among children in the Lviv region during the fourth wave of the
COVID-19 pandemic, marked by the predominance of the Omicron variant. The increase
in pediatric hospitalizations was primarily attributed to the children’s high levels of social
interaction and the low vaccination rates observed in Ukraine. Utilizing publicly available
data, the proposed ML model consists of two main components: data analysis and
predictive modeling. The Pearson correlation coefficient was applied to assess
hospitalization trends, whereas neural networks were employed to generate short- and
medium-term forecasts. Mamlook et al. (2021) conducted a comparative evaluation of five
widely recognized ML techniques: artificial neural networks (ANN), random forests (RF),
support vector machines (SVM), decision trees (DT), and gradient boosted trees (GBM)
for detecting COVID-19 in pediatric patients. Model performance was assessed using a
10-fold cross-validation procedure. The results indicated that the classification and
regression tree (CART) model outperformed other approaches, achieving an accuracy of
92.5% for binary classification (positive vs. negative) based on laboratory test results. Key
predictors, including leukocyte count, monocyte levels, potassium concentration, and
eosinophil count, were identified as significant factors for COVID-19 detection. This study
underscores the potential of ML-based models as valuable tools for healthcare
professionals, aiding in the prediction of COVID-19 in children and reinforcing laboratory
diagnostic findings.

Ma et al. (2021) explored whether clinical symptoms and laboratory test results
could serve as reliable predictors for determining the necessity of computed
tomography (CT) scans in pediatric patients with positive RT-PCR results. Data from 244
pediatric cases were analyzed using advanced decision-tree-based ML models. The study
identified age, lymphocyte count, neutrophil levels, ferritin concentration, and C-reactive
protein levels as critical indicators for predicting CT scan outcomes. The developed
decision support system demonstrated robust predictive performance, achieving an
AUC of 84%, with an accuracy of 82% and a sensitivity of 84%. These findings
suggest the potential for reassessing the routine use of CT imaging in pediatric
COVID-19 cases, emphasizing that, in some instances, alternative diagnostic approaches
may suffice.

Nugawela et al. (2022) developed a predictive model to identify children and adolescents
at an increased risk of developing long COVID, defined as the presence of at least one
persistent symptom impairing daily activities 3 months after a positive SARS-CoV-2
RT-PCR test. The study utilized data from a nationally matched cohort of individuals aged
11-17 years, including both SARS-CoV-2-positive and test-negative participants.

The model incorporated a range of predictive factors, including SARS-CoV-2 infection
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status, demographic characteristics, quality of life and functional status, physical and
mental health indicators, levels of loneliness, and number of symptoms reported at the
time of testing. Using logistic regression, the model achieved an accuracy of 83%,
demonstrating its strong calibration and discrimination capabilities. These findings
highlight the potential of predictive modeling in identifying vulnerable pediatric
populations and informing targeted interventions to mitigate the long-term impact of
COVID-19. This study aimed to evaluate the potential of machine learning (ML)
models to predict mortality and hospital discharge among hospitalized children and
adolescents with laboratory-confirmed COVID-19. Using a comprehensive nationwide
dataset provided by the Brazilian government, we sought to identify the most

critical predictors for these models and to understand their decision-making
processes. Additionally, we assessed the effectiveness of the model in forecasting
COVID-19-related deaths.

MATERIALS AND METHODS

Study design and dataset description

This retrospective cohort study used data from the Surveillance Information System for
Influenza (SIVEP-Gripe) to examine COVID-19 hospitalizations among individuals under
18 years of age in Brazil. Established in 2009 by the Ministry of Health, the SIVEP-Gripe is
a nationwide database that captures data on severe acute respiratory infections. Since the
COVID-19 pandemic, it has been the primary source of hospitalization data. Mandatory
reporting from both public and private hospitals ensures comprehensive coverage. The
database contains the demographic and clinical information of all hospitalized patients.
We analyzed data from epidemiological week 08, 2020, to week 08, 2023, encompassing
individuals aged under 18 years with confirmed SARS-CoV-2 infection via RT-qPCR or
antigen testing upon hospital admission.

Data preparation

Over the designated period, 56,330 patient records with verified RT-PCR test outcomes for
SARS-CoV-2 infection were documented. After completing the required procedures for
preprocessing data for the machine learning algorithms, 24,097 records were chosen for
the training, validation, and testing stages of the models. The subset of data from the
SIVEP-Gripe dataset, which includes information about children and adolescents, is
hereafter referred to as the SIVEP-Kids dataset.

In the SIVEP-Kids dataset, there are 37 primary features in four main categories: patient
demographics (four features), clinical features (12 features), personal disease/comorbidity
history (14 features), virus strain information (one feature), vaccine information
(two features), a feature indicating the number of different comorbidities a patient has, a
feature indicating whether a patient has comorbidities or not, a feature categorizing the
number of comorbidities a patient has, a feature indicating the time of the outcome, and an
output variable (0: survived and 1: deceased) for COVID-19 patients. The primary features
of the SIVEP-Kids dataset are presented in Table 1.
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Table 1 Primary features documented in the SIVEP-Kids database.

No. Feature name Variable type No. Feature name Variable type
1 Gender Nominal 21 Hypertension Nominal
2 Age Numeric 22 Immunosuppression Nominal
3 Ethnicity Nominal 23 Renal disease Nominal
4 Region Nominal 24  Asthma Nominal
5 Virus strain Nominal 25  Hematology disease Nominal
6 Dyspnea Nominal 26 Neurology Nominal
7 Fever Nominal 27 Oncology Nominal
8 Cough Nominal 28  Transplanted Nominal
9 Odynophagia Nominal 29  Down syndrome Nominal
10  Diarrhea Nominal 30  Other syndrome Nominal
11 Vomit Nominal 31  Nosocomial Nominal
12 Abdominal pain Nominal 32 Comorbidities dichotomic ~ Nominal
13 Ageusia Nominal 33  Total comorbidities Numeric
14  Anosmia Nominal 34  Number of vaccine doses Numeric
15  Respiratory distress Nominal 35  Comorbidities categoric Nominal
16  Oxygen saturation reduced Nominal 36 Time for outcome Numeric
17 Diabetes Nominal 37  Vaccinated Nominal
18 Obesity Nominal 38  Outcome (Target Variable) Nominal
19  Cardiology Nominal

20  Pulmonary Nominal

Regarding the primary features presented in the SIVEP-Kids dataset, the ethnicity
feature had five categories: Asian, Black, Brown, Indigenous, and White. Similarly, the
region was divided into five regions: Central West, North, Northeast, South, and Southeast.
The virus strain feature identified four types of strains in the dataset: ancestral, delta,
gamma, and omicron. For features 6 through 32, all are of the nominal type and have
values of “Yes” or “No,” indicating the presence or absence of a specific disease or clinical
condition in the patient. The total comorbidity feature records the total number of
comorbidities per patient in the SIVEP-Kids dataset. Feature 34 (number of vaccine doses)
had valid values ranging from zero to three doses. Feature 38 is the target variable of this
study, with three types of outcomes: discharge, death, and in-hospital, with the latter
referring to cases in which the patient is still in the hospital in an ongoing clinical situation.
In the present study, we considered only two types of outcomes in the target variable: death
and discharge. This decision aimed to enhance the accuracy of machine learning
algorithms, as multi-class problems (those with more than two classes in the target
variable) are challenging and tend to reduce the accuracy of ML models because of the
large number of decision boundaries to navigate, often failing to accurately separate
instances across more than two classes (Bengio, Weston & Grangier, 2010; Del Moral,
Nowaczyk & Pasham, 2022). Detailed information on the clinical, demographic, and
epidemiological covariates recorded in the SIVEP-Gripe is described elsewhere (Oliveira
et al., 2021, 2023b, 2024, 2022).

Lages dos Santos et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2916 7/32


http://dx.doi.org/10.7717/peerj-cs.2916
https://peerj.com/computer-science/

PeerJ Computer Science

Data pre-processing

Data preprocessing is a critical step in addressing the influence of irrelevant, redundant,
and unreliable data, ultimately improving data quality and resolving inconsistencies
(Garcia, Luengo ¢ Herrera, 2105). In this study, data preprocessing was conducted prior to
training the machine learning models. Initially, the patient records with missing data were
removed from the dataset. For example, records of sex, ethnicity, and reduced oxygen
saturation were excluded if any missing values were detected. Missing values for the target
variable were treated as the absence of the outcome of interest (death). Additionally, we
utilized categorical encoding to transform nominal data into numerical representations. By
applying one-hot encoding, we ensured that our analysis was guided by intrinsic
relationships within the data rather than by the constraints of non-numerical
representations (Xiang et al., 2021).

After applying the criteria for excluding data in the pre-processing step, we obtained a
final sample consisting of 24,097 records. The dataset comprised 22,586 and 1,511 cases in
the discharge and death classes, respectively. An imbalanced input distribution can lead to
a bias in the results towards the dominant class, potentially skewing model performance
and reducing generalizability. To address the problem posed by an imbalanced dataset, we
employed the Synthetic Minority Over-sampling Technique (SMOTE) method, as
outlined in https://imbalanced-learn.org/stable/. The SMOTE algorithm, which is widely
utilized for synthetic oversampling, generates artificial samples for the minority class by
randomly selecting instances from the minority class and their k-nearest neighbors. In this
approach, a random data instance along with its k-nearest neighbors is chosen.
Subsequently, the second data instance was selected from this set of k-nearest neighbors
(Dorn et al., 2021). The synthesis of a new sample occurred along the line connecting these
two instances as a convex combination. This process was iterated until a balance was
achieved between minority and majority classes. The SMOTE method mitigates the risk of
overfitting, distinguishing it from the random oversampling technique, and it is recognized
for its potential to produce better results (Erol et al., 2022; Wang et al., 2021;
Wongvorachan, He ¢ Bulut, 2023).

Feature selection

Chi-square tests were used to discern statistically significant differences between the
outcomes of discharged and deceased patients. Feature importance scores derived from
XGBoost and random forests (as detailed in Fig. S1) were utilized to identify the essential
variables for forecasting COVID-19 mortality. This methodology aims to increase the
interpretability and steadfastness of mortality prediction models.

Feature selection techniques exhibited elevated scores for robust predictors such as
overall comorbidities, diminished oxygen saturation, and age. Nevertheless, some
disparities were evident in the importance scores between XGBoost and random forest for
specific parameters. XGBoost showed considerable importance in reducing oxygen
saturation and overall comorbidities, whereas random forest allocated minimal
importance. A statistically significant difference (P < 0.01) in oxygen saturation and total
comorbidities was observed between patients who survived and those who died.
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Chi-square tests were applied to recognize crucial mortality predictors, demonstrating
moderate to high importance in XGBoost and low importance in random forest.

Owing to the inconsistencies observed between the two methods, we opted to select the
most pertinent features for training the models using the chi-squared test. Consequently,
we developed three distinct datasets to train and validate the machine learning models.
These datasets included a dataset with features selected using the chi-squared test, a dataset
with features chosen by two pediatricians, and a dataset with all 37 features, according to
Table 1, except for the target variable. Our objective was to determine the dataset that
yielded the most favorable results.

The dataset containing characteristics chosen by pediatricians comprised 17 features:
sex, age, ethnicity, region, virus strain, dyspnea, fever, cough, odynophagia, abdominal
pain, ageusia, anosmia, respiratory distress, reduced oxygen saturation, total
comorbidities, vaccine doses, and nosocomial. The dataset selected by the chi-squared test
comprised 24 features: age, ethnicity, region, viral strain, dyspnea, cough, respiratory
distress, reduced oxygen saturation, cardiology, pulmonary disease, hypertension,
immunosuppression, renal disease, asthma, total comorbidities, comorbidities,
dichotomous comorbidities, time for outcome, vaccine doses, hematology, neurology,
oncology, Down syndrome, and nosocomial infection.

For the purpose to conducting feature selection calculations using the chi-square test,
XGBoost, and random forest, the Scikit-learn library in its version 1.3.1 was used. The
Pycaret library version 3.1.0 was employed for training and validating the models.
Statistical significance was set at P <0.01.

Outcomes
The primary endpoint was COVID-19-related death. Additionally, we assessed the severity
of the disease, including hospitalization, need for respiratory support (none, non-invasive

oxygen support, and mechanical ventilation), and admission to the intensive care unit
(ICU).

Model development

In this study, a total of twelve machine learning algorithms were employed to develop
predictive models. These algorithms included gradient boosting (GB), AdaBoost (ADA),
CatBoost (Cat), random forest (RF), extreme gradient boosting (XGBoost), extra trees
(ET), logistic regression (LR), linear discriminant analysis (LDA), decision tree (DT), naive
Bayes (NB), k-nearest neighbors (KNN), and Quadratic Discriminant Analysis (QDA)
(Dorn et al., 2021).

These models were selected due to their superior performance compared to deep
learning algorithms. Recent studies indicate that for tabular data, ML algorithms such as
XGBoost, CatBoost, logistic regression, and decision tree family algorithms exhibit better
performance than neural networks. Notwithstanding ongoing research efforts, neural
networks have demonstrated limited efficacy in the processing of tabular data (Hwanga ¢
Jongwoo, 2023; Shmuel, Glickman & Lazebnik, 2024; Shwartz-Ziv & Armon, 2022;
Sivapathasundaram ¢ Poravi, 2021).
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Table 2 The hyperparameters of the selected ML algorithms for COVID-19 mortality prediction in children and adolescents.

ML Hyperparameters used to create the models

algorithms

GBC criterion="friedman_mse’, learning_rate=0.0005, max_depth=9, max_features="log2’, min_impurity_decrease=0.001,
min_samples_leaf=1, min_samples_split=9, n_estimators=120, subsample=0.9, tol=0.0001, validation_fraction=0.1.

ADA algorithm="SAMME’, learning_rate=0.005, n_estimators=260.

CATBOOST  Iterations=1000, learning rate=0.1, depth=6, 12_leaf reg=3.0, subsample=0.8, colsample_bylevel=0.8, border_count=128,
loss=Tog_loss’.

RF criterion="gini’, max_depth=4, max_features=1.0, max_leaf nodes=None, min_impurity_decrease=0.3, min_samples_leaf=2,
min_samples_split=7, n_estimators=90.

XGBOOST booster="‘gbtree’, colsample_bytree=1, learning rate=0.4, max_depth=1, min_child_weight=2, n_estimators=120, objective="binary:

logistic’

ET criterion="gini’, max_depth=4, max_features=1.0, min_impurity_decrease=0.3, min_samples_leaf=2, min_samples_split=7,
n_estimators=90.

LR C=0.662, fit_intercept=True, intercept_scaling=1, 11_ratio=None, max_iter=1000, penalty="12’, solver="1bfgs’, tol=0.0001.

LDA shrinkage=0.4, solver="Tsqr’, tol=0.0001.

DT criterion=‘entropy’, max_depth=4, max_features=1.0, min_impurity_decrease=0.5, min_samples_leaf=3, min_samples_split=2,
splitter="best’.

NB var_smoothing=1

KNN leaf_size=30, metric="manhattan’, n_neighbors=50, p=2, weights="distance’.

QDA reg_param=0.29, tol=0.0001.

The evaluation process involved the use of k-fold cross-validation, which is known to
have low bias and variation. The optimized hyperparameters for the machine learning
algorithms are provided in Table 2, with constant values maintained across the three
variations of the SIVEP-Kids dataset.

Assessment metrics

The performance of the predictive model was evaluated using various metrics, such

as accuracy, precision, sensitivity, F1 score, and area under the ROC curve (AUC).

A comprehensive analysis was conducted across all 12 machine learning algorithms to
determine the best model for predicting mortality in COVID-19 patients (Fawcett, 2006;
Powers, 2011; Sokolova ¢ Lapalme, 2009). Other performance metrics information will be
detailed in the results section.

Accuracy: Measures the proportion of correctly classified instances.
B B TP+ TN
U = TP £ TN + FP+ FN

where TP = true positives, TN = true negatives, FP = false positives, and FN = false
negatives (Sokolova ¢ Lapalme, 2009)

Precision: Assesses how many of the predicted positive instances are actually correct.

TP

Precision = ———.
TP+ FP
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Precision is particularly important in applications where false positives must be minimized
(Powers, 2011)
Recall (Sensitivity): Measures the proportion of actual positives that were correctly
identified.

TP
TP+ FN’
This metric is crucial in applications where false negatives are costly (e.g., medical
diagnosis) (Sokolova ¢ Lapalme, 2009).

F1-score: A harmonic mean of precision and recall, balancing both metrics.

Recall =

Precision x Recall

F1=2x — .
Precision + Recall

F1-score is useful when dealing with imbalanced datasets.

AUC-ROC: Measures the ability of the model to distinguish between classes by plotting the
true positive rate against the false positive rate.

1
AUC = / TPR(FPR)d(FPR)
{o

where:
FPR-false positive rate

TPR-true positive rate

d (FPR) represents the infinitesimal variation in the false positive rate (FPR).

In practice, AUC is numerically calculated as the sum of the areas under the ROC curve,
approximating the integral by summing small rectangular or trapezoidal regions along the
curve.

AUC-ROC is widely used in binary classification problems to assess model
discrimination power (Fawcett, 2006).

We employed SHAP summary and force plots to elucidate the decision-making
processes of the models. Given its superior performance across all datasets, the gradient
boosting classifier (GBC) was selected for in-depth analysis. SHAP summary plots
visualize feature importance by mapping the impact of each feature on the model output to
a dot on the horizontal axis. The position of the dot represents the SHAP value, which
quantifies the contribution of the feature to the prediction. Feature values were
color-coded (red: high, blue: low) to reveal the direction and magnitude of their influence.
For detailed individual predictions, please refer to the force plots in the Supplemental
Material.

RESULTS
Feature selection

Twenty-four features, comprising demographic and clinical factors, were identified as the
most relevant predictors using the chi-square independence test (Table 3). Additionally,
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Table 3 The significance levels, importance scores, and mean decreases in Gini for the key variables in COVID-19 mortality prediction were
computed using the XGBoost, random forest, and chi-squared tests.

N° Feature name Chi-squared test Random forest XGBoost
X? P-value Mean decrease impurity Importance score
1 Age 396.94 <0.001 0.171 0.029
2 Region 17.02 <0.001 0.084 0.035
3 Ethnicity 9.59 <0.001 0.04 0.022
3 Virus Strain 34.25 <0.001 0.048 0.023
4 Dyspnea 57.69 <0.001 0.026 0.025
5 Cough 37.89 <0.001 0.030 0.050
6 Respiratoy distress 79.53 <0.001 0.025 0.035
7 Oxygen saturation reduced at admission 175.43 <0.001 0.027 0.125
8 Obesity 66.27 <0.001 0.005 0.020
9 Cardiology 212.09 <0.001 0.009 0.029
10 Pulmonary 33.75 <0.001 0.006 0.025
11 Hypertension 25.17 <0.001 0.002 0.011
12 Immunosuppression 108.01 <0.001 0.008 0.032
13 Renal 49.48 <0.001 0.004 0.016
14 Asthma 18.74 <0.001 0.007 0.040
15 Total comorbidities 861.55 <0.001 0.021 0.106
16 Comorbidities dichotomic 527.13 <0.001 0.012 0.000"
17 Comorbidities categoric 830.74 <0.001 0.019 0.000"
18 Time for outcome 504.48 <0.001 0.208 0.023
19 Hematology 27.33 <0.001 0.004 0.014
20 Neurology 278.64 <0.001 0.013 0.024
21 Oncology 52.08 <0.001 0.003 0.020
22 Down syndrome 79.18 <0.001 0.006 0.023
23 Nosocomial 70.17 <0.001 0.013 0.024
Note:

* Two (comorbidities dichotomic and comorbidities categoric) had zero values for importance scores calculated with XGBoost. This is because the XGBoost algorithm
detected multicollinearity between the two characteristics and total comorbidities. In this case, the two columns are ignored by the algorithm.

Table 3 shows mean decreases in impurity and the importance scores of these variables
calculated using the XGBoost and random forest algorithms. The descriptive statistics of
these features are summarized in Table 4.

Table 3 indicates that age, cardiovascular disease, decreased oxygen saturation upon
admission, total comorbidities, and time to outcome were significantly associated with
patient outcomes, as determined using the chi-square test. These factors demonstrated a
strong predictive power in distinguishing between fatal and discharged cases. This
statistical significance is also apparent in the developed models and was of paramount
importance in the training process.

In contrast, odynophagia, abdominal pain, fever, vaccination, transplant, diabetes
mellitus, vomiting, other syndromes, sex, diarrhea, and ageusia were less predictive of
COVID-19 mortality. Despite their clinical importance in treatment and mortality risk
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Table 4 Descriptive statistics of the most important variables selected in the feature selection phase
for mortality in COVID-19 children and adolescents’ patients.

No

Feature name

Variable type

Frequency or mean + SD

1
2

10

11

12

13

14

15

16

Age
Region

Ethnicity

Virus Strain

Dyspnea

Cough

Respiratory distress

Oxygen saturation reduced at admission

Obesity

Cardiology

Pulmonary

Hypertension

Immunosuppression

Renal

Asthma

Total comorbidities

Numeric

Nominal

Nominal

Nominal

Nominal

Nominal

Nominal

Nominal

Nominal

Nominal

Nominal

Nominal

Nominal

Nominal

Nominal

Numeric

5.04 £ 5.25
Southeast (10,819)
South (4,379)
Northeast (4,033)
North (2,609)
Central West (2,257)
Asian (178)
Black (778)
Brown (11,467)
Indigenous (221)
White (11,453)
Omicron (13,432)
Gamma (8,251)
Delta (2,414)
Haven’t (11,126)
Have (12,971)
Haven’t (7,198)
Have (16,899)
Haven’t (11,245)
Have (12,852)
Haven’t (12,018)
Have (12,079)
Haven’t (23,675)
Have (422)
Haven’t (23,314)
Have (783)
Haven’t (23,608)
Have (489)
Haven’t (24,029)
Have (68)
Haven’t (23,580)
Have (517)
Haven’t (23,876)
Have (221)
Haven’t (22,711)
Have (1,386)
0.22 + 0.54

(0, 19,670)

(1, 3,512)

(2, 757)

(3, 128)

(Continued)
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Table 4 (continued)

N° Feature name Variable type Frequency or mean * SD

(4, 24)
(5,2)
(6,2)
(7,1)
(10, 1)

17 Comorbidities dichotomic Nominal Haven’t (19,670)
Have (4,427)

18 Comorbidities categoric Nominal Haven’t (19,670)
One (3,512)
Two (757)
Three or more (158)

19 Time for outcome Numeric 7.63 + 6.83

20 Hematology Nominal Haven’t (23,649)
Have (448)

21 Neurology Nominal Haven’t (22,397)
Have (1,700)

22 Oncology Nominal Haven’t (24,048)
Have (49)

23 Down syndrome Nominal Haven’t (23,681)
Have (416)

24 Nosocomial Nominal Haven’t (23,476)
Have (621)

assessment, many of these factors could be excluded from our machine learning models
without compromising predictive accuracy. This demonstrates the potential of simplifying
mortality prediction while maintaining effective outcomes.

Assessment of the developed models
In this study, COVID-19 mortality prediction models were developed using 12 ML
algorithms, namely, GBC, ADA, CatBoost, RF, XGBoost, ET, LR, LDA, DT, NB, KNN, and
QDA. These models were trained on three feature datasets: Dataset 1, containing all
features; Dataset 2, with features selected by pediatricians; and Dataset 3, with features
selected by the chi-squared independence test. The performance evaluation metrics used
were accuracy, AUC, recall, precision, and sensitivity. The results are shown in Fig. 1.
In general, most of the models demonstrated comparable levels of accuracy, displaying
good to excellent performance across all three datasets. More specifically, numerically, the
models performed best when trained on Dataset 3, which was selected using the chi-square
method, followed by Datasets 2 and 1. However, Dataset 1 still exhibited commendable
performance even when all features were included. For Dataset 3, the highest accuracies
were achieved by LR (92.53%), GBC (92.34%), and ADA (92.19%). For Dataset 2,
GB (92.08%), ADA (91.92%), and LR (91.73%) achieved the highest accuracy. For Dataset 1,
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Figure 1 Performance of the developed models for the metrics chosen. Model performance for each type of metric. (A) Model performance with
the AUC metric. (B) Accuracy of the developed models. (C) Precision metric for the developed models. (D) Recall metric. (E) Sensitivity metric.
(F) F1-score-the harmonic mean between recall and precision Full-size k&l DOT: 10.7717/peerj-cs.2916/fig-1

GBC (91.41%), ADA (90.32%), and CatBoost (90.01%) were the best-performing models in
terms of accuracy. Among the 12 algorithms analyzed, QDA consistently displayed the
lowest performance across all datasets. Detailed comparison of the AUC for the top three
models trained on Dataset 3, which achieved better results, is provided in Fig. 2. Considering
the reliability of the AUC metric for imbalanced datasets, particularly relevant in our study
despite using SMOTE for balancing, is crucial. The AUC results are nearly identical across
all three datasets, with a notable emphasis on Dataset 1 containing all features.
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Figure 2 ROC curves of the three best ML models for Dataset 3 that achieved better results.
Full-size K&l DOT: 10.7717/peerj-cs.2916/fig-2

Model interpretation

Figure 3 presents a SHAP summary plot that visualizes the impact of each feature on the
model’s predictions for individual data points. Each line represents a data point, with the
points distributed along the feature axis indicating their corresponding values. A wider
spread of points for a given feature suggests a stronger influence on the model’s output.
Among the features, “oxygen saturation reduced” demonstrates the most significant
impact on predictions. Blue points, representing normal oxygen saturation levels, are
associated with favorable outcomes (patient discharge), whereas red points (low oxygen
saturation) correlate with unfavorable outcomes (death). The comorbidity variable
(categorical) also had a notable influence. Higher values of this feature, indicating a greater
number of comorbidities (ranging from 0 to > 3), are linked to an increased likelihood of
predicting death. Similar trends were observed for “dyspnea”, “respiratory distress”, “total
comorbidities”, and “comorbidities”.

DISCUSSION
Key points

This study aimed to develop and evaluate machine learning (ML) models for predicting
COVID-19 mortality risk in Brazilian pediatric patients using a large public dataset. We
analyzed demographic and clinical data to identify key mortality predictors. The ML
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Figure 3 A summary plot of SHAP values for mortality prediction on Dataset 3 (features selected by
chi-squared test). Blue dots indicate that low values in feature contribute to model to classify patient as
discharge and red dots indicate high values of a feature contributes to model to classify patient as dead.
More important features are in order top to bottom. Full-size K&l DOT: 10.7717/peerj-cs.2916/fig-3

models were trained using three datasets: (i) all available features; (ii) features selected by
pediatricians; and (iii) statistically relevant features. Although all models demonstrated
robustness, our findings suggest that feature selection significantly enhances model
performance. The model trained on the statistically relevant feature set (Dataset 3,

24 features) achieved the highest accuracy, followed by the model trained on
pediatrician-selected features (Dataset 2, 17 features). The model using all features
(Dataset 1) showed lower performance and may not generalize to other datasets. Our
results indicate that simpler models with fewer features, such as those based on datasets
3 and 2, are preferable for clinical use as they require less input while maintaining high
predictive accuracy. Consistent across all models, older age, low initial oxygen saturation,
and pre-existing chronic conditions emerged as the strongest predictors of COVID-19
mortality in children and adolescents.

Lages dos Santos et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2916 17/32


http://dx.doi.org/10.7717/peerj-cs.2916/fig-3
http://dx.doi.org/10.7717/peerj-cs.2916
https://peerj.com/computer-science/

PeerJ Computer Science

Comparative analysis
We evaluated 12 ML algorithms for predicting mortality in hospitalized pediatric
COVID-19 patients. LR demonstrated superior performance, achieving 92.5% accuracy,
98.11% sensitivity, 94.13% precision, 96.07% F1-score, and 80.15% AUC. GBC and ADA
also yielded strong results (AUC 2 79.6%). Other models showed acceptable performance
(AUC 80.1-81.6%), while DT and quadratic discriminant analysis (QDA) exhibited
weaker results (AUC = 62.9%, accuracy 7.9-24.3%). To identify key predictors, we
employed the XGBoost, random forest, and chi-squared tests. SHAP analysis revealed that
reduced oxygen saturation, comorbidities, and older age were the most critical factors.
These, along with 23 additional statistically significant features, enhanced ML model
performance. Our findings align with previous studies that have reported some important
clinical predictors for COVID-19 patient mortality, the most relevant features included age
(Moulaei et al., 2021, 2022; Wu et al., 2020; Yadaw et al., 2020; Zakariaee et al., 2023a,
2023Db), ethnicity (Baqui et al., 2020, 2021), geographic region (Baqui et al., 2020, 2021),
dyspnea (Shi et al., 2020), cough (Assaf et al., 2020; Das, Mishra ¢ Saraswathy Gopalan,
2020; Gao et al., 2020; Moulaei et al., 2021, 2022; Zakariaee et al., 2023a, 2023b), reduced
oxygen saturation (Assaf et al., 2020; Banoei et al., 2021; Kar et al., 2021), cardiology
disease (Allenbach et al., 2020; Assaf et al., 2020; Baqui et al., 2020, 2021; Das, Mishra ¢
Saraswathy Gopalan, 2020; Yadaw et al., 2020; Zakariaee et al., 2023a, 2023b), pulmonary
disease (Banoei et al., 2021; Zakariaee et al., 2023a, 2023b), immunosuppression (Baqui
et al., 2020, 2021; Gao et al., 2021; Xu et al., 2021), renal (Baqui et al., 2020, 2021; Shi et al.,
2020), asthma (Aktar et al., 2021; An et al., 2020; Chimbunde et al., 2023), total
comorbidities (Aktar et al., 2021; Banoei et al., 2021), hematology disease (Huyut, Velichko
¢ Belyaev, 2022; Kamel et al., 2023), neurology disease (Baqui et al., 2020, 2021; Moulaei
et al., 2021, 2022; Zakariaee et al., 2023a, 2023b), oncology disease (Assaf et al., 2020; Chin
et al., 2020; Hu, Yao & Qiu, 2020; Zakariaee et al., 2023a, 2023b), hypertension (Assaf et al.,
2020; Das, Mishra & Saraswathy Gopalan, 2020; Yadaw et al., 2020; Zakariaee et al., 2023a,
2023b), and chromosomal abnormalities (Landes et al., 2021).

Below, we detail how each of these best models selected on tests works technically.

Logistic regression
Logistic regression is a statistical model used for binary classification, where the output YY
takes values 00 or 11. The model is based on the logistic (sigmoid) function, defined as:

P(Y=1|X)=0(z) = e

where:
e 0(z) is the sigmoid function, which compresses output values to the range (0, 1).
e z is the linear combination of predictors:

e f30 are the coefficients of the predictors.
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» Logistic regression is trained by maximizing the log-likelihood function:

L(f)=i=1 "[yilogPi+ (1 — yi)log(l — Pi)]
where:

e yi are the actual labels (0 or 1).

e Pi are the probabilities predicted by the model.

e m is the total number of observations.

Gradient boosting classifier
Gradient boosting is a machine learning method based on sequential decision trees. It
minimizes a loss function using gradient descent.

Gradient boosting steps:

« Start with an initial prediction, typically the mean of the target values.

o Train a decision treeht(X) to minimize the residuals of the previous prediction.
Rt =Y — Ft — 1(X)

o The new prediction is updated by adding the weighted tree output:
Ft(X) = Ft — 1(X) 4 nht(X)

« Repeat the process until a stopping criterion is met, such as a maximum number of
iterations or minimum error.

The loss function depends on the task:

« Binary classification: Log-loss

L(y,y) = — Z[)’i logy; + (1 — yi) log(1 — yi)]

« Regression: mean squared error (MSE)
N 1 & R
L(y,y) = ZZ i —9)°
i=1

Popular GBC-based models include XGBoost, LightGBM, and CatBoost, widely used in
machine learning applications for structured data.

Adaptive boosting
AdaBoost is an ensemble learning method that combines multiple weak classifiers
(typically shallow decision trees) to create a strong classifier.

AdaBoost steps:

Each sample (i) is assigned a weight w;, initially equal for all samples:

w; = —.
m
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Train a weak classifier h,(x), minimizing the weighted error &;:

& = Z wil (he(x;) # yi).

Compute a classifier importance coefficient based on é&;:

_11 I—St
at—zog & .

Update sample weights, giving higher weight to misclassified samples:

W§t+1) _ Wl(t) .t (he(xi)#yi)

Repeat until a maximum number of classifiers is reached or error is minimized. The final
prediction is given by a weighted sum of individual classifiers:

H(x) = sign (Z oc,ht(x)> .

AdaBoost enhances accuracy by reducing errors from weak classifiers and is widely used
for classification tasks in structured datasets.

Few studies have explored the use of ML models to predict mortality in children and
adolescents with COVID-19. We recently conducted a systematic review of clinical
prediction models developed using supervised ML algorithms for this population (Dos
Santos et al., 2024). Our analysis included ten studies of six focused on diagnosis and four
on prognosis. All models predicted binary outcomes with disease detection being the most
common target. Tree-based and neural-network models were the predominant ML
techniques employed. However, most studies suffered from limitations, including small
sample sizes, inconsistent reporting, potential data biases, and inadequate reporting of
essential metrics, such as calibration, discrimination, and hyperparameters. These
deficiencies hinder the reproducibility and limit the generalizability of their findings.
While ML models have been applied to various pediatric outcomes beyond COVID-19, the
evidence base for predicting mortality in COVID-19 remains scarce and characterized by
methodological shortcomings.

Although some studies have utilized artificial intelligence as a tool to predict clinical
outcomes in children, we identified only one study that employed machine learning
methodology to predict outcomes in children with COVID-19. Gao et al. (2022) proposed
a machine learning model (MedM) and evaluated its performance in predicting
hospitalization and disease severity in a pediatric population with confirmed COVID-19.
Based on electronic health records, MedML extracted the most predictive features based on
medical knowledge and propensity scores from over six million medical concepts and
incorporated the inter-feature relationships in medical knowledge graphs via graph neural
networks. Subsequently, the researchers evaluated MedML on the National Cohort
Collaborative (N3C) dataset and found that it achieved up to a 7% higher AUROC and
14% higher AUPRC than the best baseline machine-learning models. However, the
AUCROC performance of the models ranged from 0.62 (DT) to 0.75 (MedML), whereas in
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our analysis the AUCROC was approximately 0.80 for almost all models evaluated. It is
important to note that the variables used to develop the models were quite different, as we
utilized a specific database that gathered data on COVID-19, whereas Gao et al. (2022)
used an administrative database with very different covariables.

ML models are often characterized in the literature as black boxes, lacking transparency
in how individual features contribute to their predictions (Reddy, 2022). Given that these
models make decisions based on specific feature values, understanding these decisions is
crucial, especially in critical domains, such as healthcare, where patient well-being is at
stake (Rasheed et al., 2022). Explainable Artificial Intelligence (XAI) (Lundberg et al., 2020)
addresses this challenge by enhancing model interpretability and trustworthiness. One
prominent XAI method is the Shapley Additive Explanation (SHAP) value, which
decomposes model outputs into feature-based contributions. Based on cooperative game
theory, SHAP provides a comprehensive measure of feature importance by considering all
possible feature combinations. Shapley value is a common measurement of individual
feature importance and is widely utilized in the interpretability analysis of machine
learning models (Hyland et al., 2020; Winter, 2022). A positive Shapley value indicates that
the feature is positively correlated with the target of interest, and higher values suggest
higher importance, whereas negative Shapley values correspond to negative correlations.
As a post-hoc technique, SHAP is applicable to any machine-learning model. In this study,
we leveraged SHAP to improve the interpretability of our GBC model by elucidating the
influence of features such as reduced oxygen saturation, comorbidities (represented as
numerical, binary, or ordinal variables), dyspnea, and respiratory distress at admission as
reliable predictors of mortality in pediatric patients with COVID-19. It is noteworthy that
in the study of Gao et al. (2022), according to the Shapley values, the indicators for severity
prediction task are larger for BMI, creatinine, and glucose. We posit that these markedly
different indicators between the studies strongly illustrate the impact of dataset selection in
developing clinical prediction models on the performance and applicability of the models.

Machine learning models and larges scale datasets

The machine learning algorithms presented in our work have proven to be feasible for
large databases. Specifically, models such as logistic regression, AdaBoost, and gradient
boosting demonstrate significant utility due to their inherent scalability and computational
efficiency relative to their predictive power. Logistic regression, particularly when
implemented with stochastic gradient descent (SGD) or its variants, can process vast
amounts of data incrementally without requiring the entire dataset to reside in memory,
making it suitable for streaming or disk-based learning scenarios. Ensemble methods like
AdaBoost and gradient boosting, while potentially more computationally intensive per
iteration, derive their strength from building sequences of weak learners; this iterative
nature allows for potential parallelization and, crucially, they often achieve high accuracy
with relatively shallow trees as base learners, mitigating the complexity explosion
sometimes seen in other non-linear methods. Their proven effectiveness across diverse
large-scale benchmarks underscores their suitability for modern data-rich environments
(Hastie, Tibshirani & Friedman, 2009).
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Furthermore, the specific characteristics of these algorithms lend themselves well to the
challenges posed by large databases, such as high dimensionality and the presence of
complex, non-linear relationships. Logistic regression, often combined with L1 or L2
regularization, provides a robust linear baseline capable of handling sparse,
high-dimensional feature spaces commonly encountered in large datasets, while also
offering interpretable coefficients. Boosting algorithms, particularly gradient boosting,
excel at capturing intricate patterns and interactions within the data by sequentially fitting
models to the residuals of prior iterations. This adaptive fitting process allows them to
model complex functions effectively without necessarily overfitting, especially when
parameters like learning rate, tree depth, and subsampling are carefully tuned. The
capacity of gradient boosting frameworks to optimize arbitrary differentiable loss
functions further enhances their flexibility for diverse large-scale prediction tasks
(Friedman, 2001).

Contrasting these machine learning approaches with traditional statistical methods
reveals critical differences when applied to large databases. While traditional methods,
such as ordinary least squares regression or maximum likelihood estimation for
generalized linear models, provide rigorous inferential frameworks, they often rely on
assumptions (e.g., normality of errors, specific distributional forms) that may be violated in
massive, heterogeneous datasets. Moreover, many classical techniques involve
computations, like matrix inversion, that scale poorly with the number of samples or
features, rendering them computationally infeasible for very large n or p without
specialized implementations. Machine learning models, particularly those discussed, often
prioritize predictive accuracy and computational scalability, frequently employing iterative
optimization techniques and making fewer stringent assumptions about data generation
processes. This distinction, emphasizing prediction over parameter inference or exact
distributional modeling, aligns well with the practical demands of extracting actionable
insights from large-scale data repositories (Breiman, 2001).

Strengths of the study

This study leveraged a nationwide database to provide a comprehensive overview of
COVID-19 in Brazilian pediatric patients. The large sample size of laboratory-confirmed
cases enabled the rigorous evaluation of multiple ML algorithms. Our findings suggest that
ML models are robust when applied to extensive specifically designed datasets, offering the
potential for future public health applications.

Limitations of the study

This study has several limitations. First, the SIVEP-Gripe database, which focuses on
hospitalized patients, restricts the generalizability of the findings to a broader pediatric
population. Second, we were unable to conduct an external validation of our models, an
important step in the development of clinical prediction models (Steyerberg ¢» Harrell,
2016). This involves evaluating the performance of a model on an independent dataset that
was not used during the model’s training or internal validation phases (Collins et al., 2024a;
Collins & Moons, 2019; Collins et al., 2024b). This process addresses critical issues such as
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overfitting and bias, while ensuring that the model generalizes well to new, unseen data,
which is essential for its real-world applicability. Nevertheless, many of the available
datasets are too small to provide reliable answers (Riley et al., 2024a, 2024b). To address
this pivotal issue, we are currently integrating data from all official Brazilian databases,
including non-hospitalized and hospitalized patients, across the country. Therefore, we
believe that with this updated dataset, encompassing more than two million pediatric
cases, we will be able to use some modern recommended techniques, such as the use of
resampling methods for internal validation, to evaluate model performance and
generalizability across clusters. Third, the administrative nature of the database hinders the
assessment of certain clinical management details. Additionally, missing data, a common
challenge in such registries, was mitigated through meticulous manual review of case
records, including in-depth analysis of the "clinical observation” field in SIVEP-Gripe
database. Finally, the absence of a national audit system for the SIVEP Gripe database is a
notable limitation. However, our extensive analysis of these data since the onset of the
pandemic has yielded consistent results comparable to those from other low-to middle-
income countries using conventional statistical techniques (Nachega et al., 2022).

Clinical and policy implications

We believe that the utilization of ML models to predict outcomes in pediatric COVID-19
cases and other public health threats presents a transformative potential for

healthcare systems. The application of ML models in predicting mortality in children with
COVID-19 may have significant clinical, research, and policy implications. Our

findings indicate that ML models can assist in accurately identifying high-risk children at
an early stage, enabling healthcare systems to allocate resources (e.g., ICU beds, ventilators,
and medications) more effectively for those at the highest risk of severe outcomes.

ML models can inform individualized treatment plans by identifying risk factors specific to
pediatric populations, potentially leading to the development of tailored clinical
guidelines (Chumachenko et al., 2024; Collins et al., 2024b; Singh, 2019; Wynants et al,
2020). Predictive models can help policymakers prioritize vaccination strategies for
children at elevated risk of severe outcomes, particularly in resource-limited

settings. Furthermore, ML models can be integrated into public health surveillance
systems to monitor trends in pediatric COVID-19 mortality and to inform targeted
interventions (Bragazzi et al., 2020). However, policymakers must address ethical, equity,
and regulatory challenges to ensure the effective implementation of these

tools. Collaboration among researchers, clinicians, and policymakers is essential to
maximize the benefits of ML in pediatric care (Malhotra et al., 2023).

CONCLUSIONS

In summary, this study evaluated the performance of various ML algorithms in predicting
mortality among hospitalized pediatric COVID-19 patients. LR, GBC, and ADA models
demonstrated superior performance in accurately identifying patients at risk of death,
offering potential benefits for resource allocation and patient outcomes. Our findings
underscore the critical role of factors such as low oxygen saturation and comorbidities in
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predicting mortality. An LR model incorporating these predictors effectively identified
high-risk patients on admission. The application of ML models could streamline decision
making in clinical and public health settings, potentially improving survival rates. Further
research is needed to explore additional predictors and evaluate the long-term impact of
COVID-19 in pediatric patients.
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