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ABSTRACT
Native language identification (NLI) is a critical task in computational
linguistics, supporting applications such as personalized language learning, forensic
analysis, and machine translation. This study investigates the use of a fine-tuned
GPT-2 model to enhance NLI accuracy. Using the NLI-PT dataset, we preprocess
and fine-tune GPT-2 to classify the native language of learners based on their
Portuguese-written texts. Our approach leverages deep learning techniques,
including tokenization, embedding extraction, and multi-layer transformer-based
classification. Experimental results show that our fine-tuned GPT-2 model
significantly outperforms traditional machine learning methods (e.g., SVM, Random
Forest) and other pre-trained language models (e.g., BERT, RoBERTa, BioBERT),
achieving a weighted F1 score of 0.9419 and an accuracy of 94.65%. These results
show that large transformer models work well for native language identification and
can help guide future research in personalized language tools and artificial
intelligence (AI)-based education.

Subjects Artificial Intelligence, Computational Linguistics, Data Mining and Machine Learning,
Data Science, Neural Networks
Keywords Native language identification, ChatGPT, NLP, Deep learning

INTRODUCTION
Native language identification (NLI) represents a significant challenge in the domain of
computational linguistics, playing an essential role in understanding linguistic diversity
and enhancing cross-cultural communication. The precise identification of a speaker’s
native language enables the development of customized language processing applications,
thereby improving user experiences in multilingual settings. By examining phonetic,
syntactic, and lexical characteristics of both spoken and written language, NLI models are
capable of effectively differentiating between various languages and dialects. As global
interactions increase and the volume of language data expands, the need for robust,
scalable, and automated NLI systems has become increasingly critical, propelling
advancements in natural language processing and machine learning. As globalization
continues to blur linguistic boundaries, grasping the intricacies of NLI is vital for
promoting intercultural communication and safeguarding linguistic diversity (Baimyrza
et al., 2024; Schroeder, Lam & Marian, 2015).

The intricacy of NLI has intensified in recent years, influenced by factors such as rising
migration rates, the expansion of digital communication, and the rise of multilingual
societies. These trends require a reassessment of conventional frameworks that have
traditionally governed the classification and identification of languages. The relationship
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between language proficiency, cultural affiliation, and identity formation further
complicates the accurate determination of an individual’s native language. For example,
research indicates that bilingual individuals often navigate a fluid linguistic identity, which
poses challenges in ascertaining their primary language (Wang, 2016; Cárdenas &
Verkuyten, 2019). This complexity is further heightened by sociolinguistic factors that
affect language usage in various contexts, underscoring the necessity for a more refined
understanding of NLI that incorporates these elements.

The practical applications of NLI are both diverse and impactful. In educational
settings, understanding a learner’s native language can inform customized instructional
strategies, addressing specific language transfer challenges encountered during second
language acquisition (Vajjala & Banerjee, 2017; Goldin, Rabinovich & Wintner, 2018;
Mohammadi, Veisi & Amini, 2017). Learners’ errors are often reflective of their native
language influences, and recognizing these patterns can aid in the development of effective
teaching materials and interventions (Lotfi, Markov & Daelemans, 2020; Goldin,
Rabinovich & Wintner, 2018). Additionally, NLI has significant implications in forensic
linguistics, where it assists in authorship attribution and the analysis of written evidence
within legal contexts (Vajjala & Banerjee, 2017; Lotfi, Markov & Daelemans, 2020;
Krebbers, Kaya & Karpov, 2022). Identifying a writer’s native language can also enhance
automated language processing systems, improving the accuracy of speech recognition and
machine translation technologies by tailoring them to the linguistic characteristics of
specific user groups (Sarwar et al., 2020; Lotfi, Markov & Daelemans, 2020). Furthermore,
NLI is increasingly pertinent in analyzing linguistic patterns in social media and
user-generated content across various demographics and cultural backgrounds (Goldin,
Rabinovich & Wintner, 2018; Krebbers, Kaya & Karpov, 2022). This analysis provides
insights into language use in contexts such as targeted marketing strategies for specific
linguistic communities and understanding multilingual communication dynamics in
digital environments (Lotfi, Markov & Daelemans, 2020; Krebbers, Kaya & Karpov, 2022).
Additionally, the task holds potential for security applications, where identifying
individuals’ native languages can aid in profiling and risk assessments in scenarios such as
immigration and border control.

In modern linguistic analysis, the complexity of language transfer phenomena poses
challenges in accurately an author’s native language based on their written text in a second
language. The influence of a speaker’s first language can lead to distinct errors and stylistic
choices in their second language writing, complicating the identification process (Vajjala
& Banerjee, 2017; Sarwar et al., 2020; Lotfi, Markov & Daelemans, 2020; Markov, Nastase
& Strapparava, 2020). As a result, the NLI task has garnered attention in computational
linguistics and natural language processing, with researchers striving to create robust
models capable of accurately classifying native languages based on written outputs (Cimino
& Dell’Orletta, 2017; Goldin, Rabinovich & Wintner, 2018). Metadata enrichment and
machine learning have emerged as powerful tools for enhancing NLI. The integration of
advanced computational techniques allows researchers to analyze vast datasets, uncovering
patterns and correlations that may not be readily apparent through traditional methods.
Machine learning algorithms can be trained to recognize linguistic features associated with
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specific languages, thereby improving the accuracy of NLI systems. Moreover, the
incorporation of metadata, such as demographic information, language exposure, and
cultural background, can provide valuable insights into the factors influencing language
identification (Jain, Ajay & Kumaraswamy, 2017). This technological advancement
represents a paradigm shift in linguistic research, enabling a more comprehensive
exploration of the complexities surrounding NLI.

However, the integration of AI-driven approaches into traditional linguistic frameworks
presents several challenges. Balancing the rigor of established linguistic theories with the
flexibility of machine learning models requires careful consideration of methodological
rigor and ethical implications. Researchers must navigate the potential biases inherent
in algorithmic decision-making, ensuring that NLI systems are equitable and
representative of diverse linguistic communities (Zhang, 2018; Hierro, 2015). Additionally,
the reliance on technology raises questions about the role of human agency in language
identification, as automated systems may overlook the subjective experiences of
individuals regarding their linguistic identities. As such, a collaborative approach that
combines traditional linguistic insights with modern technological advancements is
essential for advancing the field of NLI.

NLI is a complex and multifaceted area of study that encompasses linguistic, cultural,
and technological dimensions. As the world becomes increasingly interconnected, the
importance of understanding and accurately identifying native languages cannot be
overstated. By synthesizing traditional linguistic frameworks with modern computational
techniques, researchers can contribute to a more nuanced understanding of language
identification that respects the rich tapestry of human identity and cultural heritage. The
ongoing exploration of NLI will undoubtedly yield valuable insights that inform not only
academic discourse but also practical applications in our diverse and multilingual societies.

Motivation
In recent years, the rapid advancement of artificial intelligence (AI) has profoundly
transformed numerous industries, with education being one of the most notably impacted.
Among these innovations, generative language models such as generative pre-trained
transformer (GPT) have revolutionized language learning by offering interactive and
personalized educational experiences. Developed by OpenAI, ChatGPT is based on GPT
architecture and leverages deep learning techniques to generate human-like text in
response to user input. Its ability to produce coherent, context-aware responses has
attracted considerable interest in language education, where it enables learners to practice
and refine their language skills through simulated dialogue and dynamic feedback
(Grassini, 2023).

Within the field of NLI, transformer-based models like GPT offer promising avenues to
improve the accuracy and robustness of language detection systems. NLI plays a critical
role in applications such as machine translation, sentiment analysis, and adaptive
educational technologies. By harnessing the advanced natural language processing
capabilities of large language models, researchers can develop more sophisticated methods
for identifying a user’s native language from written text, even in complex multilingual or
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code-mixed contexts (Abinaya et al., 2023; Kohnke, Moorhouse & Zou, 2023). This is
particularly relevant in today’s interconnected world, where linguistic diversity and fluid
language use present ongoing challenges for traditional classification techniques.

Transformer models trained on extensive multilingual corpora are particularly
well-suited for addressing these challenges. Unlike conventional approaches, which often
struggle with dialectal variations and language mixing, models such as GPT demonstrate
flexibility and adaptability in handling such complexities. This capacity is especially
valuable in educational environments, where accurately identifying a learner’s linguistic
background can inform the design of more effective, individualized instruction (Bhansali
et al., 2022; Thara & Poornachandran, 2021).

In this study, we investigate the application of a fine-tuned GPT-2 model (Radford et al.,
2019) for NLI tasks. Our approach aims not only to classify native languages from written
Portuguese texts but also to improve the scalability and accuracy of language identification
across diverse linguistic inputs. By applying deep learning techniques to this task, we
contribute a practical solution for enhancing language-aware technologies used in online
platforms, educational applications, and information retrieval systems globally.

RELATED WORK
The field of NLI has gained considerable traction in linguistics and natural language
processing (NLP) over recent decades. Traditional investigations have predominantly
centered on identifying the traits that differentiate native speakers from non-native
speakers, with an emphasis on linguistic competence, heritage, and affiliation as crucial
elements of native language identity (Kozhemyakova et al., 2019). Goldin, Rabinovich &
Wintner (2018) established a foundation for examining how linguistic features appear in
written texts, suggesting that the errors made by second language learners often reflect
influences from their native languages. This initial work has been instrumental in
developing methodologies for identifying native languages based on written outputs
produced in a second language.

In recent years, NLI research has transitioned towards more advanced computational
techniques, incorporating machine learning algorithms to enhance accuracy. The notable
study ofMalmasi & Dras (2017), which proposed adoption of ensemble methods and deep
learning architectures has notably improved the performance of NLI systems. Researchers
have investigated various feature extraction methods, such as character and word n-grams,
to capture the subtleties of language use that indicate a writer’s native language
(Mohammadi, Veisi & Amini, 2017). The creation of extensive datasets, like the TOEFL11
corpus, has equipped researchers with valuable resources for training and evaluating NLI
models, thereby increasing the reliability of findings (Blanchard et al., 2013).Malmasi et al.
(2017) highlighted this shift, demonstrating competitive systems that employed a variety of
classifiers to achieve high accuracy in identifying the native languages of English as a
second language (ESL) writers.

Despite these advancements, the NLI task still encounters several challenges. A
significant obstacle is the inherent variability in language use among individuals,
complicating the development of universally applicable models. The overlap of linguistic
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features across various native languages can lead to misidentification, especially when
writers are proficient in multiple languages (Markov, Nastase & Strapparava, 2020).
Furthermore, the absence of balanced and comprehensive benchmark corpora has
impeded the comparison of results across studies, making it difficult to establish
standardized evaluation metrics (Cimino & Dell’Orletta, 2017). The challenge of
identifying native language interference—where aspects of a writer’s first language
influence their second language production—adds another layer of complexity to the NLI
task (Markov, Nastase & Strapparava, 2020). Additionally, the rapid evolution of
language in digital communication, particularly within multilingual settings,
presents further challenges for traditional NLI approaches, necessitating continuous
research and adaptation of methodologies to align with emerging linguistic trends
(Dey et al., 2024).

MATERIALS AND METHOD
Dataset
Data description
The NLI-PT dataset (Río Gayo, Zampieri & Malmasi, 2018) is the first corpus specifically
developed for native language identification (NLI) in Portuguese. It aims to identify an
author’s native language based on their writing in European Portuguese as a second
language. The dataset comprises 1,868 student essays authored by learners whose native
languages span a diverse set, including Chinese, English, Spanish, German, Russian,
French, Japanese, Italian, Dutch, Tetum, Arabic, Polish, Korean, Romanian, and Swedish.
These texts were compiled from three Portuguese learner corpora: (i) COPLE2, (ii) the
Leiria corpus, and (iii) PEAPL27, as summarized in Table 1.

NLI-PT includes the original student texts accompanied by four types of linguistic
annotations: part-of-speech (POS) tags, fine-grained POS, constituency parses, and
dependency parses. The three corpora consist of written texts from Portuguese learners
with varying proficiency levels and different native languages. The dataset incorporates all
the data from COPLE2, along with selected portions of PEAPL2 and the Leiria corpus.
Designed for both NLI research and broader studies in Second Language Acquisition and
educational NLP, NLI-PT serves as a valuable resource for various applications, such as
grammatical error correction and language learning tools. The dataset is made freely
available for research purposes, promoting further exploration in the field of Portuguese
language learning and processing.

To gain an overview of the data, we conducted a deeper analysis of the quantity of data
for each language type as well as the distribution of sample lengths. This is an important
data processing step to develop appropriate approaches and effectively mine the data. The
distribution of samples in each class is shown in Table 2. The amount of data across classes
is relatively imbalanced, with the number of samples for Arabic, Tetum, and Swedish being
relatively low, with fewer than 20 samples each, while languages such as English, Spanish,
and Italian have a larger volume of over 200 samples.

The length of the text is also a significant factor affecting the accuracy of the model. To
gain insights into the distribution of texts based on word length, we created a histogram

Nie (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2909 5/19

http://dx.doi.org/10.7717/peerj-cs.2909
https://peerj.com/computer-science/


categorizing them as presented in Fig. 1. Generally, most length of texts fall within the
range of about 450 to 1,600.

Data processing
In this study, we employed a data processing pipeline to prepare Portuguese text for
input into the GPT-2 model. The data preprocessing phase involved several key steps to
enhance the quality of the input for the GPT-2 model. Initially, we performed text
normalization, which included converting all text to lowercase and removing any
extraneous punctuation. Subsequently, we applied tokenization to segment the documents
into individual words and phrases, facilitating more efficient processing. The dataset also
includes various annotations, such as part-of-speech (POS) tagging and constituency
parses, which we leveraged to enrich the input features. Furthermore, we ensured that the
training data was balanced across different native language backgrounds to mitigate any
biases during model training. This comprehensive data processing pipeline aimed to
optimize the performance of GPT-2 in generating coherent and contextually relevant
responses in Portuguese.

Table 1 Dataset statistics for each source corpus, including the number of texts, tokens, types, and
the type-to-token ratio (TTR).

Corpus Texts Tokens Types TTR

COPLE2 1,058 201,921 9,373 0.05

Leiria 330 57,358 4,504 0.08

PEAPL2 480 121,138 6,808 0.06

Total 1,868 380,417 20,685 0.05

Table 2 Number of samples per native language class.

Language COPLE PEAPL LEIRIA Total

Arabic 13 1 0 14

Chinese 323 32 0 355

Dutch 17 26 0 43

English 142 62 31 235

French 59 38 7 104

German 86 88 40 214

Italian 49 83 83 215

Japanese 52 15 0 67

Korean 9 9 48 66

Polish 31 28 12 71

Romanian 12 16 51 79

Russian 80 11 1 92

Spanish 147 68 56 271

Swedish 16 2 1 19

Tetum 22 1 0 23

Total 1,058 480 330 1,868
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Next, the dataset was split into two subsets using a 90:10 ratio for training and testing,
respectively, through stratified sampling. This ensured that each class was proportionally
represented in both sets, providing the model with sufficient data for learning while
enabling evaluation on previously unseen texts.

Method
Overview
In this study, we propose the framework outlined in Fig. 2 for the problem of NLI. The
framework is organized into two main modules: the Finetuning Module and the
Application Module.

Initially, we begin with the NLI_PT dataset, which is partitioned into two subsets: the
test dataset and the finetuning dataset. For the Finetuning Module, the finetuning dataset
undergoes a series of preprocessing steps, including data cleaning and processing.
Subsequently, a GPT-2 model is finetuned on this dataset, resulting in the development of
a pretrained GPT-2 model specifically designed for NLI.

Following this, the Application Module leverages the test dataset to predict the native
language of samples using the finetuned GPT-2 model. The output from this module
consists of the predicted native language for each input sample. Detailed descriptions of
each processing step will be elaborated upon in the subsequent subsections.

Proposed architecture
This section presents our approach and architectural design for identifying native
languages using the GPT-2 model. Our methodology enhances robustness and accuracy

Figure 1 Distribution of sentence lengths within the dataset.
Full-size DOI: 10.7717/peerj-cs.2909/fig-1
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through an innovative embedding extraction and fusion process as presented in Fig. 3. The
proposed architecture includes several integral components focused on improving the
precision of NLI. Initially, we transform text documents into tokens, which are then
embedded and input into the GPT-2 model. To enhance generalization, we extract
embedding features from three last depth layers of the model.

NLI_PT dataset is defined as S ¼ fsj; yjgMj¼1, where sj represents an individual data point
(text document) and yj denotes its corresponding label (native language), and M is number
of sample in the dataset. The dataset is divided into training and testing subsets, Strain
and Stest.

During training, we utilize the embedding extraction function to derive semantic
embeddings from a batch of data points fsj; yjgbj¼1 in Strain, where b is the batch size.

To create a unified representation for each data point, we combine all available
embeddings by using concatenation, yielding the final semantic embedding �ðjÞ for the j-th
data point:

�ðjÞ ¼
gð10Þj

gð11Þj

gð12Þj

2
664

3
775; (1)

gðlÞj ¼ eðsj j lÞ: (2)

Here, l ranges from 10 to 12 for the GPT-2 model corresponding to the outputs of the last
three transformer blocks in the architecture.

NLI_PT Dataset

Test Dataset

Predicted
Native Language

Predicting using
Finetuned GPT2

Data Clearning &
Processing

GPT2 Finetuning

Finetuning Dataset

Pretrained GPT2

Finetuning ModuleApplication Module

Figure 2 Proposed framework overview. Full-size DOI: 10.7717/peerj-cs.2909/fig-2
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Figure 3 Model architecture for native language identification. Full-size DOI: 10.7717/peerj-cs.2909/fig-3
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The concatenated embeddings �ðjÞ are then input into the classifier head that is a fully
connected layer to predict the native language of the input sample.

Loss function and training details
Cross-entropy loss (CEL) is a commonly used metric for multi-class classification
problems. For a model predicting K classes, the cross-entropy loss is defined as:

Loss ¼ �
XK
i¼1

yi logðŷiÞ; (3)

where yi is the label of class i (1 if class i is the true class, 0 otherwise) and ŷi is the predicted
probability of the model for class i.

We fine-tuned the model for five epochs with a learning rate of 10�4, using the Adam
optimizer (Kingma & Ba, 2014) for efficient gradient-based optimization. The entire model
and experiments were deployed on a 3060 GPU with 12 GB of memory.

Evaluation
To evaluate the effectiveness of our fine-tuned GPT-2 embeddings for the task of NLI, we
compared the performance of our method against established baseline models, including
various deep learning architectures such as deep neural networks (DNNs) (Schröder &
Niekler, 2020), convolutional neural networks (CNNs) (Lai et al., 2015), recurrent neural
networks (RNNs) (Liu, Qiu & Huang, 2016), and LSTM (Long Short-Term Memory
networks) (Nowak, Taspinar & Scherer, 2017). Additionally, we will incorporate
traditional machine learning techniques such as support vector machine (SVM) and RF
(Random Forest) from extracted features of Word2Vec (Mikolov et al., 2013). To evaluate
the performance of those models, we calculated various metrics, including F1-score, recall,
precision and accuracy. Our objective is to assess whether the fine-tuned GPT-2 model
significant improvements in accurately identifying a speaker’s native language compared
to the performances of the baseline models.

To conduct a comprehensive performance analysis, we compared with powerful
pre-trained models for language processing tasks. These models include:

. Bidirectional encoder representations from transformers (BERT) (Devlin et al., 2018)
is a powerful language model based on the Transformer architecture, capable of
generating deep bidirectional semantic representations by capturing the context of
words in both forward and backward directions. This bidirectional understanding is
particularly valuable for language classification tasks. BERT has been successfully applied
in a wide range of domains (Leow, Nguyen & Chua, 2021;Nguyen-Vo et al., 2021;Nguyen
et al., 2024), demonstrating its versatility and effectiveness.

. SciBERT (Beltagy, Lo & Cohan, 2019): Designed specifically for scientific text, SciBERT
leverages a large corpus of scientific literature to improve performance on
domain-specific tasks, making it particularly effective for identifying languages used in
scientific contexts.
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. BioBERT (Lee et al., 2019): This model extends BERT for biomedical text mining by
pre-training on large-scale biomedical corpora, enhancing its ability to identify
languages in medical and biological documents.

. BlueBERT (Peng, Yan & Lu, 2019): A model optimized for biomedical and clinical text,
BlueBERT incorporates knowledge from both general and biomedical corpora,
providing robust performance in language identification across diverse biomedical
datasets.

. RoBERTa (Liu et al., 2019): An optimized version of BERT, RoBERTa improves
performance by carefully tuning training parameters and using a larger dataset, thereby
enhancing its capacity to identify languages in various texts effectively.

The model architectures and their corresponding default parameter settings used in the
experiments are summarize in Table 3. Through a comparison of proposed model with
these methods, we aim to showcase the effectiveness of our architecture, especially in
improving semantic understanding, feature extraction techniques, and addressing the
intricate characteristics of NLI.

EXPERIMENTAL RESULTS AND DISCUSSION
Performance analysis with baseline models
Table 4 provides a comprehensive comparison between the proposed GPT-2 model and a
range of baseline models, including traditional deep learning architectures (DNN, CNN,
RNN, long short-term memory (LSTM)) and hybrid models using Word2Vec embeddings
combined with SVM or RF classifiers.

Among all models evaluated, GPT-2 demonstrates a clear and consistent superiority
across all performance metrics. It achieves the highest scores in Weighted F1 (0.9419),
Macro F1 (0.8521), and Micro F1 (0.9465), indicating both class-wise balance and overall
accuracy. Similarly, GPT-2 leads in recall metrics, including Weighted Recall (0.9465),
Macro Recall (0.8534), and Micro Recall (0.9465), showcasing its ability to capture true

Table 3 Model architectures and default parameter settings used in the experiments.

Model Architecture type Parameter settings (Default)

Baseline DNN Fully Connected Neural Network 4 hidden layers, dropout = 0.25

CNN 1D Convolutional Neural Network 3 1DCNN layers, 1 MaxPooling,

RNN Recurrent Neural Network 2 layers, 128 hidden units

LSTM Long Short-Term Memory 2 layers, 256 hidden units,

Word2vec + SVM Word Embedding + ML Linear kernel, C = 1.0

Word2vec + RF 100 trees, max_depth = 20

Pretrained BERT Based Transformer 12 layers, 12 attention heads

SciBERT

BioBERT

BlueBERT

RoBERTa
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positives effectively across both majority and minority classes. Its precision is equally
strong, with the highest Weighted Precision (0.9459), Macro Precision (0.8779), and Micro
Precision (0.9465), underscoring the model’s robustness in minimizing false positives.

Compared to the strongest baseline, Word2Vec + RF, which achieves a Weighted F1 of
0.8115 and an accuracy of 0.8342, GPT-2 shows a significant performance gain of over 13%
in F1 and more than 11% in accuracy. Deep learning models like LSTM and RNN perform
moderately well, with LSTM achieving a Weighted F1 of 0.7499 and accuracy of 0.7701,
but still fall short in macro-level metrics, indicating limited ability to generalize across
less-represented classes.

The consistent outperformance of GPT-2 can be attributed to its large-scale pretraining
on diverse textual corpora and its attention-based architecture, which allows it to capture
nuanced contextual dependencies. Unlike traditional baselines that rely on handcrafted
features or fixed embeddings, GPT-2 dynamically generates contextualized representations
that adapt to the linguistic features of each input, contributing to its strong generalization
capability.

These results highlight the value of transformer-based architectures, particularly in
complex classification tasks such as native language identification, where class imbalance
and linguistic diversity pose significant challenges. The superior performance of GPT-2

Table 4 Performance comparison with baseline models. Bold denotes the best-performing value for each metric.

Baseline model F1 Recall Precision Accuracy

DNN Weighted F1 0.6672 Weighted Recall 0.7005 Weighted Precision 0.7094 0.7005

Marco F1 0.5157 Marco Recall 0.5044 Marco Precision 0.6234

Micro F1 0.7005 Micro Recall 0.7005 Micro Precision 0.7005

CNN Weighted F1 0.6985 Weighted Recall 0.7219 Weighted Precision 0.7538 0.7219

Marco F1 0.5376 Marco Recall 0.5362 Marco Precision 0.6460

Micro F1 0.7219 Micro Recall 0.7219 Micro Precision 0.7219

RNN Weighted F1 0.7381 Weighted Recall 0.7594 Weighted Precision 0.7449 0.7594

Marco F1 0.5512 Marco Recall 0.5440 Marco Precision 0.6077

Micro F1 0.7594 Micro Recall 0.7594 Micro Precision 0.7594

LSTM Weighted F1 0.7499 Weighted Recall 0.7701 Weighted Precision 0.7863 0.7701

Marco F1 0.5800 Marco Recall 0.5583 Marco Precision 0.6805

Micro F1 0.7701 Micro Recall 0.7701 Micro Precision 0.7701

Word2vec + SVM Weighted F1 0.7722 Weighted Recall 0.8021 Weighted Precision 0.7705 0.8021

Marco F1 0.5821 Marco Recall 0.5915 Marco Precision 0.5963

Micro F1 0.8021 Micro Recall 0.8021 Micro Precision 0.8021

Word2vec + RF Weighted F1 0.8115 Weighted Recall 0.8342 Weighted Precision 0.8256 0.8342

Marco F1 0.6460 Marco Recall 0.6297 Marco Precision 0.7098

Micro F1 0.8342 Micro Recall 0.8342 Micro Precision 0.8342

GPT-2 Weighted F1 0.9419 Weighted Recall 0.9465 Weighted Precision 0.9459 0.9465

Marco F1 0.8521 Marco Recall 0.8534 Marco Precision 0.8779

Micro F1 0.9465 Micro Recall 0.9465 Micro Precision 0.9465
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demonstrates its suitability for real-world applications requiring both accuracy and
adaptability across varied language backgrounds.

Performance analysis with pre-trained models
The comparative analysis of pre-trained models, as presented in Table 5, highlights
significant differences in performance across multiple evaluation metrics. Among the
models evaluated, the fine-tuned GPT-2 consistently outperformed both general-purpose
transformer models, such as BERT and RoBERTa, and domain-specific variants, including
BioBERT and BlueBERT. Notably, GPT-2 achieved the highest scores across key
metrics–Weighted F1 (0.9419), Macro F1 (0.8521), and accuracy (0.9465)–demonstrating
superior robustness and generalization across diverse class distributions.

While models such as SciBERT and RoBERTa exhibited strong micro-level
performance—indicating their effectiveness in predicting frequent classes—the fine-tuned
GPT-2 model distinguished itself by delivering balanced improvements across all
evaluation metrics, including macro-level scores. This balance suggests that GPT-2 is not
only adept at identifying dominant classes but also demonstrates strong capability in
handling minority categories with precision. This is further evidenced by its high Macro
Recall (0.8534) and Macro Precision (0.8779), which underscore the model’s ability to
maintain consistent performance despite class imbalance.

In contrast, domain-specific models like BioBERT and BlueBERT, although optimized
for biomedical text, performed slightly below general-purpose transformers such as

Table 5 Performance comparison with pre-trained models. Bold denotes the best-performing value for each metric.

Pretrained models F1 Recall Precision Accuracy

BERT Weighted F1 0.8817 Weighted Recall 0.8877 Weighted Precision 0.8958 0.8877

Macro F1 0.7760 Macro Recall 0.7495 Macro Precision 0.8406

Micro F1 0.8877 Micro Recall 0.8877 Micro Precision 0.8877

RoBERTa Weighted F1 0.8994 Weighted Recall 0.9144 Weighted Precision 0.8913 0.9144

Macro F1 0.7314 Macro Recall 0.7252 Macro Precision 0.7500

Micro F1 0.9144 Micro Recall 0.9144 Micro Precision 0.9144

SciBERT Weighted F1 0.9029 Weighted Recall 0.9144 Weighted Precision 0.9046 0.9144

Macro F1 0.7680 Macro Recall 0.7651 Macro Precision 0.7939

Micro F1 0.9144 Micro Recall 0.9144 Micro Precision 0.9144

BioBERT Weighted F1 0.8817 Weighted Recall 0.8930 Weighted Precision 0.8903 0.8930

Macro F1 0.7945 Macro Recall 0.7830 Macro Precision 0.8496

Micro F1 0.8930 Micro Recall 0.8930 Micro Precision 0.8930

BlueBERT Weighted F1 0.8981 Weighted Recall 0.9037 Weighted Precision 0.9084 0.9037

Macro F1 0.8139 Macro Recall 0.8010 Macro Precision 0.8605

Micro F1 0.9037 Micro Recall 0.9037 Micro Precision 0.9037

GPT-2 Weighted F1 0.9419 Weighted Recall 0.9465 Weighted Precision 0.9459 0.9465

Macro F1 0.8521 Macro Recall 0.8534 Macro Precision 0.8779

Micro F1 0.9465 Micro Recall 0.9465 Micro Precision 0.9465
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RoBERTa. This may reflect a domain mismatch, where the models’ specialized training
fails to confer a performance advantage in broader language classification tasks.

The consistently strong results of GPT-2 can be attributed to its large-scale pretraining
on diverse corpora and the use of advanced attention-based mechanisms, which enable a
deeper contextual understanding of language. These characteristics make GPT-2
particularly well-suited for complex classification scenarios. Overall, the findings highlight
the importance of leveraging modern transformer architectures—particularly those with
broad pretraining and high contextual capacity—for achieving state-of-the-art results in
native language identification and related tasks.

Effect of transformer block selection
To assess the impact of different transformer block combinations on embedding quality,
we conducted a comparative experiment using three configurations of the GPT-2 model:
(i) the final block (Layer 12), (ii) the last two blocks (Layers 11–12), and (iii) the last three
blocks (Layers 10–12). This experiment aimed to validate the design decision to utilize the
final three layers for embedding extraction, as implemented in our proposed architecture.
For each configuration, the output embeddings from the selected layers were concatenated
and passed through an identical classification head. To ensure a fair comparison, all other
experimental conditions—including the optimizer, learning rate, and batch size—were
held constant across the experiments.

The results presented in Table 6 indicate that utilizing a greater number of transformer
blocks for semantic embedding extraction leads to improved model performance across all
evaluation metrics. Specifically, the configuration incorporating the final three blocks
(Layers 10–12) achieves the highest accuracy (94.65%) and F1 scores, suggesting that
aggregating information from multiple layers produces more informative and
discriminative semantic representations. In contrast, relying solely on the final block
results in noticeably lower performance, likely due to the reduced contextual depth
captured. This trend underscores the value of deeper fusion of transformer layer outputs in
enhancing generalization and semantic sensitivity for the native language identification

Table 6 Performance comparison using different combinations of the final transformer blocks. Bold denotes the best-performing value for each
metric.

Block combination F1 Recall Precision Accuracy

Last 1 Block (Layer 12) Weighted F1 0.9182 Weighted Recall 0.9210 Weighted Precision 0.9201 0.9210

Macro F1 0.8284 Macro Recall 0.8297 Macro Precision 0.8502

Micro F1 0.9210 Micro Recall 0.9210 Micro Precision 0.9210

Last 2 Blocks (Layers 11–12) Weighted F1 0.9314 Weighted Recall 0.9352 Weighted Precision 0.9335 0.9352

Macro F1 0.8426 Macro Recall 0.8437 Macro Precision 0.8668

Micro F1 0.9352 Micro Recall 0.9352 Micro Precision 0.9352

Last 3 Blocks (Layers 10–12) Weighted F1 0.9419 Weighted Recall 0.9465 Weighted Precision 0.9459 0.9465

Macro F1 0.8521 Macro Recall 0.8534 Macro Precision 0.8779

Micro F1 0.9465 Micro Recall 0.9465 Micro Precision 0.9465
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task. Accordingly, the choice to employ the final three layers in the proposed architecture is
empirically validated.

LIMITATIONS AND FUTURE WORK
While our approach to NLI using a fine-tuned GPT-2 model has demonstrated strong
performance, several limitations and future directions warrant consideration to enhance
its applicability and generalizability.

First, the NLI-PT dataset used in this study comprises learner texts from a limited set of
linguistic backgrounds, which may restrict the generalizability of our model across more
diverse populations. Learners with underrepresented native languages, dialects, or
multilingual profiles may exhibit language transfer effects not captured in the current
dataset. Future work should incorporate more heterogeneous corpora encompassing
broader linguistic, cultural, and educational contexts to foster inclusivity and improve the
robustness of the model.

Second, the reliance on large-scale transformer models like GPT-2 poses practical
challenges in terms of computational resource requirements. This can hinder real-world
deployment, especially in low-resource environments or educational institutions lacking
access to high-performance computing. To address this, future research could leverage
lightweight and efficient fine-tuning strategies such as low-rank adaptation (LoRA), which
has shown promise in reducing training costs without sacrificing performance (Chen et al.,
2024). Additionally, emerging techniques such as integrating reasoning frameworks like
Tree of Thoughts and behavior-driven adaptation (Ding et al., 2023; Wang et al., 2025)
may help tailor transformer models to specific user profiles or contexts with minimal
overhead.

By extending this work toward more inclusive datasets and efficient fine-tuning
methods, future research can advance the scalability and practical deployment of
transformer-based NLI systems, ultimately supporting broader adoption in diverse
linguistic and educational settings.

CONCLUSIONS
This study explored the application of a fine-tuned GPT-2 model for NLI using the
NLI-PT dataset, demonstrating the potential of transformer-based architectures in
accurately identifying learners’ native languages from their second-language writing. Our
model outperformed traditional machine learning approaches and other pre-trained
language models in terms of accuracy, F1-score, and recall, highlighting the effectiveness of
deep contextual representations in handling complex linguistic patterns.

By leveraging the strengths of GPT-2, including its bidirectional understanding and
capacity for modeling complex language structures, we were able to address key challenges
in NLI, such as ambiguity in learner language and variability in writing styles. The results
underscore the value of large-scale language models in advancing NLI research and
supporting applications in personalized education, forensic linguistics, and multilingual
language technologies.
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Overall, this work provides a solid foundation for future studies aiming to enhance NLI
systems through transformer-based models. Future research should aim to extend this
framework to more diverse datasets and explore efficient deployment strategies to ensure
broader accessibility and scalability across real-world applications.
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