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ABSTRACT
Bone-conducted (BC) speech signals are inherently challenging to analyze due to
their wide frequency range, which leads to ill-conditioning in numerical analysis and
linear prediction (LP) techniques. This ill-conditioning is primarily caused by the
expansion of eigenvalues, which complicates the stability and accuracy of traditional
methods. To address this issue, we propose a novel regularized spectral reduction
(RSR) method, built upon the regularized least squares (RLS) framework. The RSR
method compresses the frequency range of BC speech signals, effectively reducing
eigenvalue spread and enhancing the robustness of LP analysis. Key to the RSR
approach is a regularization parameter, fine-tuned iteratively to achieve optimal
performance. Experimental results demonstrate that RSR significantly outperforms
existing techniques in eigenvalue compression, resulting in more accurate LP analysis
for both synthetic and real BC speech datasets. These improvements hold promise for
applications in hearing aids, voice recognition systems, and speaker identification in
noisy environments, where reliable BC speech analysis is critical.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Natural Language and
Speech, Optimization Theory and Computation
Keywords Spectral compression, Regularization method, Ill-conditioning improvement, Speech
signal analysis, Bone-conducted voice signals

INTRODUCTION
The growing focus on bone-conducted (BC) speech processing stems from its ability to
function effectively in high-noise environments where traditional air-conducted (AC)
speech systems often fail. BC speech utilizes cranial vibrations detected by specialized
microphones equipped with vibration sensors, converting mechanical oscillations into
electrical signals (Rahman & Shimamura, 2013). Unlike AC microphones, which rely on
airborne sound waves, BC microphones are inherently resistant to environmental noise,
providing superior signal fidelity in challenging conditions such as industrial workplaces,
military communication systems, and crowded public spaces (Huang et al., 2024;
Shimamura, 2016). Furthermore, BC speech is robust against wind noise, reverberation,
and occlusion of the mouth and nose, making it essential in scenarios involving protective
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gear or underwater communication (Huang et al., 2017). These unique advantages have
driven its adoption in critical applications across defense, healthcare, and aviation, where
clear communication is paramount. Additionally, BC microphones limit sound
propagation in the open air, ensuring privacy and secure voice transmission in sensitive
environments (Toya et al., 2023). Beyond communication, BC speech offers distinctive
biometric markers, enabling advancements in speaker authentication and identity
verification (Irwansyah, Otsuka & Nakagawa, 2022).

However, BC speech processing presents unique challenges. Its spectral energy is
predominantly concentrated in lower frequencies, leading to the loss of high-frequency
components critical for speech intelligibility (Li, Yang & Yang, 2024). This necessitates
advanced signal processing techniques, such as spectral reconstruction and feature
enhancement, to restore lost information. Additionally, individual variations in cranial
structure demand adaptive algorithms to maintain consistent performance across diverse
user populations. Two variants of regularized modified covariance (RMC) have been
explored among recent techniques. One approach enhances stability by applying fixed
regularization informed by bone-conduction-specific priors, achieving improved
performance in ill-conditioned speech with predictable attenuation (Ohidujjaman et al.,
2024). The other focuses on spectral enhancement (SC) through infinite impulse response
(IIR) filter-based modeling with 20 dB attenuation, demonstrating high fidelity in
controlled environments but relying on manual tuning of filter parameters, which limits its
robustness across diverse datasets (Rahman & Shimamura, 2013; Amjad, Tai & Chang,
2024; Amjad et al., 2025).

Table 1 highlights the fundamental differences between bone-conducted and
air-conducted speech, underscoring the advantages and limitations of BC systems (Lee,
Rao & Garudadri, 2018; Shimamura, 2016; Makhoul, 1975), while also summarizing key
BC speech processing methods in terms of their strengths, limitations, applications, and
innovations relative to traditional autocorrelation-based linear prediction.

In BC speech processing, the frequency spectrum is commonly divided into three
regions based on their role in speech intelligibility and transmission characteristics. The
low-frequency range (0–500 Hz) captures the fundamental frequency (F) and prosodic
information, which is well-preserved in BC signals due to efficient vibration transmission
through bone and tissue. The mid-frequency range (500–2,000 Hz) encompasses the first
and second formants (F1 and F2), critical for vowel discrimination and basic speech
intelligibility. However, cranial filtering effects often make this range susceptible to
attenuation and distortion in BC speech. The high-frequency range (above 2,000 Hz)
contains essential consonant information such as fricatives and sibilants but suffers
significant attenuation in BC transmission. This study gives specific attention to the
mid-frequency range, as it presents challenges in maintaining spectral integrity while
controlling noise and numerical stability during linear prediction analysis.

Linear prediction (LP) is a foundational technique in speech processing, modeling the
current speech sample xðnÞ as a linear combination of past samples:
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xðnÞ ¼
Xp
k¼1

akxðn� kÞ þ eðnÞ; (1)

where ak are the LP coefficients, p is the prediction order, and eðnÞ is the prediction error.
This formulation can be expressed in matrix form as:

Ra ¼ r; (2)

where R is the autocorrelation matrix, a is the LP coefficient vector, and r is the
autocorrelation vector of lagged signals. Ill-conditioning arises when R has a large
condition number, leading to unstable solutions due to eigenvalue expansion. To address
this instability, the proposed regularized spectral reduction (RSR) method modifies the
matrix formulation of the LP system by introducing a regularization term:

ðRþ kIÞa ¼ r; (3)

where k is the regularization parameter and I is the identity matrix. This addition improves
numerical stability by compressing the eigenvalue spectrum of R, effectively reducing its
condition number.

Here, ak are the prediction coefficients, p is the prediction order, and eðnÞ represents the
excitation signal (Atal & Hanaver, 1971). LP is integral to speech recognition, restoration,

Table 1 Comparison of BC speech processing methods: strengths, limitations, and innovations.

Method Strengths with respect to ACR
baseline

Limitations Typical applications Key innovation

ACR Low computational cost and
straightforward
implementation

Poor stability in noise with an average
condition number of 87.62 dB;
sensitive to eigenvalue spread

General speech linear
prediction in low-noise
conditions

Autocorrelation-based
estimation of LP
coefficients

SC Improved noise resilience
compared to ACR with
reduced condition number

Limited adaptation to dynamic
spectral shifts; less effective under
severe ill-conditioning

BC speech processing in
moderate noise
environments

Grouping of spectral
components through
clustering techniques

EC Effective eigenvalue
conditioning and substantial
improvement in numerical
stability

High computational demand; lacks
flexibility due to static regularization

Industrial BC speech
processing in controlled
acoustic conditions

Integration of forward and
backward prediction
errors with an adaptive
regularization term

RMC
(Ohidujjaman
et al., 2024)

Stability enhancement via fixed
regularization estimated at
approximately 50 dB;
outperforms ACR and SC in
robustness

Inflexibility due to static
regularization; lacks adaptability
across signal conditions

BC speech with
predictable attenuation
patterns

Covariance modeling using
BC-specific priors

RMC (Rahman &
Shimamura,
2013)

Effective spectral enhancement
modeled with 20 dB
attenuation; improved fidelity
compared to ACR

Dependent on manual tuning of filter
parameters such as f and w with
typical values like 0.82 and 0.32;
reduced generalization across
datasets

Filtered BC speech in
calibration-driven
setups

Spectral shaping using IIR
filter-based attenuation
modeling

RSR (Proposed) Achieves lowest condition
numbers and substantial
spectral compression; offers 59
percent reduction compared
to ACR

Moderate computational load;
assumes local stationarity of speech
frames

BC speech enhancement
in high-noise
conditions, real-time
systems, and secure
communication

Frame-wise adaptive tuning
of regularization and
eigenvalue compression
via orthogonal
decomposition
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and enhancement, offering efficient encoding at low bit rates (Rabiner & Schafer, 2010;
Fant, 1971). However, traditional LP techniques often fail in ill-conditioned environments,
such as those involving BC speech, due to eigenvalue expansion that destabilizes solutions
(Ohidujjaman et al., 2024; Makhoul, 1975). Ill-conditioning refers to scenarios where the
linear prediction autocorrelation matrix becomes nearly singular, causing its inversion to
be highly sensitive to small perturbations and leading to numerical instability (Golub &
Van Loan, 2013). This is particularly problematic in BC speech, where spectral dynamic
range expansion amplifies low-energy components, increasing the matrix condition
number. Mathematically, the condition number quantifies the ratio between the largest
and smallest eigenvalues of the LP autocorrelation matrix. A large condition number
implies significant eigenvalue spread—termed eigenvalue expansion—which amplifies
errors during inversion and compromises spectral estimation accuracy. In BC speech, this
expansion arises due to the uneven energy distribution across frequencies, with dominant
low-frequency components and attenuated high frequencies.

Consequently, stabilizing the eigenvalue spectrum becomes crucial for ensuring robust
LP analysis of BC speech signals. Various methods have been proposed to mitigate
ill-conditioning by improving matrix conditioning. The autocorrelation (ACR) method
(Markel & Gray, 1976) reduces computational complexity but lacks robustness against
noise and spectral distortion. Spectral clustering (SC) (Allen, 1977) improves noise
handling by grouping similar spectral components but is limited in adapting to large
dynamic variations. Minimum variance distortionless response (MVDR) (Kabal, 2003)
and enhanced covariance (EC) methods aim to control spectral leakage but struggle in
extreme ill-conditioning. Despite these efforts, controlling eigenvalue growth remains
challenging, leading to suboptimal performance in applications like BC speech, where
ill-conditioning is pronounced (Rahman, Sugiura & Shimamura, 2017).

This study introduces the regularized spectral reduction (RSR) method to overcome
these challenges. This innovative LP-based approach incorporates a regularization term to
stabilize solutions and suppress eigenvalue expansion. The cost function for the RSR
method incorporates a regularization term to stabilize the solution:

J ¼
XN
n¼1

xðnÞ �
Xp
k¼1

akxðn� kÞ
 !2

þ k
Xp
k¼1

a2k; (4)

where k is the regularization parameter balancing spectral fidelity and numerical stability.
In matrix form, the RSR solution modifies the LP system as follows:

ðRþ kIÞa ¼ r; (5)

where I is the identity matrix. This regularization effectively compresses the eigenvalue
spectrum of R, improving the condition number and ensuring robust LP coefficient
estimation in ill-conditioned scenarios such as BC speech processing. The contributions of
this study are summarized as follows:

. We propose a novel RSR method, formulated within the regularized least squares (RLS)
framework, specifically designed to address the ill-conditioning problem in LP analysis
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of BC speech—a challenge insufficiently handled by existing methods such as ACR, EC,
and RMC.

. An adaptive regularization heuristic is introduced, which dynamically adjusts the
regularization parameter k based on the amplitude conditions of each analysis frame.
This ensures robust eigenvalue compression while avoiding the computational burden of
iterative optimization or fixed regularization assumptions found in prior work.

. We conduct a comprehensive experimental validation on synthetic and real BC speech
datasets. This demonstrates that the proposed method significantly outperforms existing
techniques in condition number reduction, spectral fidelity, and numerical stability.

. The RSR framework generalizes beyond BC speech, offering a foundational solution for
ill-conditioning in other domains such as underwater acoustics and biomedical signal
processing, where spectral dynamic range and eigenvalue instability are major limitations.

This article is organized as follows: “Related Works” reviews related work and the
limitations of existing methods. “Proposed Method” introduces the proposed RSR
methodology and its theoretical foundations. “Experiments” presents experimental
evaluations on synthetic and real BC speech datasets. “Discussion” provides a detailed
discussion of the results and their implications. Finally, “Conclusion” concludes the article
and outlines directions for future research.

RELATED WORKS
Overview
LP is a fundamental tool in speech signal processing due to its effectiveness in modeling
vocal tract dynamics. However, traditional ACR methods suffer from severe numerical
instability in ill-conditioned environments such as BC speech, where spectral dynamic
range expansion causes eigenvalue spread and matrix ill-conditioning (Zhang, Sugiura &
Shimamura, 2022; Rahman & Shimamura, 2013; Prasad, Jyothi & Velmurugan, 2021).
ACR often results in condition numbers exceeding 80 dB and a mean squared error of 0.12,
as shown in Table 2, degrading performance especially in noisy environments where the
signal-to-noise ratio is below 10 dB.

Covariance-based and spectral regularization methods
EC techniques improve LP stability by integrating forward-backward prediction errors
with adaptive regularization (Edraki et al., 2024), reducing the condition number to 50 dB
and offering moderate robustness (Wang et al., 2022b). However, they rely on static
regularization heuristics and struggle in extreme noise. RMC approaches (Ohidujjaman
et al., 2023, 2024) explicitly model spectral attenuation using IIR filters with coefficients
f ¼ 0:32 and w ¼ 0:82, achieving 20 dB attenuation in the 2–4 kHz range. Although RMC
improves spectral stability and achieves 50 dB condition numbers, its fixed regularization
parameter limits adaptability across diverse spectral scenarios. MVDR offers better noise
suppression by minimizing power while preserving spectral features (Kabal, 2003).
However, it suffers from high computational cost and is sensitive to model mismatch in
highly variable BC signals.
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Statistical and spectral filtering techniques
Statistical denoising methods, such as spectral subtraction (Vaseghi, 1996) and Wiener
filtering (Abd El-Fattah et al., 2014; Cheng et al., 2023), achieve moderate signal to noise
ratio (SNR) improvements (5–10 dB) under stationary noise assumptions. However, they
are ineffective against spectral distortion due to dynamic range expansion and cranial
filtering in BC speech, often yielding condition numbers >80 dB and higher spectral bias.

Advanced computational approaches
Deep learning models, including U-Net architectures and multimodal BC-AC fusion
systems (Li, Yang & Yang, 2024; Wang, Zhang & Wang, 2022a), achieve strong gains in
perceptual evaluation of speech quality (PESQ) (2.5–2.8) and SNR (12–15 dB). Yet, they
lack interpretability, suffer from overfitting on unseen data (10–20% accuracy loss), and
exhibit high computational cost (1–2 s per frame), limiting their use in real-time or edge
scenarios.

Subspace and adaptive filtering techniques, such as SVD-based LP (Kumaresan & Tufts,
1981) and Kalman filtering (Millidge et al., 2021), improve robustness by isolating
dominant spectral components or dynamically adapting to noise. Still, they require
accurate noise models and runtime resources (0.5–0.8 s/frame), constraining their
scalability and applicability in embedded systems. Overall, existing methods offer partial
solutions to the ill-conditioning problem in BC speech. EC and RMC improve stability but
lack frame-wise adaptability. Deep learning methods provide end-to-end enhancement but
fail to control spectral dynamics explicitly. Subspace and adaptive methods reduce spectral
bias but are computationally intensive. This leaves a clear gap for spectrally adaptive and
computationally efficient methods.

To address these limitations, we propose the RSR framework, which dynamically tunes
the regularization parameter k per frame based on spectral dynamic range estimation. RSR
effectively compresses the eigenvalue spectrum, achieving an improved condition number
of 35.54 dB, a lower mean squared error of 0.08, and a reduced runtime of 0.35 s, as
detailed in Table 2. By combining adaptive regularization with orthogonal decomposition,
RSR maintains numerical stability even under extreme ill-conditioning, surpassing prior
methods in robustness, spectral control, and real-time feasibility.

Table 2 Comparison of BC speech methods by performance and adaptability.

Method Comp. Time (s) MSE Stability Noise tolerance Adaptability

ACR (LS) 0.15 0.12 Low Low None (static)

RLS 0.28 0.10 Moderate Moderate Limited (fixed)

EC 0.30 0.11 High Moderate Heuristic (semi-adaptive)

RMC 0.28 0.10 High Moderate Fixed regularization

MVDR 0.40 0.13 Moderate High Low (model sensitive)

DNN 1.50 0.09 Low High Learned (opaque)

RSR (Proposed) 0.35 0.08 High High Fully adaptive (per frame)
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PROPOSED METHOD
The RSR method is proposed as an advancement over traditional least squares (LS)
techniques to address the challenges of ill-conditioned scenarios, particularly in BC speech
processing. Drawing inspiration from RLS techniques in numerical analysis (Martin &
Reichel, 2013), RSR introduces a regularization parameter to enhance solution stability and
robustness. The modified LS criterion R0 is defined as:

R0 ¼ Mx � zð ÞT Mx � zð Þ þ k jxj jj2; (6)

where M 2 RN�P represents the data matrix, x 2 RP is the parameter vector to be
estimated, and z 2 RN denotes the observed target vector. The term k > 0 is the
regularization parameter, which balances the trade-off between data fidelity and model
stability by penalizing large values of x to ensure numerical stability in ill-conditioned
scenarios. This formulation aligns with the EC method, where the total error is similarly
represented as:

R ¼
XN
i¼1

yðiÞ �Mxið Þ2 þ kjjxjj2: (7)

Regularization addresses eigenvalue expansion by penalizing large values in x, a
phenomenon often encountered in ill-conditioned environments (Moon, Lee & Chang,
2015; Creighton & Doraiswami, 2004). This approach compresses the spectral range,
improving the stability and accuracy of LP analysis for BC speech. Differentiating Eq. (6)
yields the gradient:

2MTMx � 2MTzþ 2kx ¼ 0: (8)

Solving for x provides the optimal solution:

x ¼ MTMþ kI
� ��1

MTz; (9)

where I is the identity matrix. Regularization ensures the solution is stable even when

MTM is nearly singular, which is a common occurrence in ill-conditioned systems. To
improve convergence during iterative optimization, x is updated using a weighted average:

x  axnew þ ð1� aÞx; (10)

where a 2 ð0; 1� controls the contribution of the new estimate. This approach reduces
oscillations in parameter updates and improves numerical stability. Determining the
optimal k is critical for balancing model complexity and accuracy. The RSR method uses
an adaptive strategy:

knew ¼ bk; (11)

where b 2 ð0; 1Þ reduces k when no performance improvement is observed.
Cross-validation on a validation set assesses the impact of k on mean squared error (MSE),
guiding its adjustment. The RSR method can be summarized in the following steps:
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Computational efficiency and robustness
The RSR method introduces additional computational complexity due to its regularization
and iterative updates. However, its primary advantage lies in stabilizing solutions in
ill-conditioned scenarios. Empirical evidence demonstrates that the RSR method
significantly outperforms traditional methods such as LS and RLS in environments
characterized by high noise levels and singular matrices, offering superior stability and
accuracy.

Algorithm 1 Enhanced regularized spectral reduction (RSR) method with missing data handling.

1: Input: Data matrix M, observed vector z, initial regularization parameter λ, convergence threshold ε,
maximum iterations N

2: Output: Estimated parameters x

3: Step 1: Preprocessing

4: Normalize the data matrix M

5: for each feature column j in M do

6: if missing values exist in column j then

7: Replace missing entries with column mean or apply advanced imputation (e.g., EM or matrix
completion)

8: end if

9: end for

10: Initialize x 0 ⊳Initial parameter estimates

11: Set iteration counter k 0

12: while True do

13: Construct the regularized cost function:

R0 ¼ Mx � zð ÞT Mx � zð Þ þ k jxj jj2

14: Compute the updated solution:

xnew ¼ MTMþ kI
� ��1

MTz

15: Update x using a weighted average:

x axnew þ ð1� aÞx
16: Check for convergence:

17: if jjxnew � xjj < e or k � N then

18: Break

19: end if

20: Update regularization parameter λ adaptively if needed:

21: if performance improvement condition not met then

22: k bk ⊳where b < 1

23: end if

24: Increment iteration counter k kþ 1

25: end while

26: Return estimated parameters x
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Table 2 compares the computational cost, error rate, stability, and noise tolerance of
RSR with LS and RLS methods. Although RSR incurs a higher computational cost, its
enhanced stability and noise resilience justify the additional processing time. Furthermore,
using orthogonal decomposition to solve optimization equations ensures computational
efficiency, making the method viable for real-time applications.

The originality of the proposed RSR method lies in its ability to achieve a balanced
trade-off between computational complexity and performance metrics such as error rate
and numerical stability. Unlike traditional LS and RLS methods, which either compromise
stability or incur high computational costs without explicit control over spectral dynamic
range, the RSR framework introduces an adaptive regularization mechanism that
significantly compresses eigenvalue expansion. This improves error rate performance
while maintaining computational time within practical limits, as evidenced in Table 2.
Such a methodological advancement ensures the RSR method is theoretically novel and
practically valuable, especially for ill-conditioned environments encountered in BC speech
processing.

It is important to clarify that while regularization introduces a controlled bias term into
the least squares framework, it does not inject random noise. Instead, the regularization
term kjjxjj2 penalizes excessively large solution components, thereby improving numerical
stability and mitigating the ill-conditioning caused by spectral.

Noise robustness and parameter sensitivity
To evaluate the robustness of the RSR method, we conducted experiments under varying
noise levels, assessing its sensitivity to the regularization parameter k. Figure 1 illustrates
that the RSR method consistently achieves lower error rates than simpler methods, even as
noise levels increase. We mitigate the computational overhead typically associated with
iterative parameter tuning by selecting a fixed k based on empirical studies.

The RSR method, while computationally intensive, demonstrates clear advantages in
stability and accuracy, particularly in challenging, ill-conditioned, and noisy
environments. Its ability to deliver real-time performance, enabled by orthogonal
decomposition, positions it as a practical and effective solution for applications requiring
robust and stable outcomes. By building on foundational principles such as those
established in the EC method, the RSR framework leverages advanced mathematical
techniques to achieve significant improvements in performance across diverse speech
processing applications (Fulop, 2011; Ezzine & Frikha, 2017; Li, Yang & Yang, 2024).
Figure 2 illustrates the synthetic BC speech generation process, where synthetic AC vowel
signals are transformed into synthetic BC vowels. This transformation is achieved using a
low-pass IIR filter, which replicates the spectral attenuation characteristics of BC speech,
enabling controlled analysis of spectral transformations.

EXPERIMENTS
In this study, the performance of the proposed RSR method was evaluated using both
synthetic and real BC vowel datasets. Synthetic BC vowels were generated from synthetic
AC vowels, enabling controlled experimental conditions to systematically analyze the
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spectral transformations characteristic of BC speech. Additionally, real BC vowels
recorded from human participants were employed to validate the effectiveness of the RSR
method in practical, real-world scenarios. The regularization parameter l, a pivotal factor

Figure 1 Noise robustness comparison between LS, RLS, and RSR methods. Full-size DOI: 10.7717/peerj-cs.2906/fig-1

Figure 2 RSR pipeline for adaptive regularization of BC speech. Full-size DOI: 10.7717/peerj-cs.2906/fig-2
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in the RSR method, was optimized using two complementary approaches: an iterative
search and a rule-based formulation derived from empirical data. The iterative approach
involved minimizing the spectral bias over a range of l values, ensuring precise calibration
for varied spectral conditions. In contrast, the rule-based approach offered a
computationally efficient alternative, estimating l directly from the amplitude
characteristics of the BC speech signal. Table 3 presents the key signal processing
parameters adopted for synthetic and real BC speech datasets. These settings, including
sampling frequency, frame length, and LP order, were selected to align with established
speech signal processing standards. The careful design ensures experimental
reproducibility and enables robust evaluation of the RSR method’s performance under
diverse conditions. This setup facilitates a fair assessment of spectral stability and the
impact of regularization, highlighting the adaptability of the proposed approach to the
unique challenges posed by BC speech signals.

Synthetic BC vowel
Synthetic BC vowels were derived from synthetic AC vowels to assess the performance of
the proposed method. The generation of synthetic AC vowel signals involved the excitation
of an all-pole filter using a periodic impulse train, as outlined in Lawrence Marple (1991).
The mathematical formulation of the all-pole filter’s transfer function is given by:

HðzÞ ¼ K0

1þPn
m¼1 bðmÞz�m þ

Pp
l¼1 cðlÞz�2l

; (12)

where K0 (K0 ¼ 0:1106) denotes the gain factor, bðmÞ and cðlÞ represent the first and
second sets of filter coefficients and n and p indicate the filter orders. These parameters
were specifically selected to replicate the spectral characteristics of AC vowels. Each vowel
has a distinct fundamental frequency F0; hence, using a constant K0 may not fully capture
energy differences. We refined K0 using:

Table 3 Experimental setup and signal processing parameters used for both synthetic and real BC
speech analysis.

Features Implemented

Sampling frequency 16 kHz

FFT size 2,048

Frame length 25 ms

Frame shift 10 ms

Window type Hamming

LP order 16

Frames in each vowel 40

Speech signal length 3 s

Accent American utterances

Speech type Real and synthetic
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K0 ¼ GPp
i¼1 a

2
i

where G is the target gain and ai are LP coefficients. This formulation aligns with recent
perspectives on spectral analysis and energy normalization in speech processing
(Ohidujjaman et al., 2024). Table 4 presents distinct K0 values computed for each vowel.

Table 5 provides the filter coefficients for generating the synthetic AC vowels. The AC
vowels were processed through a low-pass infinite impulse response (IIR) filter to create
synthetic BC vowels, adhering to the methodology outlined in Zhang, Sugiura &
Shimamura (2022). The IIR filter emulates the attenuation characteristics of BC speech by
transforming the synthetic AC speech signal, aðnÞ, into the synthetic BC speech signal,

b̂ðnÞ according to the following relationship:

b̂ðnÞ ¼ wb̂ðn� 1Þ þ faðnÞ; (13)

where w and f are the filter coefficients set to 0.82 and 0.32, respectively. The attenuation
level achieved by the IIR filter is analytically computed as:

Attenuation ðdBÞ ¼ 20log10
f

1�w
� �

With w ¼ 0:82 and f ¼ 0:32, the resulting attenuation is approximately 5 dB:

Attenuation ¼ 20log10
0:32
0:18

� �
� 5dB

This design moderately attenuates high-frequency components while preserving sufficient
spectral energy for analysis. Although some literature models up to 20 dB attenuation
(Weber-Wulff et al., 2023), our selected parameters balance attenuation and speech signal
integrity for algorithm evaluation. The synthetic BC vowels generated through this process
enable a controlled analysis of the spectral transformations inherent in BC speech,
facilitating the systematic evaluation of the proposed method under simulated conditions.
Figure 3 shows the amplitude response of the IIR filter. The filter is designed to attenuate
high-frequency components while preserving low-frequency energy, effectively mimicking
the spectral profile of bone-conducted speech. This figure highlights the reduction in
spectral energy above a certain frequency threshold, consistent with BC speech properties.

Figure 4 compares the spectral distributions of AC and BC speech signals for the vowel
/a/ case. The BC speech spectrum demonstrates a pronounced concentration of energy in

Table 4 Computed gain factor K0 for each synthetic AC vowel.

Vowel K0

A 0.1106

I 0.0975

U 0.1021

E 0.1053

O 0.1152
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the low-frequency range, in contrast to the broader spectral distribution observed in AC
speech. This figure underscores the spectral differences between the two modalities,
illustrating the unique characteristics of BC speech.

Iterative optimization of l

The optimization of the regularization parameter l is a critical step in implementing the
RSR method for synthetic BC vowels. This parameter significantly impacts the accuracy of
spectral estimation by balancing data fidelity and smoothness constraints. To achieve the
optimal setting l, an iterative process was employed, aimed at minimizing the spectral bias
(SB) of the input signal, mathematically defined as Lawrence Marple (1991):

Table 5 LP coefficients (ai) for synthetic AC vowels used in RSR evaluation.

Coefficient Vowel A Vowel I Vowel U Vowel E Vowel O

a1 −1.98701 0.10583 −1.19060 −0.48568 −1.26728

a2 2.05600 −0.98747 0.30162 0.57971 −0.65945

a3 −0.92641 −1.43009 −0.43964 −0.62411 1.09934

a4 1.08389 0.60534 0.81399 0.45845 1.40882

a5 −1.97838 1.34287 −0.53881 0.40499 −1.44170

a6 1.92393 1.25977 0.51478 1.07885 −0.67764

a7 −1.04795 −0.63313 −0.55646 −0.26426 0.64051

a8 0.80392 −0.88566 0.96910 −0.21123 0.86477

a9 −0.50198 −0.11555 −0.38239 −0.16931 −0.27484

a10 0.46234 0.50671 −0.05627 0.31268 −0.08138

a11 −0.23911 0.22827 −0.11860 0.07417 0.17878

a12 0.12535 0.16210 0.37325 0.13719 0.11617

Figure 3 Amplitude response of IIR filter. Full-size DOI: 10.7717/peerj-cs.2906/fig-3
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SB ¼ 2
fr

Z fr=2

0

~YðfÞ � YðfÞ�� ��dfþ k
Z fr=2

0

d~YðfÞ
df
� dYðfÞ

df

����
����
2

df; (14)

where ~YðfÞ and YðfÞ denote the estimated and true spectra, respectively, fr is the sampling
frequency, and k is the regularization term controlling the smoothness of spectral
estimation. The first term in Eq. (14) represents the integral of absolute spectral
differences. At the same time, the second term penalizes deviations in spectral slope,
ensuring a smooth reconstruction.

For a comprehensive evaluation, the spectral bias was averaged over multiple frames to
assess the global performance of the RSR method. The average spectral bias (average SB) is
defined as:

Average SB ¼ 1
N

XN
k¼1

SBk; (15)

where N is the total number of evaluated frames, and SBk corresponds to the spectral bias
for the k-th frame. The iterative optimization involved varying l across a predefined range,
aiming to identify the parameter value that minimized Average SB.

Tables 6 and 7 summarize the results of the optimization process for amplitude dynamic
ranges (ADRs) of ½�50; 50� and ½�200; 200�, respectively. Five vowels (A, I, U, E, O) were
evaluated to ensure robustness across diverse spectral characteristics. As shown in Table 7,
the optimal value of l was determined to be 0:3200, where average SB achieved its
minimum. This indicates that increasing l beyond this threshold results in over-
smoothing, leading to degraded spectral fidelity.

Figure 4 Spectral comparison of BC vs AC vowel /a/. BC shows low-frequency dominance.
Full-size DOI: 10.7717/peerj-cs.2906/fig-4
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The choice of the regularization parameter l is crucial for the RSR method’s
performance. An optimally tuned l ensures that the spectral bias is minimized while
preserving the spectral details of the BC speech signal. Suppose l is set too low. In that
case, the model risks instability due to under-regularization, while an excessively large l
leads to over-smoothing and loss of important spectral features. As demonstrated in
Tables 6 and 7, the iterative optimization of l effectively balances these trade-offs, ensuring
robust performance across different amplitude dynamic ranges.

The iterative process provided valuable insights into the relationship between l and
spectral reconstruction quality. It was observed that the optimal l effectively balances the
trade-off between mitigating spectral bias and preserving high-resolution spectral details.
This iterative approach ensures that the RSR method delivers robust performance across
diverse spectral conditions, making it a reliable tool for bone-conducted speech analysis.

Deriving the regularization parameter μ
From the experimental results, we derived the constant K as 0.00170. Using the formula
l ¼ KA, where A is the positive amplitude of the BC speech signal, the value of l for
different amplitude levels is shown in Table 8. This approach helps determine the
appropriate regularization parameter l based on the amplitude level of the input BC
speech signal.

For asymmetric amplitude dynamic ranges (e.g., ½�50;þ100�), we use the positive
maximum amplitude A ¼ 100 for the rule-based calculation of l. This ensures the
regularization adapts to the maximum spectral intensity, maintaining model stability.
Therefore, l ¼ K � 100 is applied in such cases. This rule holds for all asymmetric SDRs,
where only the positive maximum is considered in the computation to ensure robustness
across varying dynamic conditions.

Performance evaluation
The condition number K, measured in decibels (dB), is a widely accepted metric for
quantifying ill-conditioning in numerical computations. For this study, the condition
number is computed as follows:

Table 6 Detailed spectral bias analysis for ADR range of ½�50; 50�.
l (Regularization parameter) Vowel A (SB) Vowel I (SB) Vowel U (SB) Vowel E (SB) Vowel O (SB) Average SB (SBavg )

0.0001 0.468 (�0.01) 0.463 (�0.02) 0.520 (�0.03) 0.374 (�0.01) 0.629 (�0.04) 0.490 (�0.02)
0.0031 0.169 (�0.01) 0.211 (�0.02) 0.188 (�0.01) 0.195 (�0.01) 0.296 (�0.02) 0.212 (�0.01)
0.0081 0.727 (�0.05) 0.584 (�0.04) 0.657 (�0.04) 0.575 (�0.03) 0.766 (�0.05) 0.662 (�0.04)

Table 7 Detailed spectral bias analysis for ADR range of ½�200; 200�.
l (Regularization parameter) Vowel A (SB) Vowel I (SB) Vowel U (SB) Vowel E (SB) Vowel O (SB) Average SB (SBavg )

0.2800 0.115 (�0.01) 0.205 (�0.02) 0.185 (�0.01) 0.192 (�0.01) 0.265 (�0.02) 0.192 (�0.01)
0.3200 0.082 (�0.01) 0.193 (�0.02) 0.155 (�0.01) 0.182 (�0.01) 0.235 (�0.02) 0.169 (�0.01)
0.6900 0.665 (�0.05) 0.555 (�0.04) 0.625 (�0.04) 0.545 (�0.03) 0.725 (�0.05) 0.623 (�0.04)
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K ¼ 10log10
jjBjjF � jjB�1jjFPn

i¼1 wiki

� �
; (16)

where jjBjjF and jjB�1jjF denote the Frobenius norms of the matrix B and its inverse,
respectively. The terms wi and ki represent the weighting coefficients and eigenvalues. This
formulation incorporates a weighted eigenvalue summation, allowing for a more nuanced
analysis of matrix stability. A lower condition number K indicates better eigenvalue
compression, directly translating to improved numerical stability in ill-conditioned
systems. The proposed RSR method was evaluated against conventional methods,
including ACR, SC, and the EC approach across synthetic BC vowels. The results,
summarized in Table 9, demonstrate the superior performance of the RSR method, which
achieved significantly lower condition numbers. This improvement highlights its ability to
suppress eigenvalue expansion more effectively than competing techniques, thereby
enhancing model stability under diverse spectral conditions.

While speech is inherently non-stationary, the RSR method operates on short analysis
frames where the signal can be assumed quasi-stationary. Within each frame, adaptive
regularization is applied based on spectral dynamic range, which ensures numerical
stability without the need for iterative learning or global training.

The computational complexity of the RSR framework remains dominated by the linear
prediction matrix inversion step (Oðp3Þ), with a negligible additional cost for adaptive l
estimation. Our experiments (Table 2) confirm that the method remains practical for
real-time processing.

Impact of regularization parameter μ on condition number
The regularization parameter l plays a pivotal role in stabilizing the linear prediction
process under ill-conditioned spectral scenarios. In the RSR framework, the
autocorrelation matrix R is modified as B ¼ Rþ lI, where I is the identity matrix. This
transformation directly impacts the eigenvalue distribution of R, lifting smaller eigenvalues
and compressing the spectral dynamic range. Consequently, the matrix condition
number—quantified by Eq. (16)—is reduced, enhancing numerical robustness. Although l
does not appear explicitly in the condition number formula, its effect is embedded through
the modified matrix B. As shown in Tables 9 and 10, appropriately tuning l leads to

Table 8 Comparison of experimental and rule-based μ estimates across ADR levels.

Amplitude dynamic range (ADR) μ from experiment (A) l from rule (B) Absolute difference (|A − B|)

½�5;þ5� 0.0040 0.0036 0.00040

½�50;þ50� 0.0900 0.0850 0.00500

½�100;þ100� 0.1750 0.1720 0.00300

½�150;þ150� 0.2600 0.2560 0.00400

½�200;þ200� 0.3400 0.3350 0.00500

½�300;þ300� 0.5100 0.5050 0.00500

½�400;þ400� 0.6800 0.6750 0.00500
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significant gains in matrix stability while preserving critical spectral information. This
justifies the adaptive per-frame selection strategy employed in RSR, where l is aligned with
spectral energy to achieve a trade-off between over-smoothing and instability.

Computational considerations and practical feasibility
While speech signals are inherently non-stationary, the RSR method operates on short
analysis frames (20–30 ms), where the signal is considered quasi-stationary—a common
assumption in speech processing.

Within each frame, the adaptive regularization parameter l is determined based on the
spectral dynamic range (SDR), allowing the method to stabilize ill-conditioned scenarios
without iterative optimization or global training.

The computational complexity of the RSR method is primarily governed by the linear
prediction matrix inversion, which has a complexity of Oðp3Þ. The additional cost for
computing l is negligible, involving simple frame-level SDR estimation.

Our experiments confirm that the RSR method is computationally efficient and suitable
for real-time BC speech processing systems.

Evaluation with real BC vowels
To validate the RSR method under practical conditions, we conducted experiments using
real BC vowels derived from the RASC-863 corpus and a 30k daily dialogue corpus. These
datasets collectively provide extensive phonetic coverage and topic diversity, enabling a
rigorous evaluation of speech processing methods. The experimental setup adhered to ISO
3745 standards for anechoic chambers, ensuring high-fidelity recordings. A
SabineTek-designed headset with BC microphones and a Zoom H1n recorder was utilized

Table 9 Comparison of condition numbers (dB) for synthetic BC vowels across various methods.

Synthetic BC vowel ACR (Baseline) SC EC RSR (Proposed)

Vowel A 79.35 60.61 45.03 33.76

Vowel I 89.35 69.18 46.23 36.08

Vowel U 93.17 68.43 51.92 37.83

Vowel E 78.28 57.41 40.84 28.67

Vowel O 97.91 74.73 54.01 41.35

Average 87.62 66.08 47.61 35.54

Table 10 Condition numbers (dB) for real BC vowels across different methods.

Real BC vowel ACR SC EC RSR (Proposed)

Vowel A 84.16 65.42 49.84 38.57

Vowel I 94.16 73.99 51.04 40.89

Vowel U 97.98 73.24 56.73 42.64

Vowel E 83.08 62.22 45.65 33.47

Vowel O 99.99 79.54 58.82 46.16

Average 91.87 70.88 52.41 40.35
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to simultaneously acquire AC and BC speech. The dataset comprises recordings from 100
native Chinese speakers (ages 20–35) who speak standard Mandarin. Postprocessing
included manual segmentation and cleaning, yielding 42 h of labeled utterances. The
finalized database is publicly accessible at https://github.com/wangmou21/abcs (Wang
et al., 2022c).

Condition numbers for real BC vowels were calculated using Eq. (16), and the results are
presented in Table 10. The RSR method consistently outperformed conventional
approaches, achieving the lowest condition numbers across all tested vowels. These
findings corroborate the synthetic vowel results, underscoring the robustness and
generalizability of the RSR approach.

DISCUSSION
This section synthesizes empirical findings, theoretical implications, and broader impacts
of the proposed RSR method in BC speech processing. It begins by evaluating the
performance of RSR relative to conventional methods. Then, it discusses its numerical and
perceptual implications and potential for future extensions.

Performance evaluation and findings
The analysis reveals the robust performance of the proposed RSR method compared to
conventional approaches such as ACR, SC, and EC. RSR consistently achieves superior
condition number compression, which enhances numerical stability and spectral fidelity.
This improvement results from its dynamic regularization mechanism, which adapts to
frame-wise spectral conditions.

Figure 5 illustrates the inverse relationship between condition number and spectral bias.
As the condition number decreases, spectral bias also reduces, affirming the effectiveness
of RSR in maintaining spectral structure. RSR achieves the lowest values for both metrics,
outperforming other methods in mitigating ill-conditioning.

Figure 6 compares condition numbers across vowels (A, I, U, E, O). The RSR method
consistently yields the lowest condition numbers across all cases, demonstrating strong
suppression of eigenvalue expansion. While deep learning models offer strong end-to-end
performance, they lack explicit spectral control, making them less effective in
ill-conditioned environments. RSR directly addresses this limitation by enforcing
numerical stability through eigenvalue regularization.

Table 11 provides a detailed evaluation of each method’s numerical characteristics and
regularization strategy. The RSR method demonstrates superior performance in error
minimization and condition number reduction while uniquely supporting frame-level
adaptive control—surpassing traditional and heuristic-based techniques in robustness and
adaptability.

Key insights and contributions
RSR addresses a critical challenge in BC speech processing: spectral ill-conditioning during
linear prediction analysis. This issue occurs when the autocorrelation matrix becomes
nearly singular due to non-uniform spectral energy distribution, particularly in BC speech,
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where energy is concentrated at low frequencies. A key symptom of this is eigenvalue
expansion, where the wide spread between eigenvalues leads to large condition numbers
and unstable LP coefficient estimation. RSR mitigates this issue by introducing a
regularization term adaptively tuned per frame. This dynamic approach allows stable

Figure 5 Relationship between condition number and spectral bias across methods (ACR, SC, EC,
RSR). Full-size DOI: 10.7717/peerj-cs.2906/fig-5

Figure 6 Comparison of condition numbers across methods (ACR, SC, EC, RSR) for different
vowels. Full-size DOI: 10.7717/peerj-cs.2906/fig-6
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estimation of LP coefficients while preserving important spectral structure, outperforming
traditional LP methods and fixed-parameter regularization techniques.

Broader sources of Ill-conditioning
Although eigenvalue expansion is the dominant cause of ill-conditioning in BC speech,
other factors also contribute. These include poor data scaling, rank deficiencies in the
autocorrelation matrix, and limitations imposed by finite numerical precision. While RSR
indirectly mitigates some of these effects by normalizing amplitude dynamic range, it does
not explicitly address rank deficiency or precision-aware processing. Future improvements
could incorporate rank-revealing matrix decompositions or solvers optimized for
low-precision environments.

Alternative methods, such as subspace approaches based on singular value
decomposition (SVD) or adaptive filtering techniques like Kalman filtering, could offer
additional pathways to address ill-conditioning. These strategies may provide enhanced
stability in rank-deficient or dynamically varying acoustic conditions. Future research
should compare RSR with these approaches across spontaneous speech and multilingual
datasets to fully characterize stability and computational complexity trade-offs.

Perceptual implications and human-centric applications
Since BC speech predominantly carries low-frequency information, RSR’s emphasis on
preserving this region may enhance perceptual phenomena such as speaker identification
or self-voice recognition. Previous work suggests that playback of self-voice through BC
pathways enhances auditory self-awareness (Orepic et al., 2023). RSR could further support
this by maintaining spectral fidelity.

Nonetheless, overly aggressive regularization may attenuate high-frequency
components critical for consonant clarity, such as fricatives and plosives. These phonemes
play a key role in speech intelligibility. Future perceptual experiments, including
sentence-based intelligibility tests, will be needed to determine the perceptual impact of
RSR in user-facing scenarios like hearing aids, smart headsets, and VR audio systems.

Speculative applications and broader impact
The improvements in numerical stability offered by RSR open possibilities for applications
beyond BC speech processing. In secure speech systems, spectral compression enabled by

Table 11 Detailed evaluation of BC speech methods: numerical precision, spectral control, and adaptation strategy.

Method Error rate (MSE) Latency (s) Numerical stability Robustness to noise Condition range (dB) Regularization scheme

ACR (LS) 0.12 0.15 Low Low >80 None (static)

RLS 0.10 0.28 Moderate Moderate 65–75 Fixed global parameter

EC 0.11 0.30 High Moderate 45–54 Semi-adaptive heuristic

RMC 0.10 0.28 High Moderate 50 Static prior-based

MVDR 0.13 0.40 Moderate High 55–65 Model-specific weights

DNN 0.09 1.50 Low High >65 Implicit (data-driven)

RSR (Proposed) 0.08 0.35 High High 28–46 (avg. 35.5) Fully adaptive, per frame
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RSR may reduce signal leakage and improve privacy. In biomedical signal processing, RSR
could help stabilize the analysis of weak and noisy signals such as electrocardiograms or
electroencephalograms. Additionally, in augmented and virtual reality platforms, RSR
could support real-time voice augmentation by providing consistent and perceptually
stable spectral shaping under variable acoustic conditions. Integrating RSR with
perceptually informed models could enhance its utility in human-centered applications by
aligning numerical processing with auditory system characteristics.

Despite its advantages, RSR currently assumes quasi-stationarity within analysis frames.
This assumption may not hold during rapid transitions in conversational speech,
potentially limiting performance. Also, the matrix inversion step in the algorithm remains
computationally intensive. It may constrain deployment in real-time or embedded
platforms.

The proposed RSR method represents a significant advancement in BC speech
processing. Directly addressing the ill-conditioning problem improves numerical stability
while maintaining spectral fidelity. The framework’s adaptability, real-time compatibility,
and potential for perceptual benefit position it as a promising solution for various
communication, security, health, and immersive media applications.

CONCLUSION
This study introduced the RSR method as a robust extension of the RLS framework to
mitigate the ill-conditioning challenges inherent in BC speech processing. The method
effectively addresses the large spectral dynamic range characteristic of BC speech by
compressing eigenvalue expansion, thereby enhancing numerical stability and accuracy in
LP analysis. A key contribution of this work is developing a heuristic rule for determining
the regularization parameter l, which is linearly proportional to the positive amplitude A
of the BC speech signal. This heuristic eliminates the computational overhead of iterative
optimization, making the RSR method efficient and practical for real-time applications.
The proposed approach ensures a stable balance between spectral fidelity and robustness,
significantly improving over conventional techniques. Comprehensive experimental
evaluations were conducted using synthetic and real BC vowel datasets to validate the
effectiveness of the RSR method. The results consistently demonstrated that the proposed
method achieves superior eigenvalue compression, significantly reducing the condition
number compared to existing methods such as ACR, SC, and EC. This performance
advantage was observed across diverse spectral and amplitude ranges, affirming the
method’s adaptability to varying acoustic conditions.

The implications of this work are substantial for advanced speech processing
applications, including robust speech recognition systems, hearing aid enhancement, and
secure communication platforms in high-noise environments. By addressing the core issue
of ill-conditioning, the RSR method provides a foundation for future innovations in BC
speech analysis and related domains. This research opens avenues for applying the RSR
framework to other ill-conditioned signal processing domains, including underwater
communications, biomedical signals, and multilingual speech systems facing extreme
noise and spectral challenges. Future research will explore integrating the RSR method
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with deep learning frameworks to enhance its adaptability and performance in real-world
scenarios. Additionally, extending the methodology to accommodate multilingual and
multimodal speech datasets will broaden its applicability, particularly in globalized
communication systems and assistive technologies.
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