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ABSTRACT

This article aims to reveal security vulnerabilities in current commercial facial recog-
nition systems and promote advancements in facial recognition technology security.
Previous research on both digital-domain and physical-domain attacks has lacked con-
sideration of real-world attack scenarios: Digital-domain attacks with good stealthiness
often fail to achieve physical implementation, while wearable-based physical-domain
attacks typically appear unnatural and cannot evade human visual inspection. We
propose AdvFaceGAN, a generative adversarial network (GAN)-based impersonation
attack method that generates dual-identity adversarial faces capable of bypassing
defenses and being uploaded to facial recognition system databases in our proposed
attack scenario, thereby achieving dual-identity impersonation attacks. To enhance
visual quality, AdvFaceGAN introduces a structural similarity loss in addition to
conventional generative loss and perturbation loss, optimizing the generation pattern of
adversarial perturbations. Under the combined effect of these three losses, our method
produces adversarial faces with excellent stealthiness that can pass administrator’s
human review. To improve attack effectiveness, AdvFaceGAN employs an ensemble
of facial recognition models with maximum model diversity to calculate identity loss,
thereby enhancing similarity to target identities. Innovatively, we incorporate source
identity loss into the identity loss calculation, discovering that minor reductions in
target identity similarity can be traded for significant improvements in source identity
similarity, thus making the adversarial faces generated by our method highly similar
to both the source identity and the target identity, addressing limitations in existing
impersonation attack methods. Experimental results demonstrate that in black-box at-
tack scenarios, AdvFaceGAN-generated adversarial faces exhibit better stealthiness and
stronger transferability compared to existing methods, achieving superior traditional
and dual-identity impersonation attack success rates across multiple black-box facial
recognition models and three commercial facial recognition application programming
interfaces (APIs).
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INTRODUCTION

From unlocking smartphones to airport security, the widespread adoption of facial
recognition systems is evident. In recent years, with the development and extensive
application of deep neural networks (DNNs) (Hangaragi, Singh & N, 2023; Kortli et al.,
20205 Rai et al., 2023), a considerable number of facial recognition models have been
proposed and implemented (Alansari et al., 2023; Hangaragi, Singh ¢» N, 2023; Liu et al.,
2023). However, it is also crucial to note that research has demonstrated vulnerabilities
in deep learning models used for facial recognition, such as susceptibility to adversarial
attacks and backdoor attacks (Gu et al., 2023; Huang et al., 2024). The forged faces pose
a significant challenge to security systems and privacy protection (Sharma, Kumar &
Sharma, 2024). These vulnerabilities are similarly present in deep learning models for facial
recognition tasks. By generating facial adversarial examples, attackers can achieve evasion
attacks (where attackers remain undetected), obfuscation attacks (misclassifying attackers
as other individuals), and impersonation attacks (misclassifying attackers as specified
individuals) (Wang et al., 2023). Therefore, studying the characteristics and generation
methods of facial adversarial examples is crucial for enhancing the robustness of facial
recognition models against real-world attacks and threats.

Existing research on adversarial attacks using facial adversarial examples typically relies
on three generation methods: gradient-based methods, optimization-based methods, and
generative adversarial network (GAN)-based methods. Gradient-based methods generate
perturbations based on the gradient direction of the model’s loss function, offering fast
generation speeds and high effectiveness but are limited by the feasibility of obtaining the
target model’s gradients. Moreover, attacks transferred using alternate model gradients
exhibit weak transferability, leading to reduced attack effectiveness and insufficient visual
realism, making them easily detectable by the human eye. Optimization-based methods
generate adversarial examples with good visual realism and perform well in terms of attack
effectiveness but suffer from slow optimization processes and high computational costs.
GAN-based methods involve adversarial training between a Generator, Discriminator, and
facial substitute model to learn the probability distribution of facial images. These methods
offer fast generation speeds, high visual realism, and strong transferability of adversarial
examples. However, they are prone to gradient vanishing or exploding during training,
leading to failure.

In recent studies, Baluja ¢ Fischer (2018) proposed the ATN network for adversarial
example generation in image classification model, summarizing two modes: Perturbation-
ATN (P-ATN) and adversarial autoencoding (AAE). The P-ATN mode advocates training
residual modules to generate additive perturbations superimposed onto the source face.
This method preserves much of the source face’s information, making the perturbations
imperceptible to the naked eye. Subsequently, in the field of adversarial example generation
for image classification, the representative work of the P-ATN mode is AdvGAN (Xiao
et al.,, 2018). AdvGAN established the basic architecture of the Generator, Discriminator,
and substitute model, and introduced a hyperparameter constant ¢ in the perturbation
loss to effectively control the magnitude of the perturbation by adjusting c. In the field of
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adversarial face generation, a representative work of the P-ATN mode is AdvFaces (Deb,
Zhang & Jain, 2020). AdvFace also generates global additive perturbations and evaluates the
attack effectiveness on offline facial recognition models in black-box scenarios. However, it
uses only Facenet as the auxiliary discriminator, which significantly limits the effectiveness
of the perturbation attack. M3D (Zhao et al., 2023) discovering that minimizing the
maximum model discrepancy between two substitute models could generate highly
transferable adversarial examples.

Building on previous research, this article proposes a GAN-based impersonation attack
method, AdvFaceGAN. Compared to prior work, our method targets impersonation
attacks by integrating multiple face recognition models with maximum model discrepancy
as auxiliary discriminators during training. This enhances both the aggressiveness and
transferability of the generated adversarial faces and incorporates a structural similarity
loss to guide the Generator in learning stealthier perturbation patterns, reducing the
visual difference between the adversarial face and the source face. Finally, considering the
practical attack scenarios in the threat model discussed later, the adversarial face needs
to maintain sufficient feature similarity with the source face. Unlike previous methods,
which overlook this aspect, our approach addresses it by adding a source identity loss to
the common identity loss, thereby generating a “dual-identity” adversarial face with high
feature similarity to both the source and target faces. The key contributions of this research
are as follows:

1. A new impersonation attack method, AdvFaceGAN, is proposed to generate visually
realistic adversarial faces, and own “dual identities” similar to both the source and target
identities, achieves better transferability and success rate of traditional impersonation
attacks than previous methods.

2. Propose a new success rate evaluation metric for dual-identity impersonation attacks
that more accurately reflects real-world attack scenarios, and evaluate the effectiveness of
previous methods using this metric. Additionally, simulate a dual-identity impersonation
attack on a face recognition system in the physical domain, comparing the performance of
previous methods and AdvFaceGAN, evaluated across three commercial face recognition
APIs (Tencent, Aliyun, and Face++).

3. Open-sourcing AdvFaceGAN to GitHub serves as a reference for the subsequent
research on the method of face adversarial sample generation based on generative
adversarial networks, which promotes the development of the technology in this research

direction.

RELATED WORKS

Generator adversarial network

Goodfellow et al. (2014) proposed generative adversarial networks, constructing fully-
connected generator and discriminator networks. Through alternating training of
Generator G and Discriminator D, the framework ultimately enables the Generator

G, taking noise z as input, to produce samples matching the data distribution. However,
fundamental issues in original GANs remained unresolved: training instability, inadequate
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guidance from loss metrics for training progression, and lack of diversity in generated
samples.

Subsequent research efforts addressed these challenges. DCGAN (Radford et al.
2016) implementing convolutional architectures for both generator and discriminator.
The convolutional layers effectively capture spatial structures and local features in
images, significantly improving performance in image generation tasks. Wasserstein
generative adversarial networks (WGAN) (Arjovsky & Bottou, 2017) theoretically
demonstrating that the instability of traditional GANs stems from the Jensen—Shannon
(JS) divergence becoming ineffective when the supports of distributions are disjoint
or minimally overlapping, leading to gradient explosion or vanishing. Their solution
employed Wasserstein distance as an alternative metric, which measures the minimum
“transport cost” between distributions and provides smooth gradients even with disjoint
supports. The practical implementation involved enforcing 1-Lipschitz constraints on
the discriminator through weight clipping, leveraging Kantorovich-Rubinstein duality to
transform Wasserstein distance optimization into a dual problem. WGAN’s modifications
included: removing the final Sigmoid layer in the discriminator, eliminating logarithmic
computations in loss functions, applying hard weight clipping with constant C, and
recommending RMSProp over momentum-based optimizers. These changes substantially
improved training stability, mitigated mode collapse, and ensured sample diversity.
Nevertheless, weight clipping introduced two limitations: restricted network capacity due
to parameter constraints, and potential gradient explosion/vanishing issues.

This led to the development of WGAN-GP (Gulrajani, Ishaan et al. 2017), which
introduced a gradient penalty term in the discriminator loss. This penalty enforces soft
constraints on the gradient norm of discriminator outputs for both real and generated
samples, maintaining smooth gradients without explicit weight clipping. The gradient
penalty approach preserved 1-Lipschitz continuity while avoiding clipping-induced
performance degradation, enabling higher-quality image generation and compatibility
with momentum-based optimizers like Adam for faster convergence.

Adversarial attacks

This section reviews the development of adversarial attack techniques and related research
on adversarial attacks for face recognition tasks. The methods for generating adversarial
samples were first proposed in the field of image classification models, primarily including
optimization-based methods, gradient-based methods, and generative adversarial network-
based methods:

e Optimization-based methods: For example, C&W (Carlini ¢ Wagner, 2017) improved
the target optimization function in iterative attacks and gradually constrained the
function within the disturbance magnitude limits, effectively reducing the perturbation
size of adversarial samples while maintaining excellent visual quality.

e Gradient-based methods: For example, FGSM (Goodfellow, Shlens & Szegedy, 2014)
used first-order gradients to efficiently compute adversarial perturbations. Although
fast, this method tends to be unstable in its attack. Later methods such as PGD (Madry
et al., 2017), BIM (Kurakin, Goodfellow ¢ Bengio, 2018), and MI-FGSM (Dong et al.,
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2018) introduced iterative optimization steps, which enhanced the attack effectiveness
of adversarial samples.

e GAN-based methods: For instance, Baluja ¢ Fischer (2018) proposed the ATN network,
summarizing two patterns for generating adversarial samples: P-ATN and AAE. The
P-ATN pattern advocates training a residual module to generate additive perturbations
with p-norm constraints over the source face. This preserves the overall information
of the source face, but the perturbations are more apparent on the edges or corners
of the image. The method in this paper is a variation of the P-ATN pattern. AdvGAN
(Xiao et al., 2018), a representative work of the P-ATN pattern, determined the basic
architecture for the Generator, Discriminator, and surrogate models, and introduced
a hyperparameter ¢ into the perturbation loss, which can control the perturbation
magnitude by adjusting ¢.

The generation of adversarial examples for face recognition models includes traditional
attack methods such as Fast Gradient Sign Method (FSGM), Momentum Iteration—Fast
Gradient Sign Method (MI-FGSM), and Carlini & Wagner (C&W), which adapt surrogate
models from image classification models to face recognition models to generate adversarial
faces. Or newly developed attack methods for face recognition models, which can be
further categorized into two approaches: local perturbation methods, which are more
suited for physical-domai, and global perturbation methods, which are more applicable in
the digital-domain.

e Local perturbation-based methods: AdvGlass (Sharif et al., 2016) applied an iterative
gradient descent algorithm to generate adversarial glasses and incorporated smoothing
and printer color gamut losses to make the adversarial glasses printable for physical-world
attacks; AdvHat (Komikov ¢ Petiushko, 2021) used the MI-FGSM method to generate
adversarial hats; Adv-MakeUP (Yin et al., 2021) used GANs to generate adversarial
makeup with good transferability but limited attack effectiveness; and in 2023, Yang
et al. (2023) at the Conference on Computer Vision and Pattern Recognition (CVPR)
conference proposed the design of adversarial textured 3D masks shortened as Adversarial
Textured 3D meshes (AT3D) with complex topological structures, which were 3D printed
and placed on an attacker’s face to evade defenses. The perturbations were generated
using BIM and updated in the low-dimensional coefficient space of 3DMM. AT3D has
the best attack effectiveness among local perturbation methods, but its concealment is
still weak, as the mask has clearly visible edges. Both AT3D and Adv-MakeUP will be
included as representative local perturbation methods for comparison in subsequent
sections.

e Global perturbation-based methods: AdvFaces (Deb, Zhang ¢ Jain, 2020) employed
FaceNet as a surrogate model under the P-ATN pattern to generate high-quality
adversarial faces for obfuscation or impersonation attacks. TIP-IM (Yang et al., 2021)
enhanced the naturalness of adversarial faces by introducing a maximum mean
discrepancy (MMD) loss based on MI-FGSM, and optimized attack efficacy through
a greedy insertion algorithm targeting multiple facial identities. AMT-GAN (Hu et al.,
2022) addressed the conflict between adversarial noise and cycle-consistency loss via
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a regularization module and joint training strategy, achieving notable performance
improvements in black-box scenarios. Sibling-Attack (Li et al., 2023) leverages
gradient information from facial attribute recognition tasks and integrates PGD-based
perturbation generation to substantially boost attack success rates and transferability.
DiffAM (Sun et al., 2024), as an enhancement to the Adversarial Makeup Transfer-GAN
(AMT-GAN) framework, synergized the high-quality generation capability of diffusion
models with CLIP’s fine-grained semantic control, demonstrating superior black-box
attack success rates and naturalness compared to existing makeup transfer methods.
AdvFaces, TIP-IM, Sibling-Attack, and DiffAM will be included as representative global
perturbation methods in our comparative experiments.

Threat model

Attacker: The insider employee uses open-source pre-trained face recognition models,
open-source datasets, efc., to build adversarial face generation technology. The insider
employee is unaware of the model structure and parameters of the face recognition system
or the datasets used for training. However, the insider employee has an image of the
attacker’s face.

Attack scenario: Some face recognition systems, such as those used in attendance machines,
allow administrators to upload face images of employees for registration. Administrators
can request employees to submit their face images online and upload them to register or
update personnel information.

Attack goal: The attacker is identified as the insider employee and is able to pass through the
face recognition system without disrupting the insider employee’s normal authentication.
Limitations: The adversarial face must be uploaded to the face database.

Attack process: As shown in Fig. 1A, when the attacker’s face, Attacker_2, is compared to
the three clean faces of the insider employee in the face database (Victim_2, Victim_3, and
Victim_4), the feature similarity is all below 15% (as returned by the Aliyun Face Search
API), which is far below the default threshold of 67.87% for Aliyun Face Search API, so
direct matching with the insider employee fails. However, in Fig. 1B, the insider employee
uses the AdvFaceGAN method in this paper to generate a “dual-identity” adversarial
face, FakeFace, based on the attacker’s face, Attacker_1, and one of the insider employee’s
faces, Victim_1. This adversarial face is submitted to the Administrator. Due to the high
visual quality of FakeFace, it can pass the Administrator’s human review, and also pass
defense against the upload when compared to the source face quality. Additionally, the
feature similarity between FakeFace and the three existing faces of the insider employee
in the database is 72%, 73%, and 69% (as returned by the Aliyun Face Compare API),
which surpasses the 69% within-class similarity threshold recommended by the Aliyun
AddFace APL. As a result, FakeFace is successfully uploaded to the face database under the
insider employee. When the attacker attempts to attack face recognition again, Attacker’s
face Attacker_2 will have a 70% feature similarity to FakeFace, which is associated with
the insider employee. Therefore, the attacker will be recognized as the insider employee
and pass through the face recognition system, Meanwhile, during this period, the insider
employees are able to pass the face recognition system normally.
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Figure 1 Threat model (A) normal matching process, (B) dual-identity impersonation attack process.
The clean face’s border is in green, the adversarial face’s border is in red, the green number indicates that
Aliyun’s Face API judges the feature similarity to be higher than the threshold, and the red is lower than
the threshold.

Full-size Gl DOI: 10.7717/peerjcs.2904/fig-1

It can be observed that under this threat model, the various liveness detection defenses
set up during the face image capture in the face recognition system are cleverly bypassed.
In contrast, some similar advanced attack methods either fail due to being too obvious
to pass the Administrator’s visual inspection (e.g., SiblingAttack, AT3D), or they cannot
be successfully uploaded to the face database under the insider employee’s profile due to
insufficient similarity to the source identity (e.g., SiblingAttack, AdvFaces), or they fail to
match the adversarial face with the target identity due to insufficient similarity (e.g., AT3D),
even if the upload is successful. Furthermore, if we assume the database Administrator
is an insider or there is some vulnerability that grants the Attacker direct permission to
upload faces to the face database, any employee in the database—even the CEO—could
unknowingly and imperceptibly be impersonated by the attacker as an “insider.”

METHOD

AdvFaceGAN structure

The overall structure of AdvFaceGAN, as shown in Fig. 2, consists of three components: a
Discriminator D, a Generator G, and auxiliary discriminators FRs. The interplay between
these components allows the adversarial perturbation € generated by G to be added to the
attacker’s face x, resulting in the adversarial face X, which remains in the same distribution
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Figure 2 Structural diagram of AdvFaceGAN.
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Figure 3 Schematic diagram of the Generator network structure.
Full-size Gal DOI: 10.7717/peerjcs.2904/fig-3

as the real face x. Additionally, X has enough similarity to both the attacker’s face x and
the victim’s face y.

The detailed architecture of Discriminator D is illustrated in Fig. 3. In the construction
of the discriminator, AdvFaceGAN employs multiple residual convolutional layers for
feature extraction and utilizes a final full connected layer to map the extracted features into
a scalar output representing image authenticity. However, the introduction of gradient
penalty imposes a critical architectural constraint: conventional batch normalization (BN)
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layers—commonly used in standard GANs and WGANs—are incompatible with this
framework.

This incompatibility arises because gradient penalty requires a strictly sample-wise
input—output relationship for accurate gradient calculation, whereas BN normalizes
statistics across batch dimensions (i.e., batch inputs — batch outputs). Such batch-level
operations disrupt the per-sample gradient computation essential for effective gradient
penalty enforcement. To resolve this conflict while maintaining normalization benefits,
our method replaces BN with instance normalization (IN) in the discriminator.

The detailed architecture of Generator G is illustrated in Fig. 4. In the generator
architecture, AdvFaceGAN constructs an autoencoder integrated with residual blocks
to synthesize adversarial perturbations €. When processing an input pair comprising
a source facial image x and a target facial image y, the Generator first concatenates x
and y channel-wise. This concatenated input is then fed into an encoder module that
progressively downscales the feature maps through multiple strided convolutional layers.
The compressed latent representation subsequently passes through a series of residual
blocks to learn deep-level discriminative features. Following this, a decoder module
employing transposed convolutional layers gradually upscales the features to the original
spatial dimensions. Finally, the output undergoes normalization via Tanh activation layer,
producing an adversarial perturbation € with identical dimensions to the input facial
images.

Ensemble of face recognition models

In previous research, researchers typically computed the loss by using a single target
model or by averaging multiple models. In our approach, inspired by the findings of
M3D (Zhao et al., 2023), we reconsider the role of surrogate models in the generation of
adversarial face samples. We introduce multiple face recognition surrogate models with
maximal model differences to construct an ensemble white-box model, FRs. FRs acts as
an auxiliary discriminator in the adversarial training process between the Generator and
the Discriminator, enhancing the Generator’s ability to produce adversarial samples with
a better generalization error bound. The principle is illustrated in Fig. 5.

Asseen in Fig. 5A, when using a single surrogate model, the abstract decision boundary of
the trained adversarial face (red dashed line) and the generalization error to the black-box
model (red shaded area in a3) are significantly larger due to the surrogate and black-box
model differences. This results in a notable loss in attack success rates. However, in
Fig. 5B, when using multiple ensemble white-box models, the abstract decision boundary
of the trained adversarial face becomes more aligned with the black-box model, reducing
the generalization error (red shaded area in b3), thereby improving the effectiveness of
black-box attacks.

Training process design

In order to ensure stable convergence during the training process, we follow the
recommendations of WGAN-GP and design the model structure and training details
as follows: (1) adopting the Adam optimizer to improve performance; (2) enforcing a
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gradient penalty term with coefficient A =10 in the discriminator’s loss function (Eq. (1)),
ensuring 1-Lipschitz continuity between real and generated samples; (3) eliminating log-
transformations in the loss calculations; (4) replacing BatchNorm layers with InstanceNorm
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Figure5 Schematic diagram of the Discriminator network structure.
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in both the Generator G and Discriminator D architectures to ensure the effectiveness of
the gradient penalty.

In order for the Discriminator D to learn to distinguish between adversarial faces and
real faces, the loss function Lp is calculated as shown in Eq. (1):

Lp= E D)= E DG+ E [(IV£D )], — 1)?] (1)
J€=axr+(1—a)xg(a~U[O,l],x,fvPr,ngPg) (2)

where Py represents the space of adversarial samples, P, represents the space of real samples,
and D(x) is the prediction value of the discriminator D for the face x. The final part is the
gradient penalty term, where A is a hyperparameter controlling the strength of the penalty,
set to 10. x is the overall sample space containing both the adversarial sample space Py
and the real sample space P,. The collection method for the intermediate sample % in the
overall sample space is given by Eq. (2). Here, VXD (%) is the gradient of the discriminator
for the intermediate sample X.

For adversarial faces, we want D(x) to be as small as possible, hence the positive sign
in front of Ex~p, [D(x)]; for real faces, we want D(x) to be as large as possible, hence
the negative sign in front of E,~p, [D(x)]. The numerical space of the discriminator’s
gradient is the overall sample space, which is of high dimensionality and difficult to
compute. Therefore, we sample real and adversarial intermediate samples £ from each
batch to compute the penalty term: ﬁEX [(||V9€D(96)||2 — 1)2]. This ensures that the L,

norm of D(%) is as close to 1 as possible, maintaining the Lipschitz continuity of the
discriminator function. Optimizing Lp allows the discriminator to learn to differentiate
between adversarial faces and real faces.

In order for the Generator G to learn to generate adversarial face samples with high
attack capability and high stealthiness, the Generator’s loss function is obtained by adding
four types of losses. The convergence goal of the model is controlled by setting weight
hyperparameters for the losses. Lg’s calculation is shown in Eq. (3):

Le=Lcan+ )‘vpertLPert + AadyLady + Ast Lst - (3)
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In the design of the Generator’s loss function, we incorporate four types of losses to
form the total loss. These include the adversarial loss Lg,, from the discriminator D. By
fixing the parameters of discriminator D and optimizing the Generator according to Lggy,
we ensure that the adversarial face ¥ = x + G(x) is closer to real face’s distribution. The
calculation of Ly, is given by Eq. (4):

Lggn=— E (D(x+G(x))). (4)

" _x~P,

The perturbation loss Lp,; from the adversarial perturbation € = G(x,y), doing the
perturbation amount calculation with two-paradigm numbers can effectively penalize
the perturbation at each pixel point so as to avoid useless perturbation, and control the
perturbation amount by max to be unpunished at low perturbation upper limit &, thus
encouraging the learning of perturbation and accelerating the model convergence. The
computation of Ly is shown in Eq. (5):

G| (5)

where ||G(x)||, indicates the perturbation amount calculated from € = G(x) using the |||,

Ly = E [maxs,e ]: E [maxe,
pert xy~P, ( ” ”2) xy~P, (

norm, and ¢ denotes the upper limit on perturbation.

The structural loss Ly, from the structural similarity between the source face x and the
adversarial face X = x + G(x,y) and is controlled by max so that the structural similarity
is not penalized when it is higher than the lower limit of the structural similarity ¢. L is
computed as in Eq. (6):

Ly = E [max(l—;,l—ssim(x,fc))]

xNP,,JZNPg

=x,y§Pr [max(l—{,l—ssim(x,x—i-G(x,)/)))] (6)

where ssim(-,-) denotes the structural_similarity_index_measure function provided by
torchmetrics and ¢ denotes the lower limit of structural similarity.

The identity loss L,4, from the auxiliary discriminator FRS combines the source identity
loss Lagy_source and the target identity 10ss Lagy_arger Statistically predicts the losses of
multiple face recognition models with the largest differences, and by adjusting the source
identity loss weights 7, it can make the generated antagonistic faces have a balanced “dual
identity”, L,4, is calculated as in Eq. (7):

Laav = 1% Ladvypuree T Ladvigge

_ i (1—cos[i@) fi0)]) | 3 (1—cos[i®) fi(1)])
x,waf,fcwpg |:77 * M T M

|:77* i (1—cos[fi(x+G(x.7)).fi(x)])
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Table1 AdvFaceGAN’s training process.

Input:source face x, target face y.
Output:The parameters of 05, and 6 after convergence.

1 Initialize parameters of 0, andfg,load Dataset
2 Whlle Ludv_target > Ladv_source do:

3 for cin epoch_size do:

4 Get batch with x,y from Dataset

5 €e=G(x,y)

6 X=x+e¢

7 ~x=0x+(l1—0)x

8 Lp=1[0 DE)— L0 Do)+ Ag 2 [0 (| Ve D~ x) |, — 1)]
9 0p =Adam(VpLp,6p, B, B2, Ir, weight _decay)

10 Ly == [21, D)

11 Ladv_source = 7y 2ot g (1 = cOS[f; (%), (x)1)
12 Lady targer = 7= 31y 2y (1= cos[fi (3). £ (7))
13 Loav = 0% Lady_source + Ladv_targer

14 Lyers = 31" ymax(e, ||€ll,)

15 L, = izlfilmax(l—{,l—ssim(xi,%}))

16 L6 = Lgan + Apert Lpere + Aadv Lady + At Lot

17 0c = Adam(VsLg, 06, B, B, Ir, weight _decay)
18 end for

19 save Op and 6

20 end while

where x denotes the source face, ¥ = x + G(x, y) denotes the adversarial face, y denotes the
target face, M denotes the number of white-box substitution models integrated by FRS, fi(-)
denotes the feature vector computation function corresponding to the ith fixed-parameter
white-box substitution model, and cos(-,-) denotes the cosine similarity computation
function of two features.

The pseudocode for the training process of AdvFaceGAN is shown in Table 1.

EXPERIMENTS

Evaluation metrics

In order to reflect the advantages of the adversarial faces generated by the method in
this paper in terms of visual quality and attack effect, we design the following evaluation
metrics:

Visual quality metrics: we take the structural similarity (SSIM) peak signal-to-noise ratio
(PSNR), mean squared error (MSE) of the source face and the adversarial face as the visual
quality evaluation metric. The range of structural similarity is [0, 1], when two images
are the same, the value is 1. The larger the image structure gap, the lower the value, and
it is generally considered to be greater than 0.92 to satisfy the visual similarity. The peak
signal-to-noise ratio evaluates the image quality, the larger the better, greater than 30dB,
the human eye is difficult to detect the difference between the compressed and the source
face. MSE intuitively indicates the magnitude of the image change, the smaller the weaker
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the change. The specific formulas for the three indicators are shown in Egs. (8), (9) and
(10):

(2/1'36/1')/ + Cl) (2ny + C2)
<u§+u§+q) <U,§+oy2+62)

SSIM (x,y) = (8)

(9)

MAX?
PSNR = 20log,,

v MSE

1 m—1 n—1
MSE:%Z-Z[I(ﬁ,j)—K(i,j)]Z (10)
i=0 j=0

2

where, x, y are comparison images, fiy, [Ly, axz, o, are the mean and variance of x and y,

oyx is the covariance of x and y, ¢; = (kiL)*(i= 1,2) is the constant used to maintain the
stability, where k; = 0.01, k; = 0.03, and L is the range of pixel values of the image. I (]'1, ])
is the adversarial face, K (4,7) is the source face, MAX is the maximum possible pixel value
of the image and mn is the size of the image.

Attack effectiveness metrics: We use the attack success rate (ASR) of the attack on the
face recognition model as the evaluation metrics of the attack effectiveness, and the ASR
aims at calculating the ratio of the successful realization of the attack among N pairs x; ~ x;.
In the traditional impersonation attack, the cosine similarity between the antagonist face
features and the target non-homo face features is greater than the recognition threshold is

considered as successful impersonation, which is calculated as shown in Eq. (11):

_ >0 Lo (cos[f (xi+Glxiny) of ()] > 7)
N

where 1; is the indicator function, x is the source face, y is the target face, G(x) is the

ASR, x 100% (11)

pre-trained generator, f (x) is the target black-box face recognition model, f (x) is the
output face features after inputting the face x, cos[a, b] denotes the computation of the
cosine similarity between the two face features, and 7 is the recognition threshold of f at
0.1% FAR or 0.01% FAR (False Accept Rate) under the recognition threshold. N is the
total number of image pairs.

This article found that the face recognition system database often requires that the
uploaded face and other faces in the person’s face database are higher than a certain
threshold, so it further explores the success rate of the attack in the case where the
antagonist face is required to maintain a high degree of similarity with the source identity,
i.e., the cosine similarity between the antagonist face features and the source same-person
face features and the target nonhomo-person face features are both greater than the
recognition threshold is considered to be successful in the impersonation, and its formula
is shown in Eq. (12) shows:

Zfl 1, (cos[f (xi—i—G(xi,yi)) f (xz-)] > 7&&cos [f (x,-+G(xi,yi)) f (y,-)] > ‘L’)
N
% 100%. (12)

ASR, =
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However, only using the above two attack success rates as the attack effect evaluation
metric is still insufficient, because whether the attack is successful is based on whether
the feature similarity is greater than the model’s recognition threshold, which is a discrete
metric. Assuming that the recognition threshold of the face recognition model is 30%,
an antagonistic sample with 70% similarity to the target face and an antagonistic sample
with 50% similarity to the target face are equivalent in the statistics of ASR;, however, it
is obvious that the former achieves a better attack effect. Therefore, when evaluating the
attack effect, we add the average similarity of the output of the target face recognition
model, which is a continuous metric that can compare the attack effect more effectively.
The average similarity with the source identity (Fake & Source Similarity, FSS) and the
average similarity with the target identity (Fake & Target Similarity, FTS) under the face
recognition model f are shown in Eqs. (13) and (14).

Zf\] cos [f (xl- + G(xi,yi)) f (xi)]
N

FSS =

x 100% (13)

300" cosf (xi+G (1)) .f ()]
N

FIS= x 100%. (14)
Experimental setup

Dataset: Our training set employs CASIA-WebFace (Yi et al., 2014), comprising 455,594
facial images of 10,575 distinct individuals after removing low-quality samples (blurred,
occluded, or misaligned faces). We allocated 10% of the remaining data (stratified by
identity) as the validation set. Our test set employs LFW (Huang et al., 2008), containing
13,233 images from 5,749 unique identities.

All samples across training, validation, and test sets underwent standardized
preprocessing: (1) Face detection and alignment using MTCNN with five keypoints
(eyes, nose, mouth corners), followed by (2) resizing to 112x112 pixels through bicubic
interpolation to maintain consistency with input specifications of mainstream open-source
face recognition models (e.g., FaceNet, ArcFace).

Model information: In the training and testing process of AdvFaceGAN, multiple
pre-trained FRModels by the GitHub project face-robustness-benchmark, and three
commercial face recognition API models are used. The basic information of these models,
the recognition threshold at 0.1%FAR, and the actual TAR and FAR calculated by using the
training set CASIA-WebFace in this article to compare 6,000 random faces of homogeneity
and non-homogeneity at each model recognition threshold can be described in Table 2.
Baseline methods: This experiment compares three traditional gradient or optimization-
based baseline methods FGSM (Goodfellow, Shlens & Szegedy, 2014), MI- FGSM (Kurakin,
Goodfellow ¢ Bengio, 2018) and C&W (Carlini ¢ Wagner, 2017); locally perturbed baseline
methods: Adv-MakeUP (Yin et al., 2021) and AT3D (Yang et al., 2023); globally perturbed
baseline methods: AdvFace (Deb, Zhang ¢ Jain, 2020), TIP-IM (Yang et al., 2023),
SiblingAttack (Li et al., 2023) and DiffAM (Sun et al., 2024).

The principles followed when reproducing these comparison methods are: use the
parameters from the original paper’s comparison experiments, or adjust the comparison
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Table 2 Face recognition model information.

Models Basic Loss Parameter  Recognition = TAR/1-FAR
structure function count (M) threshold

ArcFace IR-SE50 ArcFace 43.8 0.284 98.9%/99.8%
FaceNet-VGGFace2  IncResV1 Triplet 2791 0.421 98.9%/99.0%
MobileNet-stridel MobileNet CosFace 3.78 0.158 98.8%/99.4%
ShuffleNetV1 ShuffleNetV1 CosFace 1.46 0.191 99.0%/99.5%
ResNet50 ResNet50 CosFace 40.29 0.191 99.4%/99.8%
IR50-CosFace IResNet50 CosFace 43.57 0.224 99.4%/99.9%
IR50-ArcFace IResNet50 ArcFace 43.57 0.277 99.4%/99.9%
IR50-SphereFace IResNet50 SphereFace  43.57 0.362 99.4%/99.6%
SphereFace Shere20 SphereFace ~ 28.08 0.349 97.5%/98.1%
CosFace Shere20 CosFace 22.67 0.246 98.3%/98.3%
MobileFace MobileFaceNet CosFace 1.20 0.211 99.1%/99.6%
Face++ API 0.62327 99.3%/100%
Aliyun API 0.61 99.2%/100%
Tencent API 0.40 99.4%/100%

methods to generate adversarial samples with a L, norm perturbation that is close to the
perturbation of the adversarial samples generated by the AdvFaceGAN model, which is 5.
The specific model settings are as follows:

e FGSM, MI-FGSM: Use the implementation from the GitHub project ShawnXYang/Face-

Robustness-Benchmark. The distance metric is set to the L, norm, and the perturbation
control parameter is set &£ = 6, with other parameters as default. After verification, the
adversarial samples generated with € = 6 have a L, norm perturbation close to 4.6,
similar to the samples generated by our AdvFaceGAN model.

e C&W: Use the implementation from the GitHub project ShawnXYang/Face-

Robustness-Benchmark. The perturbation control parameter is set € = 16, with other
parameters as default, and the code is modified to adjust the optimization objective to
achieve 1.5 times the recognition threshold on the white-box surrogate model’s FTS,

thereby enhancing the black-box attack capability.

e AdvMakeUP: Use the implementation provided in the paper author’s GitHub project

Tencent/TFace. All parameters remain unchanged, i.e., using the parameters from the
original article for comparison experiments. However, the ensemble model used in the
original article (irse50, facenet, and mobile_face) is modified to the models used by
AdvFaceGAN (ArcFace, FaceNet, and ResNet50), and the dataset is changed from the
original makeup dataset to the LFW dataset (using Face++’s face detection API to create
the dataset keypoint files required by the code).

e AT3D: Use the implementation from the author’s GitHub open-source project thu-

ml/AT3D. Refer to the AT3D-P parameter settings from the original paper’s digital-
domain comparison experiment. The mask type is set to glasses + nose, with 300
iterations, and the perturbation control parameter is set 7 = 5 slightly higher than 3 (for
stronger attack power). The perturbation generation algorithm is BIM.
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e AdvFaces: Use the implementation from the paper author’s GitHub project
ronny3050/AdvFaces. Using the parameters from the original paper for comparison
experiments, with the perturbation control parameter ¢ = 8 as stated. However, the
original FaceNet model is replaced with the FaceNet model used by AdvFaceGAN.

e TIP-IM: Use the implementation from the paper author’s GitHub project
ShawnXYang/TIP-IM. All parameters remain unchanged, and AdvFaceGAN’s ArcFace,
FaceNet, and ResNet50 models are used as surrogate models to generate adversarial
samples.

e SiblingAttack: Use the implementation from the paper author’s GitHub open-source
project Tencent/TFace. All parameters remain unchanged, i.e., using the parameters
from the original article for comparison experiments. After verification, the adversarial
samples generated with these parameters have a L, norm perturbation close to 10.9.

e DiffAM: Use the implementation from the author’s GitHub project HansSunY/DiffAM.
The ensemble model used is changed from the original article’s irse50, facenet, and
mobile_face to AdvFaceGAN’s ArcFace, FaceNet, and ResNet50, and the adversarial
samples are generated using parameters that match the attack power mentioned by the
author in the issues section.

Experimental details: In this experiment, the size of both the input source face and the
output adversarial face is 3 x 112x 112, and the batch size is set to 8; the Adam optimizer
is used for training with parameters 8; of 0.5, 8, of 0.999, and the learning rate is set to
le—4; the hyperparameter Apers = 1, Aq4y = 10 and Ay = 20, which will make the various
loss values equalize in magnitude, and is conducive to the effective convergence of the
trained model on each loss.

Loss ablation and parametric experiments

This section analyzes the significance of the perturbation loss Ly, structural loss Ly, and
source identity loss Ly source involved in the methodology of this paper, and constructs
ablation experiments to analyze the specific effects they play. We also propose the specific
numerical determination methods for the hyperparameters related to each loss: the upper
limit of perturbation &, the lower limit of structural similarity ¢, and the weight of source
identity loss 7.

Ablation of L,.,+ and determination of &

First, we tried Aper = A = 0 = 0. After training for 500 epochs, the model converged,
but the Generator G chose to directly replace the source face with the target face. At this
point, both the SSIM and MSE metrics were poor, and the FSS was very low, deviating
from the premise that adversarial samples should maintain high similarity with the source
face.

We sought to determine the value at which the perturbation upper limit ¢ should be
set. Without adding the structure loss and source identity loss, we trained the model for
990 epochs under different perturbation upper limit €. The ASR results for various offline
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face recognition models, as well as the SSIM metrics of the generated adversarial faces, are
shown in Fig. 6.

As shown in Fig. 6, with the perturbation upper limit ¢ increases, the SSIM gradually
decreases. Meanwhile, the values of each target model’s ASR; increase and converge when
the perturbation upper limit ¢ = 5. However, ASR, shows an initial increase followed by
a decrease. To investigate the reason for the decline in ASR;, we trained the model for
990 epochs under different perturbation upper limit &. The FSS and FTS data of the 6,000
adversarial faces generated by each model in various face recognition models are shown in
Fig. 7.

From Fig. 7, we can see that with the increase of the perturbation upper limit ¢, the FTS
gradually rises and the FSS gradually falls. At the same time, the FTS and FSS of various
face recognition models roughly intersect at the perturbation upper limit ¢ =4, when the
generated antagonistic face has the optimal “dual identity” effect, and as shown in Fig. 6,
the visual metric SSIM at ¢ =4 is also relatively high, at 94%.

In order to further visualize the superiority at € = 4. We collect the FSS and FTS data
of MobileFace from 6,000 adversarial faces generated under different perturbation upper
limits & trains 990 epoch, as shown in Fig. 8.

As shown in Fig. 8A, when ¢ = 1, the adversarial face is more likely to resemble the
source identity, and when & = 8, the adversarial face is more likely to resemble the target
identity. From Fig. 8B, we can see that most of the adversarial faces generated when the
perturbation amount is 4 are able to realize the attack effect above the threshold of “dual
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identity”, and realize the attack effect of resembling both the source identity and the target
identity, so € =4 is the closest to the optimal solution at this time.

However, we find that adding the structure loss Ly or the source identity loss Lagy_source
will cause the FSS to rise and the FTS to fall, and the equilibrium will be destroyed, and
the experimental data when the target model is FaceNet-VGGFace2 and trains 990 epoch
is shown in Table 3.
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Table 3 Effect of adding structural loss or source identity loss on FSS vs. FTS.

Model info SSIM PSNR MSE ASR, ASR, FSS & FTS

e=5w.0.{ w.o.n 91.73 31.32 43.30 79.22 30.38 38.73 & 56.09
€=5¢=092w.0.n 94.50 32.38 34.92 75.48 39.33 45.57 & 53.09
e=5w.0.{ n=0.15 92.72 31.46 42.16 75.48 42.25 47.82 & 53.36
e=5¢=092n=0.15 94.62 32.57 33.72 70.57 43.92 51.76 & 50.96

Therefore, the perturbation upper limit € needs to be set to the value in Fig. 7 where
FTS is greater than FSS, i.e., ¢ € (4,8]. When the perturbation upper limit ¢ =5, by
adjusting ¢ = 0.92 p = 0.15, the model can converge and balance FSS and FTS again,
which 51.76&50.96. As shown in Table 3, it can be seen that both the visual quality and
ASR,; are the best. The optimized model ¢ =5 ¢ =0.92 n =0.15, with pixel points marked
in yellow, was trained for 3,440 epochs, and after convergence, the generated samples were
compared with the baseline model samples under different perturbation upper limits in the
feature coordinate system of the ArcFace target model, as shown in the intuitive comparison
in Fig. 9. It can also be observed that the generated adversarial samples achieved the best
dual-identity effect.

Ablation of L,4, source and determination of 5

From the data in Table 3, we observe the following: For the model with ¢ =5
w.0. { w.0. 1, after adding the source identity loss with n = 0.15, the FTS decreased
2.73 But the FSS increased 9.09. For the model with ¢ =5 ¢ =0.92 w.o. ), after adding the
source identity loss with = 0.15, the FTS decreased 2.13 But the FSS increased 6.19. The
exchange ratio is close to 1:3.

Thus, the addition of the source identity loss Lagy source allows us to sacrifice a small
decrease in FTS for a large increase in FSS. This will leads to a small decrease in ASR; but
a large increase in ASR;, as well as a slight improvement in visual quality.

The tuning method for the source identity loss weight 1 involves gradually increasing n
and observing the FSS and FTS at model convergence until they balance. As shown in the
data for ¢ =5 w.o ¢ 1 =0.15, the FSS and FTS are 47.82 and 53.36. Therefore, to achieve
a balance between FSS and FTS for the ¢ =5 w.o ¢ model, n should be increased further
from the current value of 0.15.

Ablation of Ly, and determination of ¢

We collected experimental data under different structural similarity upper limits ¢ with
& =5 when the target model is FaceNet-VGGFace2 and trains 990 epoch, the specific data
is shown in Table 4.

From the data in Table 4, we included the TruePert (the L, norm of the perturbation)
and the Epoch (number of training epochs). The analysis reveals that after incorporating
Ly, the difficulty of perturbation learning significantly increases, even with extended
training epochs to 2,490, the TruePert cannot converge to ¢. This eliminated portion
corresponds to perturbation patterns that strongly affect image structure, resulting in
significant improvements across all visual metrics. Regarding attack metrics, similar to the
source identity loss, we observe decreased FTS and increased FSS. Notably, the ratio of
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FTS decline to FSS increase is only about 1:1, substantially lower than the source identity
loss approximate 1:3 exchange ratio. Furthermore, when 7 becomes excessive, FSS may
surpass FTS. Continuing to increase n or adding source identity loss would exacerbate this
imbalance (FSS > FTS), leading to ASR; continues to decrease.

Therefore, the tuning method for the structure similarity lower limit ¢ when ¢ =x is
to set it to a value y larger than the SSIM of the baseline model ¢ = x, in order to remove
perturbation patterns that strongly damage the image structure and enhance image quality.
However, this value y cannot be too large, as it still needs to ensure that the e =x { =y
satisfy FSS < FTS, thus leaving optimization space for the source identity loss, for a more
valuable exchange ratio.

In summary, the logic for determining the hyperparameters ¢, ¢ and 7 is as follows:
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Table 4 Impact of the structural similarity lower limit ¢.

Model info Training costs Visual quality Attack performance
TruePert Epoch SSIM PSNR MSE ASR1 ASR2 FSS&FTS

e=4w.0.{ w.0.1 4.00 990 94.32 33.32 27.55 71.23 40.63 47.39&51.09
e=4¢=0.93w.0.1 3.82 990 95.46 33.70 25.20 68.38 43.32 50.70&49.78
e=4¢=097w.0.7 3.49 990 96.33 34.65 21.13 64.12 42.15 53.86&47.57
£=5W.0.{ wW.0.n 5.01 990 91.73 31.32 43.30 79.22 30.38 38.73&56.09
e=5¢=092w.0.7 4.50 990 94.50 32.38 34.92 75.48 39.33 45.57&53.09
e=5¢=0.95w.0.7 3.97 990 95.62 33.52 27.80 69.53 38.30 48.41&50.23
e =5w.0.{ n=0.15 4.95 990 92.72 31.46 42.16 75.48 42.25 47.82&53.36
e=5¢=0.92n=0.15 4.41 990 94.62 32.57 33.72 70.57 43.92 51.76&50.96
e=5¢=0.95n=0.15 4.31 2490 95.13 32.70 32.50 73.57 48.03 52.35&52.23

1. First, determine the perturbation upper limit ¢ which is strongly related to attack
performance. Set it as a value x which FSS is less than FT'S without adding the structural
loss and source identity loss, from Fig. 7, x € (4,8] .

2. Then, with ¢ = x, determine the structural similarity lower limit ¢ which is strongly
related to visual quality. Set it as a value y which larger than the SSIM of the baseline
model ¢ =x and ensuring that FSS is also smaller than FTS.

3. Finally, with e =x { =y, determine the source identity loss weight 1. Gradually increase
n until FSS and FTS are balanced at convergence, which gives the final value z.

At this point, the three hyperparameters are determined, and the model trained with
& =x { =y n =z can achieve a good balance between attack performance and visual
quality. As shown in Table 4, the model with e =5 ¢ =0.92 5 =0.15 reaches a balanced

FSS and FTS of 52.35 and 52.23, and the ASR; is the highest among various parameter

comparisons.

Ablation of FRs

To explain part of the source of the attack performance of the method AdvFaceGAN in this
article, we conducted an ablation experiment on the ensemble model FRs using MobileFace
as the black-box target model. The ablation results for the ensemble model FRs are shown
in Table 5 (where the hyperparameters for each model are set as e =5 ¢ =0.92 n =0.15).
Model M, only uses FaceNet-VGGFace2 as the ensemble model; Model M, adds more
loss function-related models IR50-CosFace, IR50-ArcFace, and IR50-SphereFace on top of
M;; Model M3 adds two new structural models, Mobilenet and ShuffleNet, on top of My;
Model My is the final ensemble model in this article, which adds the new structural models
ArcFace and ResNet50 on top of M;.

By comparing the ASR of M, and M in Table 5, it can be observed that integrating
face recognition models with different loss functions provides the greatest improvement in
attack effectiveness. Additionally, integrating face recognition models with different model
structures also consistently enhances the attack effectiveness, although the model requires
more training epochs to converge to the same perturbation amount as the complexity of
the ensemble model increases.
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Table 5 Ablation experiment of the ensemble model FRs.

Model info Training costs Visual quality Attack performance
TruePert Epoch SSIM PSNR MSE ASR1 ASR2 FSS&FTS
M, 4.49 1,490 95.02 32.37 34.81 69.47 68.53 60.71&34.06
M, 4.55 1,490 94.49 32.23 36.12 91.42 87.50 52.83&47.77
M; 4.56 1,490 94.40 32.26 36.10 91.83 87.90 53.62&48.39
M, 4.05 1,490 95.36 33.37 28.76 89.12 86.63 58.00&46.83
M, 4.32 2,490 95.14 32.70 32.57 92.28 89.65 55.63&49.25

Here, it should be mentioned that further adding face recognition models with higher
recognition performance, which have different model structures or loss functions from
those already integrated in the ensemble model, such as GhostFace, may lead to better
attack effects, although the model convergence speed may further decrease.

Comparison experiments
Offline model attack effectiveness

To demonstrate the superiority of AdvFaceGAN in terms of traditional impersonation
attack success rate metrics, we conducted comparison experiments against several
representative works using an offline model. In these comparison experiments, we selected
gradient-based methods such as FGSM and MI-FGSM, optimization-based methods like
C&W, as well as local perturbation attack methods such as AT3D and Adv-MakeUP, and
global perturbation attack methods like SiblingAttack and AdvFace.

For the sake of experimental fairness and rigor, we referred to the experimental setups
in the SiblingAttack works. We selected 110 faces from different categories in the LFW
dataset as the test set, with 10 of them serving as the source faces and the remaining 100 as
target faces. We reproduced all the comparison methods and conducted experiments on
the same test set. We collected ASR; for each method under both white-box and black-box
scenarios, which is detailed in Table 6.

From the data in Table 6, we can see that MI-FGSM, as an improvement of the
FGSM method, has significantly enhanced the attack performance in both white-box and
black-box scenarios. In the white-box scenario, MI-FGSM achieves 100% attack success
on ArcFace, FaceNet, and ResNet50. However, in the black-box scenario, it shows slight
transferability issues, achieving only an 80.2% attack success rate on the CosFace model.
The optimization-based method C&W also achieves 100% attack success in the white-box
scenario, but its performance in the black-box scenario is severely impacted, with the attack
success rate dropping below 10%, demonstrating the significant transferability limitations
of optimization-based methods.

The core of SiblingAttack is based on the Projected Gradient Descent (PGD) algorithm.
This method also achieves 100% attack success in the white-box scenario. Thanks to
the use of gradient information from the face attribute recognition model ir152_ar,
SiblingAttack overcomes the limitations of traditional gradient-based methods in terms
of attack effectiveness and transferability in the black-box scenario, ranking just behind
our method. AT3D and Adv-MakeUP are local perturbation methods that focus more on
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Table 6 Comparison of traditional impersonation attack success rates under white-box and black-box
settings.

Method White box attack Black box attack
ArcFace FaceNet ResNet50 MobileFace  SphereFace CosFace

FGSM 99.8% 85.4% 96.1% 64.8% 44.3% 40.8%
MI-FGSM 100% 100% 100% 97.6% 86.0% 80.2%
C&W 100% 100% 100% 7.1% 9.1% 8.1%
AdvMakeUP 25.0% 41.9% 31.7% 20.1% 37.1% 28.0%
AT3D 62.5% 84.7% 94.2% 88.6% 41.7% 67.0%
AdvFaces 86.1% 89.9% 78.1% 95.6% 84.5% 73.9%
TIP-IM 100% 99.8% 100% 89.1% 82.4% 91.0%
SiblingAttack 100% 100% 100% 99.2% 83.2% 92.7%
DiffAM 58.1% 36.7% 48.8% 65.6% 52.4% 38.2%
e=4w.0.{wo.n 95.7% 93.4% 95.9% 99.2% 79.5% 92.3%
e=5w.0.f w.0.n 97.7% 97.8% 97.9% 99.3% 87.2% 96.8%
e=5¢=092n7=0.15 96.6% 94.8% 96.6% 99.2% 83.5% 94.4%

used in the physical world. They perform poorly in the digital domain for both white-box
and black-box attacks against offline models. AdvFaces, as a GAN-based method, has
good transferability, but because AdvFaces is based on WGAN-Clip, it suffers from poor
convergence during training, resulting in a white-box attack success rate of less than 90%,
and its performance in black-box attacks is also suboptimal.

In contrast, our method, although not achieving the 100% attack success rate in the
white-box scenario due to the ensemble model, still achieves more than 95% attack success
in the white-box scenario with a perturbation size of 5, without adding structural loss
or source loss. Additionally, in the black-box scenario, our method demonstrates the
advantages of GAN-based approaches in terms of transferability. For example, with a
perturbation size of 5 and without structural loss or source loss, our method achieves the
best black-box attack effectiveness and transferability among the comparison methods.

After adding structural loss and source identity loss, both black-box and white-box
attack performance show slight degradation. However, this slight sacrifice in terms of
traditional attack success rate is justifiable. We will present the comparison of dual-identity
impersonation attack success rates in Table 7 to demonstrate that the minor trade-off in
traditional impersonation attack success rates is worthwhile. It should be noted that, except
for our method, none of the other methods consider similarity with the source identity.

From the data in Table 7, we can see that after adding structural loss and source identity
loss, our method significantly improves the dual-identity impersonation attack success
rate. In the white-box scenario, the success rate increases by 20% on FaceNet, and in the
black-box scenario, it increases by 17% on MobileFace. Compared to other methods, our
approach achieves the best white-box attack performance and black-box transferability in
terms of dual-identity impersonation attack success rate.

At the same time, we also observe that other methods show various “misalignments” in
terms of dual-identity impersonation attack success rate. This is because other methods do
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Table 7 Comparison of dual-identity impersonation attack success rates under white-box and black-

box settings.
Method White box attack Black box attack
ArcFace FaceNet ResNet50 MobileFace  SphereFace CosFace
FGSM 99.7% 70.6% 96.1% 64.8% 44.3% 40.8%
MI-FGSM 6.3% 1.9% 37.8% 96.6% 84.5% 78.9%
C&W 100% 98.4% 100% 7.1% 9.1% 8.1%
AdvMakeUP 25.0% 41.9% 31.7% 20.1% 37.1% 28.0%
AT3D 60.7% 20.8% 82.1% 85.9% 40.4% 66.9%
AdvFaces 83.5% 58.8% 66.6% 33.7% 25.5% 27.5%
TIP-IM 0% 0% 0% 83.1% 76.7% 87.4%
SiblingAttack 0.9% 2.0% 2.5% 75.4% 72.5% 83.1%
DiffAM 35.9% 11.7% 30.5% 57.2% 42.2% 24.3%
e=4w.0.{wo.n 95.2% 73.9% 84.0% 92.7% 78.4% 91.6%
e=5w.0.l w.o.n 94.5% 55.8% 67.1% 79.0% 82.3% 92%
e=5¢=092n7=0.15 96.2% 76.2% 88.6% 96.0% 81.8% 93.9%

not consider similarity with the source identity during their design, and therefore, when
generating adversarial faces, they do not take into account the key features that should be
preserved to maintain similarity with the source face. Some methods, such as MI-FGSM
and SiblingAttack, severely disrupt these key features in the white-box scenario, leading to
poor performance in white-box attacks. However, since they do not disrupt features that
are crucial for black-box models, their performance in black-box attacks is less affected.
On the other hand, methods like C&W and FGSM cause less disruption to these features,
which results in relatively stable performance in both white-box and black-box scenarios.

The similar method AdvFace exhibits the same performance as our method without
the source identity loss and structural loss, as it does not consider the dual-identity
impersonation attack success rate. As a result, its performance decreases. Local perturbation
methods like AT3D and Adv-MakeUP, which do not modify a wide range of facial features,
have relatively limited impact on attack performance. In terms of the data, Adv-MakeUP
is not affected at all, while AT3D only experiences a slight impact.

Overall, our method has advantages over the comparison methods both in terms of
traditional attack success rate and dual-identity attack success rate. Our method achieves
the best black-box attack performance in terms of traditional attack success rate. In
the dual-identity impersonation attack success rate, our method performs well in both
white-box and black-box scenarios. By considering similarity with the source identity, our
method avoids the “collapse” phenomenon observed in both white-box and black-box
scenarios, which is present in some other methods.

Visual quality comparison experiment

To visually compare the quality of adversarial faces generated by each method, we selected
five pairs of faces for a sample visual quality comparison experiment. The adversarial
faces generated by each method are shown in Fig. 10. The two numbers below the
face represent the feature similarity of the face to Source and Target, calculated by the
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Figure 10 Visual comparison of adversarial samples generated by various attack methods.
Full-size tal DOI: 10.7717/peerjcs.2904/fig-10

Aliyun’s CompareFace API, with green representing above the 69% API threshold and red
representing below the API threshold.

From Fig. 10, we can observe that gradient-based methods such as FGSM, MI-FGSM,
and SiblingAttack, which is centered on the gradient method PGD, generate adversarial
faces with poor quality. The perturbations are easily noticeable to the human eye. Local
perturbation methods like AT3D and Adv-MakeUP, while modifying larger regions of
the face, still generate noticeable adversarial patterns in local areas, which limits the visual
quality of the adversarial faces and hinders their effectiveness in real-world attack scenarios.
The C&W method generates adversarial faces with better visual quality; however, as we
mentioned in previous experiments, C&W’s white-box attack performance is strong, but
its black-box attack performance is nearly non-existent.

In contrast, adversarial faces generated by GAN-based methods such as AdvFace and
AdvFaceGAN demonstrate better visual quality, highlighting the superiority of GAN-based
approaches.

To quantitatively evaluate the visual quality of adversarial samples generated by different
methods, we use ArcFace as the white-box substitute model to generate adversarial faces.
We then calculate the attack success rate on the black-box model MobileFace. Additionally,
we compute the SSIM, PSNR, and MSE metrics for the adversarial faces generated by each
method to assess their visual quality quantitatively.

From the data in Table 8, it can be seen that our method, with ¢ =5, = 0.92 and
n = 0.15, achieves better visual metrics than AT3D, SiblingAttack, Adv-MakeUP, and
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Table 8 Visual quality comparison of adversarial faces generated by different methods (ArcFace
White-box, MobileFace Black-box).

Method Vision metric Attack metric

SSIM 1 PSNR1t MSE] ASR, ASR, FSS&FTS
FGSM 90.2% 32.3 36.0 64.8% 64.8% 59.1&24.3
MI-FGSM 89.5% 32.2 36.3 97.6% 96.6% 43.6&39.7
C&W 99.5% 46.7 1.4 7.1% 7.1% 93.2&11.7
AdvMakeUP 97.4% 31.6 56.7 20.1% 20.1% 77.4&14.8
AT3D 89.6% 23.5 348.7 84.9% 82.5% 37.9&30.5
AdvFaces 91.6% 30.4 59.6 89.1% 83.1% 38.7&34.6
TIP-IM 85.3% 31.0 47.8 95.6% 21.5% 13.3&35.0
SiblingAttack 59.5% 24.9 205.2 99.1% 71.3% 27.7&50.5
DiffAM 82.4% 16.9 1367.0 65.6% 57.2% 32.3&24.9
e=4w.0. w.o.n 93.8% 33.3 28.1 99.2% 92.7% 38.3&49.6
e=5w.0.w.0.n 91.0% 31.3 43.9 99.3% 79.0% 30.2&54.3
e=5¢=0.921n=0.15 94.0% 32.0 37.4 99.2% 96.0% 40.9&52.1

AdvFace. The SSIM of Adv-MakeUP is relatively high because it only generates makeup
around the eyes in a small region, but its other two metrics are lower than ours, and its
attack effectiveness is insufficient. Among traditional methods, the C&W method generates
adversarial samples with unmatched visual quality, but its black-box attack transferability is
very low, leading to a significant decrease in attack effectiveness. The MI-FGSM and FGSM
methods slightly outperform our method in PSNR and MSE metrics, and MI-FGSM’s attack
performance is also strong. However, when we use FaceNet as the white-box substitute
model to generate adversarial faces and calculate the attack success rates in a black-box
model (CosFace), as shown in Table 9, the transferability issues of FGSM and MI-FGSM are
exposed. In contrast, our method maintains stable visual effects and attack performance,
proving that it achieves the best visual quality among all the comparison methods under
the same attack power and transferability conditions.

From Table 9, the insufficient transferability of FGSM and MI-FGSM attacks can be
revealed, while the visual quality and attack efficacy of the proposed method remain stable.
This demonstrates that our approach achieves the best visual quality among all compared
methods under the same black-box impersonation attack efficacy.

Face API attack effectiveness

This section will evaluate the black-box impersonation attack effectiveness on the face
comparison APIs provided by Aliyun, Tencent, and Face++. Based on previous experience
with black-box attacks on offline models using three white-box models, it was found
that when using ArcFace as a white-box substitute model, various gradient-based methods
achieved the best black-box attack success rate for offline models. Therefore, the adversarial
samples generated using different methods with ArcFace as the white-box substitute model
in the previous Table 6 (offline model black-box attack experiments) will be used to
evaluate these commercial APIs.
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Table 9 Comparison of visual quality of adversarial faces generated by different methods (FaceNet
White-box, CosFace Black-box).

Method Vision metric Attack metric

SSIM 1 PSNR1t MSE] ASR, ASR, FSS&FTS
FGSM 88.4% 32.4 35.9 29.3% 29.3% 64.6&18.0
MI-FGSM 87.0% 32.3 36.3 69.5% 69.2% 53.5&31.2
C&W 99.4% 47.3 1.2 4.2% 4.2% 97.0&8.3
AdvMakeUP 97.4% 31.6 56.7 28.0% 28.0% 84.1&18.4
AT3D 88.4% 22.8 386.8 60.6% 60.2% 37.9&30.5
AdvFaces 91.6% 30.5 59.6 91.0% 87.4% 47.8&40.3
TIP-IM 83.7% 314 43.9 66.7% 27.5% 23.2&29.6
SiblingAttack 60.8% 25.1 196.4 92.7% 83.1% 40.3&42.5
DiffAM 82.4% 16.9 1367.0 38.2% 24.3% 31.5&22.3
e=4w.0. w.o.n 93.8% 33.3 28.1 92.3% 91.6% 54.8&40.6
e=5w.0.w.0.n 91.0% 31.3 43.9 96.8% 92.0% 46.1&46.4
e=5¢=0.921n=0.15 94.0% 32.0 37.4 94.4% 93.9% 55.29&43.4

Additionally, the three face comparison APIs each provide three recommended
recognition thresholds. For example, Aliyun’s recommended thresholds are [61, 69,
75], Tencent’s recommended thresholds are [40, 50, 60], and Face++’s recommended
thresholds are [62.327, 69.101, 73.975]. These thresholds correspond to the recognition
thresholds that achieve 0.1% FAR, 0.01% FAR, and 0.001% FAR for each commercial API.
However, a higher false acceptance rate (FAR) also leads to a decrease in the true acceptance
rate (TAR). Therefore, this section of the experiment first uses the recommended threshold
at 0.01% FAR for all three APIs to determine whether the impersonation attack is successful.
The data obtained is shown in Table 10.

By examining the data in Table 10, it can be observed that the proposed method,
Our method performs slightly worse than SiblingAttack in terms of the traditional
impersonation attack success rate ASR;, but the dual-identity impersonation attack
success rate is higher than all comparison methods. Additionally, the attack effectiveness
remains stable across the three commercial APIs, demonstrating that the adversarial
samples generated by AdvFaceGAN have excellent transferability.

Other similar studies that evaluate the success rate of attacks on commercial APIs often
use the 0.1% FAR threshold, which is less secure and more vulnerable to attacks. This
article also provides additional attack data at the recommended threshold for 0.1% FAR
for each method, as shown in Table 11.

By examining the attack data in Table 11 at the 0.1% FAR threshold, it can be observed
that the conclusions remain consistent with those at the 0.01% FAR threshold. However, it
is noteworthy that the decline in ASR, compared to ASR; is less pronounced for the other
methods. This is because methods that do not consider the source identity loss tend to
generate adversarial faces with higher FTS but lower FSS. At a lower recognition threshold
7, the negative impact of low FSS on ASR; isreduced. This can be understood by referring
to Eq. (12). In essence, the lower FSS weakens the detrimental effect on ASR,at lower
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Table 10  0.01% FAR threshold: black-box attack success rate comparison on Aliyun, Tencent and Face++.

Metric APIs FGSM MI-FGSM C&W Adv- AT3D AdvFace TIPIM Sibling  DiffAM Adv
MakeUP attack FaceGAN

Aliyun 5.0% 36.7% 0% 0% 11.2% 21.6% 20.1% 82.0% 0% 79.3%

ASR, Tencent 21.1% 51.2% 1.7% 4.9% 41.6% 41.1% 46.3% 85.2% 11.5% 76.5%
Face++ 27.4% 67.2% 2.7% 5.6% 59.0% 60.0% 57.2% 92.0% 14.1% 89.8%
Aliyun 5.0% 34.3% 0% 0% 5.7% 11.9% 3.5% 16.5% 0% 62.1%

ASR, Tencent 21.1% 50.1% 1.7% 4.9% 25.2% 29.3% 22.8% 39.5% 3.6% 58.4%
Face++ 27.4% 65.2% 2.7% 5.6% 30.2% 39.9% 15.3% 51.5% 2.2% 68.3%

Table 11  0.1% FAR threshold: black-box attack success rate comparison on Aliyun, Tencent and Face++.

Metric APIs FGSM MI-FGSM C&W Adv- AT3D AdvFace TIPIM Sibling DiffAM Adv
MakeUP attack FaceGAN

Aliyun 25.2% 72.3% 0.2% 1.2% 48.0% 45.6% 58.7% 94.7% 3.7% 93.5%

ASRy Tencent 40.2% 67.3% 6.1% 15.8% 68.7% 59.2% 66.0% 92.7% 30.5% 88.2%
Face++ 46.9% 77.5% 9.2% 14.3% 79.9% 79.9% 73.8% 96.1% 31.5% 95.3%
Aliyun 25.2% 71.9% 0.2% 1.2% 38.9% 38.0% 24.7% 47.5% 1.7% 89.6%

ASR, Tencent 40.2% 67.0% 6.1% 15.8% 53.4% 50.6% 46.8% 60.5% 18.7% 80.3%
Face++ 46.9% 77.0% 9.2% 14.3% 55.1% 66.3% 38.6% 72.5% 11.8% 84.4%

thresholds, which helps explain the observed differences in attack performance at varying
FAR levels.

Therefore, setting a higher recognition threshold not only enhances the resistance to
traditional impersonation attacks but also improves the resistance of commercial APIs to
dual-identity impersonation attacks.

Dual-identity impersonation attack failure pattern diagnosis

This section of the experiment analyzes whether there are certain situations in which the
adversarial samples generated by the AdvFaceGAN method in this article lead to difficulties
in successful attacks. First, the distribution of the adversarial samples generated by the
AdvFaceGAN method in the feature coordinate systems of three white-box models and
three black-box models is plotted, as shown in Fig. 11.

As shown in Fig. 11, some samples in the top-left corner are discarded during the
adversarial network optimization process and fail to achieve the dual-identity effect. These
samples are visualized when attacking MobileFace in Fig. 12.

As shown in Fig. 12, it can be observed that when the source face and target face involve
cross-skin tone or cross-gender situations, FTS struggles to reach the correct value, thus
failing to achieve the dual-identity impersonation attack.

As shown in Fig. 11, it can be observed that the samples within the green circle in
the upper right achieved the highest FSS & FTS during the optimization process of
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Figure 11 Distribution of AdvFaceGAN adversarial samples.
Full-size Gal DOI: 10.7717/peerjcs.2904/fig-11
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Figure 12 Visualization of failed AdvFaceGAN adversarial samples.
Full-size Gal DOI: 10.7717/peerjcs.2904/fig-12

the Generative Adversarial Network, demonstrating excellent dual identity effects. The
visualization of these samples when attacking MobileFace is shown in Fig. 13.

This suggests that attackers need to select victims whose gender and skin tone are similar
to their own in order to improve the success rate of dual-identity impersonation attacks.
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Figure 13 Visualization of excellent AdvFaceGAN adversarial samples.
Full-size &4l DOI: 10.7717/peerjcs.2904/fig-13

Time processing experiments

This section compares the time cost required by different attack methods for generating
adversarial faces for a new source identity and target identity. The attack methods are
divided into Algorithm-based and GAN-based approaches. Algorithm-based attack
methods do not require pre-training of neural networks, so there is no training cost.
For GAN-based attack methods, Adv-MakeUP and DiffAM need to re-train the network
for a new target identity, so the total cost is the sum of training cost and inference cost.
AdvFaces and the method presented in this paper, AdvFaceGAN, do not require re-training
the network for a new target identity, so the total cost is the inference cost. The time is
measured in seconds, and the timing for this experiment was conducted on a laptop with
an i9-14900 CPU and an RTX4070 GPU configuration, Only DiffAM was trained on a
cloud server with 24 GB of VRAM due to its maximum requirement of nearly 21.398 GB
of VRAM.

As shown in Table 12, Algorithm-based attack methods such as C&W and SiblingAttack
often require more time for multi-step iterations to achieve better attack results, making
them much slower than AdvFaceGAN, which only requires inference. The training cost
for GAN-based methods is faster than that of AdvFaceGAN because Adv-MakeUP and
DiffAM train networks that can only generate adversarial faces for specific target identities,
and AdvFaces uses FaceNet as the only one substitute model. These methods have simpler
training objectives. However, AdvFaceGAN does not require re-training for new target
identities, so when generating adversarial faces for new source and target identities, The
total cost for AdvFaceGAN is only 0.25 s, which is fast enough.
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Table 12 Comparison of time costs for different attack methods.

Type Method Training cost (s) Inference cost (s) Total cost (s)
FGSM 0.11 0.11
MI-FGSM 0.16 0.16
Algorithm- C&W 14.71 14.71
based TIP-IM 9.83 9.83
AT3D 8.95 8.95
SiblingAttack 114.23 114.23
Adv-MakeUP 43,632 0.37 43,633.24
GAN-based DiffAM 1,558 3.95 1,562.59
AdvFaces 41,508 0.12 0.12
Our model AdvFaceGAN 483,301 0.25 0.25
DISCUSSION

This article, based on the potential security issues in real-world applications such as facial
recognition attendance systems, demonstrates that generating “dual-identity” adversarial
faces and uploading them to facial databases to bypass liveness detection mechanisms,
achieving a high success rate in impersonation attacks, is both realistic and feasible.
The proposed method, AdvFaceGAN, ensures the visual concealment of adversarial
faces through multiple vision-related losses and enhances the attack and transferability
capabilities by constructing an ensemble of facial white-box models with maximum model
differences. The novel source identity loss introduced in this method ensures that, during
the optimization process whered adversarial faces remain similar to the target face, sufficient
similarity to the source identity is maintained. Experimental results show that AdvFaceGAN
achieves higher visual concealment and transfer attack effectiveness compared to existing
similar attack methods, and its performance in dual-identity impersonation attack scenarios
far exceeds current state-of-the-art methods.

Experiments on both open-source offline models and commercial APIs indicate
that facial recognition systems without defenses against adversarial samples are highly
vulnerable. The AdvFaceGAN method still achieves around 60% attack success rate on
three commercial APIs at a 0.01% FAR, demonstrating that current commercial APIs
have yet to design effective defenses against adversarial attacks. Current defenses in facial
recognition systems can focus on preventing direct attacks in the digital domain, such
as preventing administrators from uploading facial images of employees to attendance
systems. For example, systems could be designed to collect real-time facial images using a
camera through a mini-program for employee registration.

In the design of AdvFaceGAN, we focus on finding more concealed perturbations to
evade detection by the human eye. However, the attack currently only works in the digital
domain, and its application in the physical world still depends on utilizing the dual-identity
characteristics for uploading to facial databases. A further challenge to address is how to
directly attack in the physical world. In the next step, this research could explore applying
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perturbations to a 3D mask using methods similar to those used in AT3D, adapting to the
complexities of the physical world to directly achieve the attack effect.
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