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ABSTRACT
Background: Lung cancer has the highest global fatality rate, with diagnosis
primarily relying on histological tissue sample analysis. Accurate classification is
critical for treatment planning and patient outcomes.
Methods: This study develops a computer-assisted diagnosis system for non-small
cell lung cancer histology classification, utilizing the FastAI-2 framework with a
modified ResNet-34 architecture. The methodology includes stain normalization
using LAB colour space for colour consistency, followed by deep learning-based
classification. The proposed model is trained on the LC25000 dataset and compared
with VGG11 and SqueezeNet1_1, demonstrating modified ResNet-34’s optimal
balance between depth and performance. FastAI-2 enhances computational
efficiency, enabling rapid convergence with minimal training time.
Results: The proposed system achieved 99.78% accuracy, confirming the
effectiveness of automated lung cancer histopathology classification. This study
highlights the potential of artificial intelligence (AI)-driven diagnostic tools to assist
pathologists by improving accuracy, reducing workload, and enhancing
decision-making in clinical settings.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Neural
Networks
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INTRODUCTION
Worldwide, there were an estimated 20 million new cancer diagnoses and 10 million
cancer deaths. The burden is estimated to grow by almost 60% in the next 20 years, and by
2040, there could be 30 million new cases, with the greatest increase in low- and
middle-income nations. In the western world, the incidence of cancer is likely to rise by
57% with an estimated 6.23 million cases by 2040. Of the present 20 million cases, 11
million are male with six million deaths and 10 million are female with five million deaths
(Siegel et al., 2023; American Cancer Society). Lung cancer is the second most prevalent
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cancer in both men and women, and a major cause of cancer deaths globally, accounting
for 5.9% of diagnoses and 8.1% of cancer deaths (American Cancer Society). In India, lung
cancer is the single largest cause of cancer death, largely because of excessive tobacco
consumption and smoking. Lung cancer is divided into two broad categories: small cell
lung cancer and non-small cell lung cancer (NSCLC), which are differentiated based on
their histological features. NSCLC is divided into adenocarcinoma, squamous cell
carcinoma, and large cell carcinoma, whereas small cell lung cancer is divided into small
cell carcinoma and combined small cell carcinoma (Hanna et al., 2017).

This research involves the classification of NSCLC histology into three groups:
adenocarcinoma, squamous cell carcinoma, and benign lung tissue, using a new method
that combines color normalization with FastAI-2 and a ResNet-34 modified architecture.
Figure 1 displays the classification standards for lung histology.

It is well known that patients diagnosed with adenocarcinoma tend to have a worse
prognosis than those diagnosed with squamous cell carcinoma. However, the survival rate
for patients with squamous cell carcinoma is comparatively lower than for those with
adenocarcinoma (Kawase et al., 2011). This discrepancy is likely influenced by
smoking-related comorbidities, which are more prevalent among squamous cell carcinoma
cases, contributing to reduced survival rates. Despite these observations, a complete
understanding of the differential biological aggressiveness of these two subtypes remains
elusive.

Epidemiological studies indicate that adenocarcinoma is more common in women,
whereas squamous cell carcinoma accounts for 10–30% of cases in women and 30–55% in
men (Hanna et al., 2017; Patel, 2005; PathologyOutlines.com, 2023). The prevalence of
these subtypes suggests potential gender-related factors in disease development,
warranting further investigation into their underlying pathophysiology.

In modern healthcare diagnostics, medical practitioners primarily rely on medical
imaging technologies for disease analysis. Among these, biopsy-based histological
examination remains the most reliable diagnostic approach, involving the extraction of
tissue samples for microscopic evaluation. Clinical medicine and laboratory research
heavily depend on this technique (Solis et al., 2012). However, manual preparation of
pathology slides is a complex and meticulous process, requiring precision and expertise.
Additionally, the subsequent diagnostic analysis is time-intensive, necessitating skilled
pathologists to examine lung cancer tissues under various magnifications (Wei et al., 2019).
Addressing these challenges is essential to maximize the information obtained from
pathology slides, ultimately ensuring accurate diagnosis and appropriate treatment
administration.

Manually counting the numerous biological characteristics is a time-consuming and
inefficient process for pathologists at this point. In addition, there is a potential that crucial
characteristics may be missed due to overwork, which may result in an inaccurate
diagnosis. This could lead to an incorrect treatment plan. Therefore computer-assisted
classification of lung cancer is a prerequisite for early detection, and timely treatment can
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prolong the patient’s life and chances of resubmission (Saxena & Goyal, 2022; Gurcan
et al., 2009). To accurately identify lung cancer in the current study, the technology known
as FastAI-2 is combined with the modified ResNet-34 model is used. Compared to its other
possible alternatives, modified ResNet-34 has fewer layers but approximately the same
performance level with less time. Deep learning results can be approximated more quickly
with the help of FastAI-2. Enhancing the efficiency of learning models by leveraging GPU
acceleration and optimizing the callback mechanism can potentially expedite model
execution, reduce code complexity, and consequently enhance the accuracy of
histopathology slide identification for lung cancer (Praveen et al., 2022). The Residual
Network (ResNet) has been empirically demonstrated to effectively address the issue of
vanishing gradients and facilitate efficient feature learning.

In contrast to past research that used raw histopathological images exclusively, this
study presents a new method by coupling color normalization with FastAI-2 and a
modified ResNet-34 network for enhanced multi-class lung cancer histopathology
classification. The new method classifies three types: Adenocarcinoma, Squamous Cell
Carcinina, and Normal. Through stain normalization, the new method corrects color
variability challenges inherent in histopathological images, providing robust and
consistent feature extraction. In addition, FastAI-2 also boosts computational efficiency by
applying the one-cycle learning rate policy, which adaptively varies learning rates
throughout training to ensure quicker convergence without affecting accuracy (Smith,
2018). The method saves training time by improving the learning process. Moreover, the

Figure 1 Classification of Lung cancer into sub-categories.
Full-size DOI: 10.7717/peerj-cs.2903/fig-1
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framework exploits transfer learning with pre-trained ResNet-34 models to enable fast
model adaptation and reduce training time (Howard & Gugger, 2020). The comparative
analysis with other deep learning architectures, such as VGG11 and SqueezeNet1_1,
proves the superiority of the suggested model with an overall accuracy of 99.78% andmuch
less execution time. The performance of the model is assessed using multi-class metrics
such as macro, micro, and weighted averages for precision, recall, and F1-score to provide
a complete assessment. The integration of model optimization, color normalization, and
effective training methodologies in FastAI-2 enhances the automated lung cancer
classification by improving accuracy, minimizing computational expense, and achieving
faster convergence. These results portend the clinical utility of the model in assisting
healthcare practitioners with accurate diagnostic lung cancer, which will in turn lead to
enhanced patient care.

This work showcases a new solution to multi-class lung cancer histology classification
that proves to work well for three classes. Summarily, the contributions in this article
include:

. Applied color normalization for consistent and robust extraction of features.

. Improved FastAI-2 model with a modified ResNet-34 architecture to achieve efficient
classification.

. Evaluated the performance of the model employing multi-class assessment metrics and
shown to outperform VGG11 and SqueezeNet1_1.

. Enhanced computational efficacy with one-cycle learning rate strategy and transfer
learning.

The subsequent sections are organized in the following manner. “Related Work”
reviews existing techniques to classify lung cancer based on histopathological data. The
proposed methodology is presented in “Proposed Methodology”. The result outcomes
derived from evaluating the proposed methodology are elaborated in “Result Analysis and
Discussion”. “Conclusion” provides the conclusion of the article.

RELATED WORK
This article critically reviews different types of datasets used in the classification process of
lung histology. Overall classification approaches are discussed in Table 1 based on three
fundamental criterions. In the first criteria, different feature extraction techniques are
reviewed. These techniques are responsible to construct the feature vectors. In the second
criteria, various classifications approaches are reviewed to classify lung histology into
respective classes. Finally, various performance evaluation criterion is compared. This
literature is only confined to histopathological images. Other types of images
(like computed tomography (CT), high-resolution computed tomography (HRCT)) are
not part of this article.

Based on the review, it can be concluded that two public (Al-Jabbar et al., 2023;
Liu et al., 2022; Ali & Ali, 2021; Civit-Masot et al., 2022; Adu et al., 2021;

Saxena et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2903 4/22

http://dx.doi.org/10.7717/peerj-cs.2903
https://peerj.com/computer-science/


Table 1 Summary of related works with their findings.

Ref Dataset Feature extraction techniques Classification approach Performance evaluation

Al-Jabbar et al.
(2023)

LC25000, Histopathological
images, high resolution

Method 1: feature extraction
from GoogLeNet, VGG-19
separately.

Method 2: Combined features
extracted from GoogLeNet,
VGG-19, followed by PCA for
feature optimality.

Method 3: Fusion features from
CNN models followed by
hand-crafted features.

Artificial neural network (ANN)
is used for classification.

Method 1: accuracy for
GoogLeNet and VGG-19
are 95.5% and 95.9%,
respectively.

Method 2: Mixed features
after PCA are 98.7, and
mixed features before PCA
98.5 in method-3 accuracy
is 99.6%.

Liu et al.
(2022)

766 cases were recorded from
2019 to 2020 at the First
Hospital of Baiqiu’en. The
dataset was obtained at 20X
whole slide images (WSI).

Feature extraction based on
visual activation function and
CroReLU additionally a priori
knowledge of pathology

Deep learning models (SENet50
+CroReLU &
MobileNet_CroReLU)

The diagnosis accuracy is
reached up to 98.35%.

Ali & Ali
(2021)

LC25000, histopathological
images

Convolutional Neural Network Multi-input capsule network 99.58% of accuracy

Civit-Masot
et al. (2022)

LC25000, Histopathological
Images

Deep Neural Network Explainable Deep Neural
Network

System accuracy varies
between 97.11% to
99.69%

Adu et al.
(2021)

LC25000, Histopathological
Images

The encoder feature fusion
aggregates to extract features
from the 2-lane convolutional
neural layers.

Classification is done based on
the new horizontal squash
capsule network abbreviated as
(DHS-CapsNet) to classify lung
and colon cancers.

The system can generate
99.23% of accuracy.

Mangal,
Chaurasia &
Khajanchi
(2020)

LC25000, Histopathological
images

CNN is used to extract the
features

These CNN features are classified
by fully connected layers of
deep application

97.92 training accuracy is
calculated, followed by
97.89% of validation
accuracy.

Talukder et al.
(2022)

LC25000, Histopathological
images

Features are extracted by
different transfer learning deep
networks (VGG16, VGG19,
MobileNet, DenseNet169,
DenseNet201)

Extracted features from transfer
learning approaches are fed
into different machine learning
approaches (RG, LR, XGB,
SVM, MLP, LGB) followed by
an ensemble to evaluate the
performance

99.05% of accuracy is
reported while classifying
lung cancer histology

Mehmood
et al. (2022)

LC25000, Histopathological
images

Transfer Learning techniques are
used for feature extraction.

Modified AlexNet with
class-selective image processing
techniques

98.4% of accuracy is
achieved with this
approach

Toğaçar (2021) LC25000, Histopathological
images

The feature set extracted from the
DarkNet-19 network then run
through the Equilibrium and
Manta Ray Foraging
optimization algorithms to
select the inefficient features.

Then support vector machine
(SVM) classifier is used to
classify the Lung histology

SVM classifiers show a
verypromising 99.69% of
accuracy.

Masud et al.
(2021)

LC25000, Histopathological
images

Digital image processing
techniques (2D Fourier
features, 2D wavelet features)
are

CNN is used to classify Lung
histology

The classification accuracy
of the proposed system is
96.33%.

(Continued)
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Mangal, Chaurasia & Khajanchi, 2020; Talukder et al., 2022; Mehmood et al., 2022;
Toğaçar, 2021; Masud et al., 2021; Nishio et al., 2021) and two private (Al-Jabbar et al.,
2023; Hamida et al., 2021; Coudray et al., 2018) datasets have been utilized for lung cancer
classification studies. Furthermore, these datasets have been analyzed using various feature
extraction techniques, where key quality parameters such as texture, shape, and
intensity-based features have been derived to enhance classification performance. Some
researchers use transfer learning techniques (Al-Jabbar et al., 2023; Civit-Masot et al., 2022;
Adu et al., 2021; Mehmood et al., 2022; Hamida et al., 2021) and other uses transfer
learning techniques with feature selection technique like principal component analysis
(PCA) (Al-Jabbar et al., 2023), Mante ray foraging optimization algorithm (Masud et al.,
2021). Feature extraction techniques like fusion features from the convolutional neural
network (CNN) model followed by hand-crafted features (Al-Jabbar et al., 2023), visual
activation function (AF) with cross-ReLU along with prior knowledge of pathology (Liu
et al., 2022), convolutional neural network (Ali & Ali, 2021; Mangal, Chaurasia &
Khajanchi, 2020), CNN followed by encoder feature fusion as aggregators (Adu et al.,
2021), and digital image procedures (Masud et al., 2021; Nishio et al., 2021) are also used to
extract the features. These extracted features are fed into different classifiers to classify lung
histology. Some researchers use machine learning techniques (Al-Jabbar et al., 2023;
Talukder et al., 2022; Toğaçar, 2021; Nishio et al., 2021), and other uses deep networks (Liu
et al., 2022; Civit-Masot et al., 2022; Mangal, Chaurasia & Khajanchi, 2020; Mehmood
et al., 2022; Masud et al., 2021; Hamida et al., 2021) followed by multi-input capsule
network (Ali & Ali, 2021; Adu et al., 2021). Classification accuracy among all the classifiers
is compared and recorded. Accuracies among all the classifiers vary from a minimum of
95.5% to a maximum of 99.6%. This article classifies Lung histology using proposed colour
normalization followed by fastai2 with a modified ResNet34 network.

Table 1 (continued)

Ref Dataset Feature extraction techniques Classification approach Performance evaluation

Nishio et al.
(2021)

Database 1: private dataset
containing 94 images with
1,600� 1,200 pixel with RGB
channel at 100X resolution.

Dataset 2: LC25000,
Histopathological Images (public
dataset)

Two types of features extraction
techniques are used.

Method 1: Based on conventional
texture analysis.

Method 2: Homology-based
image processing techniques.

Eight machine learning classifiers
are used (perceptron model,
logistic regression (LR),
k-nearest neighbor (kNN),
SVM with radial basis function
(RBF), decision tree (DT),
Random Forest (RF), gradient
tree boosting (GTB)).

Maximum accuracy of
99.4% is recorded among
all the classifiers.

Hamida et al.
(2021)

AiCOLO colon cancer dataset ImageNet generates a rich
collection of learnt features in
order to compensate for the
lack of abundant WSI datasets.

To ensure the patch-level
classification of WSI is done
using ResNets.

Testing and evaluation
accuracy is achieved at
96.98%

Coudray et al.
(2018)

Data base of whole-slide images
collected from The Cancer
Genome Atlas

Deep learning Deep learning (Inception V3) AUC is 0.97 is determined
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PROPOSED METHODOLOGY
The methodology proposed, as shown in Fig. 2, is a step-by-step multi-class lung cancer
classification following a structured approach. It starts with color normalization, which
improves image quality and minimizes stain variability. The processed dataset is divided
into training, validation, and testing subsets to provide reliable model evaluation. These
pre-processed images are then passed through the FastAI-2 framework, where they are
subjected to tensor transformation, feature extraction with a ResNet-34 model modified
for this purpose, and classification by a fully connected Softmax layer into three classes:
Adenocarcinoma, Squamous Cell Carcinoma, and Normal. The performance of the model
is measured in terms of multi-class evaluation metrics such as overall accuracy, macro,
micro, and weighted averages for precision, recall, and F1-score. Moreover, a confusion
matrix is utilized to evaluate class-wise predictions. The performance measures are
compared with state-of-the-art frameworks to ensure the efficacy of the model and prove
its superiority in multi-class lung cancer classification.

Dataset description
The LC25000 dataset, proposed by Borkowski et al. (2019), is an open-source
histopathological image dataset aimed at facilitating machine learning research for cancer
diagnosis. It contains 25,000 colour images, divided equally into five different categories,
such as lung adenocarcinoma, lung squamous cell carcinoma, benign lung tissue, colon
adenocarcinoma, and benign colon tissue. Each image was originally taken from
histopathological slides at a 1;024 � 768 pixel resolution and then resized to 768 � 768
pixels to keep an equal aspect ratio appropriate for deep learning tasks.

Figure 2 Methodology of the proposed system. Full-size DOI: 10.7717/peerj-cs.2903/fig-2
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Here, we address the issue of lung cancer histopathology classification alone, i.e., the
classification of images into three categories: lung adenocarcinoma, lung squamous cell
carcinoma, and benign lung tissue. The data were already preprocessed during the time of
data acquisition and augmented to eliminate additional preprocessing requirements of
augmentation. The initial augmentation step was carried out with the Augmentor software
tool (Borkowski et al., 2019), implementing random left and right rotation (max 25
degrees, probability = 1.0) and horizontal and vertical flip (probability = 0.5) to provide a
rich representation of histopathological variations. The pre-augmented dataset has been
tested to be HIPAA-compliant, maintaining patient confidentiality, and forms the
standard utility for deep learning model development in cancer classification. With the use
of this dataset, scientists can investigate strong machine learning methods for separating
malignant from benign lung tissue that can lead to improvements in AI-based pathology
diagnostics (Borkowski et al., 2019).

Colour-normalizing of the histopathological image from the LC25000
dataset
Pre-processing is carried out to enhance images by suppressing noise and enhancing
crucial characteristics. As a result, crucial information is extracted from the images, and
the images become compatible with deep-learning and machine-learning networks. Noise
can be seen in the images of the LC25000 dataset because the biopsy was combined with a
variety of medical materials, and there is not enough contrast between the afflicted tissue
and the surrounding tissue. This article explains a technique for a broader type of colour
correction known as colour borrowing, in which the colour properties of one image are
taken from another image. The following series of steps are followed for this process. In the
First step, the augmented image is converted into L�a�b� colour space, followed by L�a�b�

colour space, which is projected on decorrelated colour space using the borrower image.
Then finally, the projected image is back to RGB colour space from the L�a�b� colour
space.

Step 1: Conversion of augmented RGB image into L�a�b� colour-space
In the RGB colour space, if the blue channel is dominant, it means that the blue intensity

is significantly higher relative to the red and green channels. This affects the overall
perception of colour, requiring adjustments across all three channels to ensure a consistent
colour transformation. Since RGB channels are interdependent, modifying one component
without adjusting the others can lead to unnatural colour shifts, making simultaneous
adjustments necessary for maintaining colour consistency. Any technique that modifies
colours is made more difficult due to this. A colour space that is orthogonal and free of
connections between its axes is precisely what we are looking. L�a�b colour space can be
the answer to this. During the conversion from RGB to L�a�b colour model, the Euclidean
distance is calculated since the difference in perceived value between two colours in the
L�a�b� colour space is consistent across all observers.

Three different aspects make up the L�a�b� colour space: the luminance component L�,
and the chromaticity components a� and b�. These components represent the position of
colour along the red-green and blue-yellow axes, respectively (Solis et al., 2012). The
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conversion formula initially establishes the tri-stimulus coefficients in the following
manner:

X ¼ 0:43Rþ 0:35Gþ 0:19B

Y ¼ 0:23Rþ 0:71Gþ 0:07B

Z ¼ 0:02Rþ 0:13Gþ 0:94B:

(1)

The calculation of the CIELab colour model is as follows:

L� ¼ 116 h
Y
Ys

� �� �
� 16

a� ¼ 500 h
X
Xs

� �� �
� h

Y
Ys

� �

b� ¼ 200 h
Y
Ys

� �� �
� h

Z
Zs

� �
(2)

where the usual stimulus coefficients Xs; Ys; and Zs represent the reference white values
in the CIE standard illuminant, which are used to normalize the colour transformation
process for ensuring perceptual consistency. After calculating L�a�b channels, the
de-correlation of colour space is started based on the borrower image (discussed in Fig. 3).

Step 2: De-correlation of colour space using borrower image
Consider an image I i; j; kð Þ, where i; j are the height and width of the image,

respectively, and k represents the number of channels of the image. Then Eq. (3)
decorrelates the pixel’s intensity.

Inpimg i; j; k½ � ¼ Inpimg � Inpimg mean k½ �ð Þ� � � Borimg std k½ �ð Þ
Inpimg std k½ �ð Þ

� �� 	
þ Borimg mean k½ �ð Þ: (3)

Inpimg is the colour-augmented input image, Inpimg mean k½ �ð Þ represents the mean of the

inputted image of each channel, Borimg std k½ �ð Þ keeps a record of the standard deviation of
borrower image and Inpimg std k½ �ð Þ handle standard deviation of inputted image.
Borimg mean k½ �ð Þ will keep track of the mean of borrower images for each channel. After

Figure 3 Steps to colour normalization. Full-size DOI: 10.7717/peerj-cs.2903/fig-3
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these colour processing adjustments, the next step is again back to RGB colour space from
L�a�b� colour space (Reinhard et al., 2001; Shen et al., 2022).

Step 3: Image back to RGB from L�a�b� colour space
An inverse procedure converts L�a�b� channels into RGB colour space. Equations. (1)

and (2) are redefined as follows:

X
Y
Z

2
4

3
5 ¼

1 1 1
1 1 �1
1 �2 0

2
4

3
5:

0:58 0 0
0 0:41 0
0 0 0:71

2
4

3
5:

l
a
b

2
4

3
5: (4)

Equation (4), LAB channels are converted into XYZ stimulus using matrix
multiplication. After that, we can transform the data from the XYZ stimulus into the RGB
colour space by raising the pixel values to the power of ten to return to linear space.
Equation (5) helps to understand the procedure.

R
G
B

2
4

3
5 ¼

4:47 �3:59 0:12
�1:2 2:4 �0:17
0:05 �0:25 1:21

2
4

3
5:

X
Y
Z

2
4

3
5 (5)

After removing all the anomalies, these colour-normalized images are fed into deep
learning frames to work for further classification of lung histology.

Classification framework
FastAI-2 is a deep learning framework developed on top of PyTorch to simplify model
development while offering room for sophisticated customization. It incorporates several
machine learning libraries and tools to enable researchers to obtain efficient training and
precise results with little code. Unlike other deep learning frameworks that involve much
configuration, FastAI-2 offers high-level APIs to enable quick experimentation while still
allowing access to low-level PyTorch functionality to fine-tune model performance.

The structure of the framework follows three core design principles: rapid productivity,
simple configuration, and adaptable architecture. It is realized through modular and
layered APIs so that both newcomers and deep learning experts can make use of it. It
further provides automatic hyperparameter search, learning rate scaling, and data
augmentation with its built-in functions, promoting more efficient training. By linking
high-level convenience and low-level personalization, FastAI-2 is a capable tool for
applying deep learning across different areas (Praveen et al., 2022).

Two of the most important design goals that FastAI-2 strives to achieve are accessibility
and productivity while maintaining flexibility. The residual neural network, often known
as ResNet-34, is a 34-layer. In the foundation of modified ResNet34, we need to define key
operations, including convolutional layers, batch normalization, ReLU activation, residual
connections, pooling, and fully connected layers. Below is a structured approach to
formulating the mathematical backbone of your modified ResNet-34.

Convolutional layer: Each convolutional layer applies a set of learnable filters W to the
input tensor X, producing a feature map Y . The convolution operation is given by:

Yi;j;k ¼
X
m

X
n

X
c

Wm;n;c;k:Xiþm;jþn; c þ bk (6)
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where, in Eq. (6), Xiþm;jþn; c is the input pixel at position iþm; jþ nð Þ in channel c,
Wm;n;c;k is the weight of the filter for kernel size m; nð Þ, bk is the bias term, Yi;j;k is the

output feature map at position i; jð Þ for channel k. In modified ResNet-34, these
convolutional layers are followed by batch normalization and ReLU activation.

Batch normalization: Batch normalization normalizes activations before passing them
to the next layer. Given an activation a, the normalized output is â ¼ a� l=r where l is
the mean of activations and r is the standard deviation. Batch normalization introduces
learnable parameters c (scale) and b (shift), giving the final transformation
Batch normalization ¼ câþ b.

ReLU activation: ReLU is applied element-wise f að Þ ¼ max (0, a). This function
preserved non-linearity while preserving positive activation. The modified ResNet34
residual learning, where the output of a block is computed as, Y ¼ f Xð Þ þ X, where f Xð Þ
represents a sequence of convolutional layers, X is the input that is directly added to the
output through the skip connection. This helps mitigate the vanishing gradient problem,
allowing deeper networks to learn effectively.

Adaptive average pooling: Instead of a fixed pooling size, Adaptive Average Pooling
reduces the feature map dynamically to a fixed-size tensor. Given an input tensor X of
shape H; Wð Þ, the pooled output Y is computed as:

Yi;j ¼ 1
H0W 0

XH0

p¼1

XW 0

q¼1

Xiþp; jþq: (7)

This ensures a consistent feature map size for the fully connected layer, regardless of
input image dimensions. In Eq. (7), Yi;j is the output of the adaptive average pooling
operation at position i; jð Þ in the pooled feature map. Xiþp; jþq is the input feature map
value at position iþ p; jþ qð Þ, which is part of the receptive field being averaged. H0 is
height of the pooling region (window size in the vertical direction). W 0 is the width of the
pooling region (window size in the horizontal direction). Adaptive Average Pooling
computes the average value of a local region of size H0 �W 0 in the input feature map and
assigns the result to a single pixel in the output feature map. The adaptive nature ensures
that the feature map is resized dynamically based on the required output dimensions.

Fully connected layer and SoftMax activation: The final classification layer maps the
feature vector FFF to output probabilities z ¼ WF þ b, where,W is the weight matrix, F is
the flattened feature vector, b is the bias term, and z is the logits vector before applying

Softmax. In this article P yið Þ ¼ eziP
j e

zi
is used as the Softmax function, where P yið Þ is the

probability of class i; ensuring that all outputs sum to 1. This foundation describes how
modified ResNet-34 operates, incorporating convolutional layers, batch normalization,
residual learning, adaptive pooling, and Softmax classification. These modifications ensure
robust feature extraction, efficient gradient flow, and optimized classification for lung
cancer histopathology. A modified ResNet-34 architecture consisting of r residual blocks
would provide 2r several potential pathways for processing the data. This is because each
residual block in ResNet would create two different paths. As a direct result, decreasing the
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total number of layers in the design will not significantly impact the efficiency with which
it functions. Working with a lower number of layers would result in faster computations
and an improvement in the capability of training networks. Figure 4 illustrates the layered
approach the ResNet-34 model takes to solve the problem.

The preprocessing stage involves resizing images to 768 � 768 pixels to maintain a
uniform aspect ratio, followed by colour normalization using Lab colour space
transformation with decorrelation to ensure stain consistency across histopathological
slides. These preprocessed images are then fed into the modified ResNet-34 model with
FastAI-2 (Fig. 5) for classification into three categories: Normal, Adenocarcinoma, and
Squamous Cell Carcinoma. The performance of the proposed system is evaluated and
compared against existing approaches to demonstrate its effectiveness. The article
illustrates the processing pipeline of the modified ResNet-34 model used in this study. The
input consists of colour-normalized histopathological images, which undergo multiple
stages of feature extraction, pooling, and classification within the FastAI-2 framework
utilizing modified ResNet-34.

Figure 4 Semantic representation of ResNet-34 architecture with layering details. Full-size DOI: 10.7717/peerj-cs.2903/fig-4

Figure 5 Graphical representation of FastAl-2 architecture with the pre-processed input image. Full-size DOI: 10.7717/peerj-cs.2903/fig-5
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This visualization effectively demonstrates how the proposed modifications, such as
colour normalization, optimized convolutional blocks, and adaptive pooling, contribute to
enhancing the model’s robustness, efficiency, and classification accuracy. By integrating
these components, the modified ResNet-34 ensures a computationally efficient and
high-performance deep learning framework for lung cancer histopathology classification.

RESULT ANALYSIS AND DISCUSSION
Google Colab has standard libraries on Windows 11 Home (version 21H2), the 64-bit
operating system with Ryzen 5 3500 U AMD processor with Vega mobile Gfx. Moreover, 8
GB of RAM is used to classify lung histopathological images. The distribution of the
database into tagged classes is displayed in Table 2.

The diagnostic performance of the proposed system is evaluated using multi-class
performance measures, including overall accuracy, macro and micro precision, recall, and
F1-score. In multi-class classification, overall accuracy is calculated as the proportion of
correctly predicted instances out of the total number of samples, expressed as a percentage.
Precision is evaluated using macro and micro averages, where macro precision calculates
the precision for each class individually and then averages them, while micro precision
aggregates contributions from all classes for a global precision score. Recall is also
calculated using macro and micro averaging. Macro recall averages the recall values across
all classes, whereas micro recall calculates the recall considering the sum of true positives
and false negatives across all classes. The F1-score, a harmonic mean of precision and
recall, is calculated using both macro and micro averaging to provide a balanced view of
the model’s performance.

This comprehensive approach ensures that the evaluation metrics account for class
imbalance and provide a detailed performance analysis for each category. By combining
macro and micro averaging, the predictive performance of the model is effectively
summarized, ensuring robust evaluation across all classes.

Tunning the hyperparameters
Training a deep neural network (DNN) is a problem of global optimization. Among the
most important hyperparameters to fine-tune in the process of DNN training is the
learning rate. An ill-chosen learning rate significantly impacts model performance: a small
learning rate might result in training that takes longer and converges slowly, and a large

Table 2 Distribution of a number of images in each category along with dispersal among train_set
(75%), validation_set (15%), and test_set (10%).

Class of lung cancer train_set validation_set test_set Total

lung_aca 3,750 750 500 5,000

lung_n 3,750 750 500 5,000

lung_scc 3,750 750 500 5,000

Total 11,250 2,250 1,500 15,000
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learning rate might cause the loss function to oscillate or even diverge, rendering the model
incapable of finding the optimal solution.

In FastAI-2, the learn.lr_find method is used to determine the optimal learning rate.
This technique involves gradually increasing the learning rate after each mini-batch, while
recording the corresponding loss function values. By plotting the losses against the
learning rates, the behaviour of the loss function can be visualized, providing insights into
the ideal learning rate for model training. Figure 6 illustrates the learning rate optimization
process for three different architectures: modified ResNet-34, VGG-11, and
SqueezeNet1_1. This approach enables the selection of a learning rate within the linear
zone of rapid loss reduction, ensuring faster convergence and improved model
performance. The use of FastAI-2’s learning rate finder enhances the training efficiency for
multi-class classification, as demonstrated across the tested networks.

The graph that is displayed above (Fig. 6) can be broken down into three distinct zones:
the shallow zone, which describes an environment in which a change in learning rate has a
negligible impact on loss, the linear zone, which describes an environment in which we
observe a rapid decrease in the loss function, and the divergent zone, which describes an
environment in which a learning rate that is too high causes loss to bounce and eventually
diverge from the local minima. In a perfect world, we would conduct our job in the linear
zone, characterized by the most significant decline in the loss function. We do not want to
operate at the minimum because doing so would prevent us from being able to update the
weights. The minimum is located at the point where the gradient of the loss function is not
changing. A good rule of thumb would be to choose a location at least one magnitude
higher than the absolute minimum. When we use learn.lr_find, we have the option of
utilizing Valley to work just perfectly in our situation. The remaining parameters, such as
the number of trainable parameters, are 0.55 million, epochs are 5, batch size is 32, the
activation function is ReLU, the number of convolution layers is 31, the random state is 2,
and two strides are taken in this experiment. 0.55 million trainable parameters were chosen

Figure 6 Stimulation of optimal learning rate. (A) ResNet34 network, (B) Vgg11 network, (C) SqueezeNet1_1 network.
Full-size DOI: 10.7717/peerj-cs.2903/fig-6
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to trade off model complexity and generalization, allowing efficient feature learning
without overfitting. The epochs were fixed at five based on empirical experience using
FastAI-2’s one-cycle learning rate policy, where learning rates adapt dynamically to
improve convergence (Smith, 2018). The model was able to achieve peak accuracy at five
epochs after which no appreciable improvement was seen. A batch size of 32 was selected
in order to achieve training stability and computational efficiency, and ReLU was
employed because of its ease of use and capability to eliminate the vanishing gradient
problem. The model employs 31 convolution layers for extraction of deep features to
improve the accuracy of classification. Fixing the random state at 2 provides
reproducibility of the results, whereas strides of 2 provide equilibrium between feature
resolution extraction and efficiency in computation. These parameters were empirically
adjusted to produce high accuracy and lower execution time, providing a strong and
effective classification system.

Training and validation losses
After tuning the hyper-parameters, the training and validation procedure is started, and
for each epoch, training loss, validation loss, accuracy, and time taken in each epoch are
recorded and displayed in Table 3.

Table 3 Analysis of training and validation loss during training for ResNet34 network.

Epoch Train_loss Valid_loss Accuracy Time

0 0.215012 0.087023 0.96652 10:28

1 0.082948 0.052266 0.984141 10:34

2 0.058602 0.033877 0.986784 10:32

3 0.018892 0.018289 0.994273 10:31

4 0.005173 0.005071 0.997797 10:32

Figure 7 Training and validation losses evaluation. (A) ResNet34 network, (B) Vgg11 network, (C) SqueezeNet1_1 network.
Full-size DOI: 10.7717/peerj-cs.2903/fig-7
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Figure 7 shows validation and training losses during the procedure. Table 3 shows that
training loss starts from 0.215 and continuously dips up to 0.00517 as the number of
epochs increases. This show model is trained perfectly with derived learning_rate.

Evaluation of the proposed framework
The proposed framework was rigorously tested on simulated data to evaluate its
performance on previously unseen instances. To ensure an objective evaluation, the test
data were pre-processed and categorized consistently with the training and validation sets.

Table 4 Evaluation based on different performance measures.

Precision Recall F1-score Accuracy

lung_aca 1 0.99 1 0.9948

lung_n 1 1 1 1

lung_scc 0.99 1 1 0.9986

Figure 8 (A) Confusion matrix and (B) receiver operating characteristic (ROC) curve of ResNet34 architecture.
Full-size DOI: 10.7717/peerj-cs.2903/fig-8

Table 5 Comparison based on performance among different pre-train networks.

Model Precision (%) Recall (%) F1-score (%) Accuracy (%) ROC AUC (%) Execution time (hh:mm:ss)

FastAI (ResNet-34) 99.66 99.66 100 99.78 100 00:52:37

FastAI (VGG-11) 96.33 96.33 96 95.99 100 01:28:01

FastAI (SqueezeNet1_1) 96.67 95.67 95.33 95.59 100 00:19:18

TensorFlow (ResNet-34) 97.42 96.35 96.4 96.45 100 01:05:22

TensorFlow (VGG-11) 95.88 95.79 95.8 95.83 100 01:41:56

TensorFlow (SqueezeNet1_1) 96.1 95.12 95.5 95.42 100 00:25:43
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The multi-class performance metrics for the model’s predictions on the test set are
presented in Table 4, and the confusion matrix is illustrated in Fig. 8.

The overall accuracy of the model is 99.78%, as calculated using the Weighted Average
approach. The model achieved a macro precision of 0.993, macro recall of 0.996, and
macro F1-score of 0.996, demonstrating consistent performance across all classes.
Similarly, the micro precision, recall, and F1-score were each 0.996, reflecting the model’s
strong predictive capability.

Class-specific accuracies are 99.48% for Adenocarcinoma, 99.86% for Squamous Cell
Carcinoma, and 100% for Normal. These results highlight the model’s ability to accurately
distinguish between the three classes, achieving high precision, recall, and F1-scores for
each category. The use of macro, micro, and weighted averages ensures a comprehensive
evaluation, making the performance metrics more robust and reliable for multi-class
classification.

Table 5 is a comparative study of deep learning models that were employed using FastAI
(PyTorch) and TensorFlow to classify lung cancer histopathology. These models were
compared based on their most important performance metrics, such as precision, recall,
F1-score, accuracy, ROC AUC score, and run time. Of all the models, FastAI’s ResNet-34
had the best accuracy of 99.78% with an F1-score of 100%, illustrating its high performance
in classifying lung cancer histopathological images. In contrast, TensorFlow’s ResNet-34

Figure 9 Probabilistic analysis of loss between prediction and actual class. Prediction/Actual/Loss/
Probability. Full-size DOI: 10.7717/peerj-cs.2903/fig-9
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achieved a slightly lower accuracy of 96.45%, indicating that FastAI’s implementation
optimizes model training more effectively.

When comparing VGG-11 models, FastAI’s version achieved 95.99% accuracy, slightly
outperforming TensorFlow’s VGG-11 at 95.83%, though the latter took significantly
longer to train (1 h 41 min vs. 1 h 28 min). SqueezeNet1_1, known for its computational
efficiency, exhibited the fastest training times in both frameworks, with FastAI completing
training in 00:19:18, compared to TensorFlow’s 00:25:43. However, the trade-off for
SqueezeNet1_1 was lower accuracy (95.59% in FastAI and 95.42% in TensorFlow), making
it a viable option for resource-constrained environments but less suitable for
high-precision classification tasks.

Overall, FastAI models consistently outperformed their TensorFlow counterparts in
terms of accuracy and training efficiency, particularly in the case of modified ResNet-34,
which achieved both higher classification performance and faster convergence in FastAI.
While TensorFlow models required longer execution times, their accuracy remained close
to that of FastAI, making them viable alternatives where framework flexibility or
integration into existing TensorFlow-based pipelines is required. These findings highlight
that FastAI provides a computational advantage with optimized learning techniques,
making it a preferable choice for lung cancer histopathology classification.

Figure 9 shows five levelled images based on their predicted class by the proposed
system, followed by an actual class of the image, classification loss, and probability of
classification. Out of five images, two have a predicted probability of 50% with minimal
loss; those are easily truncated by manual inspection. To provide evidence that the model
that has been proposed is effective, we conduct a thorough analysis of the data that has
been gathered and compare it to the findings that have been obtained using the most recent
and cutting-edge methodologies. When the lesions of the lungs are classified concurrently,
as shown in Table 6, the recommended model performs more effectively than the currently

Table 6 Comparison of the proposed model with the most recent existing literature.

References Classification approaches Accuracy

PathologyOutlines.com (2023) GoogLeNet 95.5%

VGG-19 95.9%

Mixed Feature before PCA 98.6%

Fusion Feature+hand crafted feature 99.6%

Solis et al. (2012) SENet50+CroReLU
MobileNet+CroReLU

Up to 98.35%

Gurcan et al. (2009) DHS-CapsNet 99.23%

Al-Jabbar et al. (2023) Ensemble machine learning approaches 99.05%

Liu et al. (2022) Transfer Learning (AlexNet)

Ali & Ali (2021) SVM 99.69

Civit-Masot et al. (2022) CNN 96.33

Mangal, Chaurasia & Khajanchi (2020) Machine Learning 99.4

Proposed FastAI-2 (ResNet34) 99.78%
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thought of as being state-of-the-art methods. In terms of accuracy, the proposed model has
surpassed the previously used one and is a better fit overall with the literature.

CONCLUSION
In this article, we introduced a new uniform tone staining process combined with the
FastAI-2 framework and modified ResNet-34 architecture to identify histopathological
images of lung cancer into three groups: Adenocarcinoma, Squamous Cell Carcinoma, and
Normal. The LC25000 dataset was used to train and test the model. For colour consistency
and feature extraction improvement, a colour normalization method was used to ensure
that all images are uniformly consistent. This preprocessing operation allowed the model
to learn stronger features, leading to better classification accuracy.

The model proposed here scored a total accuracy of 99.78% and an F1-score of 100%,
which was better than current models in the literature. Furthermore, incorporation of
FastAI-2’s learning rate finder enhanced model convergence, drastically shortening
execution time. This method shows the feasibility of computer-aided diagnosis systems to
aid pathologists in correctly diagnosing lung cancer cases with efficiency and lower costs.

Nevertheless, the current study depended mostly on the LC25000 dataset, and as such, it
might not reflect the complete variety of histopathological images that occur in practice.
The model’s generalizability to other datasets and clinical situations thus cannot be tested.
Additionally, the effects of staining variations and noise on the performance of the model
were not examined. Although the suggested framework had high computational efficiency,
its robustness and scalability on more extensive and complex datasets need further
exploration.

Future work would involve testing the performance of the model on other varied
datasets and checking for its flexibility to accommodate different staining methods.
Performing ablation studies to examine the impact of each preprocessing step and
checking the scalability of the model on larger datasets would give a better idea of the
model’s efficiency. Overcoming these limitations would enhance the use of the model in
real-world diagnostic platforms and help push the field of artificial intelligence (AI)
pathology diagnostics forward.
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