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ABSTRACT
In recent years, Internet of Things (IoT)-based technologies have advanced
healthcare by facilitating the development of monitoring systems, subsequently
generating an exponential amount of streaming data. This streaming data can be
preprocessed and analyzed using technologies that integrate ensemble models,
Explainable Artificial Intelligence (XAI), feature selection (FS) method and big data
streaming processing platforms to develop predictive real-time systems. This
integration adds new value to healthcare that helps organizations enhance clinical
decision-making, improve patient care, and elevate the overall quality of healthcare.
This article presents a real-time system for the early detection and treatment of
chronic kidney disease (CKD) using a real-world simulation application. The
real-time system is developed in two phases. The first phase aims to propose a
stacking model, apply a genetic algorithm (GA) and Particle swarm optimization
(PSO) as feature selection, and explore a stacking model with the best features with
explainable artificial intelligence (XAI). The best model with the best-optimized
features is used to develop the second phase. The results showed that stacking model
with GA is achieved the hightest performance with 100 accuracy, 100 precision, 100
recall, and 100 F1-score. The second phase is designed based on Confluent Cloud,
which offers several benefits for creating a real-time streaming system based on
Apache Kafka, providing multiple APIs—the Producer API and Consumer API—for
data producers and consumers, respectively. Python scripts are developed to pipeline
streaming data. The first Python script to generate streaming health attributes that
are pushed into a Kafka topic. A second Python script to consume health attributes
from a Kafka topic and apply a stacking model to predict CKD in real-time. The
results showed that the stacking model with features selected by GA recorded the best
performance with 100 accuracy. The pipeline’s streaming steps have validated our
approach’s effectiveness in real-time, leveraging Confluent Cloud and Apache Kafka.
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INTRODUCTION
Chronic kidney disease (CKD), characterized by the kidneys’ inability to remove waste and
fluids while maintaining essential blood balances, poses severe health risks due to the
accumulation of debris and fluids in the body (Romagnani et al., 2017; Stenvinkel, 2010).
This condition affects electrical balance, hormone secretion, and blood pressure regulation.
Specialized medical attention is crucial for treating chronic kidney failure, often involving
renal function replacement techniques like artificial dialysis or kidney transplants (Kemph,
1966; Nugent et al., 2011; Luyckx, Tonelli & Stanifer, 2018). The integration of machine
learning (ML), ensemble learning, feature selection methods, and explainable artificial
intelligence (XAI) has played an essential role in improving diagnosis, treatment, and
patient care. ML models are developed using clinical data and laboratory analyses and offer
a powerful tool for identifying patterns and signs of chronic kidney failure, allowing early
diagnosis before apparent symptoms appear (Cao & Pan, 2024; Xue et al., 2023). In
addition, ensemble learning leveraging the collective intelligence of multiple ML
algorithms has emerged as a recent advancement to mitigate biases or errors in individual
models (Rokach, 2010; Zhou & Zhou, 2021; Luo et al., 2024). Stacking is a type of ensemble
learning that is designed to integrate the output of various individual models to train and
evaluate a meta-model that capitalizes on the collective knowledge of individual base
models, offering improved performance and robustness (Wolpert, 1992). Furthermore,
feature selection is a crucial step in model development, aiming to reduce the number of
features and enhance performance. Techniques like genetic algorithms (GA) and particle
swarm optimization (PSO) are employed for this purpose. Additionally, we delve into
stacking models with XAI to identify the most effective approach.

Recently, digital data has become increasingly important in various domains of life,
including healthcare, science, technology, and society. Multiple sources, such as sensors
and mobile applications, have been capturing and generating a large amount of data,
collectively referred to as big data. Streaming data, characterized by a continuous stream of
information, requires real-time processing and transmission (Kitchin, 2014). A streaming
data scenario enables the generation of real-time insights and decisions based on the
processing and analysis of information as it is produced (Szewczyk, 2011). Managing vast
and streaming datasets poses challenges in storage, processing, visualization, and
knowledge extraction. Big data analytics and artificial intelligence are pivotal in addressing
these challenges, playing crucial roles in real-time healthcare applications. They empower
systems to make intelligent predictions and decisions in near real-time, enhancing the
overall efficiency of healthcare processes. Several modern stream processing architectures
are used for real-time data analytics, such as Apache Kafka (Garg, 2013) and Apache Spark
(Salloum et al., 2016). These architectures are implemented based on Cloud environments
such as the Confluent platform (Confluent, 2014) and Microsoft Azure (Copeland et al.,
2015) for Internet of Things (IoT) technologies.

Motivations and contributions
We introduce a novel framework to address critical gaps in previous studies identified by
the role of integrating stacking models, genetic algorithms as feature selection, XAI, and
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streaming data platforms to efficiently analyze and process health streaming data, enabling
the early prediction of CK disease in real-time. Previous studies (Chittora et al., 2021; Qin
et al., 2019; Gunarathne, Perera & Kahandawaarachchi, 2017; Dritsas & Trigka, 2022;
Iftikhar et al., 2023; Song et al., 2020) applied ML models such as LR, SVM RF, KNN, SVM
and XGBoost to predict CKD but they do not integrating AI models with big data
streaming to predict CKD in real-time. Other studies (Chittora et al., 2021; Polat, Danaei
Mehr & Cetin, 2017; Almasoud & Ward, 2019) apply base features selection methods such
as correlation-based, LightGBM to select the most important features from CKD dataset
but do not apply features selection methods based on GA or PSO. Furthermore, existing
studies do not utilize XAI, stacking models, or the integration of stacking models with XAI
in real-time systems. Additionally, studies such as Ed-daoudy & Maalmi (2019), Ed-
daoudy, Maalmi & El Ouaazizi (2023), and Saleh et al. (2021) have developed real-time
medical systems using big data platforms; however, they lack real-world screening
simulations based on Confluent Cloud.

To address this gap, we explore the role of the stacking model and GA feature selection
in improving predictive capabilities in healthcare care, interpret the stacking model’s result
with XAI, and emphasize the importance of stream processing platforms for developing
stream-streaming pipeline solutions based on Confluent Cloud for cloud-based data
processing, Apache Kafka for real-time data streaming. The focus is on introducing
real-time solutions for the early detection and treatment of CKD.

Summary of this article’s contributions:

. Developing a real-time system that integrates stacking models, GA as feature selection
methods, XAI, and big data streaming (Confluent Cloud and Apache Kafka) to predict
CKD in real-time and improve the healthcare monitoring system.

. Investigating the impact of both individual ML models and stacking ML models on
selected features by GA and PSO to predict CKD. Through comprehensive performance
using different evaluation metrics, accuracy precision, recall, and F1-score.

. Incorporating explanation tools alongside predictive capabilities provides transparent
and understandable insights into the stacking model. This enhances interpretability and
aids healthcare professionals in understanding the underlying factors that contribute to
the prediction of CKD.

. Developing streaming real-time pipelines using Python scripts to generate streaming
health attributes and push them to a Kafka topic. Another consumes health attributes
from a Kafka topic and applies the best model (stacking model) for real-time prediction
of CKD by leveraging Confluent Cloud and Apache Kafka.

Article structure
According to the structure of the study: In “Literature Review”, the related works are
presented. “Methodology” describes the two phases of developing our work. “Results”
presents the results of our experiments. “Discussion” provides a discussion of the work.
Finally, in “Conclusion”, the study is concluded.
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LITERATURE REVIEW
This section will present studies and research efforts that have focused on real-time
applications and predicting CKD.

Predicting CKD using ML/DL models
Studies have applied ML models with feature selection to predict CKD (Alshanbari et al.,
2023; Cuba et al., 2024). Chittora et al. (2021) registered the results of seven ML models
applied to full features and selected. Correlation-based andWrapper methods were used as
feature selection methods. The results showed that SVM recorded the highest accuracy.
Qin et al. (2019) proposed a hybrid model that integrated logistic regression (LR) with
Random Forest (RF). The hybrid model recorded the highest accuracy compared to LR,
RF, support vector machine (SVM), K-nearest neighbor (KNN), naive Bayes (NB), and
feed-forward neural networks. De Almeida et al. (2020) applied RF, SVM, and decision tree
(DT) to the dataset extracted from MIMIC-II to predict CKD. The results concluded that
RF and DT got the highest results. Gunarathne, Perera & Kahandawaarachchi (2017)
proposed a multiclass decision forest algorithm compared to multiclass decision jungle,
multiclass logistic regression, and multiclass neural network. The results showed that their
proposed model recorded the highest accuracy. Polat, Danaei Mehr & Cetin (2017) applied
SVM with two feature selection (FS) methods: Wrapper (first search engine) and filter
(correlation). The results showed that SVM with a filtered method recorded the highest
accuracy. Almasoud &Ward (2019) applied four ML classifiers: LR, SVM, RF and gradient
boosting, and A filter FS method was applied to reduce the number of features. The
gradient boosting algorithm achieved the highest accuracy. Xiao et al. (2019) compared
several predictive models using statistical, ML and neural network approaches such as
XGBoost, LR, LASSO regression, SVM, RF, ridge regression, and KNN using 551 patients
with CKD from the Department of Nephrology, Huadong Hospital, Shanghai Fudan
University Affiliated Hospital. Iftikhar et al. (2023) predicted CKD using different ML
models, including LR, RF, DT, KNN, and SVM using the dataset collected from a
case-control study containing CKD patients from district Buner, Khyber Pakhtunkhwa,
Pakistan. The results confirmed that SVM recorded the best performance compared to
other models. Tazin, Sabab & Chowdhury (2016) applied SVM, DT, NB, and KNN to
detect CKD. DT recorded the highest accuracy. Krishnamurthy et al. (2021) applied the
LightGBMmodel to select the essential features. They used a convolutional neural network
(CNN) to predict CKD. CNN achieved the best performance compared to other models.
Segal et al. (2020) used XGBoost for the early diagnosis of renal illness. Extreme gradient
boosting (XGBoost) was compared against RF and CatBoost, which recorded the best
performance.

Table 1 presents the summary of related works.

Real-time systems for medical applications
Several studies and research efforts have focused on real-time applications. In Ed-daoudy
&Maalmi (2019), the authors develop a DT model based on SparkML to predict heart and
diabetes diseases. They integrated spark streaming, Kafka, and DT to develop a real-time
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system that could predict heart and diabetes. In Ed-daoudy, Maalmi & El Ouaazizi (2023),
the authors proposed a real-time system based on Twitter, Kafka, Spark, and ML to predict
heart disease. They applied various feature selection methods to improve the performance
of the model. The results showed that FS with ML recorded the best performance. In
Ahmed et al. (2020), the authors applied SparkML and Spark Streaming to develop a
real-time system. They applied FS methods with DT SVM—RF and LR to get the best
real-time model to predict heart disease. In Saleh et al. (2021), the author applied different
DL models to the historical time series blood pressure dataset to forecast BP. The best DL
model was integrated with The simulated sensor, Kafka, and Spark streaming to forecast
BP in near real-time. In Karim, Sahay & Rebholz-Schuhmann (2015), the authors proposed
a framework for real-time healthcare monitoring for public health surveillance. SparkML
was utilized to develop ML models: SVM, RF, and K-Means clustering libraries. Spark
streaming was used to pre-processing and receive data fromWearable sensors and Internet
of Things (IoT) devices. Tun & Khine (2020) suggested a cardiac diagnosis analysis system
based on Apache Spark that uses a DL pipeline to categorize electrocardiogram (ECG)
images. The proposed system detected cardiac disorders by training ECG segmented
images, eliminating redundant segmented images using principal component analysis
(PCA) and transfer learning, and deep learning pipeline classification.

METHODOLOGY
We propose a significant enhancement in healthcare by integrating machine learning (ML)
models, streaming data, and big data streaming platforms. This study pioneers the
development of a real-time prediction system that seamlessly integrates both offline and
online phases, as illustrated in Fig. 1. The primary objective of the offline model phase is to
determine the optimal models with the most effective features to be utilized in the
subsequent online phase. The online phase is constructed around Python applications
(producer and consumer) seamlessly integrated with Apache Kafka on the Confluent
platform. Each phase is elaborated upon in detail below.

Table 1 Summary of related works.

Articles Models Feature selection (FS) Limitation

Chittora et al. (2021) ML models Correlation-based and Wrapper methods Just apply ML with FS

Qin et al. (2019) Hybrid model No Just apply ML

De Almeida et al. (2020) ML models No Just apply ML

Gunarathne, Perera & Kahandawaarachchi (2017) ML models No Just apply ML

Polat, Danaei Mehr & Cetin (2017) SVM Filter and Wrapper methods Just apply ML with FS

Almasoud & Ward (2019) ML models No Just apply ML

Xiao et al. (2019) ML and DL models No Just apply ML

Iftikhar et al. (2023) ML models No Just apply ML

Tazin, Sabab & Chowdhury (2016) ML models No Just apply ML

Krishnamurthy et al. (2021) CNN LightGBM Just apply ML with FS

Segal et al. (2020) XGBoost, RF and CatBoost No Just apply ML
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Offline model phase
The objective of this section is to introduce a stacking model that incorporates feature
selection methods using genetic and PSO techniques to predict CKD. Illustrated in Fig. 2,
the offline phases encompass various stages, namely data collection, preprocessing, FS
methods, baseline ML, and stacking models. The subsequent sections provide a detailed
overview of each stage.

Data description

This study utilized UCI’s machine learning repository to aggregate the baseline data set on
chronic kidney disease (Rubini, Soundarapandian & Eswaran, 2015). The data set includes
400 cases of CKD, 150 of which are negative and 250 of which are positive. The data set is
composed of 24 features that are classified into 13 categorical features and 11 numeric
features, with a class label that has two values: 1 and 0. The details of the characteristics of
each feature are shown in Table 2.

Data preprocessing
We applied various data preprocessing steps:

. Data encoding: the dataset includes categorical and numeric features. The Scikit-learn
library is used to encode all categorical features into numerical data.

. Missing values can be filled in with several statistical methods, depending on how much
data is missing and how important the missing feature. Mean, maximum, and mode are
good statistical techniques when 5% to 10% of values are missing. Our study has a low
number of missing values, which is handled using mean.

Figure 1 The main phases of real-time system. Full-size DOI: 10.7717/peerj-cs.2899/fig-1
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Splitting datasets
The dataset was split into different cases and we performed experiments in different cases,
including Experimental 1 (80% training set and 20% testing set), Experimental 2 (70%
training set and 30% testing set) and Experimental 3 (60% training set and 40% testing set).

Feature selection methods
Feature selection can be characterized as selecting a smaller selection of appropriate
characteristics (variables, attributes) from a more excellent range of available features
(Sánchez-Maroño, Alonso-Betanzos & Tombilla-Sanromán, 2007; Jović, Brkić& Bogunović,
2015). Deleting redundant features reduces the dimensionality of machine learning models
and increases performance and efficiency. PSO and GA are feature selection methods used.
The advantages of applying GA and PSO are: GA acquired from its characteristics, which
gave it the strength and efficiency necessary to be effective in finding optimal local
solutions (Alam et al., 2020). Also, its flexibility gave it the ability to adapt to the various
problems that it may encounter while selecting different features, especially when dealing
with big data environments. Its characteristics gave it the power to choose the best features
based on the extent of their contribution to the predictive distribution clearly and
distinctly. Therefore, it combines exploration to find good solutions with the ability to
improve existing solutions effectively (Alam et al., 2020). PSO is characterized by ease of
implementation due to the limited number of its tuning parameters compared to similar
algorithms (Houssein et al., 2021). This will lead to its remarkable speed in reaching good
solutions due to its inherited effectiveness from its characteristics in finding a rapid
convergence to the desired solution. Therefore, although there are many algorithms

Figure 2 The offline model steps. Full-size DOI: 10.7717/peerj-cs.2899/fig-2
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available for feature exploration, both PSO and GA have shown speed and efficiency in
reaching rapid convergence of the available and optimal solutions in feature sets (Yadav &
Anubhav, 2020).

• PSO is a bio-inspired search and optimization system that uses a population-based
strategy to find the best solution for a given problem (Xue, Zhang & Browne, 2012). In
PSO, a population of potential solutions, known as particles, traverses the search space in
search of the optimal or near-optimal solution. Each particle represents a potential
solution and progresses through the search space based on its experience and the
experience of the best performing particles in the population (Tran, Xue & Zhang, 2018).
The process begins by populating the search space with randomly distributed particles.
Every particle has a position as well as a velocity. The position represents a potential
solution, while the velocity specifies the direction and speed of the particle’s movement
(Marini & Walczak, 2015). The particles modify their positions and velocities during
each generation or iteration of the algorithm, which is an iteration based on their

Table 2 Database description.

# Column name Abb D.T Range

1 Age Age N (2 to 90)

2 Blood pressure PB N (50 to 180)

3 Specific gravity SG C (1.025, 10.20, 1.015, 1.010, 1.005)

4 Albumin AL C (0, 1, 2, 3, 4, 5)

5 Sugar SU C (0, 1, 2, 3, 4, 5)

6 Red blood cells RBC C (Abnormal, Normal)

7 Pus cell PC C (Abnormal, Normal)

8 Pus cell clumps PCC C (Abnormal, Normal)

9 Bacteria BA C (Present, Not present)

10 Blood glucose random BGR N (22 to 490)

11 Blood urea BU N (1.5 to 391)

12 Serum creatine SC N (0.4, 76)

13 Sodium SOD N (4.5 to 163)

14 Potassium POT N (2.5 to 47)

15 Hemoglobin HEMO N (3.1 to 17.8)

16 Packed cell volume PCV N (9 to 43)

17 White blood cell count WC N (2,200 to 4,800)

18 Red blood cell count RC N (2.1 to 8)

19 Hypertension HTN C (Yes, No)

20 Diabetes mellitus DM C (Yes, No)

21 Coronary artery diseases CAD C (Yes, No)

22 Appetite APPET C (Good, Poor)

23 Pedal edema PE C (Yes, No)

24 Anemia ANE C (Yes, No)

25 Class Class C (CKD, Not CKD)
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individual experiences and the experiences of the top-performing particles in the
population.

• GA is a computational tool for addressing difficult search and optimization tasks and
extracting or choosing relevant features (Mitchell, 1998; Kramer & Kramer, 2017). GA
iteratively builds a population of chromosomes (solutions) and their genes through
selection, crossover, and mutation, with the fittest solutions prevailing. Individuals in the
population are evaluated using an objective function or heuristic, which is utilized to
choose individuals to reproduce on each repeat (Forrest, 1996; Wright, 1991). Those
samples that perform better in the objective function will have a higher chance of
reproduction. The best individual, picked after many generations, is the end result
(Wright, 1991). GA encodes the optimization function as bit arrays that resemble
chromosomes, and Genetic operators customize strings to discover a near-optimal
solution to the problem at hand. This is accomplished by following the methods
illustrated in Fig. 3 (Fong et al., 2014):

1. Coding the objectives or cost functions.

2. Creating a fitness function.

3. A generation is the process of producing a person (solution).

4. Evaluating the fitness function of individuals in the population.

5. Creating a new population by crossover and mutation, fitness-proportionate growth,
and then replacing the previous population and looping with the new population.

6. Decoding the outputs to resolve the inquiry.

Crossover, mutation, and selection are the three fundamental genetic operators in genetic
algorithms (Al-Asasfeh, Hamdan & Abo-Hammour, 2013):

– Crossover: The swapping of chromosomes or other solutions representing sections of
a solution. The primary goal is to give subspace convergence and solution mixing.

– Mutation: The unplanned alteration of the constituent parts of a single solution
enhances population variety and provides a technique to avoid a local optimum.

– Selection of the fittest is passing on options with high fitness to future generations,
usually by selecting the most acceptable solutions.

Baseline machine learning models
Different ML models are applied:

. Support vector machine (SVM) is a supervised learning technique that is most
commonly used for classification tasks. To categorize data points, the algorithm creates a
hyperplane or a series of hyperplanes in a high-dimensional feature space (Wang, 2005).
The objective of SVM is to maximize the margin, which is the distance between the
hyperplane and the nearest data points in each class. It can handle both linearly and
non-linearly separable data by employing various kernels or mapping functions (Meyer
& Wien, 2001).
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. Naive Bayes (NB) algorithm (Webb, Keogh & Miikkulainen, 2010) is a probabilistic
machine learning technique commonly used for classification tasks. NB is founded on
Bayes’ theorem, which describes the likelihood of an event given prior knowledge or
evidence. The assumption of feature independence is made by Naive Bayes, which means
that the presence or absence of one feature is unrelated to the presence or absence of any
other feature (Leung, 2007).

. Decision tree (DT) is a supervised learning algorithm that is adaptable and interpretable.
DT can be utilized for classification and regression tasks to create a tree-like structure by
recursively splitting the data based on distinct attributes and their values (Kotsiantis,
2013). Each internal node corresponds to a feature test, and each leaf node corresponds
to a class label or a predicted value. Decision trees can capture complicated linkages and
interactions between elements (Kingsford & Salzberg, 2008).

. Random Forest (RF) (Rigatti, 2017) is a collaborative learning method that makes
predictions by combining numerous decision trees. It builds an ensemble of decision
trees by training each tree on a random subset of the training data and characteristics.

Figure 3 The steps of GA. Full-size DOI: 10.7717/peerj-cs.2899/fig-3
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During prediction, each tree in the forest predicts the output separately, and the final
forecast is established by majority vote (Cutler, Cutler & Stevens, 2012).

. Logistic regression (LR) is a statistical ML technique used for binary classification tasks
to predict the likelihood of an instance falling into a specific class. The logistic function
(sigmoid function) describes the relationship between the characteristics and the binary
outcome in logistic regression. Predictions based on LR yield discrete values best suited
for binary categorization (Boateng & Abaye, 2019).

The stacking model
The ensemble machine learning technique combines multiple models as base learners to
provide predictions or judgments. It uses the diversity and accumulated knowledge of the
base learners to improve the overall prediction performance (Zounemat-Kermani et al.,
2021). Multiple models are combined in model stacking, and a meta-learner model is used
to improve model predictions. The meta-learner minimizes the weaknesses of each model
while maximizing its strengths. Using the k-fold cross-validation technique, a meta-model
is built from the predictions of several ML base models (weak learners). Finally, the
meta-model was trained using the “final estimator” or “final learner”MLmodel (Cui et al.,
2021). As a result, overall performance can be improved and a model superior to any
intermediate model can be obtained (Sikora, 2015).

The stacking model develops during two levels as shown in Fig. 4.
In level 1, heterogeneous weak learners learn in parallel using a training set. Then, the

output of the training set is combined in stacking training, and the production of the
testing set is combined in a stacking test.

In level 2, a meta-learner is trained using stacking training and evaluating using testing
stacking to predict the final output.

Explainable artificial intelligence

XAI concerns developing machine learning and artificial intelligence (AI) algorithms that
justify their predictions or conclusions (Barredo Arrieta et al., 2020). The gap between the
complicated inner workings of AI models and the desire for openness and interpretability
in their outputs will be bridged with the help of XAI (Ngo, Beard & Chandra, 2022). One
advantage of the XAI approach is understanding why an AI system made a particular
decision, improving trust, accountability, and the ability to detect distortions or faults
(Tjoa & Guan, 2020).

Ensemble models, in their nature, combine multiple algorithms with improving
predictive performance, which makes them complex and opaque, making it challenging for
stakeholders and users to understand how decisions are made (Rane, Choudhary & Rane,
2024). XAI plays a crucial role in addressing this issue by providing frameworks and
techniques that reveal the interpretability of these models in a comprehensible manner by
breaking down the contributions of individual models within the ensemble, highlighting
how each one influences the final prediction (Dwivedi et al., 2023). XAI plays an essential
role in improving the interpretability of ensemble models by analyzing information: XAI
techniques can measure the contribution of each in the ensemble model’s predictions by
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identifying global feature importance and local importance. This helps users understand
which of the most essential features play a vital role in decision-making in the ensemble.
XAI tools can decompose the final output into the contributions of each base model in the
ensemble, demonstrating how individual models (Chamola et al., 2023).

. Global exploitability aims to fully understand the behavior of an AI model in its entire
input space (Ding et al., 2022). It focuses on discovering the model’s biases, habits, or
rules. Global exploitability approaches can be used to understand the structure of the
model, its learned representations, and the relative importance of various aspects (Ding
et al., 2022).

. Local explainability is concerned with providing reasons for specific predictions or
decisions that an AI model makes. Attempts to discover the variables or features that
contribute to a particular outcome. Local explainability techniques can illuminate the
model’s decision-making process by emphasizing the significance or contribution of
various features for a single instance (Ding et al., 2022).

. SHAP (SHapley Additive exPlanations) is an XAI method that attempts to deliver
information about machine learning models’ predictions. It is based on the cooperative
game theory notion of Shapley values. SHAP’s fundamental principle is to assign a
relevance score to each feature in a forecast. These scores represent how much each
feature adds to the prediction compared to a reference baseline (Marcílio & Eler, 2020).
Understanding the feature contributions provides insights into the model’s
decision-making process and allows for improved interpretation of its predictions
(Marcílio & Eler, 2020).

Evaluation models

Classification performance is typically measured using precision, recall, F1-score, and
accuracy, Matthews correlation coefficient (MCC) and Cohen Kappa. True positive (TP),
false positive (FP), true negative (TN), and false negative (FN) are calculated as true
positives, false positives, and false negatives, respectively. While TN showed a negative

Figure 4 Flowchart describing of the stacking model. Full-size DOI: 10.7717/peerj-cs.2899/fig-4
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result, it actually returned a positive result, while TP showed a negative result, but it
actually returned a positive result. TP indicates that the result is actually positive, whereas
TN indicates that the result is actually negative.

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

: (1)

Precision ¼ TP
TP þ FP

(2)

Recall ¼ TP
TP þ FN

(3)

F1-score ¼ 2 � precision � recall
precisionþ recall

(4)

MCC ¼ TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp (5)

CohenKappa ¼ ðTP þ TNÞ � E
N � E

(6)

where: N = TP + TN + FP + FN and E ¼ ðTP þ FPÞðTP þ FNÞ þ ðFN þ TNÞðFP þ TNÞ
N

The receiver operating characteristic (ROC) is a graphical curve that evaluates the
performance of binary classification at various thresholds. It shows the trade off between
TPR and specificity.

Online prediction pipelines
The real-time data pipeline is an intelligent and dynamic system that integrates intelligence
methods and advanced technologies to store streaming data and extract information from
high-volume data. It enables healthcare sectors to execute analytics and extract useful
patterns from the streaming data generated continuously from different sources.

Ensuring the reproducibility and reliability of predictions through a real-time validation
framework. Figure 1 presents the main steps of developing real-time analytics in stream
processing frameworks designed to manage the continuous flow of data and make
decisions. Firstly, data is generated from streaming resources and then ingested by Apache
Kafka, efficiently capturing real-time data streams from various sources by providing fault
tolerance and high throughput. Once the data is ingested into Kafka, it can be received and
preprocessed immediately in real-time using big data streaming platforms. The models are
loaded models for integrating ML models with big data streaming platforms, and the
preprocessed data on ML models are applied to predict health status in real-time.
Afterward, the model’s results can be visualized on the dashboard or integrated into other
reporting tools. This study introduces a real-time system for the early detection CKD,
leveraging a real-world simulation environment built using Apache Kafka, Confluent
Cloud, and Python scripts.
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Big data platforms
Online prediction pipelines were developed using Apache Kafka and the confluent
platform.

• Kafka was used to build streaming apps and pipelines for real-time data. The Kafka
system can receive large amounts of data in real-time and with low latency in addition to
being real-time, fault-tolerant, and scalable. It (Garg, 2013) Streaming data can be read
from sensors and ports. Kafka allows you to read and write streams of data. The
development of real-time stream processing applications is possible. The data streams
are stored in a distributed, replicated, and fault-tolerant cluster. There are two main
libraries for APIs: Producer APIs and Consumer APIs. Kafka topics can be created using
the Producer API. Kafka topics are subscribed to, and stream records are processed using
the Consumer API.

• The Apache Kafka stream processing engine is an open-source, distributed system that
offers the ability to filter, aggregate, and join data streams based on predefined patterns
as an IaaS (Infrastructure-as-a-Service) service to generate predictive inferences (Garg,
2013). It supports publishing and subscribing to data streams, storing them fault-
tolerantly, and processing them in real-time. Streaming engines process sensor data
streams in real-time to predict event patterns based on sensor observations/readings and
correlate the data with predefined/preset thresholds. As data streams from
heterogeneous producers are processed via APIs in a fault-tolerant manner in a
producer-publish, consumer-subscribe model, the platform is like an enterprise
messaging system (Garg, 2013). The data streaming pipeline is processed and analyzed
between Apache Kafka Connect APIs and heterogeneous systems or applications (Cao
et al., 2015). KSQL is a streaming SQL engine to executes queries in real-time without
pushing the data stream to the database. A data stream is a continuous flow of data
records analyzed through the stream processing engine to generate an output stream
(Garg, 2013). Sensors and IoT are utilized in smart cities, healthcare, and energy
management to generate streaming data that is used to develop real-streaming predictive
systems (Cao et al., 2015). A cluster of Apache Kafka servers can be installed locally or on
the cloud, and each producer connects to the cluster through the Kafka Connector APIs.
Topics are categories in which data records are stored. The records consist of a key, a
value, and a timestamp. Input streams are converted into output streams using Kafka
stream processing, which consumes input streams from available topics and produces
output streams.

Kafka includes sets of features

– Topic: The Kafka cluster categorizes messages into topics based on their similar
attributes. In an ordered list, topics are divided into partitions determined by an
incremental identifier called an offset, which identifies messages/data in each
partition. The Consumer reads the messages based on the chronological order or
sequence of arrival generated by the Producer, where the messages are written to the
appropriate topics (Garg, 2015).
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– Producers: Apache Kafka producers are the sources of data and messages that write
to topics, which are then written to partitions and stored on brokers. Sensors, devices,
and manual or automatic systems produce events, which are a type of event producer
(Garg, 2015).

– Consumer: A consumer subscribes to a topic to ingest or consume the messages/data
generated by the producer (Narkhede, Shapira & Palino, 2017). Consumers are
configured to read streaming data by automatically connecting to a suitable broker
with read access. Consumers automatically fetch data from the next available broker
when there is a failure of one of the brokers in the cluster. According to the offsets,
data/messages are consumed in order. Streaming data offsets provide consumers with
information about where to start reading a topic’s streaming data. Data/messages are
read from multiple partitions of the same topic in parallel when there is more than
one partition (Narkhede, Shapira & Palino, 2017).

• The confluent platform is used to develop fully streaming pipelines based on Apache
Kafka (Confluent, 2014). It provides real-time streaming of data on a scalable platform,
making the information flow seamless. Apache Kafka is integrated with it, allowing
efficient data processing, storage, and streaming. In addition, it provides scalable
solutions to accommodate growing volumes of data, making it possible for the platform
to handle more workloads and a greater number of demands over time (Confluent,
2014). A fault-tolerant mechanism is integrated into the Confluent platform, improving
workflow reliability and resilience. The streaming platform provides connectors and
APIs for integrating data sources and systems. Platform administrators can effectively
monitor and manage the streaming infrastructure with management and monitoring
tools (Confluent, 2014).

Online prediction pipelines steps
Numerous data sources in the healthcare industry continuously produce real-time data
from linked equipment, including medical devices: Wearable sensors, such as glucose and
heart rate sensors, and smart homes, which are IoT smart appliances, security cameras,
and thermostats. Kafka is used to consume and produce these data. Different types of
pre-processing steps will be applied, such as filling in missing values, converting data
formats to maintain uniformity and normalize numerical values. In our work, online
prediction pipelines consist of the following steps:

The Confluent Cloud and Apache Kafka service are integrated with a Python
application to develop online prediction pipelines. Python applications can produce and
consume messages using a Confluent Cloud and Apache Kafka cluster. The process
involves creating an account on Confluent Cloud, setting up a Kafka cluster, and creating
Kafka topics. API keys are then generated for authentication purposes. These keys enable
Python applications to securely connect to the Confluent Cloud and Apache Kafka
clusters.
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. Set up Confluent Platform: We create an account on the Confluent Platform, then create
a cluster and topics, and generate keys. These keys are used to connect to topics, allowing
a Python script to produce and consume messages using the keys.

. A Python script is being developed to generate streaming health attributes. A vast range
of health attribute data is generated and pushed into a Kafka topic in using the Producer
API (confluent_kafka.Producer). The script buffers incoming data streams from the
producers and transfers the data to the topic. This results in improved fault tolerance due
to load balancing in the event of component failures.

. A Python script has been developed to consume health attributes from a Kafka topic
using the Consumer API (confluent_kafka.Consumer). The consumed health attributes
are then applied different pre-processing steps Impute missing values mean, median,
mode and then converted to the same format as the input to the model. Subsequently,
the model is loaded and applied to the health attributes for real-time prediction. Finally,
the prediction result is saved to a topic.

RESULTS
Experimental setup
Python was used to conduct the offline model phase. The analysis relied on the following
libraries and coding packages: (1) Scikit-Learn (Pedregosa et al., 2011), (2) Matplotlib
(Hunter, 2007), and (3) the sklearn-genetic library is used to implement genetic feature
selection methods (Calzolari, 2019). (4) The PySwarms library implements swarm feature
selection methods. A summary of the PSO and GA parameters for selecting the best
features can be found in Table 3. Table 4 shows the parameter settings for each ML model.
Encoding type is binary vector representation (1 = feature selected, 0 = feature not
selected). The fitness function uses accuracy as the evaluation criterion for selected feature
subsets. The decision variables of PSO problem are constrained within the interval [0, 1],
where each variable represents the probability of selecting a feature, and only features with
values greater than 0.1.

The Confluent Cloud Kafka service is integrated with a Python application to develop
online prediction pipelines. Confluent Cloud is used to create accounts, Kafka clusters, and
topics to generate key and PI keys for authentication. Python applications will use these
keys to connect securely to the Kafka cluster and topic.

Results of offline phase
This section presents the results of models employing GA and PSO in various experiments
based on different dataset splits, including Experimental 1 (80% training set and 20%
testing set), Experimental 2 (70% training set and 30% testing set), and Experimental 3
(60% training set and 40% testing set).

Experimental 1
Table 5 shows a comprehensive evaluation of ML models (RF, LR, DT, SVM, and NB) and
stacking models based on two different types of FS methods, namely PSO and GA, on the
task of predicting CKD with a set of tests 20% using evaluation metrics: accuracy,
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precision, recall and F1-score and AUC and two statistical analysis Kappa andMCC. Based
on the GA, the stacking model achieves 100 as the best results compared to other models
and scores 100 on both Kappa and MCC because it enhances results by integrating the
output of base models with meta-learner to strengthen performance and generalization.
NB records the worst performance with 92.50 accuracy, 92.60 F1-score, and 84.615 Cohen
Kappa for GA, 93.75 accuracy, 93.83 F1-score and 87.09 Cohen Kap for PSO. The
second-best performance is conducted by RF and SVM for GA with accuracy, precision,
recall, and F1-score at 98.75, 98.79, 98.75, and 98.75, respectively, because RF combines
multiple decision trees to reduce overfitting and enhance performance. Based on GA, RF,
SVM, scores very high scores (97.3–97.4) on both Cohen and Kappa MCC.

Table 3 Parameters setting of FS methods for GA and PSO.

FS methods Parameters Values

GA Crossover rate 0.5

Mutation rate 0.2

Population size 100

Iteration number 100

Population 100

PSO Population size 20

Max number of generation 30

Early stopping True

Local best weight 1

Global best weight 1

Use local random seed True

Table 4 Parameter settings for each of ML models.

Models Parameters Values

RF n_estimators 100

max_depth 3

min_samples_split 2

min_samples_leaf 1

bootstrap True

LR penalty l2

C 1.0

max_iter 100

NB var_smoothing 1e−9

SVM C 1.0

kernel rbf

DT max_depth 4

min_samples_split 2

min_samples_leaf 1

criterion Gini
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Figure 5 shows the ROC curves for these algorithms based on the area under the curve
(AUC) metric. As the AUC value increases, the model’s generalization ability increases, as
indicated on the ROC curve by the curve close to the upper-left corner. NB performed the
worst, with an AUC value of 94 for GA and 95 for PSO. The stacking model had the
highest AUC value of 100 for GA.

Experimental 2
Table 6 compares the effect of using two different FS methods, GA and PSO, based on
various models: stacking, RF, LR, DT, SVM, and NB. with a 30% testing set. The

Table 5 The results of the models using two feature selection methods: GA and PSO are based on a 20% testing set.

Feature selection methods Models Accuracy Precision Recall F1-score Cohen Kappa MCC

GA RF 98.75 98.79 98.75 98.75 97.35 97.38

LR 97.50 97.66 97.50 97.51 94.73 94.86

DT 97.50 97.66 97.50 97.51 94.73 94.86

SVM 98.75 98.79 98.75 98.75 97.35 97.38

NB 92.50 92.75 92.50 92.60 84.61 85.63

Stacking 100.00 100.00 100.00 100.00 100 100

POS RF 97.50 97.66 97.50 97.51 94.73 94.86

LR 97.50 97.66 97.50 97.51 94.73 94.86

DT 96.25 96.31 96.25 96.26 92.05 92.08

SVM 97.50 97.66 97.50 97.51 94.73 94.86

NB 93.75 94.64 93.75 93.83 87.09 87.83

Stacking 98.75 98.79 98.75 98.75 97.35 97.38

Figure 5 ROC curves comparing the performance of different models using two feature selection techniques: (A) GA and (B) PSO. The models
include RF, LR, DT, SVM, NB and stacking ensemble based 20% of testing set. AUC values are shown for each model, indicating that the Stacking
model got the highest AUC in both scenarios, with the best AUC = 100.000 using GA. Full-size DOI: 10.7717/peerj-cs.2899/fig-5

AlMohimeed (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2899 18/37

http://dx.doi.org/10.7717/peerj-cs.2899/fig-5
http://dx.doi.org/10.7717/peerj-cs.2899
https://peerj.com/computer-science/


comparison relies on measuring each model’s achieved accuracy, precision, recall, and F1-
Score, and two statistical analysis Kappa and MCC.

For GA, the stacking model achieves the best performance compared to other models,
with accuracy at 99.17%, precision at 99.18, recall at 99.17, and F1-score at 99.17, Cohen
Kappa at 98.23, and MCC at 98.24. DT and LR record approximately the same percentage
of each score at 95%. DT records lowest at 95.83, 95.09, 95.83, and 95.78 of accuracy,
precision, recall, and F1-score, respectively. For PSO, the stacking model records the best
performance compared to ML models with 97.80 accuracy. DT, LR and NB record
approximately the same percentage at 94%. NB with PSO records the worst performance
compared to other models at 93.44, 93.01, 93.44, and 93.01, 84.34, and 84.66 in accuracy,
precision, recall, F1-score, Cohen Kappa and MCC respectively.

Figure 6A displays the ROC curve, and AUC values of each model with GA and PSO. It
can be observed that stacking achieves the highest AUC at 99.33 for GA, indicating the best
discriminatory ability in distinguishing between the positive and negative classes. While
NB had the lowest AUC at 91 for PSO.

Experimental 3

Table 7 shows a comprehensive evaluation of ML models (RF, LR, DT, SVM, and NB),
stacking models based on two different types of FS methods, namely PSO and GA, on the
task of predicting CKD with a set of tests 40% using evaluation metrics and two statistical
analysis: Cohen Kappa and MCC. Based on the GA, the stacking model achieved 98.75,
98.77, 98.75, 98.75, 97.333 and 97.333 as the best results of accuracy, precision, recall, F1-
score, Cohen Kappa, and MCC compared to other models because it enhances results by
integrating the base models with meta-learner to strengthen performance and
generalization. The second-best performance is conducted by RF for GA with accuracy,
precision, recall, F1-score, Cohen Kappa, and MCC at 96.88, 96.89, 96.88, 96.88, 93.355,
and 93.364, respectively, because RF combines multiple decision trees to reduce overfitting
and enhance performance. DT records the worst performance with 91.88 accuracy 91.95

Table 6 The results of the models using two feature selection methods: GA and PSO are based on a 30% testing set.

Feature selection methods Models Accuracy Precision Recall F1-score Cohen Kappa MCC

GA RF 97.67 97.94 97.67 97.69 94.73 94.86

LR 95.95 95.95 95.95 95.95 91.22 91.35

DT 95.45 95.55 95.45 95.55 91.15 91.16

SVM 97.02 97.02 97.02 96.02 93.01 93.24

NB 95.83 95.09 95.83 95.78 91.30 91.65

Stacking 99.17 99.18 99.17 99.17 98.23 98.24

POS RF 97.11 97.15 97.11 97.15 92.82 92.88

LR 94.43 94.25 94.43 94.47 89.42 89.48

DT 94.17 94.36 94.17 94.20 87.71 87.84

SVM 96.67 96.75 96.67 96.68 93.01 93.24

NB 93.44 93.01 93.44 93.01 84.34 84.66

Stacking 97.80 97.70 97.80 97.70 94.64 94.65
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F1-score, and 81.818 Cohen Kappa for GA. Based on PSO, the stacking model records the
best performance with 96.25 accuracy, 96.26 F1-score, and 92.053 MCC. DT records the
worst with 90.50 of accuracy, 90.70 of F1-score, and 80.07 of MCC.

Figure 7 displays the ROC curve and AUC values of each model with GA and PSO. It
can be observed that stacking achieves the highest AUC at 98.667 for GA, indicating the
best discriminatory ability in distinguishing between the positive and negative classes. DT
had the lowest AUC at 90 for PSO.

Figure 6 ROC curves compare the performance of different models using two feature selection techniques: (A) GA and (B) PSO. The models
include RF, LR, DT, SVM, NB, and stacking model based on 30% of the testing set. AUC values are shown for each model, indicating that the
Stacking model got the highest AUC in both scenarios, with the best AUC = 99.33 using GA. Full-size DOI: 10.7717/peerj-cs.2899/fig-6

Table 7 The results of the models using two feature selection methods: GA and PSO are based on a 40% testing set.

Feature selection methods Models Accuracy Precision Recall F1-score Cohen Kappa MCC

GA RF 96.88 96.89 96.88 96.88 93.35 93.36

LR 95.62 95.74 95.62 95.65 90.75 90.83

DT 91.88 92.39 91.88 91.95 81.81 82.26

SVM 96.25 96.42 96.25 96.27 92.05 92.08

NB 94.38 95.11 94.38 94.44 87.09 87.83

Stacking 98.75 98.77 98.75 98.75 97.33 97.33

POS RF 95.62 95.65 95.62 95.63 89.54 89.81

LR 94.38 94.40 94.38 94.38 87.96 87.96

DT 90.50 90.62 90.50 90.70 80.06 80.07

SVM 93.75 93.95 93.75 93.79 87.96 87.96

NB 91.88 92.39 91.88 91.95 84.10 84.13

Stacking 96.25 96.31 96.25 96.26 92.053 92.085
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The steps of integrating model with big data platforms
This section provides the main steps of integrating the stacking model with big data
streaming platforms (Confluent Cloud and Apache Kafka) to develop a real-time
application system. The results from the offline phase showed that the stacking model with
GA achieved the highest performance that is used to predict CKD in real-time. A fully
streaming processing pipeline has been developed based on different APIs that support
Confluent Cloud using Apache Kafka. The steps are outlined as follows:

(1) Creating an account on Confluent Cloud to create a cluster called ‘Cluster_0’ as shown
in Fig. 8.

(2) Creating a topic called ‘topic_0’ as shown in Fig. 9 to generate keys used to connect
cluster and topic.

(3) Python script is developed to generate streaming health attributes (specific gravity,
albumin, serum creatine, hemoglobin, hypertension, coronary artery diseases, appetite,
and anemia) that push into a Kafka topic as JSON format using the Producer API
(confluent_kafka.Producer). The script buffers incoming data streams from the
producers and transfers the data to the topic, as illustrated in Algorithm 1. An example
of health attributes is pushed into ‘topic_0,’ as depicted in Fig. 10. Figure 11 shows the
number of messages pushed to topic_0 and read from topic_0.

(4) A Python script is developed to consume health attributes from a Kafka topic using the
Consumer API (confluent_kafka.Consumer). The consumed health attributes are then
converted to the same format as the input to the model. Subsequently, the stack model
is loaded and applied to the health attributes for real-time prediction, and the result of

Figure 7 ROC curves compare the performance of different models using two feature selection techniques: (A) GA and (B) PSO. The models
include RF, LR, DT, SVM, NB, and stacking model based on 40% of the testing set. AUC values of models are presented, indicating that the stacking
model got the highest AUC in both scenarios, with the best AUC = 98.667 using GA. Full-size DOI: 10.7717/peerj-cs.2899/fig-7
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the predicted value is pushed in topic_1 as illustrated in Algorithm 2. Figure 12 shows
examples of the predicted values pushed to topic_1.

DISCUSSION
Different experimenters using different dataset splits are conducted, including
Experimental 1 (80% training set and 20% testing set), Experimental 2 (70% training set
and 30% testing set), and Experimental 3 (60% training set and 40% testing set). In
conclusion, according to all our experiments, we noticed an increasing performance in
terms of accuracy metrics when relying stacking. According to the results, the accuracy of
the best models has increased from 98.75 in the regular ML to 100 in the stacking models.
These results proved that the stacking model models outperformed all other ML models.
Figure 13 compares models with GA and PSO using 20%, 30%, and 40% of testing set that
shows stacking model model with GA records the best performance at 100, 99.17, and
98.75, respectively. “Model interpretation using XAI” presents the model interpretation
using XAI for stacking the model with GA.

Figure 8 The page after the creation of the cluster. Full-size DOI: 10.7717/peerj-cs.2899/fig-8
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Figure 9 The ‘topic name’ page. Full-size DOI: 10.7717/peerj-cs.2899/fig-9

Algorithm 1 Pseudocode of consumer.

Step 1: Loading model

Step 2: Define a set of configurations, including the server name and keys,

for accessing Kafka Producer and Kafka Consumer instances.

Step 3: Define consumer to read a message from the topic

consumer = Consumer (config)

consumer.subscribe ([‘topic_0’])

Step 4: Define Kafka Producer to push prediction results in topic_1

def predict_disease (data):

model = joblib.load (‘model.joblib’)

try:

while True:

Reading a message from topic_0.

Extracting health attributes.

Converting health attributes into the same format for the model.

Applying health attributes to the model to predict a value.

Pushing the predicted value to topic_1.

except KeyboardInterrupt:

pass

finally:

consumer.close()
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Figure 11 Example of the number of messages being pushed to topic_0 and read from topic_0. Full-size DOI: 10.7717/peerj-cs.2899/fig-11

Figure 10 The example of health attributes is pushed in topic_0. Full-size DOI: 10.7717/peerj-cs.2899/fig-10
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Statistical testing to validate model superiority
We compared statistical different between models based on McNemar’s Test
(Lachenbruch, 2014) and Wilcoxon signed rank test (Demšar, 2006). McNemar’s test is a
statistical test used to compare the performance of two classification models on the same
dataset based on compare prediction values between two models. Based on McNemar’s
test, As expected, stacking ensemble achieved a statistically significant difference compared
with most of the models with p-value < 0.05 such as LR (0.031250), DT (0.004181), and NB
(0.038574). However, as expected, the stacking achieved comparable performance with RF
as it is an ensemble model of decision trees. Surprisingly, the stacking model did not
achieve better results than SVM. There are many justifications for this, and one of them is

Algorithm 2 Pseudo code of producer.

Step 1: Define a set of configurations, including the server

name and keys, for accessing Kafka Producer

Step 2: Define Kafka Topic

producer = Producer (config)

topic = ‘topic_0’

Step 3: Define a function to generate health attributes

def health_attributes():

return {

‘Specific gravity’: random.randint (1, 100),

‘Albumin’: random.choice ([0.0, 1.0]),

‘Serum creatine’: random.randint (1, 15),

‘Hemoglobin’: random.choice ([0.0, 1.0]),

‘Hypertension’: random.choice ([0.0, 1.0]),

‘Coronary artery diseases’: random.choice ([0.0, 1.0]),

‘Appetite’: random.choice ([0.0, 1.0]),

‘Anemia’: random.choice ([0.0, 1.0]),

}

try:

while True:

Generate health_attributes

Produce a message on the topic

Flush the producer to ensure the message is sent

Wait for a random interval before sending the next message

except KeyboardInterrupt:

pass

finally:

Close the producer
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because SVM is a strong classifier that learns the largest margin between the classes.
However, the stacking model achieved statistically better results than most other models.

To establish the superiority of the proposed model, we employed the Wilcoxon signed
rank test (Demšar, 2006), which is a widely used nonparametric statistical test for
comparing the performance of algorithms. That test is utilized to specify the number of ties
and wins between the tested models. If a model achieves a greater number of wins than ties,
it is considered superior to the others.

In order to order and rank all classifiers and identify the best-performing one, we
utilized the Nemenyi test (Brown &Mues, 2012). The average rank was calculated for each

Figure 12 The example of the number of predicted values pushed to topic_1. Full-size DOI: 10.7717/peerj-cs.2899/fig-12
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classifier based on its accuracy. When multiple classifiers are compared using the same
dataset, the Nemenyi test results can be visualized based on critical distance. Figure 14 is a
critical difference (CD) diagram that presents the average rank and critical difference
between the traditional ML models and the stacking model from 1 to 6, ranking 1 as the
best model and 6 as the worst model. This finding supports the notion that the stacking
outperforms the existing approaches regarding accuracy and effectiveness.

Model interpretation using XAI
Model explanations are crucial in understanding models, especially in healthcare; medical
experts may have reservations about relying entirely on them. It would be helpful for
healthcare professionals if they were able to identify the features that affect patient risk so
that they could provide in-time and accurate decisions. Predictions provided insight into

Figure 13 The comparison of RF and stacking model with PSO and GA using 20%, 30% and 40% of
testing set. Full-size DOI: 10.7717/peerj-cs.2899/fig-13

Figure 14 Statistical tests of models using a 20% testing set.
Full-size DOI: 10.7717/peerj-cs.2899/fig-14
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feature-level features. To establish trustworthiness, several vital aspects must be
understood, including the reasoning behind decisions and the influence of features. It is
necessary to thoroughly evaluate the medical adequacy of these features. In the following
section, we tried to explain the developed decision comprehensively by shedding light on
our chosen ensemble classifier, which exhibits the highest accuracy. To provide model
interpretation, we employ the SHAP (Shapley Additive explanations) is an explainable XAI
method that attempts to deliver information about machine learning models’ predictions.
It is based on the cooperative game theory notion of Shapley values. SHAP’s fundamental
principle is to assign a relevance score to each feature in a forecast. These scores represent
how much each feature adds to the prediction compared to a reference baseline (Marcílio
& Eler, 2020). Understanding the feature contributions provides insights into the model’s
decision-making process and allows for improved interpretation of its predictions
(Marcílio & Eler, 2020).

. Global exploitability: Figure 15 shows the summary plot of the combination feature
important with feature effects. The features are presented on the y-axis, and the Shapley
value of each instance is presented on the x-axis. A feature’s value is represented by the
color from low to high. Shapley values per feature are distributed along the y-axis by
overlapping points. Features are ranked based on their importance, from high to low.
Hemoglobin feature has the highest Shapley value, the most important feature. The
second important feature is sg. Cad and ane features have the lowest Shapley values. In
the summary plot, the impact of a feature on prediction is shown with its value.

Local exploitability
The waterfall plots in SHAP provide descriptive information about individual predictions.
In SHAP waterfall plots, red bars indicate positive contributions, while blue bars indicate
negative contributions. On the right, you can see the importance of the feature, and on the
left, you can see the value of the feature. Figure 16 illustrates the prediction of the model as
fðxÞ, and the positive bias or intercept is displayed below the plot as E½fðxÞ�. Then, for each
prediction, a red or blue line shows how the positive (red) or negative (blue) contribution
of the feature affects the model output.

In Fig. 16A, the length of the corresponding bar represents the importance of each
feature in the observation. Hemoglobin has the highest contribution with a SHAP value of
+2.49. Specific gravity has the second-highest contribution with a SHAP value of +2.22.
Serum creatine has the third-highest contribution with a SHAP value of +1.69.

In Fig. 16B, the red bars show the features that affect positively predicted values.
Hemoglobin has the highest positive contribution with a SHAP value of +1.92.
Hemoglobin has the second-highest positive contribution with a SHAP value of +1.38. The
blue bars show the features that affect negatively predicted values. Albumin has the highest
negative contribution with a SHAP value of −2.23. Hypertension has the second-highest
positive contribution, with a SHAP value of −1.09.
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Real-world applications of integrated ML models in healthcare

– Early warning systems: The models can be used in hospitals to predict critical events
such as sepsis, cardiac arrest, or rapid disease progression, allowing for effective medical
intervention.

– Integration with electronic health records (EHRs): Models can be integrated with EHR
system to predict data in real-time for providing clinical decisions.

– Mobile health applications: The model can be employed in mobile apps to allow patients
tracking their health problem, and manage chronic diseases more effectively.

Figure 15 Summary plot of the combination feature important with feature effects.
Full-size DOI: 10.7717/peerj-cs.2899/fig-15

Figure 16 SHAP local explanation according to each instance indicating to class 0 and class 1. Full-size DOI: 10.7717/peerj-cs.2899/fig-16
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– Continuous learning systems: The models can be configured to continuously learn from
current patient information, improving their accuracy through period of time and
adapting to changes in medical treatments or overall wellness trends.

– Home-based health monitoring: The models can be included into internet of things
(IoT) or smart home systems for tracking older or chronically ill patients, reducing
hospital stays and enabling early diagnosis of health decline.

Comparison with literature studies
This section compares our work with existing studies, as summarized in Table 8. The
comparison is based on feature selection methods, models, accuracy, precision, recall, F1-
score, and using streaming processing platforms. Table 8 shows that the existing studies
did not address streaming processing platforms based on Confluent Cloud using Apache
Kafka to predict CKD in real-time (Chittora et al., 2021; Qin et al., 2019; Gunarathne,
Perera & Kahandawaarachchi, 2017; Polat, Danaei Mehr & Cetin, 2017; Almasoud &
Ward, 2019). In contrast, our work introduces a stacking model with a GA and develops a
real-time system using Confluent Cloud with Apache Kafka. In Chittora et al. (2021), the
authors utilized an SVM with wrapper feature selection methods, achieving an accuracy =
98.86, precision = 98.59, recall = 97.22, and F1-score = 97.90. Similarly, in Qin et al. (2019),
a hybrid model was employed, resulting in an impressive accuracy = 99.83, precision =
99.84, recall = 99.80, and F1-score = 99.86. In Gunarathne, Perera & Kahandawaarachchi
(2017), SVM was combined with filter FS methods and recorded accuracy = 98.5, precision
= 98.6, recall = 98.5, and F1-score = 98.88. The work in Polat, Danaei Mehr & Cetin (2017)
also utilized XGboost with filter FS methods, achieving accuracy = 99.10, precision = 99.5,
recall = 99.33, and F1-score = 99.10. Additionally, Dritsas & Trigka (2022), Krishnamurthy
et al. (2021) applied RF without feature selection methods. As noticed in Table 8, no study
in the literature used Confluent Cloud using Apache Kafka, and this is a great limitation of
the literature study to provide real-time prediction systems. Our work recorded the highest
performance based on accuracy, precision, recall, and F1-score. Also, it used GA as a
feature selection method and developed a real-time system that integrates the proposed
model with Confluent Cloud with Apache Kafka.

Table 8 Comparison with existing work and the proposed models based on models, performance, and streaming platforms.

Articles Models FS Accuracy precision Recall F1-score Streaming platforms

Chittora et al. (2021) SVM Wrapper 98.86 98.59 97.22 97.90 No

Qin et al. (2019) Hybrid model – 99.83 99.84 99.80 99.86 No

Polat, Danaei Mehr & Cetin (2017) SVM Filter 98.5 98.6 98.5 98.88 No

Almasoud & Ward (2019) XGBoost Filter 99.10 99.5 99.33 99.10 No

Dritsas & Trigka (2022) RF – 99.2 99.20 99.20 99.20 No

Krishnamurthy et al. (2021) RF – 99.75 99.75 99.75 99.75 No

Our work Stacking model GA 100 100 100 100 Confluent Cloud using Apache Kafka

AlMohimeed (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2899 30/37

http://dx.doi.org/10.7717/peerj-cs.2899
https://peerj.com/computer-science/


CONCLUSION
This article delves into the role of ML in augmenting predictive capabilities within the
healthcare domain, underscoring the pivotal role of stream processing platforms in
crafting real-time streaming pipeline solutions. Our proposed system is structured into two
phases: an offline model and an online prediction pipeline.

In the offline model phase, a stacking model is developed. GA and PSO were employed
for feature selection, exploring a stacking model with the best features aided by XAI. The
process involves several steps: preprocessing CKD benchmark data, utilizing GA and PSO
for optimal feature selection, applying the stacking mode ML to selected features, and
finally, employing XAI techniques to elucidate the stacking model with the best features.
Standard evaluation metrics were used to assess model performance, including precision,
recall, F1-score, and accuracy. Experimental results indicated that a stacking model with
GA achieved the highest accuracy at 100.

Subsequently, the model was transformed for real-time execution. In the second phase,
the model was applied to ingested data streams through a Python script, seamlessly
integrating predictive analytics into real-time healthcare scenarios. Confluent Cloud was
utilized, leveraging its capabilities to build real-time streaming systems using Apache
Kafka and several APIs, including Producer API and Consumer API. A cluster and Kafka
topics are generated for seamless connections between producers and consumers to Kafka
topics. Streaming data pipelines were streamlined using Python scripts. Python producer
script was created to generate streaming health attributes and push them into the Kafka
topic. Python consumer script was created to consume health attributes from a Kafka topic
and apply them to the model to predict CKD in real-time. Therefore, our framework
contributes to advancing healthcare monitoring and improving decision-making processes
in the healthcare field.

While the proposed framework shows the capability of combination stacking models,
GA as feature selection, XAI, and big data streaming to enhance predictive capabilities in
healthcare in real-time, several limitations need to be acknowledged. First, feature selection
of GA may make high computational costs if it applies to large and complex datasets.
Additionally, the initial setup and configuration of the streaming pipeline require a
significant level of technical expertise, which could pose a barrier for institutions lacking
sufficient IT support. Future work could investigate federated learning to allow models to
be trained on distributed datasets stored in different hospitals or institutions without
centralizing sensitive data, thus ensuring privacy while improving model robustness. In
addition, the proposed framework can integrate with others big data platforms such as
Apache Flink or Spark to support large streaming data. We can propose a real-time
framework to support multi-modality data such as genetic information and imaging data
to improve the diverse datasets.
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