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ABSTRACT

This article presents an overview of recent research on the inverse design of optical
devices using deep generative models. The increasing complexity of modern optical
devices necessitates advanced design methodologies that can efficiently navigate vast
parameter spaces and generate novel, high-performance structures. Established
optimization methods, such as adjoint and topology optimization, have successfully
addressed many design challenges. However, the increasing complexity of modern
optical devices creates opportunities for complementary approaches. Deep generative
models offer additional capabilities by leveraging their ability to learn complex
patterns and generate novel designs. This review examines various deep learning
methodologies, including multi-layer perceptrons (MLP), convolutional neural
networks (CNN), auto-encoders (AE), Generative Adversarial Networks (GAN), and
reinforcement learning (RL) approaches. We analyze their applications in the inverse
design of photonic devices, comparing their effectiveness and integration in the
design process. Our findings indicate that while MLP-based methods were
commonly used in early research, recent studies have increasingly employed CNN,
GAN, AE, and RL methods, as well as advanced MLP models. Each of these methods
offers unique advantages and presents specific challenges in the context of optical
device inverse design. This review critically evaluates these deep learning-based
inverse design technologies, highlighting their strengths and limitations in the
context of optical device design. By synthesizing current research and identifying key
trends, this article aims to guide future developments in the application of deep
generative models for optical device inverse design.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning, Neural Networks

Keywords Inverse design, Deep learning, Nanophotonic devices, Optical design, Artificial
intelligence, Machine learning, Generative models

INTRODUCTION

Optical devices are sophisticated instruments that utilize the properties of light for various
functions, including control and information processing (Saleh ¢ Teich, 2019; Okamoto,
2021; Goutzoulis, 2021; Moore ¢ Smart, 2020; Borrelli, 2017). These devices can be
classified according to their light-matter interactions, which determine their operational
principles and design approaches (Molesky et al., 2018). Some devices, such as LEDs and
lasers, generate optical output at specific wavelengths (Schubert, 2018; Liu et al., 2020;
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Qiao et al., 2019). Others manipulate light by altering its path, reflecting it, or
controlling its polarization, such as 3D lenses and TVs (Gao et al., 2017; Ou, Li ¢» Tang,
2016). Additionally, sensors detect light for various purposes, from measuring intensity to
analyzing spectral components (Ming Qing et al., 2020; Kim et al., 2021; Javaid et al., 2021).

Optical devices play a crucial role in numerous sectors, including defense
(Chandrasekar et al., 2019), medicine (Bobokulova, 2023), culture (Kim et al., 2019),
telecommunications (Anzalchi, Inigo ¢ Roy, 2017), semiconductor manufacturing (Dey,
2018), display technology (Chen et al., 2024), and sensor development (Zhu et al., 2019).
Their importance continues to grow as their applications expand and contribute to
technological advancements (Mentzer, 2017).

Traditionally, the design of optical devices involves the creation of initial prototypes and
then experimentally evaluating their functionality (Wang et al., 2019; Salehi et al., 2019).
This approach allows for the development of mathematical models based on fundamental
physical principles, including variables such as the angle of incidence, angle of reflection,
and refractive index of light. These models enable accurate predictions of optical device
properties (Sujecki, 2018; Jiang, Chen & Fan, 2021). However, this method is often
time-consuming and complex, making it challenging to develop devices with novel
structural designs (Bogaerts ¢» Chrostowski, 2018; Casellas et al., 2024).

To address these limitations, researchers have turned to inverse design methodologies
(Kang et al., 2024a; Khaireh-Walieh et al., 2023). In this approach, the desired outcomes
guide the design process, using computational algorithms to systematically explore and
define optimal configurations (Wiecha et al., 2021; Mao et al., 2021). This method reduces
the reliance on physical prototypes and increases the potential to discover innovative
solutions that conventional approaches might overlook (Butt, Khonina ¢» Kazanskiy, 2021,
Ren et al., 2021; Capmany & Pérez, 2020).

The field of optical device design has seen significant advances through various
optimization techniques. Notably, adjoint optimization and topology optimization
methods have demonstrated remarkable success in addressing complex design challenges
(Chung & Miller, 2020a, 2020b). These approaches have become fundamental tools in the
inverse design of optical devices, offering efficient solutions for many applications. Recent
work has also shown promising results in combining these traditional optimization
methods with neural networks (Kang et al., 2024b), suggesting potential synergies between
different approaches.

The integration of artificial intelligence (AI) into the inverse design of nanophotonic
devices offers a promising strategy to further improve the design process (Jackson, 2019;
Zhang & Lu, 2021; Berente et al., 2021). Al is expected to streamline the workflow,
accelerate the development of optical devices with novel structures and potentially initiate
significant changes in the field (Khailany, 2020). This study explores the application of
deep learning models to rapidly design optical devices with desired characteristics, in order
to enhance the efficiency of the design process beyond that of conventional methodologies
(Deng et al., 2022; Verganti, Vendraminelli & lansiti, 2020).

Previous reviews have examined various aspects of deep learning in nanophotonic
design. For instance, Liu et al. (2021) classified deep learning architectures into three main
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Inverse Design for Silicon Photonic Devices

Using Deep Generative Models
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Figure 1 Comprehensive overview of deep learning models for silicon photonic device inverse design. The diagram contrasts traditional design
(iterative forward approach) with deep learning-based inverse design (starting from desired properties). The central section illustrates the inverse
design workflow, while the lower section details the distinct architectural characteristics of each model type: multi-layer perceptron (MLP) for direct
parameter mapping, convolutional neural network (CNN) for spatial feature extraction, autoencoder (AE) for dimensionality reduction, Generative
Adversarial Network (GAN) for novel design generation, and reinforcement learning (RL) for sequential optimization. Each approach offers unique
advantages in addressing specific challenges in silicon photonic device design. Full-size K&l DOT: 10.7717/peerj-cs.2895/fig-1

categories (multi-layer perceptron (MLP), convolutional neural network (CNN), and
recurrent neural network (RNN)) and focused primarily on inverse design for
metasurfaces. However, their work did not include more recent advancements in Al, such
as Transformer (Vaswani et al., 2017) and diffusion models (Ho, Jain ¢ Abbeel, 2020).
Similarly, the research conducted by Pan ¢ Pan (2023) on silicon optical devices lacked
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specificity regarding the deep learning methods employed in particular contexts, as
detailed categories for deep artificial neural networks were not defined.

Given the rapid advancement of deep learning methodologies and the expanding scope
of inverse design in photonics, this review aims to provide an overview of recent
developments in deep learning methods applied to the inverse design of
nanophotonic devices. We systematically categorize the methods according to the specific
situations where each deep learning technique was applied, offering insights into the
current state of the field and potential future directions. Building on the fundamental
context and motivations, Fig. 1 provides a systematic visual overview of the deep learning
models explored in this review. The diagram illustrates the paradigm shift from traditional
forward design to inverse design approaches, along with the distinct architectural
characteristics of each deep generative model (MLP, CNN, autoencoder (AE), Generative
Adversarial Network (GAN), and reinforcement learning (RL)). Each model offers unique
capabilities for addressing specific challenges in silicon photonic device design, as will be
explored in the following sections. This visual framework helps clarify how these diverse
approaches contribute to the advancement of inverse design methodologies.

LITERATURE ANALYSIS

Purpose of reviews

The inverse design of optical devices using deep generative models has been applied across
diverse platforms including metamaterials, optical fibers, and quantum devices. This
review specifically focuses on silicon-based nanophotonic devices. This deliberate scope
allows us to provide an in-depth analysis of the unique challenges and solutions in
silicon photonics, which has become increasingly important for integrated optical
circuits and telecommunications. Silicon photonics offers distinct advantages such as
complementary metal-oxide-semiconductor (CMOS) compatibility, high integration
density, and established fabrication processes, making it a crucial platform for
next-generation optical devices. By maintaining this focused scope, we aim to offer detailed
insights that complement existing reviews covering other optical platforms, contributing to
the advancement of silicon-based nanophotonic device design methodologies. This review
aims to provide a comprehensive examination of recent trends in inverse design for
nanophotonic devices using deep learning methods. We analyze relevant studies that
employ various deep learning models to enhance our understanding of inverse design
processes for nanophotonic devices. Additionally, we identify the strengths and limitations
of previous research in this field, providing guidance for future studies on inverse design
for nanophotonic devices using deep learning.

Survey methodology

The survey methodology for this review was conducted in three main stages, designed to
ensure a comprehensive and relevant collection of studies. First, we selected the Web of
Science (WOS) database as our primary source of peer-reviewed articles. WOS was chosen
for its extensive collection of carefully edited and peer-reviewed scholarly journals, which
provides a high level of academic rigor to our research. This database selection was crucial
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in ensuring that our review was based on high-quality, peer-reviewed research in the field
of nanophotonic device inverse design. Our article follows systematic review methodology,
which requires transparent documentation of literature search and selection processes to
ensure reproducibility. This approach allows other researchers to validate our
methodology and build upon our systematic analysis of deep learning applications in
optical device design.

For the second stage, we performed a keyword search using the terms “deep learning”,
“inverse design”, and “nanophotonic devices”. This combination of keywords was
specifically chosen to target studies at the intersection of artificial intelligence and
nanophotonic design. The initial search yielded 216 articles, which we then refined
through manual screening. We included articles focusing on nanophotonic devices
composed of chemical components, as these represent the core of our research interest.
Studies on circuit-related devices were excluded to maintain focus on optical systems.
Additionally, we excluded articles that solely discussed optimization techniques during the
inverse design process, as our primary interest was in the application of deep learning
methods to the entire inverse design workflow.

Lastly, we limited our review to studies published between 2019 and 2024. This 5-year
time frame was selected to capture the most recent advances in inverse design for
nanophotonic devices, reflecting the rapid progress in deep learning technology during this
period. By focusing on this recent timespan, we aimed to provide an up-to-date analysis of
the field, capturing the latest methodologies and innovations. This approach ensures that
our review offers insights into the current state of the art and potential future directions in
the application of deep learning to nanophotonic device inverse design.

Table 1 provides an expanded overview of the deep learning methods used in optical
device design, as found in the reviewed articles. The deep learning methods presented in
Table 1 represent the primary approaches used in the inverse design of optical devices.
Each method offers unique advantages in addressing specific challenges in optical device
design. MLPs provide a straightforward approach for mapping between device parameters
and optical properties, making them suitable for rapid performance prediction. CNNs
excel in processing spatial data, making them particularly useful for analyzing and
generating device geometries. AEs offer powerful dimensionality reduction capabilities,
enabling efficient representation of complex device structures. GANs have shown promise
in generating novel device designs that meet specific performance criteria, potentially
leading to innovative solutions. RL approaches the design process as a sequential
decision-making problem, which can be particularly effective for optimizing complex,
multi-parameter device structures.

The reviewed articles demonstrate a broad distribution across various journals,
highlighting the widespread international interest and engagement in this research field.
This interdisciplinary spread provides strong evidence of the appeal of inverse design for
nanophotonic devices using deep learning methodologies. As illustrated in Fig. 2A, more
than half of the reviewed articles were published within the last 3 years, indicating the rapid
growth and current relevance of this research area. Figure 2B shows the citation
distribution of the selected articles. While some articles received fewer than ten citations,
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Table 1 Expanded overview of deep learning methods for optical devices design.

Methods Brief description Application in silicon based optical device References

design

MLP A feedforward neural network structure with Used for mapping between device Taud & Mas (2018), Liu et al. (2022, 2023),
multiple hidden layers. Each layer consists  parameters and optical properties, enabling  Kojima et al. (2021), Head ¢ Keshavarz
of nodes that process and transmit rapid prediction of device performance. Hedayati (2022), Ma & Li (2020), Chen
information to the next layer. This learns ~ Optimizes device geometries by correlating et al. (2023), Jiang ¢» Fan (2020), Guo et al.
by adjusting weights to minimize errors via  structural features with desired optical (2022), Ren et al. (2021), Gao et al. (2019)
backpropagation. characteristics.

CNN Alternates between convolution and pooling Applied to analyze and generate 2D or 3D Alzubaidi et al. (2021), Gostimirovic et al.
layers to extract and reduce image features.  structures of optical devices, capturing (2023), Song et al. (2021, 2020), Chen et al.
Particularly effective for processing spatial relationships in device geometries. (2022), Shi et al. (2022), Ma et al. (2022)
grid-like data.

AE Compresses and reconstructs data, Employed for dimensionality reduction of ~ Bank, Koenigstein ¢ Giryes (2023), Li et al.
facilitating efficient feature learning and complex optical device structures, enabling  (2022), Kiarashinejad, Abdollahramezani
dimensionality reduction. Consists of an efficient representation and manipulation & Adibi (2020), Hong ¢ Nicholls (2022),
encoder and a decoder. of device designs. Tang et al. (2020), Zhu et al. (2023)

GAN Generators and Discriminators compete to  Used to generate novel optical device designs Aggarwal, Mittal ¢ Battineni (2021), Kim
improve the ability to generate new data. that meet specific performance criteria, et al. (2022), Dizaji, Habibiyan &

The generator creates synthetic data while  expanding the design space beyond Arabalibeik (2022)
the discriminator evaluates its authenticity.  conventional methods.

RL Agent learns to execute tasks based on the  Applied in optimizing device structures Sutton & Barto (2018), Jiang & Yoshie (2022),
environment and implements policies to through sequential decision-making Zhao et al. (2022, 2023), Sajedian, Badloe &
maximize rewards. Involves iterative processes, particularly useful for complex,  Rho (2019), Hwang, Lee ¢ Seok (2022)
learning through interaction with an multi-parameter optimization problems in
environment. optical device design.

Num. of Publications
Num. of Publications

2
4 .
I I [ | |
0 0
— A
oA

2019 2020 2021 2022 2023 2024 O NN IFTNMONODNO —AMST L ONDD

(until July) . .
Year Times-Cited

Figure 2 Overview of the distribution of publication years and citation frequencies. (A) Distribution of publication years; (B) Distribution of
citation frequencies. Full-size k&l DOL: 10.7717/peerj-cs.2895/fig-2

over 30% of the selected articles garnered more than twenty citations, suggesting their
significant influence in the field. This citation pattern underscores the impact and
importance of recent research in the inverse design of nanophotonic devices using deep
learning approaches.
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Table 2 Detailed distribution of publications on recent optical devices inverse design in deep learning.

Publication

Counts  Percentage (%) Key focus areas

Optics Express

Nature Photonics

Laser & Photonics Reviews
Nanophotonics

Journal of Lightwave Technology
ACS Photonics

IEEE Photonics Journal

Misc

Total

NN NN W

17
32

9.3 Nanophotonic structures, metamaterials, optical waveguides

6.2 Nano structures, photonic structures

6.2 Photonic integrated circuits, metamaterials

6.2 Plasmonic devices, metasurfaces

6.2 Integrated photonics, fiber optics

6.2 Nanoscale optics, quantum photonics

6.2 Photonic devices, optical communications
53.1 Various topics including photonic crystals, optical sensors, and nonlinear optics
100

Distribution of publications

Table 2 presents a detailed distribution of publications on recent optical devices inverse
design using deep learning. The distribution of publications presented in Table 2 offers
valuable insights into the current research trends of inverse design for optical devices using
deep learning. Optics Express has emerged as the leading journal in this field, accounting
for 9.3% of the reviewed articles. The prominence of this journal likely stems from its
broad scope in optics and its rapid publication process, which is particularly advantageous
in the fast-evolving field of deep learning applications.

Six other journals, Nature Photonics, Laser & Photonics Reviews, Nanophotonics,
Journal of Lightwave Technology, ACS Photonics, and IEEE Photonics Journal, each
contribute 6.2% of the reviewed articles. This even distribution across these specialized
journals indicates the multifaceted nature of the research, spanning various sub-domains
of photonics and optical device design. Nature Photonics covers breakthrough
research in optical science and technologies, with particular emphasis on novel photonic
structures and nano structures. Laser & Photonics Reviews focuses on comprehensive
reviews in laser physics and photonics applications, especially in emerging fields like
metamaterials and Photonic integrated circuits. Nanophotonics focuses on the
interaction of light with nanoscale structures, while the Journal of Lightwave Technology
emphasizes applications in optical communication systems. ACS Photonics covers a broad
range of topics in photonics with a particular focus on nanoscale phenomena, and IEEE
Photonics Journal provides a platform for rapid dissemination of original research in
photonics.

Notably, the majority of articles (53.1%) are distributed across various other journals.
This wide distribution underscores the interdisciplinary nature of the field, with research
findings published in journals spanning physics, materials science, electrical engineering,
and computer science. It also suggests that the application of deep learning to the inverse
design of optical devices is of interest to a broad scientific community, not limited to
traditional journals in optics and photonics.

The diversity in the venues for publication reflects the multifaceted nature of the
research field, which combines expertise from optical physics, device engineering, and
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artificial intelligence. This interdisciplinary approach is crucial for advancing the field as it
allows for the integration of domain knowledge in optics with cutting-edge machine
learning techniques. Furthermore, the distribution of publications indicates that while
there are a few journals that have published multiple articles in this field, there is no single
dominant venue. This suggests that the research community in this area is still evolving,
with contributions from various scientific communities. It also highlights the potential for
further specialized venues or special issues focused on the intersection of deep learning and
optical device design to emerge in the future. With this comprehensive understanding of
the publication landscape, we can now examine in detail how specific deep generative
models have been applied to optical device inverse design, beginning with MLPs as the
foundational architecture.

DEEP GENERATIVE MODELS FOR OPTICAL DEVICE
INVERSE DESIGN

Multi-layer perceptron

MLP (Taud ¢ Mas, 2018) is a fundamental deep learning architecture that has found
significant applications in the inverse design of optical devices. This section explores the
structure of MLPs and their various implementations in nanophotonic design.

Structure and functionality of MLPs

An MLP consists of multiple layers of interconnected neurons organized in a feedforward
manner. The network typically comprises an input layer, one or more hidden layers, and
an output layer. Each neuron in a layer is connected to every neuron in the subsequent
layer, allowing for complex data transformations. The input layer receives the initial data,
hidden layers perform nonlinear transformations, and the output layer produces the final
predictions or classifications.

Figure 3 illustrates the typical configuration of an MLP used in the inverse design of
optical devices. This network structure facilitates the discovery of complex relationships
between input parameters and output optical characteristics, making it particularly
suitable for mapping between device parameters and optical properties.

Applications in nanophotonic design

MLPs have been extensively applied in the inverse design of silicon-based nanophotonics,
particularly for identifying appropriate nanostructure parameters (Liu et al., 2022, 2023;
Kojima et al., 2021; Head & Keshavarz Hedayati, 2022; Ma ¢ Li, 2020; Chen et al., 2023;
Jiang & Fan, 2020; Guo et al., 2022; Ren et al., 2021; Gao et al., 2019).

Quantum nanoparticle shell design

Liu et al. (2022) employed a fully connected neural network approach for the inverse
design of quantum nanoparticle shells with multilayer configurations. The MLP
architecture implemented in this article consists of an input layer with two nodes
representing the period and filling ratio, followed by three hidden layers containing 512,
256, and 128 nodes respectively, and the output layer comprises 101 nodes, which predict
the electromagnetic energy distribution and light-matter interaction strength at different
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Figure 3 Schematic representation of a MLP for optical device inverse design.
Full-size K&l DOT: 10.7717/peerj-cs.2895/fig-3

frequencies. This hierarchical structure was carefully designed to effectively capture the
complex relationships between geometric parameters and optical responses. Their work
demonstrated the potential for precise manipulation of frequency and amplitude in
quantum optics. However, they observed an increasing error rate as the thickness of the
designed shells increased, highlighting a limitation of their approach.

Building on this work, Liu et al. (2023) addressed the shell thickness issue by designing a
system that also influences the electromagnetic environment. Their approach used a fully
connected neural network-based inverse design process, advancing the field by considering
the interplay between quantum systems and the electromagnetic environment produced
by nanophotonic structures.

Material and spectral property correlation

Extending the methodology beyond nanoscale parameter design, So, Mun ¢ Rho (2019)
developed a neural network that correlates information on the materials forming each
layer of the shell with the electric and magnetic dipole spectra. The implemented MLP
architecture features an input layer with four nodes corresponding to core radius, shell
thickness, core permittivity, and shell permittivity. The network comprises four hidden
layers, each containing 100 nodes, followed by a single output node predicting the resonant
wavelength. This symmetric architecture was selected to maintain consistent feature
extraction capability throughout the network depth. This approach enables the inverse
design of shell nanophotonics to achieve desired spectral properties within specific shell
layers in a matter of seconds, representing a significant advancement in design speed and
precision.

Silicon-based nanophotonic applications

In practical applications of silicon-based nanophotonics, MLPs have been used for the
structural design of various devices. For instance, Kojima et al. (2021) tackled the inverse
design of a power splitter for enhancing microwave outputs. They implemented a MLP
architecture comprising four hidden layers with 50 nodes each for silicon grating coupler
design. The network processes three geometric input parameters such as depth, period and
width. The output layer predicts transmission and reflection coefficients at wavelength.
They overcame the challenge of requiring substantial training data by using a neural
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network comprised of fully connected layers, randomly generating designs to optimize
performance towards desired objectives.

Head ¢ Keshavarz Hedayati (2022) applied an MLP network to the inverse design of
distributed Bragg reflectors, which manipulate light paths using stacked thin film
materials. They developed a architecture with three hidden layers for distributed Bragg
reflector design. The network processes twenty input parameters representing thicknesses
of ten alternating dielectric layer pairs. Outputs spectral reflection data across a broad
wavelength range in the visible spectrum, with a high number of spectral points. Their goal
was to achieve targeted reflection spectra through inverse design of layer thicknesses. To
address the challenge of insufficient training data limiting the generation of specific colors,
they implemented a tandem neural network combining an MLP architecture with a
forward network. This approach allowed them to produce targeted spectral outcomes
through inverse design.

Tandem neural networks and optimization techniques

Tandem neural networks combines two MLP. For example, the first MLP extracts laser
parameters from experimental data, while the second MLP performs inverse design by
predicting optimal device parameters for desired laser performance characteristics. The
limitation of tandem neural networks in addressing only single-solution problems has
been addressed by integrating particle swarm optimization techniques. Ma ¢ Li (2020)
combined a tandem neural network with particle swarm optimization, representing a
heuristic-based optimization approach. Their architecture with three hidden layers for
semiconductor laser parameter extraction. The network processes four input parameters
such as active layer thickness, carrier density, optical intensity and injection current. This
method expanded the search process from local to global, effectively resolving the
single-solution limitation of tandem neural networks in the inverse design of
semiconductor lasers.

Chen et al. (2023) further advanced the application of tandem neural networks by
introducing a high-speed solution that addressed the issue of extended inverse design
simulation times. They designed a network with four hidden layers of 256 nodes each for
photonic crystal waveguide optimization. The network accepts six geometric parameters
representing the size of two circular holes and how far these holes are shifted from their
original positions, to predict how different frequencies of light will travel through the
structure. Their tandem network-based regression neural network resolved data class
imbalance issues and established a foundation for optimal parameter identification.

Adaptive architecture and multi-objective optimization

Jiang ¢» Fan (2020) demonstrated an innovative approach using ResNet-based
architectures that incorporates four MLP layers with 512 nodes each within residual blocks
for photonic structure optimization. Their method featured an adaptive depth variation
from deep to shallower architectures as the optimization progressed, enabling a more
focused search for solutions needed in inverse design. This approach was successfully
applied to the design of thin-film stacks composed of multiple material types, achieving
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global optimization significantly faster than traditional algorithms used in photonic
design.

Efficient learning and parameter optimization

Addressing the computational costs in the learning process, Guo et al. (2022) introduced
the concept of an extendable neural network. An extendable neural network is an
architecture that can add new layers while preserving previously learned knowledge.
Unlike conventional MLP that requires complete retraining, this structure allows network
expansion to learn new design conditions while maintaining existing performance. They
introduced an extendable neural network architecture consisting of a base network with
three hidden layers and two extension layers for nanophotonic waveguide design. Their
innovation was implementing an extendable architecture that could adapt to new design
constraints without retraining the entire network. This approach significantly reduces
computational time when design requirements change and the database needs to be
updated, followed by retraining, contributing to more efficient parameter optimization in
the inverse design process.

Genetic algorithm integration

To address the issue of requiring large amounts of labeled data in nanophotonic

device design, Ren et al. (2021) proposed a genetic algorithm-based MLP model. They
suggested a genetic algorithm-optimized MLP with three hidden layers for silicon photonic
polarizer design. Their optimization goal was to maximize polarization selectivity while
maintaining high transmission. Unlike conventional MLP models that rely solely on
backpropagation during training, this method optimizes the geometric structure of
photonic devices in a polar coordinate system, even with relatively limited training
datasets.

Color production in nanophotonics

In the context of achieving high resolution in silicon-based nanophotonics, Gao et al.
(2019) employed a tandem neural network architecture for the intricate design of
nanophotonics capable of producing specific colors. They developed a bidirectional MLP
architecture featuring two parallel networks with four hidden layers for silicon color
design. One network accepts geometric parameter to predict reflection spectra, while the
inverse network transforms desired RGB colors into structural parameters. This approach
optimized the inverse design process for producing over a million colors in nanophotonics,
reducing costs by avoiding situations where different geometric structures might yield the
same color output. However, they noted that increasing model accuracy requires a larger
database of nanophotonics representing specific colors, highlighting a trade-off between
accuracy and computational resources.

Limitations and future directions

The application of MLPs in the inverse design of optical devices has shown significant
progress, but several limitations and areas for future research have emerged from the
reviewed studies. A primary challenge is the scalability of MLP models as the complexity of
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optical devices increases. As observed in the work of Liu et al. (2022), the error rate
increased with growing shell thickness in quantum nanoparticle designs. This indicates
that as device structures become more intricate, the computational demands for
MLP-based inverse design grow substantially. Future research could focus on developing
more efficient network architectures or training methods to address this scalability issue,
potentially incorporating techniques from other deep learning domains such as sparse or
quantized neural networks.

The generalization capability of MLP models in optical device design remains a
significant concern. Current models often perform well within the range of their training
data but may struggle with extrapolation to new design spaces. This limitation was evident
in the study by Head & Keshavarz Hedayati (2022), where insufficient training data
restricted the generation of specific colors in distributed Bragg reflectors. Improving the
generalization capabilities of these models is crucial for their practical application in
diverse optical design scenarios. An effective approach would be integrating
physics-informed neural networks, which incorporate known physical laws into the
learning process to enhance the model’s ability to generalize beyond the training data.

The integration of MLPs with multi-physics simulations represents another important
direction for future research. Many optical devices operate in complex environments
involving multiple physical phenomena. The work of Liu et al. (2023) on designing systems
that influence the electromagnetic environment of quantum systems highlights the
importance of considering multiple physical aspects in the design process. Future research
could focus on developing hybrid models that combine MLPs with first-principles
simulations to create more robust and realistic inverse designs.

While MLPs have significantly reduced design times compared to traditional methods,
there is still room for improvement in achieving real-time inverse design capabilities,
particularly for complex, multi-parameter systems. The tandem neural network approach
proposed by Chen et al. (2023) represents a step towards high-speed solutions, but further
advancements are needed. Future work could explore the use of reinforcement learning
techniques or meta-learning approaches to enable rapid adaptation of MLP models to new
design requirements, potentially leading to near-real-time inverse design capabilities.

Analyzing the trends in the reviewed articles, we observe a shift from single-objective to
multi-objective optimization in optical device design. The work of Jiang ¢ Fan (2020) on
adaptive ResNet-based architectures for multi-objective optimization exemplifies this
trend. Future research is likely to continue this trajectory, developing more sophisticated
multi-objective optimization techniques for optical device design. Another emerging trend
is the integration of MLPs with other optimization techniques, as seen in the work of Ma ¢
Li (2020), who combined tandem neural networks with particle swarm optimization. This
hybrid approach addresses some limitations of pure MLP-based methods and opens up
new possibilities for global optimization in complex design spaces. Future research could
explore other combinations of MLPs with evolutionary algorithms or Bayesian
optimization techniques to further enhance the inverse design process. The trend towards
more efficient learning and parameter optimization, as demonstrated by Guo et al. (2022)
with their extendable neural network concept, is likely to continue. Future work in this
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direction could focus on developing more adaptive learning strategies that can efficiently
update MLP models as design requirements change, potentially incorporating concepts
from continual learning or transfer learning in deep neural networks. Additionally, the
application of MLPs in nanophotonic color production, as explored by Gao et al. (2019),
highlights the potential for MLPs in highly specific and precision-demanding applications.
Future research could extend this approach to other areas of nanophotonics where precise
control over optical properties is crucial, such as in the design of metasurfaces or photonic
crystals for specific light manipulation tasks.

MLPs provide a strong foundation for inverse design. However, the spatial nature of
optical devices naturally directs attention to CNN that are specifically designed to handle
structural and spatial relationships.

Convolutional neural network

CNNs have emerged as a powerful tool in the field of artificial intelligence, particularly for
tasks involving visual recognition and classification (Alzubaidi et al., 2021). Their
application in the inverse design of optical devices has shown significant promise,
especially in the domains of nanophotonics and photonic crystal design. This section
explores the structure, capabilities, and applications of CNNs in the context of optical
device inverse design.

Structure and functionality of CNNs

The architecture of a CNN typically consists of several distinct layers: convolutional layers,
pooling layers, and fully connected layers. This structure is designed to efficiently extract
and process spatial features from input data, making CNNs particularly well-suited for
analyzing visual information. Figure 4 illustrates the general structure of a CNN used in the
inverse design of optical devices.

In the context of optical device design, CNNs offer several advantages over traditional
MLPs. While MLPs often struggle with handling spatial information, CNNs excel in tasks
where spatial relationships are crucial. This capability makes CNNs particularly effective
for complex structural design in nanophotonics, where the spatial arrangement of
components significantly influences device performance.

Applications in nanophotonic design

The application of CNN architectures in the inverse design of silicon-based nanophotonics
has been demonstrated at both the process level for feedback and the design level for
simulation scenarios. Several recent studies have showcased the effectiveness of CNNs in
various aspects of nanophotonic design (Gostimirovic et al., 2023; Song et al., 2021, 2020;
Chen et al., 2022; Shi et al., 2022; Ma et al., 2022). CNNs have enabled several key advances
in silicon-based nanophotonic design. At the process level, Gostimirovic et al. (2023)
developed a CNN-based method that automatically corrects fabrication-induced structural
variations using small-scale microscope images, improving dimensional accuracy. For
design optimization, Song et al. (2021) utilized CNNss to efficiently handle wavelength and
polarization parameters in power splitter design, reducing computational overhead
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Figure 4 Schematic representation of a CNN for optical device inverse design.
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compared to traditional MLPs. Chen et al. (2022) achieved breakthrough performance in
electromagnetic field prediction using a U-Net architecture (WaveY-Net), enabling rapid
evaluation of device performance without full simulations. Additionally, Shi et al. (2022)
demonstrated the potential of capsule networks to achieve comparable results with only
60% of typical training data requirements, addressing the critical challenge of data
efficiency in nanophotonic design.

Process-level design correction

Gostimirovic et al. (2023) addressed a significant challenge in nanophotonic
manufacturing: structural deviations arising from fabrication processes. They proposed a
process-level CNN-based inverse design method that automatically corrects design layouts
before fabrication. This innovative approach employs pre-trained CNN predictive models
to adjust the design layout using only small-scale microscope images. By implementing
various corrective actions, this method aligns the fabricated structures more closely with
the original designs, potentially reducing manufacturing errors and improving device
performance.

Efficient inverse design of power splitters

In the design of silicon-based nanophotonic devices, Song et al. (2021) identified a
limitation in conventional MLP approaches when dealing with wavelength and
polarization parameters. They found that introducing these parameters into data-driven
models significantly increased computational costs. To address this issue, they leveraged
the dimensionality reduction capabilities of CNN models. This approach enhanced
computational efficiency in the inverse design process, allowing for more complex
parameter spaces to be explored without prohibitive computational overhead.

Wavelength-dependent device design

Recognizing the need for controllers that can manage diverse parameter information
comprehensively, Song et al. (2020) proposed a method for inverse designing
nanophotonic devices that incorporates wavelength controllers. This approach allows for
the comprehensive consideration of both temporal and spectral characteristics. Their
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CNN-based method predicts controllable wavelengths, implementing both forward
prediction and inverse design. By predicting values that meet targeted goals across
different wavelengths and energy densities, this method offers a more holistic approach to
device design, considering the wavelength-dependent behavior of optical devices.

High-accuracy electromagnetic field prediction

Chen et al. (2022) utilized CNN architectures to predict electromagnetic field distributions
with high accuracy and speed. They employed the U-Net architecture, which they termed
WaveY-Net, in the inverse design process. This approach allowed for the determination of
geometric structures of devices, including device height and material refractive indices.
The ability to rapidly and accurately predict electromagnetic field distributions is crucial
for the efficient design of complex nanophotonic devices, as it allows designers to quickly
evaluate the performance of potential designs without resorting to time-consuming full-
field simulations.

Capsule neural networks for spatial hierarchies

Moving beyond traditional CNNs, Shi et al. (2022) explored the use of capsule neural
networks in nanophotonic design. Capsule networks are designed to effectively handle
spatial hierarchical structures, making them suitable for tasks that require understanding
complex spatial information in nanophotonic structures. The concept of capsules allows
for the expression of various properties and the capture of relationships within hierarchical
spatial information. This approach addresses some limitations of traditional CNNs, such
as difficulties with pose variations and spatial transformations. Notably, capsule networks
demonstrated the potential to achieve performance comparable to CNN architectures
using only 60% of the training data, suggesting their capability to efficiently inverse design
more complex nanophotonic structures with a greater number of design variables.

DenseNet for enhanced learning capacity

Further showcasing the capacity of CNN-based architectures to assist in high-accuracy
inverse design processes with limited data, Ma et al. (2022) introduced the concept of
DenseNet to nanophotonic design. DenseNets incorporate densely connected networks
that more effectively learn complex patterns and features from data, enhancing the
network’s learning capacity. This approach is particularly valuable when dealing with
limited training data, a common challenge in nanophotonic design where generating large
datasets can be computationally expensive or experimentally challenging.

Limitations and future directions

The CNNs have shown promise in optical device inverse design, but several

challenges remain. A key issue is the quality and quantity of training data. As noted

by Ma et al. (2022), biases or errors in the original training data can significantly impact
nanoantenna design. This underscores the need for high-quality, diverse datasets in
nanophotonic design. Future studies could investigate efficient data generation techniques
or methods to augment existing datasets while maintaining physical accuracy.
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The interpretability of CNN models in optical device design is another concern. While
CNNs demonstrate high predictive accuracy, interpreting how they arrive at their
predictions remains a challenge. Scientists then use these predictions to make informed
design decisions about optical devices. The challenge of interpreting complex,
high-dimensional models, which is a limitation common to all data-driven methods
discussed in this review, can affect their adoption in scientific applications where
understanding underlying physics is crucial. Research into attention mechanisms or
layer-wise relevance propagation techniques could provide insights into CNN
decision-making in optical design tasks.

Generalizing new design spaces not represented in training data is a critical challenge.
Gostimirovic et al. (2023) showed CNNs’ potential to adapt to manufacturing variations,
but extending this adaptability to novel design concepts remains an open question.
Investigating transfer learning or meta-learning approaches could address this limitation,
allowing CNN models to more effectively generalize to new optical device designs.

The computational resources required for training and deploying large CNN models,
especially for complex nanophotonic structures, present another obstacle. While Song et al.
(2021) demonstrated CNNs’ efficiency in handling high-dimensional parameter spaces,
further optimization of CNN architectures for optical design tasks is necessary. Research
into more compact CNN architectures or hardware-specific optimizations could reduce
computational overhead.

Current trends show a shift towards specialized CNN architectures for specific aspects
of optical device design. Chen et al’s (2022) work on U-Net architecture for
electromagnetic field prediction and Shi et al’s (2022) use of capsule networks for handling
spatial hierarchies exemplify this trend. Future research may continue this trajectory,
developing increasingly specialized CNN architectures for different optical design
problems. Integration of CNNs with other computational techniques is another emerging
trend. Song et al’s (2020) combination of CNNs with wavelength controllers suggests a
move towards more comprehensive design approaches. Future work could explore the
integration of CNNs with multi-physics simulations or other machine learning techniques
to create more holistic inverse design frameworks. The trend towards data-efficient CNN
models, as seen in Shi ef al’s (2022) work with capsule networks achieving comparable
performance using only 60% of training data, is likely to continue. This direction is
particularly important in nanophotonic design, where generating large datasets can be
computationally expensive. Future research could focus on developing more data-efficient
CNN architectures or exploring few-shot learning techniques.

Several promising directions for future CNN-based inverse design research emerge.
Integrating physics-informed constraints into CNN architectures could produce more
physically accurate and reliable designs. This approach could combine CNN efficiency
with physics-based model reliability, potentially addressing interpretability concerns.
Advancements in multi-scale modeling using CNNs could enable more comprehensive
optimization of optical devices. Developing CNN architectures that simultaneously handle
multiple spatial scales would allow for optimization of both nanoscale features and overall
device geometry, potentially leading to more efficient optical designs. Incorporating
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uncertainty quantification techniques into CNN-based inverse design methods represents
another essential research avenue. Providing uncertainty estimates in generated designs
could offer valuable information about their reliability and robustness, which is crucial for
practical applications in optical device manufacturing.

Furthermore, advancing CNN-based methods towards real-time inverse design
capabilities could revolutionize optical device design. While current methods have reduced
design times compared to traditional approaches, achieving proper real-time design
optimization remains challenging. Research into more efficient CNN architectures,
possibly combined with reinforcement learning techniques, could pave the way for rapid
prototyping and on-the-fly optimization of optical devices. After exploring architectures
designed for spatial pattern recognition, this section examines Auto-encoder, which
provide unique capabilities for dimensionality reduction such as a critical aspect for
handling the complexity of optical device design spaces.

Auto-encoder

The AEs represent a significant advancement in the application of deep learning
techniques to the inverse design of optical devices. These neural network architectures, as
described by Bank, Koenigstein ¢ Giryes (2023), are designed to compress input data into a
low-dimensional latent space and subsequently reconstruct it back into the original
high-dimensional space. This capability makes AEs particularly suitable for handling the
complex, high-dimensional data often encountered in nanophotonic optical device design.

Structure and functionality of AEs
The structure of an AE typically consists of two main components: an encoder and a
decoder. The encoder compresses the input data into a low-dimensional representation,
while the decoder attempts to reconstruct the original input from this compressed form.
Figure 5 illustrates the configuration of an AE used in the inverse design of optical devices.
In the context of nanophotonic design, AEs serve a crucial role in dimensionality
reduction and feature extraction. They are particularly effective in identifying the most
salient design variables and reducing the dimensionality of the design space, thereby
enhancing the efficiency of the inverse design process. This capability makes AEs
well-suited for finding input variables corresponding to target outputs, a key requirement
in inverse design problems (Li et al., 2022; Kiarashinejad, Abdollahramezani & Adibi,
2020; Hong & Nicholls, 2022; Tang et al., 2020; Zhu et al., 2023).

Mathematical formulation and specific impact of AEs

The encoder fy that maps the input data x to a latent representation z = fy(x), and the
decoder gy that reconstructs the input from this latent representation X = gy(z).
Accordingly, the mathematical framework of the AE can be formulated as follows:

Lap(0,¢) = %Z Hxi —g¢(fo(x,~))H2-

This mathematical framework offers several specific advantages.
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Figure 5 Schematic representation of an AE for optical device inverse design.
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Dimensionality reduction for design space exploration

As demonstrated by Li et al. (2022), the encoder maps high-dimensional device structures
to a significantly lower-dimensional latent space. This compression facilitates efficient
design space exploration, mathematically represented as follows:

z=fy(x) where zecRFxeRYk<d.

Manifold learning for valid designs

The decoder g, learns to map points from the latent space back to physically realizable
device structures, effectively learning the manifold of valid optical designs. Kiarashinejad,
Abdollahramezani & Adibi (2020) utilized this property to transform multi-to-one inverse
design problems into more tractable one-to-one mappings.

x =g4(z) where X~ x for all valid designs

Bayesian optimization in latent space

Li et al. (2022) leveraged the compressed latent representation for efficient Bayesian
optimization. Rather than optimizing in the original high-dimensional space, they
performed optimization in the latent space.

z" = argmax 7 (g (z)) where 7 represents the desired optical performance metrics.
z

The optimal device design is then obtained as x* = g4 (z*).

For example, in the unidirectional transmission nanophotonics design by Li et al.
(2022), the AE compressed a design space with hundreds of geometric parameters into a
20-dimensional latent space. This 95% reduction in dimensionality allowed their Bayesian
multi-sampling approach to efficiently identify designs achieving 95% light passage in one
direction while blocking over 60% in the opposite direction. Similarly, Tang et al. (2020)
applied a CVAE to the inverse design of nanophotonic power splitters. Their mathematical
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formulation conditioned the latent space on desired transmission spectra, allowing for
targeted design generation.

polly) = / pollz,y)po(ely)de.

where y represents the target optical spectrum, z is the latent variable, and x is the device
structure. This formulation enabled direct mapping from performance specifications to
optimal device geometries, demonstrating how the dimensionality reduction capabilities of
AE:s translate to practical advances in optical device design.

Addressing the curse of dimensionality

One of the primary challenges in nanophotonic design is the curse of dimensionality,
which occurs when the increase in data dimensions leads to an exponential growth in the
amount of data required for effective analysis. This phenomenon can significantly degrade
the performance of neural networks. AEs offer a powerful solution to this problem by
effectively reducing the dimensionality of the design space.

Li et al. (2022) demonstrated the effectiveness of AEs in circumventing the curse of
dimensionality. They introduced an unsupervised learning-based inverse design method
that utilizes Bayesian multi-sampling to handle high-dimensional data without evaluating
all possible design scenarios. This approach significantly reduced the computational
resources required for the inverse design process. The researchers applied this method to
design unidirectional transmission nanophotonics, achieving 95% light passage in one
direction while blocking over 60% in the opposite direction. However, they noted that
verification of the actual performance of these manufactured nanostructures was lacking,
highlighting an area for future research.

Building on theoretical simulations, Kiarashinejad, Abdollahramezani ¢ Adibi (2020)
extended the application of AEs to actual sample fabrication. They utilized AEs to reduce
the dimensions of both design and response spaces in electromagnetic (EM)
nanophotonics. This approach simplified multi-to-one design problems into more
manageable one-to-one problems, demonstrating the practical applicability of AEs in
nanophotonic design. However, the researchers identified potential technical issues when
integrating this approach with conventional EM analysis software packages, indicating a
need for further development in this area.

Variations of auto-encoders

Recent research has explored variations of the traditional AE model to enhance its
capabilities in nanophotonic design. Two notable variations are the variational
auto-encoder (VAE) and the conditional variational auto-encoder (CVAE).

Variational auto-encoder
Hong ¢ Nicholls (2022) employed the VAE model to address the curse of dimensionality.
VAEs enhance the latent space learning capability by filtering out confusing or irrelevant
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data. The researchers proposed a method that facilitates the generation of new data
samples closely resembling the original data through simple encoding and decoding
processes. This approach has shown significant computational efficiency advantages in the
design process of thin-film optical films, demonstrating the potential of VAEs in
nanophotonic design.

Conditional variational auto-encoder

Tang et al. (2020) introduced the application of CVAEs to complex physical photonic
device design. Previously used in medical image synthesis and cybersecurity, this study
marked the first application of CVAEs in the context of nanophotonic design. The
researchers demonstrated the effectiveness of CVAEs in designing nanophotonic power
splitters. However, they noted that the generalizability of the CVAE model to other types of
nanophotonics remains uncertain, highlighting an area for future investigation.

Further advancing the application of CVAEs, Zhu et al. (2023) introduced a hybrid
optimization algorithm combined with a generative model using CVAE. This method
encodes and decodes the spectral responses and features of designed nanofilms,
compressing the matching actual spectrum into the latent space. The researchers
demonstrated superior performance of the CVAE-based inverse design approach
compared to alternatives, further establishing the potential of this technique in
nanophotonic design.

Limitations and future directions

The AEs have shown potential in nanophotonic inverse design, but several challenges
persist. A primary issue is the interpretability of latent space representations. While AEs
excel at dimensionality reduction, as demonstrated by Li ef al. (2022) in their work on
unidirectional transmission nanophotonics, the physical meaning of compressed
representations often remains unclear. This lack of clarity can impede the practical
application of AE-based designs, especially in scientific contexts where understanding
underlying physical principles is crucial. Future studies could explore methods to map
latent space dimensions to specific physical parameters of optical devices, potentially
through integrating physics-based constraints in the AE architecture.

The ability of AE models to generalize to novel design spaces not represented in the
training data is another concern. This limitation was evident in the study by Tang et al.
(2020), where the generalizability of their CVAE model to other types of nanophotonics
beyond power splitters was uncertain. Enhancing the extrapolation capabilities of AE
models to new design regimes is essential for their broader application. Research into
transfer learning techniques or developing more robust latent space representations that
capture fundamental physical principles could address this issue.

Integrating AE-based approaches with conventional electromagnetic analysis software
presents technical challenges, as noted by Kiarashinejad, Abdollahramezani ¢ Adibi
(2020) in their work on dimensionality reduction in electromagnetic nanophotonics. This
integration is critical for practically adopting AE-based inverse design methods in
engineering workflows. Future work could focus on developing standardized interfaces or
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middleware solutions that facilitate seamless communication between AE models and
established simulation tools.

A significant limitation highlighted by Li et al. (2022) is the lack of experimental
validation for AE-designed nanostructures. While their theoretical approach achieved
impressive performance in unidirectional light transmission, the actual fabrication and
testing of these designs were not reported. This gap between theoretical design and
practical implementation represents a significant challenge. Future studies should
prioritize the experimental realization of AE-designed optical devices, including the
development of fabrication techniques capable of realizing the complex structures
generated by these models.

Current trends indicate a shift towards more sophisticated AE variants for specific
aspects of optical device design. The progression from basic AEs to VAEs and CVAEs, as
seen in the works of Hong ¢ Nicholls (2022) and Zhu et al. (2023), illustrates this trend.
These advanced models offer enhanced capabilities in generating new design samples and
handling conditional design requirements. Future research may continue this trajectory,
developing increasingly specialized AE architectures that can capture unique
characteristics and constraints of different optical design problems.

The integration of AEs with other optimization techniques is another emerging trend.
The hybrid optimization algorithm combined with a CVAE-based generative model,
proposed by Zhu et al. (2023), exemplifies this approach. This direction suggests a move
towards more comprehensive inverse design frameworks that leverage the strengths of
multiple techniques. Future work could explore the combination of AEs with
gradient-based optimization methods or evolutionary algorithms to create more powerful
and flexible inverse design tools.

The trend towards addressing the curse of dimensionality in nanophotonic design, as
demonstrated by Li et al. (2022) and Kiarashinejad, Abdollahramezani ¢ Adibi (2020), is
likely to remain a key focus. As the complexity of optical devices increases, developing
more efficient dimensionality reduction techniques will be crucial. Future research could
investigate advanced manifold learning techniques or hierarchical AE structures that can
effectively capture multi-scale features in optical device designs.

Several promising directions for future research in AE-based inverse design of optical
devices emerge. The development of physics-informed AEs represents a particularly
promising avenue. By incorporating known physical laws and constraints into the AE
architecture, these models could produce more physically realistic and feasible designs.
This approach could bridge the gap between data-driven and physics-based modeling,
potentially leading to more robust and reliable inverse design methods.

Extending AE-based approaches to handle multi-objective optimization tasks is another
important direction. Many practical optical design problems involve trade-offs between
multiple performance criteria. Developing AE architectures capable of navigating these
complex multi-dimensional optimization landscapes could enable the design of optical
devices with unprecedented combinations of properties.

The application of AEs to inverse design problems involving dynamic or reconfigurable
optical devices represents an unexplored frontier. Most current studies focus on static
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device structures, but many advanced applications require devices that can adapt to
changing conditions. Developing AE models that can capture and optimize the temporal
behavior of optical devices could open new possibilities in fields such as adaptive optics or
programmable photonics. AE models excel at efficient representation learning. However,
addressing the need for novel design generation necessitates an examination of GANS,
which have demonstrated exceptional capabilities in producing new and optimized optical
device designs.

Interpretability and practical realization
The black-box nature of AE latent spaces presents significant challenges for physical
implementation. Unlike traditional design methods where each parameter has clear
physical meaning (like the width of a waveguide directly affecting mode confinement), AE
latent variables often lack intuitive physical interpretation. This is similar to how a
complex recipe might be compressed into a few key instructions, while efficient, important
details about individual ingredients may be lost.

Several approaches can improve the interpretability and practical realization of
AE-based designs:

 Disentangled representations: Developing AE architectures where individual latent
dimensions correspond to specific physical properties, similar to how musical notation
separates pitch, duration, and volume into distinct parameters.

o Physical parameter mapping: Creating mapping functions between latent variables and
physical parameters, acting as a “translation dictionary” between the compressed
representation and fabrication specifications.

» Fabrication simulation feedback: Incorporating simulated fabrication effects into the
training process, allowing the model to learn which design features are most sensitive to
manufacturing variations.

Recent experimental implementations have begun to address these challenges. For
instance, Li ef al. (2022) demonstrated theoretically promising unidirectional light
transmission devices, but their work also highlighted the need for experimental verification
and systematic approaches to translate latent space representations into fabrication-ready
designs.

Generative adversarial network

GANSs have emerged as a powerful tool in the inverse design of optical devices, offering
unique capabilities in generating novel nanophotonic structures. As described by
Aggarwal, Mittal & Battineni (2021), the GAN model comprises two primary components:
a generator and a discriminator, which operate in an adversarial process to learn from data.

Structure and functionality of GANs

The GAN architecture is based on a game-theoretic approach, utilizing the minimax
algorithm. The generator aims to produce synthetic data that closely resembles authentic
data, while the discriminator’s role is to distinguish between real and synthetic samples.
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This adversarial interplay drives both components to improve continuously: the generator
strives to create increasingly realistic data, while the discriminator hones its ability to
detect subtle differences between real and generated samples.

Figure 6 illustrates the configuration of a GAN used in the inverse design of optical
devices. This setup is particularly advantageous for creating novel nanophotonic designs
that do not exist in current datasets, making it a valuable tool for pushing the boundaries of
optical device design.

Applications in nanophotonic design

The application of GANs in nanophotonic design has shown significant promise,
particularly in generating 2D structures with specific optical properties. Several recent
studies have demonstrated the effectiveness of GAN-based approaches in this field (Kim
et al., 2022; Dizaji, Habibiyan & Arabalibeik, 2022).

Maximizing transmittance at specific wavelengths

Kim et al. (2022) proposed a GAN-based inverse design method aimed at achieving
maximum transmittance at specific wavelengths. Their approach addressed a common
challenge in GAN training: the stability of the adversarial process. To mitigate this issue,
they designed the discriminator to be deliberately weaker than the generator, promoting a
more stable training process. This strategy allowed for the generation of nanophotonic
devices with desired characteristics more reliably. Furthermore, Kim et al. (2022)
introduced the concept of conditional GANs with an added control vector and a
controllable classifier. This innovation enabled the generation of nanophotonic devices
with specific, desired characteristics. By incorporating these conditional elements, their
method offered greater control over the generated designs, allowing for more targeted and
application-specific outcomes.

Inverse design of miniaturized spectrometers

In a related study, Dizaji, Habibiyan ¢ Arabalibeik (2022) applied GAN-based techniques
to the inverse design of miniaturized spectrometers. Spectrometers play a crucial role in
accurate spectral analysis across various fields, including pharmaceuticals, food science,
and materials engineering. The miniaturization of these devices presents significant
challenges, making it an ideal application for advanced inverse design methods. Dizaji,
Habibiyan ¢ Arabalibeik (2022) employed a two-step approach in their design process.
First, they used an AE to identify the optimal spectrum of interaction between filters and
light. This step helped in defining the target characteristics for the spectrometer design.
Subsequently, they demonstrated the effectiveness of using a GAN-based neural network
to physically design the optical components that would produce the optimal spectrum
identified by the AE.

This hybrid approach, combining AEs and GANs, showcases the potential for
integrating different deep learning architectures in the inverse design process. By
leveraging the strengths of both AEs (in feature extraction and dimensionality reduction)
and GANS s (in generating novel designs), Dizaji, Habibiyan & Arabalibeik (2022) were able
to address the complex challenge of spectrometer miniaturization effectively.
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Figure 6 Schematic representation of a GAN for optical device inverse design.
Full-size ] DOI: 10.7717/peerj-cs.2895/fig-6

Limitations and future directions
The GANs have demonstrated potential in optical device inverse design, yet several
challenges persist. A primary issue is ensuring the physical realizability of generated
structures. While GANs excel at creating novel designs, as shown by Kim et al. (2022) in
their work on maximizing transmittance at specific wavelengths, translating these designs
into manufacturable structures remains problematic. This limitation highlights the need to
directly incorporate physical constraints and fabrication considerations into the GAN
architecture. Future research could focus on developing physics-informed GANs that
integrate known physical laws and manufacturing limitations into the generative process.
While GANs offer powerful generative capabilities for nanophotonic design, they face
several inherent challenges that affect their practical implementation. Training instability
remains a significant obstacle, often manifesting as mode collapse where the generator
produces limited design varieties, or oscillating behavior where the model fails to converge.
These issues are particularly problematic in nanophotonic applications where design
diversity is essential for exploring novel solutions. Advanced GAN variants such as
Wasserstein GAN (Arjovsky, Chintala ¢ Bottou, 2017) could address these stability
concerns by using an alternative loss function that provides more reliable gradients during
training. Additionally, GANSs frequently generate artifacts or physically unrealizable
structures that, while mathematically satisfying the optimization criteria, violate
manufacturing constraints or electromagnetic principles. Incorporating physics-based
constraints directly into the adversarial training process could significantly improve the
practicality of GAN-generated designs. Future research should explore these hybrid
approaches that combine the creative potential of GANs with domain-specific knowledge
to ensure both innovative and manufacturable nanophotonic structures.
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The stability of GAN training in optical device design contexts presents another
significant challenge. Kim et al. (2022) addressed this by deliberately designing the
discriminator to be weaker than the generator, but this approach may limit overall GAN
performance. Developing robust training techniques specifically for optical design
applications is crucial for broader GAN adoption in this field. Future work could explore
adaptive training strategies that dynamically adjust the balance between the generator and
discriminator based on target optical property complexity.

Current GAN applications in optical device design primarily focus on 2D nanophotonic
structures, as seen in both reviewed studies. Extending GAN-based approaches to 3D
optical structure design represents a crucial next step. This extension would allow for more
complex and versatile optical device creation but also introduces significant challenges in
computational complexity and data representation. Future research could investigate novel
GAN architectures capable of efficiently generating and optimizing 3D nanophotonic
structures.

The validation of GAN-generated designs through experimental testing remains a
critical challenge. While both Kim et al. (2022) and Dizaji, Habibiyan ¢ Arabalibeik (2022)
demonstrated promising results in simulation, practical implementation and testing of
these designs were not fully explored. Bridging this gap between computational design and
experimental validation is essential for practically adopting GAN-based inverse design
methods. Future studies should prioritize the fabrication and testing of GAN-designed
optical devices, including developing feedback loops that can inform and improve GAN
models based on experimental results.

Analyzing trends in the reviewed articles, we observe a shift towards more targeted and
conditional GAN architectures. The work of Kim et al. (2022) on conditional GANs with
added control vectors represents this trend, allowing for more precise control over
generated nanophotonic structures. This direction suggests a move towards more
application-specific GAN models in optical device design. Future research is likely to
continue this trajectory, developing increasingly specialized GAN architectures that can
capture and optimize specific optical properties or device functionalities.

Another emerging trend is the integration of GANs with other deep learning
techniques, as exemplified by Dizaji, Habibiyan & Arabalibeik (2022) in their combination
of autoencoders and GANs for spectrometer design. This hybrid approach leverages the
strengths of multiple techniques to address complex design challenges. Future work could
explore more sophisticated combinations of GANs with other machine learning models,
such as reinforcement learning for optimizing device performance or graph neural
networks for capturing complex structural relationships in optical devices.

Several promising directions for future research in GAN-based inverse design of optical
devices emerge. The development of multi-objective GAN models represents a particularly
important avenue. Many practical optical design problems involve trade-ofts between
multiple performance criteria. Creating GAN architectures capable of simultaneously
optimizing multiple optical properties could lead to more versatile and efficient design
processes. This could involve development of novel loss functions that balance different
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optical characteristics or the creation of GAN ensembles that specialize in different aspects
of device performance.

Incorporating advanced electromagnetic simulation techniques directly into the GAN
training process is another crucial direction. While current approaches often rely on
simplified physical models or post-hoc simulation, integrating more sophisticated
electromagnetic solvers into the GAN architecture could lead to more accurate and reliable
design outputs. This integration presents significant challenges regarding computational
efficiency and differentiability, but it could dramatically improve the practicality of
GAN-generated designs.

Applying GANs to dynamic or tunable optical devices represents an unexplored frontier
in the field. Most current studies focus on static device structures, but many advanced
applications require devices that can adapt to changing conditions. Developing GAN
models that can generate designs for reconfigurable or actively tunable optical devices
could open new possibilities in fields such as adaptive optics or programmable photonics.
Lastly, addressing the interpretability of GAN-generated designs remains a significant
challenge. While GANs can produce effective designs, explaining why these designs work
often proves challenging. Enhancing the interpretability of GAN-generated optical devices
is essential for building trust in these methods among the scientific community. Future
research could investigate techniques for extracting physical insights from trained GAN
models. Specifically, convolutional attention mechanisms could help identify which spatial
features of the device structure most strongly influence particular optical properties.
Additionally, incorporating graph attention networks could provide interpretable
representations of how different components in the nanophotonic structure interact to
produce desired optical behaviors.

Manufacturing challenges and practical implementation
While GANs show theoretical promise, their practical implementation faces specific
manufacturing challenges. The complex, often non-intuitive structures generated by
GANs may include features that are difficult to fabricate using current nanofabrication
techniques. Think of GAN-generated designs as intricate sculptures that might look
perfect in a digital environment but contain details too fine for real-world tools to carve.
For example, high-aspect-ratio features (very tall, thin structures) commonly appearing in
GAN outputs often collapse during fabrication due to mechanical instability, similar to
how a tall, thin clay structure might collapse before firing.

To address these challenges, several practical approaches can be implemented:

o Fabrication-aware constraints: Integrating manufacturing rules directly into the GAN
training process, similar to how a sculptor must consider the properties of their material.
For instance, minimum feature size limitations (typically 10-100 nm depending on the
fabrication technique) can be encoded as penalties in the loss function.

» Two-stage optimization: First generating an ideal design, then refining it through a
secondary clean-up algorithm that smooths problematic features while preserving
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Figure 7 Schematic representation of a RL framework for optical device inverse design.
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optical functionality—analogous to how a rough sketch might be refined into a detailed
blueprint.

» Robust performance evaluation: Testing generated designs across parameter variations
to ensure performance remains stable despite small fabrication deviations, similar to
how engineers build tolerance into mechanical parts.

These practical considerations are essential for bridging the gap between
computationally optimized designs and successfully fabricated devices. Recent work by
Zheng et al. (2024) in flexible electronics fabrication demonstrates how manufacturing
constraints can be successfully integrated into the design process, producing devices that
maintain performance even under physical deformation.

Reinforcement learning

RL has emerged as a powerful approach in the inverse design of optical devices, offering
unique capabilities in handling complex, sequential decision-making processes. As
described by Sutton ¢ Barto (2018), RL models are composed of agents, environments,
states, actions, and rewards, creating a framework where an agent learns to execute specific
actions through interactions with its environment.

Structure and functionality of RL

In the context of optical device inverse design, RL primarily applies to scenarios where
design decisions must be made sequentially, with each decision potentially affecting
subsequent choices and outcomes. The objective of RL models in this domain is to guide
the agent’s behavior towards maximizing cumulative rewards over time, thereby
incrementally improving design policies.
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Figure 7 illustrates the configuration of an RL system used in the inverse design of
optical devices. In this setup, the state represents the current configuration of the optical
device and its environment, influencing the agent’s action selection. The actions
correspond to design choices or parameter adjustments, while the rewards reflect the
performance outcomes of these decisions, typically measured in terms of desired optical
properties or device efficiency.

Applications in nanophotonic design

The application of RL in nanophotonic design has shown significant promise, particularly
in optimizing complex, multi-parameter systems. Several recent studies have
demonstrated the effectiveness of RL-based approaches in this field (Jiang ¢» Yoshie, 2022;
Zhao et al., 2022, 2023; Sajedian, Badloe & Rho, 2019; Hwang, Lee ¢ Seok, 2022).

Autonomous design of nano-thin film devices

Jiang ¢ Yoshie (2022) applied RL to the design of nano-thin film devices, achieving a fully
autonomous design process without human intervention. Their approach optimized
parameters such as layer thickness and structure size, managing the entire design process
from initial concept to final optimization. This work demonstrated the potential of RL in
handling continuous feedback-based optimization of challenging parameters, including
material selection in thin film design. The ability to autonomously navigate complex
design spaces represents a significant advancement in optical device inverse design,
potentially reducing the need for extensive human expertise and accelerating the design
process.

Data-efficient optimization strategies

Building on the concept of combining evolutionary algorithms with RL, Zhao et al. (2022)
introduced an iterative optimization strategy using deep greedy algorithms. This approach
enhanced performance through iterative processes while reducing dependency on large
training datasets. The method efficiently performed inverse design for nanophotonics
composed of unique material heterojunctions. However, the authors noted a potential risk
of overfitting due to limited training datasets, highlighting the importance of balancing
data efficiency with model generalization in RL-based design approaches.

Q-learning for nanophotonic design
Zhao et al. (2023) employed a Q-learning algorithm, known for its ability to learn optimal
state-value functions in problems involving stochastic transitions and rewards, from which
appropriate policies can then be derived. This approach addressed some of the limitations
of traditional optimization methods in nanophotonic design. However, the authors
acknowledged a known issue with deep Q-learning: the potential for overestimation of
Q-values due to the use of the same policy for action selection and evaluation.

To mitigate this issue, Sajedian, Badloe ¢ Rho (2019) applied double deep Q-learning
(DDQN) in nanophotonics. They conducted simulations on transmission and reflectivity,
deriving rewards from the color differences between the resulting and target colors. This
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application of DDQN demonstrated the potential for more stable and accurate RL-based
optimization in optical device design.

Scalable RL for multiple design candidates

Addressing a common limitation in RL-based inverse design, the presentation of only a
single design candidate, Hwang, Lee ¢ Seok (2022) proposed a deep reinforcement neural
network model called Inverse DEsign Agent (IDEA). This model was designed for the
creation of 2D optical devices, with the agent trained to produce outcomes for previously
unconsidered optical properties. By integrating a tree-based algorithm, IDEA overcame
the single-candidate limitation of previous RL methods, generating multiple design
candidates and significantly reducing training time.

Limitations and future directions

Significant promise has been demonstrated in optical device inverse design through RL
approaches, though several challenges remain. One key issue is the balance between
exploration and exploitation in complex design spaces. While Jiang ¢ Yoshie (2022)
demonstrated RL’s potential in autonomously designing nano-thin film devices, efficiently
exploring vast parameter spaces remains difficult. This challenge necessitates more
sophisticated exploration strategies for effectively navigating high-dimensional design
spaces typical in optical device optimization. Future studies could investigate adaptive
exploration techniques that dynamically adjust based on the current state of the design
process.

The data efficiency of RL models in optical device design presents another significant
challenge. Zhao et al. (2022) addressed this by introducing an iterative optimization
strategy using deep greedy algorithms, which reduced dependency on large training
datasets. However, the risk of overfitting due to limited data persists. Developing
data-efficient RL algorithms specifically for optical design applications is crucial for
broader adoption. Future work could explore meta-learning approaches enabling RL
agents to quickly adapt to new design tasks with minimal data or investigate techniques for
generating synthetic training data that accurately represents optical system physics.

Stability and convergence of RL algorithms in optical device design contexts require
turther investigation. The work of Zhao et al. (2023) on Q-learning and Sajedian, Badloe &
Rho (2019) on DDQN highlighted challenges in ensuring stable learning and avoiding
overestimation of action values. Enhancing RL algorithm stability for optical design tasks is
essential for producing reliable and consistent results. Future research could explore more
robust RL architectures or investigate hybrid approaches combining RL with traditional
optimization techniques to ensure more stable convergence to optimal designs.

Current trends indicate a shift towards more sophisticated RL architectures for specific
aspects of optical device design. The development of IDEA by Hwang, Lee ¢ Seok (2022),
which addresses the limitation of single candidate generation in previous RL methods,
exemplifies this trend. This direction suggests a move towards more versatile and scalable
RL models in optical device design. Future research is likely to continue this trajectory,

Baek and Lee (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2895 29/42


http://dx.doi.org/10.7717/peerj-cs.2895
https://peerj.com/computer-science/

PeerJ Computer Science

developing increasingly specialized RL architectures that can handle a broader range of
optical design problems and generate multiple viable design candidates.

The integration of RL with other computational techniques is an emerging trend. The
combination of RL with tree-based algorithms, as seen in Hwang, Lee ¢» Seok’s (2022)
work, suggests a move towards hybrid approaches leveraging the strengths of multiple
techniques. Future work could explore more sophisticated combinations of RL with other
machine learning models or physics-based simulations to create more comprehensive
inverse design frameworks.

Several promising directions for future research in RL-based inverse design of optical
devices emerge. Developing physics-informed RL models represents a particularly
important avenue. Incorporating known physical laws and constraints directly into RL
framework could lead to more realistic and manufacturable design outputs. This approach
could involve developing custom reward functions that reflect physical principles or
designing state representations that explicitly encode relevant physical parameters.

Extending RL approaches to handle multi-objective optimization tasks is another
crucial direction. Many practical optical design problems involve trade-offs between
multiple performance criteria. Developing RL frameworks capable of navigating complex
multi-objective optimization landscapes could enable the design of optical devices with
unprecedented combinations of properties. This could involve the development of novel
multi-objective RL algorithms or the adaptation of existing techniques from other fields to
specific challenges of optical device design.

The application of RL to dynamic or reconfigurable optical device design represents an
unexplored frontier. Most current studies focus on static device structures, but many
advanced applications require devices that can adapt to changing conditions. Developing
RL models that can generate designs for tunable or actively controlled optical devices could
open new possibilities in fields such as adaptive optics or programmable photonics. This
would require the development of RL frameworks that can optimize not just initial device
structure, but also control policies for dynamic operation.

Addressing the scalability of RL-based approaches to larger and more complex optical
systems is crucial for their broader adoption in industrial applications. While current
studies have focused on relatively simple optical devices, many practical applications
require the design of integrated optical systems comprising multiple components.
Developing hierarchical RL architectures capable of designing complex, multi-component
optical systems could significantly expand the impact of these techniques in real-world
applications. This could involve the development of modular RL approaches that can
decompose complex design tasks into manageable sub-problems. Additionally, the
interpretability of RL-based design decisions remains a significant challenge in optical
device inverse design. While RL models can achieve impressive results, understanding the
reasoning behind specific design choices is often difficult. This lack of interpretability can
hinder the adoption of RL techniques in scientific and engineering communities where
understanding underlying principles is crucial. Future research should focus on developing
explainable RL models that provide insights into the decision-making process.
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Practical implementation and recent applications

The transition from computational models to practical fabrication represents a critical step
in validating inverse design methodologies. Recent advances in flexible electronics offer
valuable insights into practical implementation challenges. For instance, Zheng et al.
(2024) demonstrated successful fabrication of flexible electrolyte-gated transistors (EGTs)
using indium zinc tin oxide (IZTO) nanowires, achieving self-adaptive behavior through a
facile electrospinning technique. Their approach maintained excellent electrical properties
even under significant bending conditions and achieved high recognition accuracy in
neuromorphic applications. This implementation highlights how careful material selection
and fabrication processes can address key challenges in translating computational designs
to physical devices.

The manufacturing challenges observed in Zheng et al. (2024) provide valuable lessons
for optical device fabrication. Specifically, they overcame structural integrity issues during
the fabrication process by employing a multi-stage heat treatment approach, initial baking
at 150 °C followed by UV irradiation and precise annealing at 500 °C with controlled
heating rates. Similar methodologies could be applied to address the fragility concerns
often encountered when fabricating inverse-designed nanophotonic structures.
Additionally, their electron beam lithography approach achieved dimensional accuracy
within nanometer ranges, a precision level crucial for many optical applications where
performance depends critically on exact structural parameters.

When applied to deep learning inverse design workflows, these practical insights suggest
that post-processing steps must be incorporated into the design optimization loop. GANs
and AEs particularly would benefit from embedding these fabrication constraints directly
into their loss functions or latent space representations. This integration would ensure that
generated designs maintain not only optimal optical performance but also structural
feasibility under real-world manufacturing conditions.

EXPERIMENTAL VALIDATION METHODS AND STRATEGIES
Physical fabrication and experimental validation

Gostimirovic et al. (2023) demonstrated comprehensive physical validation of their deep
learning approach through actual device fabrication. They employed electron beam
lithography to fabricate silicon nanophotonic devices on silicon-on-insulator (SOI) wafers.
The fabricated devices were characterized using scanning electron microscopy imaging
and optical measurements to analyze structural deviations and performance metrics. Their
experimental results validated the effectiveness of their CNN model in correcting
fabrication-induced structural variations, demonstrating improved dimensional accuracy
and optical performance compared to conventional designs.

Song et al. (2021) conducted experimental validation through the fabrication and
characterization of silicon-based power splitters. Their fabrication process utilized electron
beam lithography and dry etching techniques on SOI wafers. The experimental validation
involved measuring transmission spectra of the fabricated devices and comparing them
with both simulation predictions and deep learning model outputs. Their results
demonstrated successful validation of wavelength and polarization dependencies, with
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experimental measurements closely matching the model predictions within acceptable
tolerances.

Simulation-based validation

Chen et al. (2022) implemented a rigorous simulation-based validation approach using
Lumerical FDTD Solutions. Their physics-augmented deep learning framework was
validated against a comprehensive dataset of over 10,000 diverse structural configurations.
The validation process focused particularly on electromagnetic field distribution
predictions, demonstrating high accuracy in predicting optical responses across various
geometric parameters. The simulation results showed excellent agreement between the
model predictions and finite-difference time-domain (FDTD) calculations, with average
prediction errors below 5%.

Kojima et al. (2021) employed a dual-simulation validation strategy, combining FDTD
and fine element method (FEM) methods through Lumerical FDTD Solutions and
COMSOL Multiphysics. Their validation dataset comprised over 20,000 design variants,
extensively testing the model’s predictive capabilities across multiple wavelength regimes.
The cross-validation between different simulation methods provided robust verification of
their deep learning model’s accuracy and reliability in predicting optical device
performance.

Shi et al. (2022) utilized CST Studio Suite for comprehensive electromagnetic
simulations, validating their capsule network-based design approach. Their validation
methodology encompassed both time-domain and frequency-domain simulations across
more than 5,000 nanostructure configurations. The validation process particularly focused
on structural symmetry and scaling effects, demonstrating the model’s reliability in
predicting optical responses. Their simulation results showed strong correlation between
predicted and simulated performance metrics, with mean squared errors consistently
below predetermined thresholds.

Comparative analysis case of deep learning techniques

The investigation of deep learning techniques for color generation in nanophotonic
devices reveals nuanced capabilities across different methodological approaches. Drawing
from the pioneering work of Gao et al. (2019), MLP architectures demonstrate remarkable
potential in silicon-based color design, capable of generating over a million distinct colors.
However, their performance critically depends on the comprehensiveness and diversity of
training datasets.

Generative Adversarial Networks (GANs) present a complementary approach, offering
unprecedented capabilities in generating novel nanophotonic structures with unique
color-generating properties. These models excel in navigating complex design spaces,
potentially discovering color production mechanisms not previously conceived through
traditional design methodologies.

The inherent trade-offs between these techniques become evident when examining their
specific characteristics. MLPs offer moderate computational efficiency but face limitations
in handling highly complex design scenarios. Conversely, GANs can manage intricate
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Table 3 Comparison of deep learning methods in nanophotonic color design.

Method Color generation Computational efficiency Design complexity
MLP Million colors Moderate Limited
GAN Novel designs Low High

structural designs but encounter significant challenges in ensuring the physical realizability
of generated nanostructures.

This comparative analysis underscores a critical insight: the selection of deep learning
techniques in nanophotonic color generation must be meticulously aligned with specific
application requirements, computational constraints, and desired design outcomes. The
evolving landscape of inverse design methodologies demands a nuanced understanding of
each technique’s unique strengths and limitations.

Experimental validation remains a crucial frontier, bridging the gap between
computational design and practical implementation. Future research should prioritize
comprehensive validation strategies that can effectively translate these advanced
computational approaches into manufacturable optical devices with precise
color-generating capabilities.

Table 3 represents of sample such as different deep learning methods demonstrate
varying capabilities in nanophotonic color design.

DISCUSSION

This review analyzed recent deep learning methodologies for the inverse design of
nanophotonic devices. Undertaking a study to systematically design and validate each deep
learning model through to the actual production of devices presents significant challenges.
The investigation into inverse design for nanophotonic devices utilizing deep generative
models is significant, as it allows for the evaluation of the suitability of various deep
learning models in the design of specific devices.

Our analysis indicates that MLP networks have been widely used in early research due
to their straightforward implementation and ability to model complex nonlinear
relationships between device parameters and optical properties. Studies such as those by
Liu et al. (2022, 2023) demonstrated the use of MLPs in designing quantum nanoparticle
shells, addressing challenges like shell thickness and electromagnetic environment
interactions. However, MLPs often require large datasets and may struggle with scalability
as device complexity increases.

CNNss have shown potential in handling spatial data inherent in optical device design,
particularly for 2D and 3D structures. Researchers like Song et al. (2020, 2021) utilized
CNNs to manage various parameters, including wavelength and polarization, enhancing
computational efficiency in the inverse design process. However, the application of CNNs
has been limited, possibly due to the scarcity of image data representing optical devices and
the computational cost associated with training deep CNN architectures.
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AEs, including their variants like VAEs and CVAEs, have been effective in addressing
the curse of dimensionality in nanophotonic design. By reducing the dimensionality of
complex design spaces, AEs facilitate efficient inverse design processes. Studies by Li et al.
(2022) and Tang et al. (2020) highlighted the utility of AEs in unsupervised learning-based
inverse design, although challenges remain in integrating these models with conventional
electromagnetic analysis tools and verifying the manufacturability of the generated
designs.

GANSs have been applied to generate novel nanophotonic structures with desired optical
properties. Kim et al. (2022) introduced a GAN-based inverse design method,
incorporating conditional GANs with controllable classifiers to achieve specific design
outcomes. While GANs show promise in generating diverse designs, they can be difficult
to train due to instability in the adversarial process and may require large amounts of data.

RL approaches have been explored for autonomous and sequential decision-making in
optical device design. Jiang ¢» Yoshie (2022) demonstrated the use of RL for fully
autonomous design of nano-thin film devices, optimizing parameters like layer thickness
and material selection. RL methods can effectively handle complex optimization tasks but
may suffer from overfitting due to limited training data and require careful design of
reward functions to guide the learning process appropriately.

Although all five methods are currently in use, MLPs have been the most frequently
employed, with AEs and RL also seeing considerable application. The application of GANs
appears to be less prominent, possibly due to the complexities in training and the
advancements of other generative models. Similarly, the use of CNNs has been limited,
which may be attributed to the challenges in acquiring sufficient image data and the
computational resources required.

A common limitation across these methods is the need for large, high-quality datasets to
train the models effectively. Data scarcity can lead to overfitting and limit the
generalizability of the models to new design spaces. Additionally, integrating these deep
learning models with existing simulation tools and experimental validation processes
remains a challenge. Future research could focus on leveraging state-of-the-art
architectures such as Transformers (Vaswani et al., 2017) and diffusion models (Ho, Jain
¢ Abbeel, 2020), which have shown remarkable capabilities in other domains.

While research on applying Transformers and diffusion models to inverse design of
optical devices is currently limited, their remarkable success in computer vision and
natural language processing suggests significant potential for nanophotonic applications.
Optical device design involves complex interactions between various parameters
including structural geometry, material properties, and wavelength characteristics. The
self-attention mechanisms in Transformers enable learning relationships between all these
elements simultaneously, allowing the model to effectively capture complex nonlinear
relationships that are crucial for device optimization. Additionally, the iterative
refinement process inherent in diffusion models presents a promising approach for
generating high fidelity optical device designs, as their denoising methodology aligns well
with the need for precise structural control in nanophotonics. The proven ability of
these models to handle high-dimensional data and generate diverse yet physically
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plausible outputs makes them particularly appealing for next generation inverse design
systems.

By incorporating these advanced models, it may be possible to develop novel inverse
design methodologies that surpass current techniques. Furthermore, adopting a 3D
structural perspective in the inverse design process, particularly utilizing advancements in
generating high-fidelity 3D images, holds promise for enhancing device design efficiency.
This approach could streamline the design process in the pre-production phase compared
to traditional 2D methodologies. Finally, integrating the inverse design process with actual
fabrication and experimental validation is crucial. Follow-up studies that include the
validation of inverse-designed nanophotonic devices through fabrication-level processes
are needed to ensure that the designs produced by these models are practically realizable
and can meet the desired performance criteria in real-world applications.

CONCLUSION

This review has explored the recent advancements in the inverse design of optical devices
using deep generative models. The integration of deep learning techniques into the design
process has opened new avenues for creating optical devices with desired properties,
significantly enhancing efficiency and expanding the range of possible designs.

While this review focused on device-level inverse design, integrating inverse design
across multiple scales could revolutionize optical device development. Recent advances in
molecular design (Anstine ¢ Isayev, 2023; Mroz et al., 2022), and materials discovery
(Sanchez-Lengeling ¢» Aspuru-Guzik, 2018) using machine learning suggest promising
opportunities for a unified multi-scale inverse design framework. Such an approach could
enable simultaneous optimization of material properties and device architectures,
potentially leading to unprecedented device performance and functionality. This holistic
strategy represents an exciting direction for next-generation optical devices.

The field of inverse design in nanophotonics stands at the cusp of a transformative era.
The rapid evolution of deep generative models, particularly Transformers (Vaswani et al.,
2017) and diffusion models (Ho, Jain ¢» Abbeel, 2020), presents exciting opportunities for
addressing current limitations in optical device design. While these models have
demonstrated remarkable capabilities in natural language processing and image
generation, their potential in nanophotonics remains largely untapped. Adapting the
principles of Transformers to optical device design could revolutionize how we capture
and process complex relationships in nanophotonic structures. The self-attention
mechanisms inherent in Transformer architectures might enable more sophisticated
modeling of long-range interactions within optical devices, potentially leading to
designs that exploit subtle physical phenomena currently overlooked by traditional
methods. Diffusion models, with their unique approach to generative modeling, could
offer novel strategies for producing high-fidelity device designs. Their iterative refinement
process might be particularly well-suited to navigating the complex design spaces
encountered in nanophotonics, potentially yielding more stable and reliable design
outcomes. The application of these models to inverse design tasks could significantly
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enhance our ability to generate diverse, yet physically realizable, optical device
configurations.

A promising direction for future research lies in the adoption of three-dimensional
structural perspectives in the inverse design process. By leveraging advancements in
generating high-fidelity 3D representations, as demonstrated in fields like computer vision
(Mildenhall et al., 2021; Kerbl et al., 2023), we could dramatically enhance the efficiency
and accuracy of device design. This approach could enable more comprehensive modeling
of optical phenomena in complex structures, potentially streamlining the pre-production
phase compared to traditional two-dimensional methodologies.

The integration of deep learning-based inverse design with fabrication and
experimental validation processes represents a critical frontier. Ensuring that generated
designs are not only theoretically optimal but also practically realizable and performant in
real-world applications is paramount. This challenge necessitates close collaboration
between computational scientists and experimental physicists, bridging the gap between

theoretical designs and practical implementations.

ABBREVIATION

Table 4 introduces an Abbreviations Table as attached to clarify technical terms.

Table 4 Abbreviations and expansions in optical device and deep learning terminology.

Abbreviation Expansion Meaning

MLP multi-layer perceptron Neural network with multiple hidden layers

CNN convolutional neural network Deep learning model for processing spatial data

AE auto-encoder Neural network for data compression and reconstruction
VAE variational auto-encoder AE variant with probabilistic encoding

CVAE conditional variational auto-encoder VAE with additional conditional information

GAN Generative Adversarial Network Generative model with competing neural networks

RL reinforcement learning Machine learning approach based on reward-driven learning
DDQN double deep Q-learning Advanced Q-learning technique

IDEA Inverse DEsign Agent Deep reinforcement learning model for design

FDTD finite-difference time-domain Computational electromagnetic simulation method

FEM finite element method Numerical technique for solving complex engineering problems
SO1 silicon-on-insulator Semiconductor wafer technology

EM electromagnetic Relating to electric and magnetic field interactions

DBR distributed Bragg reflector Optical mirror constructed from multiple dielectric layers
LED light emitting diode Semiconductor device emitting light

OLED organic light emitting diode Light-emitting diode using organic semiconductors
MEMS micro-electro-mechanical systems Microscale mechanical and electronic devices

NIR near-infrared Electromagnetic radiation wavelength range

QD quantum dot Nanoscale semiconductor particle

PCW photonic crystal waveguide Optical waveguide using periodic optical structure
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