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ABSTRACT
Background. In the last twenty years, new methodologies have made possible the
gathering of large amounts of data concerning the genetic information and metabolic
functions associated to the human gut microbiome. In spite of that, processing all this
data available might not be the simplest of tasks, which could result in an excess of
information awaiting proper annotation. This assessment intended on evaluating how
well respected databases could describe a mock human gut microbiome.
Methods. In this work, we critically evaluate the output of the cross–reference between
the Uniprot Knowledge Base (Uniprot KB) and the Kyoto Encyclopedia of Genes and
Genomes Orthologs (KEGG Orthologs) or the evolutionary genealogy of genes: Non-
supervised Orthologous groups (EggNOG) databases regarding a list of species that
were previously found in the human gut microbiome.
Results. From a list which contemplates 131 species and 52 genera, 53 species and 40
genera had corresponding entries for KEGG Database and 82 species and 47 genera
had corresponding entries for EggNOG Database. Moreover, we present the KEGG
Orthologs (KOs) and EggNOG Orthologs (NOGs) entries associated to the search
as their distribution over species and genera and lists of functions that appeared in
many species or genera, the ‘‘core’’ functions of the human gut microbiome. We
also present the relative abundance of KOs and NOGs throughout phyla and genera.
Lastly, we expose a variance found between searches with different arguments on the
database entries. Inferring functionality based on cross-referencing UniProt and KEGG
or EggNOG can be lackluster due to the low number of annotated species in Uniprot
and due to the lower number of functions affiliated to the majority of these species.
Additionally, the EggNOG database showed greater performance for a cross-search
with Uniprot about a mock human gut microbiome. Notwithstanding, efforts targeting
cultivation, single-cell sequencing or the reconstruction of high-quality metagenome-
assembled genomes (MAG) and their annotation are needed to allow the use of these
databases for inferring functionality in human gut microbiome studies.
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INTRODUCTION
High-throughput sequencing (HTS) of DNA allows for the comparative analyses of
diversity, abundance, important functional genes and their traits, without the need of
cultivating individual microbes and at far greater depths than ever before (Weinstock, 2012).
Full functional annotation is limited to those organisms that have undergone isolation and
extensive characterization while the vast majority were not yet studied and the annotation
is based on the similarity to the genomes of very few studied model organisms (Pham
& Kim, 2012). However it is important to point out that the view over this paradigm
has been changing (Martiny, 2019). HTS as cultivation–independent techniques brought
benefits to the microbiome field by expanding our knowledge on many environments
as, for instance, the human gut microbiome (Goodman et al., 2009; Bella et al., 2013). The
steps of DNA extraction, library preparation and sequencing of DNA became a routine
in laboratories and companies in the last twenty years after the sequencing of the first
bacterial genome (Fleischmann et al., 1995; Loman & Pallen, 2015). Currently, it is possible
to generate an extraordinary amount of data and to correlate this information with healthy
and unhealthy conditions of the human body (Cryan & Dinan, 2012; Shreiner, Kao &
Young, 2015). However, the available experimental and bioinformatics methods leave
space for bias and unreliable results (McLaren, Willis & Callahan, 2019). Well-established
HTS methods can present high sequencing error rates, which could lead to wrongful
assignment of taxonomy. Besides the issues with the methodology, there are also issues
with database updates considering the ever-growing amount of data (Song, Lee & Nam,
2018). Another issue that has to be dealt with when researching a given microbiota is the
choice of binning approach, a group of methods that can be used to cluster contigs into
what would be representative of a single population genome. This step is considered a
bottleneck in metagenomics studies since everything that is inferred about a certain study
depends on the sensitivity of the binning methodology. The results obtained with binning
methodologies are not always trustworthy, and this can lead to taxonomic and functional
associations that do not resemble reality (Strous et al., 2012).

The quality of the inferred functions in a microbial community depends on the presence
of similar sequences in the database used for comparison. According to the assessment
of taxonomical and functional profiles in microbial ecology studies, the analysis suffers
from theoretically unresolvable arbitrariness and ambiguities mainly because there is not
a correct scale to be used when comparing the taxonomy and the functions associated to a
microbiome (Inkpen et al., 2017).

In 2010, Qin and colleagues described the attainment of 576.7 gigabases of DNA
sequences in a study with 124 subjects, which resulted in 3.3 million non-redundant
microbial genes, as a part of the MetaHIT (Metagenomics of the Human Intestinal Tract)
project (Erlich & The MetaHIT Consortium, 2010). Most of these sequences were found
to be from bacterial origin, some of them from archaea, with very little representation of
eukaryotes and viruses. From all microbial species found in the study, the authors estimate
that 160 are shared between most of the subjects (Qin et al., 2010).

Dias et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.289 2/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.289


The relationship between taxonomy and function is becoming of utmost importance
in microbiome studies since the establishment of the Koch’s postulates (Koch, 1982;
Neville, Forster & Lawley, 2018). Therefore, large metagenome projects such as the Human
Microbiome Project have deepened our understanding about the functional composition in
the human gut to the level of describing ten core pathways in this environment (Lloyd-Price
et al., 2017). Inferences that establish a relationship between microbiome profiles and their
associated functions are often achieved through the cross referencing of different databases,
combining and validating the shared information (Park et al., 2010; Huerta-Cepas et al.,
2016; Franzosa et al., 2018).

In this work, we used the entries from Uniprot Knowledge Base (Uniprot KB) that
were cross-referenced to the Kyoto Encyclopedia of Genes and Genomes Database (KEGG
Database) and to the Evolutionary genealogy of genes: Non-supervised Orthologous
Groups (EggNOG Database). The UniprotKB is recognized as one of the largest protein
repositories available (The Uniprot Consortium, 2017). It contains more than 100 cross-
referenced databases and combines entries curated manually (Swissprot) and entries
that were automatically annotated without review (TrEMBL). Currently only 12% of the
database entries have gone through curated annotation (The Uniprot Consortium, 2017).
The KEGG database is among the world’s most used biological databases and helps to
connect sets of genes to high-level functions through the grouping of genes in KEGG
Orthologies (KO) (Kanehisa et al., 2015). The KOs supply the link between pathways and
modules. KOs are organized in four levels of functional information from the first more
broad to the fourth and more specific level. This system allows that experimental evidence
of a function obtained from a specific organism to be extended to another one that has
a gene associated to that same KO (Kanehisa et al., 2015; Kanehisa et al., 2018; Mao et al.,
2005). A different database for functional characterization for inferred orthologous groups
is EggNOG, which uses two parallel approaches of summarizing known attributes of group
members and determines which annotations can be robustly propagated to the group
as a whole. This database is also prominent in the field, focusing on the formation and
identification of orthologous groups (OGs) instead of function, as in KEGG Database.
The EggNOG pipeline provides the prediction of orthologous groups, being applied a
hierarchical consistency algorithm, in addition to a function annotation pipeline (which
includes information from the KEGG Database), phylogenetic analysis and pairwise
orthology prediction (Huerta-Cepas et al., 2016). Even though both databases revolve
around orthology predictions based on sequences, the different approaches make the
information provided by them complementary.

Thus, for this study, we applied a cross reference search in Uniprot KB and the deepest
level of KEGG Orthology or EggNOG databases.

Considering the aspects raised here about high-throughput DNA sequencing in human
microbiome studies, we seek to answer how well some databases would be able to depict an
observed human gut microbiota. We hypothesize that, although the scientific community
considers these databases gold standards for studying proteins and their functions
throughout the tree of life, they might not be suitable for evenly representing the set
of bacteria associated to the human gut microbiota.
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It is known that amplicon-based studies have high descriptive power regarding the
composition of microbial communities. Hence, two of the three studies used here for the
production of a list of species common to the human gut employed this methodology
(Eckburg et al., 2005; Yatsunenko et al., 2012). Here we highlight some other studies in the
field that have very similar human gut microbiota sets to the one we used as reference for
our study. Table S1 demonstrates the similarities and differences found between our study
and the ones here cited (David et al., 2014; Zhernakova et al., 2016; Chauhan et al., 2018;
Johnson, 2020). We then added a shotgun sequencing-based study linked to the MetaHIT
project, which was one of the first big attempts to describe the human gut microbiome
(Qin et al., 2010) to increase the data types included in the list.

Finally, these data were used to evaluate the presence of commonly detected gut
prokaryotes in the Universal Protein Knowledge Base (UniprotKB) under the functional
classification of KEGG Orthologs and EggNOG.

MATERIALS & METHODS
Data mining
Microbial communities from three publications were chosen to represent the gut
microbiota on the level of bacterial species (Eckburg et al., 2005;Qin et al., 2010; Yatsunenko
et al., 2012). For the generation of the species list, strains and other subclassifications were
not considered.

The first study chosen is among the pioneers human gut microbiome studies, where the
methods included amplification of the 16S rRNA gene, using broad bacterial and archaeal
primers, cloning and bidirectional sequencing (Eckburg et al., 2005). Three healthy adult
subjects’ samples were used in this study including mucosal tissue and fecal samples. The
second study is associated to the MetaHIT project (Erlich & The MetaHIT Consortium,,
2010) and included samples from 124 subjects healthy, obese or with inflammatory bowel
disease, from Europe. The method used was the shotgun metagenome sequencing through
Illumina GA II (Qin et al., 2010). Finally, the last article comprised a target sequencing of
the 16S rRNA gene (V4 region) of 531 subjects’ samples from Venezuela, Malawi and the
United States (Yatsunenko et al., 2012), using the Illumina HiSeq 2000 DNA sequencing
platform.

Database entries download and cross-referencing
The Uniprot Database (The Uniprot Consortium, 2017) entries were downloaded using the
browser on the 27th of September 2019, containing the parameters ‘‘Entry’’, ‘‘Entry name’’,
‘‘Status’’, ‘‘Protein names’’, ‘‘Gene names’’, ‘‘Organism’’, ‘‘Length’’, ‘‘Cross reference
(KO)’’, ‘‘Cross reference (EggNOG)’’, ‘‘Phylum’’, ‘‘Genus’’, ‘‘Species’’, ‘‘Kingdom’’ and
‘‘Superkingdom’’. We limited the entries downloaded to those with functional affiliation
in either KEGG or EggNOG, aiming to evaluate how well Uniprot Database would be
capable of describing the functions associated to a certain list of species from the human
gut microbiome. Firstly, the Uniprot entries were filtered for Bacteria and Archaea, and
these entries were then compared to the species list retrieved from the three publications.
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The lists and the identifiers for KOs and NOGs resulting from the cross search of the
species and genus list produced from the articles and the Uniprot entries were filtered and
sorted until data was suitable for plotting.

Visualization
The RStudio interface version 1.1.453 was used for the making of barplots and histograms
(R Studio Team, 2016).

Data access
The scripts used for assessing and comparing the cross-reference from UniprotKB
and KEGG or EggNOG together with the species and genus list obtained from the
publications (Eckburg et al., 2005; Qin et al., 2010; Yatsunenko et al., 2012) is available
as Files S1 and S2. The EggNOG database was updated to version 5.0.0 (Huerta-Cepas
et al., 2019) in 2019, and in this work we used data from the version 4.5.1 as this is the
current version used by Uniprot. The raw data can be downloaded from FigShare DOI:
10.6084/m9.figshare.12555422 and 10.6084/m9.figshare.12555425.

RESULTS
The complete list of species contained 131 different species and 52 different genera
(Table S1). The KEGG database provided information on 40 genera and 53 species whereas
the EggNOG Database provided information on 47 genera and 82 species. It is important
to highlight that the list of species produced here did not intend to mimic with perfection
a human gut microbiome sample, but simply present species and genera reported to have
been found in the three representative studies, and that are also well represented in other
four evenly time distributed studies (Table S1). When comparing our list of genera with
newer studies (David et al., 2014; Zhernakova et al., 2016; Chauhan et al., 2018; Johnson,
2020), representing 6 years of technological evolution, we found that only 19 new genera
were included (Table S2), this result tells us that the addition of more studies wouldn’t
change our outcomes and also, that there is need to direct database update effort on
unknown taxa as, the newer studies brought many genus that were already in our list and
were lacking in the current databases.

After filtering out the Uniprot entries not belonging to Bacteria or Archaea, and
removing those without functional annotation, we got 6,531,071 entries for KOs and
4,749,622 entries for EggNOG IDs. The Uniprot database contains two columns for
searching species or genus name, the ‘‘TAXONOMY’’ column and the ‘‘ORGANISM’’
column. From the entries cross-referenced with KOs, 819,541 matched the genera list when
comparing to the ‘‘TAXONOMY’’ column and 776,714 entries when comparing to the
‘‘ORGANISM’’ column. About the species list there were 245,067 entries cross-referenced
between Uniprot and KEGG when comparing the ‘‘TAXONOMY’’ column and 244,451
entries when comparing to the ‘‘ORGANISM’’ column. As for the EggNOG Database,
821,946 entries cross-referenced with Uniprot entries when comparing the genera list to
the ‘‘TAXONOMY’’ column and 794,084 entries when comparing to the ‘‘ORGANISM’’
column. The entries that cross-referenced between EggNOG and Uniprot using the species
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list were 297,298 when comparing to the ‘‘TAXONOMY’’ column and 297,940 when
comparing to the ‘‘ORGANISM’’ column. However, part of these entries belonged to
genera or species that had its taxonomical identification changed over time. Thus, we
made a table to present the differences in annotation encountered in both cross-reference
searches. For KEGG results 40 genera presented the same names as in our articles list,
12 were not represented by KEGG Database and 27 genera had its taxonomy updated in
the database and, sometimes, one genus was split into two, in this case, both genera were
included, increasing the number of recovered genera to 67. For species, 53 were present in
our list and on KEGG with the same taxonomical identification, while 78 species from our
list were not represented by the database and 3 species presented different identifications,
increasing the number of recovered species to 55. The EggNOG Database presented entries
on 47 genera with the same names as in our list, being that 5 genera were not represented by
EggNOG and 18 genera presented different taxonomical identification. The cross-reference
search of Uniprot-EggNOG against our species list did not hit species with taxonomical
updates, being that 82 out of 131 were found (Table S3). These taxonomical identifications
discrepancies are due to the fact that when species and genera names undergo some
taxonomic update, the databases use the most recent name followed by the previous name
in brackets, hence these different names came along in our cross-search output. Another
source of confusion over the genera names, is that some genera had its taxonomy hierarchy
changed, becoming more than one genus.

We proceeded the analysis focusing on the results provided by the cross-reference using
the ‘‘TAXONOMY’’ column from EggNOG and KEGG. We made this choice based on
having more KOs or EggNOG codes for the ‘‘TAXONOMY’’ searches. Considering that
each entry may have multiple KOs or EggNOG codes and that the same species may have
different entries with the same code, in total, the unique entries for the species search in
KEGG returned 5,668 KO numbers, and the entries for the genera search returned 6,788
KO numbers. For the EggNOG search, we obtained 54,523 EggNOG codes for the species
search, being that 1,383 were arCOGs (Archeal Clusters of Orthologous Genes), 3,889 were
COGs (universal with best coverage for Bacteria Clusters of Orthologous Groups) and
49,251 were ENOGs (protein single entry).

We then proceeded to analyzing the KOs and EggNOG function distribution throughout
the genera and species contained in the list. As depicted in Fig. 1 it is clear that EggNOG
presented an overall higher amount of functions, but only presenting one genus and one
species with more than 1,000 functions associated. Even though KEGG presented a smaller
number of functions associated to one or more genera and species, KEGG was more
homogeneous than EggNOG, in its distribution of taxa sharing the same functions.

It is interesting to observe that almost 24% of all KOs only appear in one or are shared by
a maximum of two genera and around 76% (5,182 KOs) of all KOs are shared by twenty or
less genera, approximately one third of the genera sharing the same KOs (64). Furthermore,
31 KOs were shared by 64 and 63 genera, (Fig. 1C), meaning that no KO was shared by all
the genera evaluated and these KOs were the ones that were shared by most of the genera. A
table with the functions associated to these 31 ‘‘core KOs’’ is available as Table S3. Amongst
these KOs, are functions related to purines and pyrimidines metabolism, the pentose
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Figure 1 The relationship between the number of taxa sharing NOGs and KOs. (A) Number of genera
sharing EggNOGs, (B) number of species sharing EggNOGs, (C) number of genera sharing KOs and (D)
number of species sharing KOs.

Full-size DOI: 10.7717/peerjcs.289/fig-1

phosphate pathway, aminoacyl-tRNA biosynthesis pathway, DNA mismatch repair and
mainly ribosomal proteins. Within these 31 most common KOs we also observed one KOs
associated with peptidoglycan synthesis and, consequently, resistance to Vancomycin.

Furthermore, the distribution of KOs shared by species was similar to the distribution
of KOs shared by genera, as depicted in Fig. 1D. Almost 30% of all KOs are unique to some
species or are shared by two species (1698 KOs) and around 87% of all KOs are shared by 24
or less species, which stands for half of the maximum of species sharing the same KOs (48).
From the 44 ‘‘core KOs’’ shared by 48 and 47 species (Table S3), 21 KOs are correspondent
to ribosomal proteins and fourteen are enzymes related to glycolysis, gluconeogenesis,
fructose, galactose and mannose metabolism, aminoacyl-tRNA biosynthesis, amino acids
metabolism and purines and pyrimidines metabolism. Some other functions such as cell
cycle proteins, quorum sensing and transporter proteins are represented by one or two
KOs. Incidentally, the same KO that had relation to Vancomycin resistance present in the
genera core KOs is present in the species core KOs. The details of function and protein
names for each KO entry can be viewed in this link as Supplementary Table S3.

Regarding the distribution of EggNOG codes throughout genera and species there
was higher amount of functions shared by species and genera when compared to KEGG
as depicted in Fig. 1. EggNOG Database provided more functional codes for the same
protein than KEGG, and the distribution of functions shared by taxa was small. Over 44%
of all EggNOG codes were unique, being found only once among all genera and almost
98% of all codes are shared by 32 or less genera, (Fig. 1A), including the unique ones.
The core EggNOGs for the genera cross-search are represented by 39 codes shared by 64
and 63 genera (Table S3). From the core NOGs found in our cross-search for 64 and 63
genera some functions worth highlighting are: translation, post-translation modification,
transcription, coenzyme transport and metabolism, nucleotide transport and metabolism,
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Figure 2 Abundance of KOs and NOGs throughout different genera detected in UniprotKB. (A)
EggNOG couts and (B) KEGG counts. Genera are ordered by the sum of identifiers in both databases.
Some genera only had identifiers in one database.

Full-size DOI: 10.7717/peerjcs.289/fig-2

intracellular trafficking, cell cycle control, energy conversion and DNA replication. Again,
the most recurrent function was ribosomal proteins, totalizing 15 out of the 39 core NOGs
for the species cross-search. The species cross-reference with EggNOG showed that almost
45% of NOGs are unique to a single species and almost 97% of all NOGs are shared by
41 or less species (Fig. 1B). Amongst the functions present in our core NOG list for the
species cross-searchwe highlight transcription, post-translationalmodification, replication,
nucleotide transport andmetabolism, cell wall andmembrane biogenesis and carbohydrate
transport and metabolism. As in the genus search, the majority of codes present in the core
species NOG list belong to proteins associated to translation and ribosomal proteins (26
out of 48) (Table S3). Interestingly, only one NOG was present in all 82 species represented
by the EggNOG cross-search with UniprotKB, it is a chaperonin associated to the function
of preventing misfolding and promoting refolding.

Once knowing which functions where best described by the KO and NOG numbers,
another question to answer is which genera and species would be best represented by this
set of KOs or NOGs, and which ones would not. As shown in Fig. 2, we found 67 genera
in the KEGG-Uniprot cross-search which matched, our list, considering the taxonomical
updates. The EggNOG-Uniprot cross-search resulted in 65 genera. Some genera are
much better represented than others (Fig. 2). Clostridium was the genus best described
by the Uniprot database with 23,081 entries. After Clostridium, the generaBacteroides,
Desulfovibrio, Prevotella, Ruminococcus and Eubacterium also had more than 10,000 KOs
associated to them. As for EggNOG, the genus Clostridium was among the ones presenting
the highest number of NOGs associated (3,108), although the most covered genus was
Escherichia, having 3,546 unique entries. Other genera which presented high numbers of
NOGs associated were Citrobacter, with 3,435, Enterobacter, with 3,420, and Shigella, with
3,052.

We also wanted to evaluate how the KOs and NOGs were distributed over the species,
as shown in Fig. 3. Taking into account all species resulting from our search, 55 species
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Figure 3 Abundance of KOs and NOGs throughout different species detected in UniprotKB. (A)
EggNOG counts and (B) KEGG counts. Species are ordered by the sum of identifiers in both databases.
Some species only had identifiers in one database.

Full-size DOI: 10.7717/peerjcs.289/fig-3

had Uniprot entries and KO numbers available, 82 species presented Uniprot entries and
EggNOG numbers. From those 55 species for the KEGG search, 7 had very low number of
KOs associated to them (one to six KOs per species), differently from all the others that had
at least 300 associated KOs. Interestingly, many of those species were strains of Shigella sp.
The species with the highest number of KOs associated with, were Escherichia coli (3,488
KOs), Escherichia fergusonii, Enterobacter cancerogenus, Providencia stuartii, Providencia
alcalifaciens and Providencia rettgeri having more than 2000 KOs each. From the 82 species
for the EggNOG search, only three species presented less than 700 NOGs associated. These
were Streptococcus infantarius with 58 NOGs, Bacteroides eggerthii with 12 NOGs and
Ruminococcus bromii with 2 NOGs. One the other hand, 13 species presented more than
5,000 NOGs. The best described species were Escherichia coli (7,908 NOGs), followed by
Citrobacter youngae (6,113 NOGs) and Enterobacter cancerogenus (5,830 NOGs).

As seen in Fig. 3 some species such as Bacteroides plebeius had only one KO associated
to it. In this specific case the corresponding KO (K20830) is a beta-porphyranase [EC:
3.2.1.178], described as a function identified only in the Japanese gutmicrobiota and related
to the acquisition of genetic information by Bacteroides plebeius from marine bacteria
(Hehemann et al., 2010). The only KO associated to Campylobacter gracilis (K02111) is
related to the ATPase subunit alpha [EC:7.1.2.2 and EC: 7.2.2.1]. Seven different strains of
Shigella sp. presented only one KO attributed (K18767) a beta-lactamase gene class CTX-M
[EC:3.5.2.6]. This new class of beta-lactamases seems to have been acquired by Shigella
species by horizontal transferring from Enterobacteriaceae species (Bradford, 2001). As
to the EggNOG cross-search one species Ruminococcus bromii presented only two NOGs
associated to it, both regarding a chaperonin protein. Another species presented a small
number of NOGs associated (12), Bacteroides eggerthii, and the functions related to those
NOGs were post translational modification, protein turnover and chaperones; replication,
recombination and repair; leucine biosynthesis; and transcription.
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Figure 4 Relative abundance of NOGs and KOs throughout phyla (A) and genera (B) for EggNOG and
KEGG cross-searches.

Full-size DOI: 10.7717/peerjcs.289/fig-4

Moving over to phyla distribution, as seen in Fig. 4A the Proteobacteria phylumpresented
the highest coverage of KOs, with a total of 4,276 . In the same sense Firmicutes presented
higest abundance of NOGs, with a total of 25,538 As shown in Fig. 4B the relative abundance
of codes throughout genera was considerably different between KEGG and EggNOG. It
appears that the KEGG Database provided a more homogenous result for the genera
cross-search and the number of genera was very similar between KEGG and EggNOG
searches. In fact, the EggNOG Database presented an overall higher number of codes
associated to genera. All the raw hit tables, containing the counts of KOs and NOGs per
species, genera and phyla, as well as, the number of species presenting a specific entry, are
compressed in a file as File S1.

Furthermore, knowing that some species or genera were better represented than others,
we wondered if some of the best-represented species belong to the best-represented genera
in each database search. If this was the case we would hypothesize that the information
collected in the genera search is not so dissimilar from the information collected in the
species search. However, that was not the case for the EggNOG cross-search. As an example,
we point out that, the second best described species was Escherichia coli and, in the genus
list, Escherichia was the 11th best described. Another example is Citrobacter youngae, which
was the 3rd best described species belonging to the genus Citrobacter which was the 9th
best described genus. This representation discrepancies show that when a cross-search is
conducted using only genera information the yield of functions and annotations associated
to them can be very different from what would have come up on a species search.

Lastly, we highlight the percentages of KOs and NOGs associated to the Bacteria or
Archaea domains. For the KEGG cross-search, taking into account the species list, almost
7% (897) of all KOs belonged to the Archaea domains, therefore more than 93% belonged
to the Bacteria domain. As for the EggNOG cross-search almost 4% (2,789) of all NOGs
belonged to the Archaea domain and almost 96% belonged to the Bacteria domain. Due
to the higher number of NOGs resulting from the EggNOG cross-search it appears that
its representation of the Archaea domain is lesser than the KEGG Database when, in fact,
there were almost three times more NOGs associated to the Archaea domain than KOs.
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DISCUSSION
This study intended to evaluate how well a cross reference study utilizing the Uniprot KB
and the KEGG or the EggNOG databases could describe a mock human gut microbiome
community. The databases were chosen considering their importance on the microbiome
field and respectability associated. After joining the species lists from each of the mentioned
articles (Eckburg et al., 2005; Qin et al., 2010; Yatsunenko et al., 2012), we were able to
confirm that the articles shared very few or none of the same species, which could be
viewed as a diverse assessment of the human gut microbiome. The genera list was then
based on the genera present in this species list.

The lack of entries from 78 species in the KEGG database and 49 species in the EggNOG
database, using the Uniprot Database shows that even though new sequencing techniques
have made possible the attainment of a great amounts of data, data processing and database
increase is not up to the same speed. The mismatch between data generation and database
update become more evident if we take into account that the species lists used here were
generated from articles published up to more than 7 years ago. The EggNOG database had,
generally, better coverage of the taxa in our mock human gut microbiome. The EggNOG
database presented almost 10 times more entries associated to our species list than KOs
from the KEGG database. EggNOG entries were more numerous in reason of their

We have chosen to search the database using the taxonomic affiliation instead of
using sequence similarity, to avoid the biases and limitations of homology inference. The
taxonomic information could be found in two fields of Uniprot, one called ‘‘Organism’’
and the other ‘‘Taxonomy’’. These two didn’t always gave the same names, sometimes
the entries had the name of the genus within brackets, meaning it was necessary to add
other steps to the analysis, which was to check for repeated genus names with or without
brackets, other times, the entries presented family names in the species category, and genera
names that did not match the first name of the species, which also made the analysis more
laborious, as such ‘‘bugs’’ had to be sorted individually.

Regarding the KO distribution per genus and per species, some examples of genera
and species were highlighted, presenting unexpected numbers of KOs. An extreme case
is the Bilophila genera with only the KO K03851 associated to it, which is correspondent
to taurine-pyruvate aminotransferase (EC: 2.6.1.77), and the article associated to the
entry is from the year 2000 (Laue & Cook, 2000). Consequently, the same happened to the
species Bilophila wadsworthia, which has only one KO associated to it, as seen in Fig. 3.
Other interesting extreme cases are the species that presented a single KO or two linked
to it, as mentioned previously in the results. This shows a lag between the information
being generated and the annotation about a certain species being available, also shows
the unbalanced accumulation of data over the same species, or even genus. The EggNOG
cross-search did not present as much genera and species with so little information related
to them. Only one genus, Abiotrophia, presented 2 NOGs and the species Ruminococcus
bromii, Bacteroides eggerthii and Streptococcus infantarius presented 2, 12 and 58 NOGs,
respectively. Conversely, this difference between EggNOG and KEGG can be due to
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EggNOG’s organization and the fact that this database works with different hierarchical
organization levels. EggNOG is organized in

A disadvantage brought by the lack of evenness in database entries might be that,
sometimes, the data obtained can be deceiving. For example, in Fig. 2 the genus Escherichia
presents the highest number of KOs and the genus Clostridium has the highest number of
NOGs, in this way, one could imagine that many species from this genus contributed to
this high number of KOs. That is not exactly the case for KEGG, since all the KOs found for
this genus were coming from the high amount of functions described for E. coli and this
phenomena might not only drive hits to this species, but also lose important information
from other species of the same genus, while other genera get much less information, for
instance Bilophila, Weissella or Hathewaya. However, it was the case for EggNOG, where
Clostridium sp. (6 strains) was the species with the highest number of NOGs associated
as the genus Clostridium. Other Clostridium species, such as Clostridium symbiosum and
Clostridium scindens, also presented considerable NOG numbers, moreover, Escherichia
also had 2 species representatives in the EggNOG database. In this sense it appears that the
EggNOGdatabase would have a broader coverage for studying the human gutmicrobiome.

CONCLUSIONS
Regarding the comparison of KEGG and EggNOG databases performances while being
cross-referenced with the Uniprot database, overall, the EggNOG database presented
better results to the parameters evaluated in this work concerning a representation of the
human gut microbiome, created from the species and genera identified in the studies of
Eckburg et al. (2005), Qin et al. (2010) and Yatsunenko et al. (2012). The EggNOG database
showed better representation of the list of species and genera from the mock human gut
microbiome. It also presented more EggNOG entries associated to each genus and species.
However, it has to be taken into account that the organization of EggNOG can be one of
the reasons for the much higher total of entries between EggNOG and KEGG.

Nonetheless we observed a general lack of representativeness and evenness of KOs and
EggNOG entries associated to species and genera of the human gut microbiota. Although
there are powerful methods to infer homology and assign functionality through sequence
comparison, such methods are limited by the sequences that have been deposited in
the databases. The lack of more than 50% of the species used in this study for KEGG
cross-reference and 37% for EggNOG cross-reference indicates that part of the human
gut microbial diversity is left to be described by inference-based methods applied to
distant relatives. Moreover, low representation of multiple species or genera expose the
imbalance of the database. This information helps us to find target taxa that will bring
unique information from cultivation, single-cell genome studies or genomes recovered
from metagenomes.
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