
Leveraging large language models for
spelling correction in Turkish
Ceren Guzel Turhan1,2

1 Department of Computer Engineering, Gazi University, Ankara, Turkey
2 Department of Cognitive Robotics, Delft University of Technology, Delft, Netherlands

ABSTRACT
The field of natural language processing (NLP) has rapidly progressed, particularly
with the rise of large language models (LLMs), which enhance our understanding of
the intrinsic structures of languages in a cross-linguistic manner for complex NLP
tasks. However, commonly encountered misspellings in human-written texts
adversely affect language understanding for LLMs for various NLP tasks as well as
misspelling applications such as auto-proofreading and chatbots. Therefore, this
study focuses on the task of spelling correction in the agglutinative language Turkish,
where its nature makes spell correction significantly more challenging. To address
this, the research introduces a novel dataset, referred to as NoisyWikiTr, to explore
encoder-only models based on bidirectional encoder representations from
transformers (BERT) and existing auto-correction tools. For the first time in this
study, as far as is known, encoder-only models based on BERT are presented as
subword prediction models, and encoder-decoder models based on text-cleaning
(Text-to-Text Transfer Transformer) architecture are fine-tuned for this task in
Turkish. A comprehensive comparison of these models highlights the advantages of
context-based approaches over traditional, context-free auto-correction tools. The
findings also reveal that among LLMs, a language-specific sequence-to-sequence
model outperforms both cross-lingual sequence-to-sequence models and
encoder-only models in handling realistic misspellings.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Natural Language and
Speech, Text Mining, Neural Networks
Keywords Masked language modeling, Encoder-only LLMs, Encoder-decoder sequence-to-
sequence models, Spell check, Spell correction

INTRODUCTION
Natural language processing (NLP) has become a crucial field of artificial intelligence that
enables machines to not only understand and interpret languages but also generate
meaningful texts. NLP studies are evolving to understand cross-linguistic structures and to
solve complex tasks using large language models (LLMs) at an unprecedented speed.
Indeed, the capabilities of OpenAI’s GPT-4 have been assessed as meeting or surpassing
the average scores of students on a graduate-level exam (Stribling et al., 2024). These
cutting-edge models significantly impact many NLP tasks that have traditionally been the
domain of humans (Hu, 2023; Bubeck et al., 2023; Birhane et al., 2023; Stribling et al.,
2024). They demonstrate exceptional performance in language understanding when
provided with appropriate data. However, language data sources, such as human-written
texts, often contain misspellings (Cucerzan & Brill, 2004), which pose challenges for

How to cite this article Guzel Turhan C. 2025. Leveraging large language models for spelling correction in Turkish. PeerJ Comput. Sci. 11:
e2889 DOI 10.7717/peerj-cs.2889

Submitted 31 October 2024
Accepted 21 April 2025
Published 16 June 2025

Corresponding author
Ceren Guzel Turhan,
cerenguzel@gazi.edu.tr

Academic editor
Arkaitz Zubiaga

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.2889

Copyright
2025 Guzel Turhan

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2889
mailto:cerenguzel@�gazi.�edu.�tr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2889
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

language understanding. Both natural and synthetic spelling errors significantly affect the
performance of LLMs across various NLP tasks (Belinkov & Bisk, 2017; Ebrahimi et al.,
2017; Pruthi, Dhingra & Lipton, 2019; Jayanthi, Pruthi & Neubig, 2020). Therefore, spelling
correction is considered an important task that focuses on the automatic detection and
correction of misspellings. It is useful for many applications, such as document editing,
automatic speech recognition systems, auto-proofreading, and chatbots. Search engines
and text editors have provided spell check functionality for many years. In addition,
open-source libraries such as GNU Aspell (Atkinson, 2019), JamSpell (Ozinov, 2019),
Wikifixer NNet (Melli et al., 2020), and NeuSpell (Jayanthi, Pruthi & Neubig, 2020) are
available. These libraries are generally employed with English texts and dictionaries from
English Wikipedia and news websites. Unfortunately, only a few toolkits provide
multilingual support. Despite Turkish being one of the top 20 most spoken languages
globally, research in natural language processing for Turkish remains limited compared to
more widely studied languages. As an agglutinative language, a single verb can generate
over a hundred distinct forms in Turkish (Oflazer & Saraçlar, 2018). This means that spell
checkers need to consider various forms of the same word (e.g., plural, contraction) in
English, whereas in languages with more complex inflections, such as Turkish, many
words are formed with suffixes. Therefore, spell correction in such languages becomes
more challenging (Bhaire et al., 2015).

Until JamSpell, spelling correction libraries focused on correcting words without
considering the surrounding context. These tools, which depend mainly on
dictionary-based approaches, can be viewed as context-free auto-correction tools.
Considering the content has still been addressed in a limited number of studies, despite the
existence of many neural models for various main NLP tasks and their downstream
applications. This study aims to explore the application of LLMs for context-based spelling
correction in Turkish. Additionally, this study investigates the performance of
cross-lingual models for this task. Grammatical error correction is not addressed here, as it
is considered a separate task in the field. Since there are currently no available benchmarks
in Turkish, this study introduces a dataset by adding synthetic spelling errors to 7 million
Wikipedia sentences, referred to as NoisyWikiTr. This dataset was generated by
introducing character-level noise into words through insertion, substitution, deletion, and
permutation of uniformly generated errors, while also simulating user-typing behaviors.
Some existing pre-trained LLMs, including bidirectional encoder representations from
transformers (BERT) (Devlin, 2018) based encoder-only models and T5 (Text-to-Text
Transfer Transformers) (Raffel et al., 2020) based encoder-decoder models, are fine-tuned
to correct misspelled sentences for the first time, as far as is known. Moreover, existing
libraries that support Turkish are compared with LLM-based correctors to analyze the
effect of context, alongside an n-gram-based tool that also takes content into account.
Consequently, this study provides a comprehensive comparison of existing spelling
correction libraries and the presented LLMs for Turkish, making a significant contribution
to the field. The experimental results show that contextual models outperform context-free
auto-correction tools in terms of accuracy and word-level correction. Among the large
language models, the findings indicate that a language-specific sequence-to-sequence

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 2/26

http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

model outperforms both cross-lingual sequence-to-sequence models and BERT-based
masked language models in correcting misspellings.

RELATED WORKS
Spell checkers tools with multilingual support
Early studies predominantly have employed rule-based models that relied on a predefined
set of rules for spelling error detection and correction, such as the SPELL system (Pollock &
Zamora, 1984). In the following years, studies (Norvig, 2007; Garbe, 2012; Atkinson, 2019)
have generally focused on candidate generation for correction, employing an edit distance
metric along with a lookup table. The introduction of n-grams, a core concept in natural
language processing, has greatly improved the ability of models to execute
context-sensitive corrections (Jurafsky & Martin, 2024). To incorporate the context of
adjacent words, JamSpell (Ozinov, 2019) utilizes a 3-gram language model alongside a
dictionary search for effective word-level correction. Moreover, morphology analyzers
have been utilized to address misspellings by generating possible word forms for
unrecognized tokens through the affix rules and dictionaries. Hunspell (Tron et al., 2005)
generates suggestions by leveraging morphological analysis rules along with
dictionary-based data. By providing language-specific dictionaries for these approaches,
such systems enable support for multiple languages. In the study (Gupta, 2020), the
Symmetric Delete algorithm (Garbe, 2012) is applied to predict candidates for comparison
with dictionaries that utilize data structures such as Tries, DAWGs (Directed Acyclic
Word Graphs), and BK Trees (Burkhard-Keller Trees) (Burkhard & Keller, 1973).
Subsequently, misspellings can be corrected using the n-gram conditional probabilities of
the candidate suggestions.

Spell checkers based on large language models for English
Relatively few studies have utilized large language models to address misspellings in
English texts. Li, Liu & Huang (2020) involves training a vanilla transformer model
(Vaswani et al., 2017) as a character-level encoder (Näther, 2020), while also integrating
word-character and subword encoders to leverage character-level embeddings alongside
subword representations. In Neuspell (Jayanthi, Pruthi & Neubig, 2020), a contextual spell
correction tool is introduced that supports neural models such as Embeddings from
Language Model (ELMO) (Peters et al., 2018), long short-term memory (LSTM)
(Hochreiter, 1997), and pre-trained BERT, allowing for the consideration of surrounding
word representations.

Turkish morphological spell checkers
With the aim of presenting the first spelling checker tool for Turkish, a morphological
root-driven parser is introduced (Solak & Oflazer, 1993), specifically developed for Turkish
words. This parser has also been designed for spelling correction in online texts. It
incorporates complex word formations and various phonetic harmony rules for the
correction task, including the determination of roots morphophonemic checks, and
morphological parsing. Zemberek (Akın & Akın, 2007) was developed as an open-source

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 3/26

http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

NLP library for Turkic languages. It offers fundamental NLP functions, including spell
checking, word suggestion, stemming, morphological parsing, word construction,
conversion of ASCII-only text, and syllable extraction. The library relies on a root
dictionary-based parser and aims to construct a specialized DAWG tree to represent the
deformed states of root words as a dictionary. Based on these trees, the Zemberek spell
checker corrects the given text if any matches are found by eliminating the need to search
through all possible matches. In another study, a rule-based approach has been proposed
to correct text by applying multiple normalization layers that address specific types of
errors, aiming to obtain the canonical form of a noisy word (Torunoğlu-Selamet & Eryiğit,
2014). MUKAYESE (Safaya et al., 2022) has been introduced as a set of NLP benchmarks
aimed at addressing the shortage of structured benchmarks for Turkish. Moreover, this
study focuses context-free spell checking and correction for single-words, presenting a
comparison among their dictionary-based Hunspell, another dictionary based Hunspell
model, and the Zemberek, using their single-text correction dataset, TRSPELL10. In Koksal
et al. (2020), #Turki$hTweets is introduced as a publicly accessible small-scale dataset of
tweets collected to form a natural noisy data. This study has evaluated two
morphology-based approaches, along with edit distance and rule-based models, to provide
a preliminary analysis. A sequence-to-sequence model leveraging LSTM architecture has
been proposed for text normalization, with inputs derived from a character-based
tokenizer that processes the first three consonant letters of misspelled words (Büyük,
2020). Utilizing LSTM and bidirectional LSTM (BiLSTM) networks, the study (Aytan &
Şankar, 2023) has focused on the detection of misspelled words rather than correction by
evaluating the effect of different tokenizers. In a recent study (Oral et al., 2024), a Turkish
spelling corrector designed for e-commerce search engines was proposed. This approach
utilizes a character-level transformer to generate representation-based candidates,
enhancing the accuracy of search queries.

SYNTHETICALLY CORRUPTED TURKISH DATASET:
NOISYWIKITR
Due to the lack of a suitable dataset for the given task to train LLMs, which typically
require a large corpus of misspelled and corrected sentence pairs, a spelling correction
benchmark is first constructed by corrupting sentences to generate sentence pairs. For this
purpose, a Turkish Wikipedia dump containing 1.6 million clean sentences is used. In the
preprocessing step, a standard text-cleaning process is followed, which includes the
removal of HTML tags, numbers, and special characters. Due to the unique characters in
the Turkish alphabet, Unicode with Normalization Form KC Decomposition, followed by
Canonical Composition (NFKC) normalization is applied to convert texts to lowercase,
rather than using standard libraries for case conversion. First of all, to obtain noised and
clean sentence pairs, 10% of the tokens in each sentence are corrupted by introducing
noise, as in the standard word noising strategy used in Sakaguchi et al. (2017), Jayanthi,
Pruthi & Neubig (2020). In addition, to mimic natural misspelling patterns, a realistic

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 4/26

http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

noised version of the dataset is created through user-behavioral insertion, deletion,
permutation, substitution, and replacement with common mistakes. For insertion and
substitution in a user-behavioral manner, adjacent characters on the keyboard are
considered instead of random characters, resulting in noise with a maximum edit distance
of 1. For the replacement process, language-specific common mistakes are derived from
predefined common misspellings, as seen in Wikipedia (https://tr.wikipedia.org/wiki/
Vikipedi:Turkcede_sik_yapilan_hatalar). Through the replacement of commonly
mistaken words, the NoisyWikiTr dataset also contains misspelled words with an edit
distance greater than 1. The NoisyWikiTr dataset (https://github.com/cgturhan/trspell) is
publicly available and significantly larger than English datasets, containing more than ten
times the number of sentences compared to the BEA60K dataset (Jayanthi, Pruthi &
Neubig, 2020). The details of the dataset, including the types of noise and their respective
counts for each data split, are provided in Table 1. A summary of the noising operations,
along with examples, is presented in Table 2. For future studies, separation noise has also
been added to the training dataset. Due to the word-level prediction nature of context-free
tools, the correction of separation errors is not addressed in this study.

The insertion operation, IðwÞ; introduces an alphabetic character (a 2 A) into a word at
a randomly selected position, i, that is fw½0 : i� þ aþ w½i :� j 0 � i � jwj. This results in a
new word. Only letters that are adjacent on a Turkish QWERTY keyboard are inserted. For
example, inserting an adjacent key into “kelime” could yield words such as “kkelime”,
“klelime”, “kelkime”, “kelişme”, “kelimne”, and “kelimes” depending on where the
insertion occurs. Moreover, vowel insertion (insertion of {a, e, i, o, u, ü, ö}) is considered
due to the common user tendency to repeat vowels, thereby simulating user-generated
noise. For the same word, candidate noisy words resulting from vowel insertion include
“keelime”, “keliime”, and “kelimee”.

The deletion operation, DðwÞ, involves removing one character from a word by
fw½0 : i� þ w½iþ 1 :� j 0 � i < jwjg where i is a random position within the word to delete
the character in that position. For example, deleting a character from “kelime” might
produce “elime, keime, or kelie” depending on which character is removed. Similarly,
“klime, kelme, or kelim” can be obtained through vowel deletion for the same word.

The permutation operation, PðwÞ, rearranges a pair of consecutive characters (i and
iþ 1) within a word as fw½0 : i� þ w½iþ 1� þ w½i� þ w½iþ 2 :� j 0 � i < jwj � 1g. This
process involves swapping two adjacent characters. For example, permuting the characters
in “kelime” could change it to “kleime” by swapping “e” and “l”.

The substitution operation, denoted as SðwÞ, involves replacing a character in
a word with one of its adjacent letters: fw½0 : i� þ aþ w½iþ 1 :� j 0 � i <
jwj; a 2 Sadjðw½iþ 1�Þ � Ag. The substitution of the letter “e” in “kelime” could produce
“krlime, kwlime, kslime, kdlime”.

Moreover, language-specific common mistakes are considered to construct realistic
errors for the given dataset. The word-level replacement function,
RðwÞ ¼ fŵ j ðw; ŵÞ 2 D�g, where D� denotes a common mistakes dictionary, acts as a
lookup table to replace commonly mistaken words, such as “acaip” for “acayip”.

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 5/26

https://tr.wikipedia.org/wiki/Vikipedi:Turkcede_sik_yapilan_hatalar
https://tr.wikipedia.org/wiki/Vikipedi:Turkcede_sik_yapilan_hatalar
https://github.com/cgturhan/trspell
http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

SPELLING CORRECTION METHODS
Norvig algorithm
The Norvig algorithm (Norvig, 2007) relies on generating candidates based on possible
edits that are one or two edits away from the word w. It determines the most likely spelling
correction for a given word w in a dictionary D by generating possible edits, Ew, through
deletion, insertion, substitution and permutation, as given in Eq. (1).

Ew ¼ IðwÞ;DðwÞ; PðwÞ; SðwÞf g: (1)

Next, the algorithm generates candidate corrections, Cw based on distance to these edits
using Levenshtein Distance (dL) (Levenshtein, 1966).

dLðw; cÞ ¼

jwj if jcj ¼ 0;
jcj if jwj ¼ 0;
dLðtailðcÞ; tailðwÞÞ if headðcÞ¼ headðwÞ;

1þmin
dLðtailðcÞ;wÞ;
dLðc; tailðwÞÞ;
dL½ðtailðcÞ; tailðwÞÞ

8<
:

9=
; otherwise

8>>>>>><
>>>>>>:

(2)

Cw ¼ c j minðdLðw; cÞÞ; c 2 Ewf g (3)

where the tail of a word w, denoted as tailðwÞ, is defined as the substring consisting of all
characters except the first one. The head of a word w, headðwÞ, is the first character of w.

To rank these candidates, the algorithm employs a probabilistic model. The goal is to
select the candidate correction c that maximizes the probability of c being the intended
correction, given the original word w. This is achieved by applying Bayes’ Theorem, which
simplifies to maximizing the product of two probabilities: the language model probability,
PðcÞ, representing the frequency with which c appears in text, and the error model
probability, Pðw j cÞ, which quantifies the likelihood that w is an error for c. As given in

Table 1 Description of the NoisyWikiTr dataset.

NoisyWikiTr dataset

Train Valid Test
#Sentences 687 k 85 k 85 k
#Tokens 10.4 m 1.3 m 1.2 m

#Noises 996 k 125 k 130 k

•Deletion 5 k 0.6 k 0.6 k

•Vowel deletion 186 k 23 k 25 k

•Insertion 120 k 15 k 16 k

•Vowel insertion 70 k 9 k 10k

•Permutation 189 k 24 k 26 k

•Substitution 190 k 24 k 26 k

•Replacement 216 k 27 k 28 k

•Separation 21 k 3 k 0 k

Noise ratio (%) 10.9 10.9 12.0

Avg. edit distance 1.53 1.53 1.42

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 6/26

http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

Eq. (4), an argmax function is employed to choose the candidate with the highest
combined probability, considering a set of possible corrections and using these models to
identify the most contextually appropriate correction ŵ for the input word w.

ŵ ¼ argmax
c2Cw

Pðc j wÞ ¼ argmax
c2Cw

PðcÞPðw j cÞ: (4)

Aspell
Aspell is a spell checker and automatic correction tool that is specifically designed for use
with the GNU operating system. It generates suggestions for misspelled words by
leveraging both edit distance metrics and contextual analysis, with frequency-based
ranking employed to ensure the accuracy of corrections. The Aspell scoring function, SðcÞ,
is based on the weighted average of edit distances between the misspelled word and entries
in the lexicon, which includes a collection of words, morphological information about
word forms, and additional data such as frequency and part-of-speech tags. Equation (5)
computes the weighted average edit distance, dwL, using weights and the corresponding
edit distances.

dwLðw; cÞ ¼ 1
n

Xn
i¼1

Wi � dLðw; ciÞ (5)

where Wi represents the weight of ith edit operation and ci denotes the candidate resulting
from the ith edit. The final suggestions come from the argmin of Aspell scoring,
argminci2CSðciÞ.

Hunspell
Hunspell (Tron et al., 2005) is an autocorrect spell checker and morphological analyzer
widely utilized in numerous applications and platforms, including Mac OS X, Safari,
OpenOffice, Firefox, Chrome, and Adobe products. In addition, it is integrated into
various tools such as the XML Copy Editor and LyX. Hunspell supports a wide range of
languages with complex morphological features. This spell checker is based on a two-part
dictionary system, consisting of a dictionary D and an affix file. Hunspell’s strength lies in
its use of affix compression and morphological rules to effectively generate variations. The
algorithm begins with tokenization, followed by a comparison of each token against the
entries in the dictionary. When a token is not found, Hunspell generates possible word
forms, w0, applying affix rules contained in the affix file that add or remove prefixes and
suffixes after finding the root. In agglutinative languages like Turkish, affix files consist of

Table 2 Summary of noise operations.

Deletion Vowel deletion Insertion Vowel insertion Permutation Substitution Replacement
w DðwÞ IðwÞ PðwÞ SðwÞ RðwÞ
acayip aayip acyip accayip acaayip aacyip acatip acaip

bugün buün bgün bugünn bugün bguün buhün bugun

düzeltme düzelme düzltme düzelştme düzeltmee düzetlme düzektme düzelme

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 7/26

http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

possible suffixes to generate candidate words. For example, the root word “gel”, {“iyor”,
“di”, “ecek”} suffixes can generate candidates like “geliyor, geldi, gelecek”. It also supports
compound words by breaking them down into valid subwords on the basis of its
dictionaries and affix rules. Then, it performs a morphological analysis to match these
generated forms with valid entries in the dictionary.

Symmetric delete spelling correction algorithm (SymSpell)
SymSpell (Garbe, 2018) is an exceptionally fast spell checker library that offers
performance up to 1 million times faster than traditional methods through its Symmetric
Delete Spelling Correction Algorithm. It improves the Norvig algorithm by generating all
potential candidates c exclusively through delete operations, c 2 IðwÞf g. Instead of directly
addressing transpositions, replacements, and insertions within the input phrase, SymSpell
transforms these operations into deletions of dictionary terms. This method has proven to
be significantly more efficient, as replacements and insertions are both computationally
expensive and language-dependent. The candidate word set Cw and the candidate
dictionary set Cd can be derived from the candidates DðwÞ and [d2DDðdÞ that have the
minimum edit distance minðdDLðw; cÞÞ, obtained by deletion.

This technique optimizes the process of generating edit candidates and searching the
dictionary for a given Damerau-Levenshtein distance (dDL) (Damerau, 1964) which can be
computed by dynamic programming recurrence for 0 � i � jwj; 0 � j � jcj,
dDLðw½i�; c½0�Þ ¼ i and dDLðw½0�; c½j�Þ ¼ j:

dDLðw½i�; c½j�Þ ¼ min

dDLðw½i� 1�; c½j� 1�Þ þ 1w¼cðw; cÞ
dDLðw½i�; c½j� 1�Þ þ 1
dDLðw½i� 1�; c½j�Þ þ 1
dDLðw½k� 1�; c½l � 1�Þ þ ði� k� 1Þ þ 1þ ðj� l � 1Þ

8>><
>>: (6)

Here, the indicator function 1w¼cðw; cÞ is 1 if the condition w ¼ c holds. The argmax of
candidate intersections, argmaxd2D Cw \ Cdj j, yields the predicted correction.

JamSpell
JamSpell (Ozinov, 2019) employs a variant of the SymSpell algorithm integrated with a
3-gram language model to incorporate contextual information, thereby enhancing
performance. JamSpell is also based on the principles of Norvig. The algorithm leverages
SymSpell’s efficient edit candidate generation and dictionary search methods, thereby
improving the performance of SymSpell. Moreover, the Bloom filter is integrated with
SymSpell to store the index in an efficient manner. Deletions from the dictionary are stored
in the Bloom filter. When searching for candidates, deletions are first applied to the
original word up to the desired depth, similar to the method used by SymSpell. However,
unlike SymSpell, insertions are performed for each deletion, and the resulting words are
subsequently checked against the original dictionary. The Bloom filter is utilized to access
the index of deletions and to skip insertions for deletions that are not present.

In addition, it integrates an n-gram language model to further refine and filter
word-level corrections based on contextual information. Rather than employing a naive
approach that calculates edit distances against a corpus-based dictionary, the use of n-gram

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 8/26

http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

dictionaries enables the spelling corrector to consider the frequency of sequences of n
words occurring together, thereby enhancing predictions for out-of-vocabulary words.
This involves constructing comprehensive collections of n-gram sequences, consisting of n
words or characters, to analyze word co-occurrences for predicting the correct words.
JamSpell employs trigrams (3-grams) which are sequences of three consecutive elements
from a given text to account for the context. In a trigrammodel, the conditional probability
of the word wi can be defined by the frequencies of wi�1 and wi�2:

Pðwi j wi�2;wi�1Þ ¼ f ðwi�2;wi�1;wiÞ
f ðwi�2;wi�1Þ (7)

where f ðwi�2;wi�1;wiÞ is the frequency of the trigrams ðwi�2;wi�1;wiÞ in the corpus. For
spelling correction, the context score S is computed and suggestions are ranked in
decreasing order of this score, returning the top k suggestions. The context score of n-gram
Sn is given:

Sn ¼ Wn

Xn�1

j¼1

Pðwi j wiþj�1Þ (8)

where Wn is the weight for the n-gram score. For this case, trigram context score (S3) is
computed as a context score. If some n-grams wi�n; . . . ;wi�1;wi were not found in the
text, the frequency of occurrence of the n-gram f ðwi�n; . . . ;wi�1;wiÞ will be zero and the
n-gram will immediately receive a zero probability. To address this issue in JamSpell the
probability of each token in a trigram, Pðwi j wi�1;wi�2Þ is considered as the product of
token probabilities of all orders, Pðwi j wi�2;wi�1ÞPðwi j wi�1ÞPðwiÞ for smoothing the
trigram probability. It also addresses the issue of high memory consumption by employing
a perfect hash (Guthrie, Hepple & Liu, 2010) based on the Hash, Displace, and Compress
(CHD) algorithm (Belazzougui, Botelho & Dietzfelbinger, 2009) to store information about
n-grams. All of these allow JamSpell to balance computational efficiency with the accuracy
of contextually appropriate spelling suggestions.

Zemberek
Zemberek (Akın & Akın, 2007) is an open-source natural language processing library
specifically developed for Turkish. It offers tools for various tasks, including tokenization,
stemming, named entity recognition (NER), language identification, and grammatical
analysis. It is designed to accommodate the suffix-based nature of Turkish. It also provides
normalization as a basic spell-checking feature. Since Zemberek relies on a root word
dictionary, it requires a root-finding approach. A special DAWG tree is constructed, where
the roots of the tree correspond to the root words, which are used as the dictionary. As a
root selector, three root selectors are employed in Zemberek. For a given word, the first
selector is based on a standard, strict root selection approach, functioning as a
dictionary-based top-down parser. The second, an error-tolerant parser, applies the
Damerau-Levenshtein (a default similarity algorithm) or the Jaro-Winkler string similarity
algorithm to select candidate roots. The final, ASCII-tolerant parser generates the root by

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 9/26

http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

considering letters that are not included in the ASCII character set. To provide the best
suggestions, the results are ranked based on the frequency of root word usage in Zemberek.

CONTEXTUAL SPELL CHECK WITH LARGE LANGUAGE
MODELS
Background
Multi-head attention
The attention mechanism models the relevance between input and output representations.
It can be described as a mapping function from a query Q and key-value pairs ðK;VÞ to a
representation where each key has dimension dk and each value has dimension dv:

AttentionðQ;K;VÞ ¼ softmax
QKTffiffiffiffiffi
dk

p
� �

V : (9)

The multi-head attention layer performs a linear transformation on the concatenated
outputs of multiple attention heads, each of which represents a distinct subspace of the
representation:

Multi�HeadðQ;K;VÞ ¼ Concat head1; head2; . . . ; headhð ÞWO (10)

where the matrixWO is a learned linear transformation applied to the concatenated output
of all attention heads. Each attention headi is computed as below:

headi ¼ AttentionðQWQ
i ;KW

K
i ;VWV

i Þ (11)

Here, the matrices WQ
i , W

K
i , and WV

i are the learned projection matrices for the i-th
attention head. This approach enables the model to capture information from various
representational subspaces and positions.

Layer normalization
Layer normalization in BERT normalizes the input vector xi by computing the mean l and
variance r2 of the vector’s elements:

LayerNormðxiÞ ¼ c � xi � lffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ e

p þ b (12)

where e is a small constant for numerical stability, and c and b are learned scaling and
shifting parameters. This process ensures consistent distribution of inputs, aiding in
stabilizing and accelerating training.

Feed-forward neural network
In each transformer block, a fully connected feed-forward neural network (FFNN) follows
the multi-head attention layer. As a sublayer, it is defined as:

FFNNðxÞ ¼ W2maxð0;W1x þ b1Þ þ b2: (13)

This network includes an intermediate rectified linear unit (ReLU) activation function and
consists of two linear transformations applied to the input x. The parameters W1, W2, b1,
and b2 are the weights and biases of the feed-forward neural network.

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 10/26

http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

Bidirectional encoder representations from transformers (BERT)
BERT (Devlin, 2018) is an encoder-only model built with stacked transformer blocks. Each
transformer block includes two main sublayers: a multi-head attention mechanism and
fully connected feed-forward layers. Each transformer layer starts with a multi-head
attention mechanism which allows the model to simultaneously focus on different parts of
the input sequence. This is followed by a residual connection (He et al., 2016) and layer
normalization where the residual connection adds the initial input of the attention
mechanism to its output. The next step involves processing this output through a
feed-forward network, which includes two linear transformations with a ReLU activation
function in between. Then, another residual connection and layer normalization are
applied after the feed-forward network. The final output is then passed to the next
transformer layer to further enhance the representations at each level, which are
subsequently utilized for various downstream NLP tasks.

BERT is designed to serve as both a pre-training model for unsupervised tasks and a
fine-tuning model for various downstream applications. During the pre-training phase,
BERT was trained on unlabeled data using two unsupervised learning objectives: Masked
language modeling (MLM) and next sentence prediction. There are two primary versions
of the BERT model: BERTbase and BERTlarge. The BERTbase model consists of 12
transformer layers, each with a hidden size of 512. The block representation of the
BERTbase model, shown in Fig. 1, illustrates the components of each transformation layer.
The BERTlarge model, however, doubles the number of layers and hidden size of each layer,
resulting in a total of 340 million parameters.

Masked language modeling based model
In the MLM task, 15% of the tokens were randomly masked allowing the model to predict
the masked words, which were replaced with a [MASK] token. For MLM, the objective is
to predict these missing words based on the context provided by the surrounding words.
Pre-training on masked word prediction enables models to gain a deep understanding of
language context. This understanding can then be leveraged for other NLP tasks through
fine-tuning.

In this study, misspelling correction is treated as a masked prediction, utilizing a
pre-trained BERT-based MLMwhich is demonstrated in Fig. 2. As seen in the given figure,
[MASK] tokens should be generated before feeding the inputs into the BERTurk encoder
model. To generate [MASK] tokens for out-of-vocabulary (OOV) words, the study utilizes
the Turkish transformer model from spaCy (https://spacy.io/, https://huggingface.co/
turkish-nlp-suite) (Altinok, 2023). This work adapts the BERTurk model (Schweter, 2020)
into the ContextualSpellCheck (https://github.com/R1j1t/contextualSpellCheck) (Goel,
2021) as a MLM. The input sequence S ¼ ðw1;w2; . . . ;wnÞ is masked in accordance with
the existence of the word wi in the dictionary D using spaCy:

S½i� ¼ ½MASK�; 8wi 2 S such that wi =2 D; 0 � i � jSj (14)

S ¼ ðw1;w2; . . . ; ½MASK�; . . . ;wnÞ (15)

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 11/26

https://spacy.io/
https://huggingface.co/turkish-nlp-suite
https://huggingface.co/turkish-nlp-suite
https://github.com/R1j1t/contextualSpellCheck
http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

By adapting the ContextualSpellCheck pipeline, input sequences with [MASK] tokens
are provided to a MLM, referred to as TransformerMLMEncoder for the remainder of the
article, yielding embeddings for the correction task. Subsequently, a FFNN follows the
TransformerMLMEncoder. This network acts as a linear layer to generate the logits for the
sequence tokens. The softmax function transforms the logits into probabilities. Candidates
Cw are the top k predictions sorted by their highest probabilities for correction.
Accordingly, ContextualSpellCheck is revised to suggest a word if there is a candidate Ci

with an edit distance of 1. In the other case, the model outputs the given input token to
prevent false positive predictions. The model based on the masked language encoder is
presented below:

h ¼ TransformerMLMEncoderðSÞ (16)

FFNNðhÞ ¼ Wshþ bs (17)

PðSÞ ¼ softmaxðFFNNðhÞÞ (18)

Cwi ¼ SortðPðSiÞ; 'descending'Þ½: k� (19)

ŵi ¼ c j minðdDLðwi; cÞÞ 8c 2 Cwi ; if minðdDLðwi; cÞÞ � 1
wi; else

�
(20)

whereWs and bs are the weights and bias for the linear layer. PðSiÞ denotes the probability
of the ith logit.

Subword encoder based model
Encoder-only LLMs are also utilized with a FCNN layer to correct sentences by
regenerating whole subwords. The comparison of this model with MLM based correction
model is visualized in Fig. 3. Rather than predicting [MASK] tokens, the encoder predicts
each subword as a token in the given sequence. The encoder of this model will be referred
to as TransformerEncoder. TransformerEncoder encodes a sequence of subword tokens S

Figure 1 Block representation of BERTbase model. Full-size DOI: 10.7717/peerj-cs.2889/fig-1

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 12/26

http://dx.doi.org/10.7717/peerj-cs.2889/fig-1
http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

to he embeddings. Dropout (Srivastava et al., 2014) is applied within the
TransformerEncoder for regularization. Thereafter, subword embeddings, hsub, are
obtained by concatenating the embeddings of the subwords wi

subk
in the given sequence S if

a token is a subword of wi, as follows:

he ¼ TransformerEncoderðSÞ (21)

h ¼ concatðhe0 ; . . . ; hekÞ (22)

where hek denotes the embeddings of wek .
Subsequently, the FFNN, a single linear layer, predicts the logits of the merged token

embedding. These logits are converted to probabilities, PðSÞ, by applying the softmax
function to generate predictions for the words wi in the sequence S. The corrected
sequence Ŝ is derived from the argmax of PðSÞ.

Figure 2 BERTurkbaseMLM spell corrector. Full-size DOI: 10.7717/peerj-cs.2889/fig-2

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 13/26

http://dx.doi.org/10.7717/peerj-cs.2889/fig-2
http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

FCNNðhÞ ¼ Wshþ bs (23)

PðSÞ ¼ softmaxðFCNNðhÞÞ (24)

Ŝ ¼ argmaxðPðSÞÞ (25)

Encoder-decoder LLM based model
The sentence spelling correction task will also be treated as a sequence-to-sequence
generation task using pairs of noised and correct sentence pairs. Consequently,
encoder-decoder LLMs pre-trained for downstream NLP tasks, such as machine
translation, question answering, and next sentence prediction, are also included in this
study.

The encoder-decoder LLMs have architectures derived from the framework proposed
by Vaswani et al. (2017). The encoder consists of multiple blocks, each containing two
components: a self-attention layer and a feed-forward neural network. Self-attention layers
are bidirectional, similar to those in the BERT model. Therefore, the encoder model can be
referred to as a bidirectional encoder. The decoder-only model can function as a LLM,
specifically a model trained for next sentence prediction like OpenAI GPT (Radford, 2018).

Figure 3 A schematic illustration of (A) MLM based model and (B) subword encoder based model.
Full-size DOI: 10.7717/peerj-cs.2889/fig-3

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 14/26

http://dx.doi.org/10.7717/peerj-cs.2889/fig-3
http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

GPT relies on a left-to-right architecture, enabling it to attend only to the tokens from
previous steps within the self-attention layer. In an autoregressive decoder like GPT, a
token is sampled from the predicted distribution of the decoder, and then this token is fed
back into the decoder to generate the prediction for the subsequent output at each time
step. An encoder-decoder model combines left-to-right autoregressive language model and
bidirectional encoder with MLM objective as given in Fig. 4. The decoder in such a
sequence-to-sequence model has a similar structure to that of the encoder. In the default
small-sized encoder-decoder LLM, both the encoder and decoder consist of six blocks.
Furthermore, they have similar sizes and configurations as well.

In a sequence-to-sequence model designed for sentence spelling correction, the encoder,
referred to as BidirectionalEncoder in Eq. (26), takes a sequence S that may contain
erroneous words as input while the decoder, namely AutoregressiveDecoder, produces a
corresponding denoised sequence in an autoregressive manner. Initially, the bidirectional
encoder maps an input sequence of tokens to the to the sequence of embeddings h:

h ¼ BidirectionalEncoderðSÞ (26)bSt ¼ AutoregressiveDecoderðS<t; hÞ (27)

where S<t means a subsequence of S at time step t and bSt is the predicted subsequence. In
AutoregressiveDecoder, bSt is generated by applying the softmax function to the logits at
each time step t.

EXPERIMENTS
This section provides a comprehensive comparison of dictionary and edit distance-based
models, n-gram-based models, and LLMs for sentence correction in the Turkish language.
The performances of recent spelling correction tools and large language models, trained
for the first time in this study for the Turkish spelling correction task, are analyzed and
compared to assess their effectiveness.

Firstly, open-source tools supporting the Turkish language, based on dictionaries, edit
distance, and n-grams, are evaluated to produce preliminary results. Notably, the GNU
Aspell, Hunspell, SymSpell, Zemberek, Norvig, and JamSpell libraries are utilized as recent
tools. For GNU Aspell, the aspell-python wrapper (https://github.com/WojciechMula/
aspell-python) version 1.15 is employed with the Turkish dictionary package (http://aspell.
net/) version 0.50-0. For Hunspell, the pyhunspell library version 0.55, which serves as
python bindings for Hunspell, is used with the language-specific dictionary and affix files.
For Hunspell, two existing Turkish dictionary and affix files are evaluated for comparison.
HunspellTDD (https://github.com/tdd-ai/hunspell-tr) (Safaya et al., 2022) refers to the
Hunspell dictionary developed by the Turkish Data Depository (TDD) group, while
HunspellVDemir (https://github.com/vdemir/hunspell-tr) is another Turkish dictionary.
The symspellpy library (https://github.com/mammothb/symspellpy) version 6.7.8 is
used as SymSpell tool with a custom dictionary. The Turkish dictionary for
SymSpell has been created from the NoisyWikiTr training set. Zemberek, an NLP tool for
Turkish, is also employed in the experiments as a baseline using the zemberek-python
(https://github.com/loodos/zemberek-python) version 0.2.3, a python port of the

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 15/26

https://github.com/WojciechMula/aspell-python
https://github.com/WojciechMula/aspell-python
http://aspell.net/
http://aspell.net/
https://github.com/tdd-ai/hunspell-tr
https://github.com/vdemir/hunspell-tr
https://github.com/mammothb/symspellpy
https://github.com/loodos/zemberek-python
http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

Zemberek library, zemberek-nlp (https://github.com/ahmetaa/zemberek-nlp). The
autocorrect library (https://github.com/filyp/autocorrect) based on Norvig’s algorithm is
another reference that supports multiple languages, including Turkish. The autocorrect
library will be referred to as AutocorrectNorvig for the rest of the article. The JamSpell
library (https://github.com/bakwc/JamSpell) serves as a multilingual spell-checking tool
considering the surrounding words. In JamSpell, a language model has been trained using
the Turkish alphabet and texts from the training set to generate n-grams for contextual
knowledge. In the experiments, JamSpell version 0.0.12 was employed as a contextual
corrector tool.

Moreover, the performance of LLMs as spell corrector is also discussed in this study.
Among LLMs, the ContextualSpellCheck demonstrates that pre-trained encoder-only
models can be directly utilized to correct out-of-vocabulary words in a masked prediction
manner. In the original implementation, the BERT model with MLM generates candidates
for unknown and OOV words in a sentence with the spaCy English pipeline leveraging
contextual information. For NLP tasks in Turkish, the BERTurk model was introduced by
fine-tuning the BERTbase model for various downstream tasks, including part-of-speech
tagging, named entity recognition, question answering, and MLM. This model was trained
on a Turkish Wikipedia dump, a subset of the Turkish OSCAR corpus, various OPUS
corpora, and a 35 GB corpus. Inspired by ContextualSpellCheck library, BERTurk and a
spaCy Turkish model are used for the first time with Turkish sentences. This BERTurkbase
model is utilized using ContextualSpellCheck library as an encoder-only model in this
study referring BERTurkbaseMLM. In the experiments, candidate tokens predicted by
BERTurkbaseMLM are restricted to a minimum length of three characters during
prediction due to prevent the inclusion of common and short words like “ve” (which
means “and” in English).

Similar to NeuSpell (https://github.com/neuspell/neuspell) (Jayanthi, Pruthi & Neubig,
2020) which uses BERT for spelling correction in English, the BERTurk model is adapted
for correcting Turkish texts. By modifying Neuspell for other encoder-only LLMs as
subword models, such as BERTurkbase and mBERTbase, which stands for the multilingual
version of BERTbase, it becomes possible to fine-tune other encoder-only models with

Figure 4 A schematic illustration of (A) bidirectional encoder MLM based model and (B) autoregressive decoder model (C) encoder-decoder
LLM based model. Full-size DOI: 10.7717/peerj-cs.2889/fig-4

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 16/26

https://github.com/ahmetaa/zemberek-nlp
https://github.com/filyp/autocorrect
https://github.com/bakwc/JamSpell
https://github.com/neuspell/neuspell
http://dx.doi.org/10.7717/peerj-cs.2889/fig-4
http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

byte-level byte-pair encoding (BPE) tokenizer (Sennrich, Haddow & Birch, 2015) for
Turkish. Thus, XLM-ROBERTa (Conneau, 2019), a multilingual version of ROBERTa
(Liu, 2019) designed to enhance cross-lingual language understanding, is fine-tuned for the
sentence correction objective, referring to the XLM-ROBERTabase model. In the original
Neuspell implementation, long sentences are not considered valid due to the maximum
token limits in these models. To evaluate such texts in the NoisyWikiTr dataset, long
sentences are split into multiple shorter sentences, and then the results are concatenated.
All mentioned encoder-only LLMs are adopted from the Hugging Face library (https://
huggingface.co/). The encoder-only LLMs employed in this study are BERTurkbase
(https://huggingface.co/dbmdz/bert-base-turkish-128k-uncased), mBERTbase (https://
huggingface.co/google-bert/bert-base-multilingual-uncased), and XLM-ROBERTabase
(https://huggingface.co/FacebookAI/xlm-roberta-base).

This article also examines the performance of encoder-decoder LLMs for the given
downstream task. Specifically, the T5-efficient model (Tay et al., 2021), mT5 (Xue et al.,
2020), and FLAN-T5 (Chung et al., 2024) pre-trained models have been adapted from
Hugging Face as T5-based sequence-to-sequence models. Details of the LLMs employed in
this ablation study are outlined in Table 3. Meanwhile, Table 4 demonstrates the
hyperparameters for these models. The maximum sequence length is set to 256 for 128 k
tokens, as the average token length in the training data is 32.52, eliminating the
need for additional padding and enabling faster training of T5-based encoder-decoder
models. The experiments were conducted using various NVIDIA GPUs, specifically a
single A100, a single L4, and two T4 GPUs, to fine-tune all large language models
simultaneously. In the experiments, encoder-decoder models are trained using the
ADAM optimizer (Kingma, 2014) with a default learning rate of 5e−5, while
encoder-only models are trained using BertAdam, which is AdamW (Loshchilov &
Hutter, 2017), with a fixed weight decay of 0.01, a warmup rate of 0.1, and a linear decay of
the learning rate (5e−5). The T5-efficient-small model, fine-tuned for Turkish and referred
to as T5-efficient-TRsmall (https://huggingface.co/Turkish-NLP/t5-efficient-small-turkish),
is also specifically trained for the spelling correction task, using the specified
hyperparameter ranges. The small-sized mT5small model from Hugging Face (https://
huggingface.co/google/mt5-small) is employed as a cross-lingual sequence-to-sequence
model for the given task. The FLAN-T5 model with a small-sized architecture,
FLAN-T5small (https://huggingface.co/google/flan-t5-small), is trained on over
1,000 tasks and supports a wide range of languages; it is also employed in this study to
address the spelling correction task. During testing, a beam size of 5 is utilized for
sequence decoding across all encoder-decoder LLMs, allowing these models to explore
multiple candidate sequences by maintaining the top 5 most likely options at each
decoding step.

Evaluation metrics
The comparisons are presented in terms of word correction, word-level accuracy, and
Levenshtein similarity, considering the input sentence S, the predicted sequence Ŝ, and the

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 17/26

https://huggingface.co/
https://huggingface.co/
https://huggingface.co/dbmdz/bert-base-turkish-128k-uncased
https://huggingface.co/google-bert/bert-base-multilingual-uncased
https://huggingface.co/google-bert/bert-base-multilingual-uncased
https://huggingface.co/FacebookAI/xlm-roberta-base
https://huggingface.co/Turkish-NLP/t5-efficient-small-turkish
https://huggingface.co/google/mt5-small
https://huggingface.co/google/mt5-small
https://huggingface.co/google/flan-t5-small
http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

target sequence T. For the noisy word ~wk in a sentence S and the corresponding denoised
word and target pair (ŵi; ti), the word correction is defined as:

Word Correction ¼
P

k 1ð ~wkÞ
j eWj ; 8 ~wk 2 eW (28)

where eW is a set of noisy words in the sentence S. The correction indicator 1ðfwkÞ: wherebwi 2 Ŝ and ti 2 T .
Word-level correction focuses on whether a noisy word is corrected, which may lead to

a lack of consideration for the overall sentence. Therefore, sentence accuracy is also
considered to evaluate the entire sentence by assessing a model’s ability to retain error-free
words without making any modifications. For 8wi 2 S, accuracy can be computed by
counting all correct words, regardless of whether they are erroneous, using the indicator
function:

CðwiÞ ¼ 1; if 1ðwiÞ ¼ 1
0; else

�
(29)

Accuracy ¼
P

iCðwiÞ
jSj (30)

For considering the similarity between predicted sentences and targets, even if without
correcting full word-level misspellings, Levenshtein similarity, which depends on the
Levenshtein distance (dL), is also provided:

Levenshtein similarity ¼ 1� dLðS;TÞ
T

(31)

Experimental results
In this section, a comparative evaluation of various spelling correction tools and LLMs for
the Turkish spelling correction task is presented. The performance of these models is
assessed based on word-level accuracy and word correction metrics. The evaluation is
conducted on the NoisyWikiTr dataset with two distinct noising strategies: uniformly
generated noising and realistic noising, providing a comprehensive analysis of their
effectiveness in handling different types of noise.

Table 5 presents the comparative evaluation of spelling correction tools and LLMs for
the Turkish spelling correction task, based on word-level accuracy and word correction
metrics, evaluated on both the uniformly generated noisy and realistically noisy sets.

Table 3 Overview of LLMs for sentence spelling correction.

Model #Params Model architecture Pre-training task

BERTurkbase 283 M Encoder-only Masked language modeling

mBERTbase 266 M Encoder-only Multilingual masked language modeling

XLM-ROBERTabase 376 M Encoder-only Multilingual masked language modeling

FLAN-T5small 80 M Encoder-decoder Span corruption

T5-efficient-TRsmall 143 M Encoder-decoder Span-based masked language modeling

mT5small 300 M Encoder-decoder Multilingual masked language modeling

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 18/26

http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

Analyzing context-free and contextual models in correction
A comparative analysis of dictionary-based, n-grammodels, and transformer architectures
is conducted to evaluate their performance, taking into account both their context-free and
contextual characteristics. According to Table 5, Aspell, Hunspell variations, and SymSpell
exhibit relatively lower performance in terms of accuracy and word-level correction
metrics. Although dictionary-based models focus solely on finding the closest terms
without considering the entire sentence, as context-free models do, Zemberek and
Autocorrect outperform other dictionary-based tools and exhibit performance that is
relatively close to encoder-only models on the uniformly noised set. For the same set,
JamSpell also outperforms the transformer models. When using the pre-trained
BERTurkbase model as an MLM, BERTurkbaseMLM demonstrates lower performance
compared to other encoder-only models, showing relatively low word correction rates.
When considering the denoising capability of sequence-to-sequence models for the
uniformly noised set, it is observed that character perturbations significantly negatively
impact the performance of these models, as demonstrated by Belinkov & Bisk (2017). In
contrast, for the realistically noised set, sequence-to-sequence models yield promising
results, as they are better equipped to handle natural language variations that more
accurately reflect real-world misspellings. Overall, contextual models outperform
context-free models, demonstrating a significant margin in performance. This highlights
the superiority of models that incorporate contextual information over those relying solely
on context-free approaches.

Comparison of denoising performances for realistic and uniformly generated
noises
An additional evaluation is conducted to examine the impact of the noising strategy on
model performance. While dictionary-based tools like Zemberek and Autocorrect
outperform encoder-decoder models in correcting uniformly noised texts, all transformer
models show improved performance in handling realistic noise. For uniformly noised
texts, the results show that the JamSpell model achieved the highest accuracy by a
significant margin compared to other tools in terms of accuracy and word correction. The
BERTurkbase model ranks just below JamSpell, exhibiting comparable performance in
word-level accuracy, but slightly underperforming in word correction accuracy. For
uniformly noised texts, the encoder-only models outperform the encoder-decoder models,

Table 4 Hyperparameter configuration for fine-tuning large language models.

Model Batch size Learning rate Steps

BERTurkbase 16 5e−5 (warmup = 0.1) 429 k

mBERTbase 16 5e−5 (warmup = 0.1) 386 k

XLM-ROBERTabase 16 5e−5 (warmup = 0.1) 401 k

FLAN-T5small 16 5e−5 429 k

T5-efficient-TRsmall 16 5e−5 515 k

mT5small 16 5e−5 429 k

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 19/26

http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

including T5-efficient-TRsmall, FLAN-T5small, and mT5small. For realistically noised texts,
T5-efficient-TRsmall achieves the highest performance in both word-level accuracy and
word correction. Contextual models exhibit an improvement of approximately 0.30 in
word correction compared to context-free models. It can be concluded that LLMs
demonstrate superior performance over context-free tools, particularly when handling
more realistic noise.

Table 5 Performance evaluation of models on the NoisyWikiTr dataset.

Model/Library Uniformly generated noising Realistic noising

Accuracy Word correction Accuracy Word correction

Aspell 0.4856 0.3135 0.4492 0.2606

HunspellTDD 0.6887 0.4187 0.6881 0.3793

HunspellVDemir 0.7020 0.4886 0.7000 0.4336

Zemberek 0.9173 0.6130 0.8770 0.4740

AutocorrectNorvig 0.9238 0.6839 0.9138 0.5123

JamSpell 0.9606 0.8156 0.9500 0.6735

FLAN-T5small 0.7013 0.4192 0.7189 0.5483

T5-eifficient-TRsmall 0.7015 0.4185 0.9688 0.8129

mT5small 0.7083 0.4658 0.9662 0.7449

BERTurkbaseMLM 0.8623 0.3401 0.8670 0.2378

BERTurkbase 0.9525 0.6442 0.9593 0.6538

XLM-ROBERTabase 0.9286 0.4478 0.9421 0.5003

mBERTbase 0.9315 0.5845 0.9638 0.6844

Table 6 Performance of models in correcting language-filtered texts.

Model/Library Langauge-filtered dataset

Accuracy Word correction Levenshtein similarity

Aspell 0.4883 0.2938 0.8459

HunspellTDD 0.8455 0.4539 0.9528

HunspellVDemir 0.7974 0.4850 0.9341

SymSpell 0.8951 0.4798 0.9783

Zemberek 0.9093 0.4936 0.9749

AutocorrectNorvig 0.9141 0.5135 0.9803

JamSpell 0.9511 0.6673 0.9868

FLAN-T5small 0.7033 0.5593 0.9422

mT5small 0.9582 0.7401 0.9918

T5-efficient-TRsmall 0.9664 0.8142 0.9925

BERTurkbaseMLM 0.8902 0.2348 0.9691

BERTurkbase 0.9596 0.6498 0.9755

XLM-ROBERTabase 0.9423 0.4912 0.9857

mBERTbase 0.9641 0.6810 0.9780

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 20/26

http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

Evaluating cross-lingual vs language-specific LLMs for spelling correction

To compare cross-lingual and language-specific LLMs for the given task, a
language-filtered subset of the realistically noised dataset is created by filtering and
removing 870 non-target language texts using Langdetect (https://github.com/
Mimino666/langdetect), a library ported from Google’s language detection tool. Table 6
presents the results based on the filtered dataset. In addition to word-level accuracy and
word correction metrics, Levenshtein similarity is also provided to evaluate the models in
this table. Rather than focusing solely on word-level correctness, this metric evaluates how
closely models approximate the target text by considering individual character-level
differences. While dictionary-based and n-gram-based tools perform better on the filtered
sets, LLMs, including both multilingual models, demonstrate performance that is relatively
close to the original set, as shown in Table 5. According to the given results, the
language-specific sequence-to-sequence model, T5-efficient-TRsmall, achieves the best
performance by improving the word correction score. It is also observed that the
cross-lingual sequence-to-sequence model, FLAN-T5small, exhibits lower performance on
both the original and filtered datasets. Although cross-lingual encoder-decoder models
demonstrate slightly reduced accuracy and word correction performance on the filtered
set, owing to their broader capacity for handling diverse linguistic structures, mT5small still
surpasses the encoder-only language-specific model in word correction. As the
best-performing model, T5-efficient-TRsmall corrects sentences with the highest similarity,
as measured by the Levenshtein distance. Moreover, mT5, as a powerful cross-lingual
sequence-to-sequence model, along with encoder-only models, follows T5-efficient-
TRsmall in terms of Levenshtein similarity.

Comparison of models across different noise types
To assess the denoising capabilities of models with respect to various noise types, Table 7
presents the word-level correction performance for each noise type across LLMs.
According to the table, T5-efficient-TRsmall outperforms all LLMs for each type of noise.
Based on the table, it is evident that models are more capable of handling replacement
noises than other types, while deletion noise proves to be the most challenging noise type
to recover from. T5-efficient-TRsmall corrects only half of the typos, while it almost
completely corrects all replacement errors. LLMs also appear to be more successful at
handling insertion noises. As the lowest-performing sequence-to-sequence model,

Table 7 Model performances according to noise type.

Noise type FLAN-T5small mT5small T5-efficient-TRsmall BERTurkbase XLM-ROBERTabase mBERTbase

Deletion 0.0061 0.4080 0.5000 0.0399 0.0460 0.0552

Vowel deletion 0.4911 0.6852 0.7633 0.5962 0.4324 0.6305

Insertion 0.5441 0.7461 0.8191 0.5669 0.4274 0.6099

Vowel insertion 0.7151 0.8252 0.8715 0.6983 0.5269 0.7518

Substitution 0.3915 0.5472 0.6832 0.5347 0.3934 0.5727

Transposition 0.4910 0.6652 0.7436 0.5810 0.4382 0.6263

Replacements 0.7639 0.9605 0.9822 0.8728 0.6888 0.8726

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 21/26

https://github.com/Mimino666/langdetect
https://github.com/Mimino666/langdetect
http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

FLAN-T5small exhibits relatively similar performance across most noise types, except for
deletion noise. That is, this model demonstrates the poorest performance, primarily due to
its inability to effectively correct deletion-type errors. Similarly, the encoder-only LLMs
also appear to struggle with deletion noises, though they are capable of handling errors
involving missing vowels.

CONCLUSION
In this study, the spelling correction task is addressed for the Turkish language, which
consists of many words that can be derived from the same root, as it is an agglutinative
language. In addition to its potential applications in text-based platforms such as text
editors, search engines, and email services, spelling mistake-free content is also crucial for
existing LLMs in other NLP tasks as well. Therefore, the article focuses on the
context-aware correction problem rather than traditional edit distance and
dictionary-based approaches that consider similar words without regard to their
surrounding context. By leveraging the performance of LLMs across a wide range of tasks,
the study aims to explore LLMs for this downstream task on a novel dataset. With this goal,
much of the work on understanding encoder-only and encoder-decoder models
demonstrates how they perform in text correction, particularly when compared to
traditional dictionary and n-gram based tools. A comprehensive comparison has been
presented to provide insights into the performance of context-free and context-aware
approaches, including LLMs, for spelling correction tasks. The evaluation utilizes the novel
NoisyWikiTr dataset, comprising two distinct types of noise: uniformly generated noise
and realistic noise to simulate user-behavioral errors. The results reveal that while
dictionary-based tools perform better on uniformly noised texts, they struggle with
realistic errors, highlighting their limitations in handling natural misspellings. Contextual
models considerably outperform context-free approaches, with LLMs, particularly
sequence-to-sequence models, demonstrating strong performance in handling realistic
noise. Additionally, language-specific models, such as T5-efficient-TRsmall, consistently
outperform cross-lingual models, such as the powerful mT5small, highlighting the
advantage of specialized models for specific languages. In summary, these findings
highlight the superiority of contextual models and the power of LLMs in the given specific
task. As future work, autoregressive models, such as the GPTs, will be considered for this
task, with a focus on addressing grammatical errors as well.

ACKNOWLEDGEMENTS
OpenAI’s GPT-4 was used for minor language refinements under the supervision of the
author. It did not contribute to the research in terms of scientific content.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by TUBITAK ULAKBIM’s High Performance and Grid
Computing Center (TRUBA). Numerical calculations for training the models presented in

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 22/26

http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

this article were partially performed using resources provided by TRUBA. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
TUBITAK ULAKBIM’s High Performance and Grid Computing Center (TRUBA).

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Ceren Guzel Turhan conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw Turkish Wikipedia sentences are available at Hugging Face: https://
huggingface.co/datasets/erenfazlioglu/turkishwikipedia2023.

For this study, these sentences were preprocessed and then corrupted by introducing
noise to create the NoisyWikiTr dataset, which is available at GitHub and Zenodo:

- https://github.com/cgturhan/trspell.
- Guzel Turhan, C. (2025). NoisyWikiTr [Data set]. Zenodo. https://doi.org/10.5281/

zenodo.15281473.

REFERENCES
Akın AA, Akın MD. 2007. Zemberek, an open source NLP framework for Turkic languages.

Structure 10(2007):1–5.

Altinok D. 2023. A diverse set of freely available linguistic resources for Turkish. In: Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Toronto, Canada: Association for Computational Linguistics, 13739–13750
DOI 10.18653/v1/2023.acl-long.768.

Atkinson K. 2019. GNU aspell. Version 0.60.8. Available at http://aspell.net/.

Aytan B, Şankar CO. 2023.Deep learning-based Turkish spelling error detection with a multi-class
false positive reduction model. Turkish Journal of Electrical Engineering and Computer Sciences
31(3):581–595 DOI 10.55730/1300-0632.4003.

Belazzougui D, Botelho FC, Dietzfelbinger M. 2009. Hash, displace, and compress. In: European
Symposium on Algorithms. Cham: Springer, 682–693.

Belinkov Y, Bisk Y. 2017. Synthetic and natural noise both break neural machine translation.
ArXiv preprint DOI 10.48550/arXiv.1711.02173.

Bhaire VV, Jadhav AA, Pashte PA, Magdum P. 2015. Spell checker. International Journal of
Scientific and Research Publications 5(4):5–7.

Birhane A, Kasirzadeh A, Leslie D, Wachter S. 2023. Science in the age of large language models.
Nature Reviews Physics 5(5):277–280 DOI 10.1038/s42254-023-00581-4.

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 23/26

https://huggingface.co/datasets/erenfazlioglu/turkishwikipedia2023
https://huggingface.co/datasets/erenfazlioglu/turkishwikipedia2023
https://github.com/cgturhan/trspell
https://doi.org/10.5281/zenodo.15281473
https://doi.org/10.5281/zenodo.15281473
http://dx.doi.org/10.18653/v1/2023.acl-long.768
http://aspell.net/
http://dx.doi.org/10.55730/1300-0632.4003
http://dx.doi.org/10.48550/arXiv.1711.02173
http://dx.doi.org/10.1038/s42254-023-00581-4
http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

Bubeck S, Chandrasekaran V, Eldan R, Gehrke J, Horvitz E, Kamar E, Lee P, Lee YT, Li Y,
Lundberg S, Nori H, Palangi H, Ribeiro MT, Zhang Y. 2023. Sparks of artificial general
intelligence: early experiments with GPT-4. ArXiv preprint DOI 10.48550/arXiv.2303.12712.

Burkhard WA, Keller RM. 1973. Some approaches to best-match file searching. Communications
of the ACM 16(4):230–236 DOI 10.1145/362003.362025.

Büyük O. 2020. Context-dependent sequence-to-sequence Turkish spelling correction. ACM
Transactions on Asian and Low-Resource Language Information Processing (TALLIP) 19(4):1–
16 DOI 10.1145/3383200.

Chung HW, Hou L, Longpre S, Zoph B, Tay Y, FedusW, Li Y, Wang X, Dehghani M, Brahma S,
Webson A, Gu SS, Dai Z, Suzgun M, Chen X, Chowdhery A, Castro-Ros A, Pellat M,
Robinson K, Valter D, Narang S, Mishra G, Yu A, Zhao V, Huang Y, Dai A, Yu H, Petrov S,
Chi EH, Dean J, Devlin J, Roberts A, Zhou D, Le QV, Wei J. 2024. Scaling
instruction-finetuned language models. Journal of Machine Learning Research 25(70):1–53.

Conneau A. 2019. Unsupervised cross-lingual representation learning at scale. ArXiv preprint
DOI 10.48550/arXiv.1911.02116.

Cucerzan S, Brill E. 2004. Spelling correction as an iterative process that exploits the collective
knowledge of web users. In: Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing, 293–300.

Damerau FJ. 1964. A technique for computer detection and correction of spelling errors.
Communications of the ACM 7(3):171–176 DOI 10.1145/363958.363994.

Devlin J. 2018. BERT: pre-training of deep bidirectional transformers for language understanding.
ArXiv preprint DOI 10.48550/arXiv.1810.04805.

Ebrahimi J, Rao A, Lowd D, Dou D. 2017. HotFlip: white-box adversarial examples for text
classification. ArXiv preprint DOI 10.48550/arXiv.1712.06751.

Garbe W. 2012. 1000x, faster spelling correction algorithm. Available at https://seekstorm.com/
blog/1000x-spelling-correction.

Garbe W. 2018. Symspell. Available at https://github.com/wolfgarbe/SymSpell.

Goel R. 2021. Contextual spell check. Available at https://pypi.org/project/contextualSpellCheck/.

Gupta P. 2020. A context-sensitive real-time spell checker with language adaptability. In: 2020
IEEE 14th International Conference on Semantic Computing (ICSC). Piscataway: IEEE, 116–122.

Guthrie D, Hepple M, Liu W. 2010. Efficient minimal perfect hash language models. In: LREC.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 770–778.

Hochreiter S. 1997. Long short-term memory. In: Neural Computation. Cambridge: MIT-Press.

Hu K. 2023. ChatGPT sets record for fastest-growing user base—analyst note. Available at https://
www.reuters.com/article/chatgpt-fastest-growing-user-base-analyst-note.

Jayanthi SM, Pruthi D, Neubig G. 2020. Neuspell: a neural spelling correction toolkit. ArXiv
preprint DOI 10.48550/arXiv.2010.11085.

Jurafsky D, Martin JH. 2024. Speech and language processing: an introduction to natural language
processing, computational linguistics, and speech recognition with language models. Second
Edition. Stanford: Stanford University.

Kingma DP. 2014. Adam: a method for stochastic optimization. ArXiv preprint
DOI 10.48550/arXiv.1412.6980.

Koksal AT, Bozal O, Yürekli E, Gezici G. 2020. #Turki$hTweets: a benchmark dataset for Turkish
text correction. In: Findings of the Association for Computational Linguistics: EMNLP 2020,
4190–4198.

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 24/26

http://dx.doi.org/10.48550/arXiv.2303.12712
http://dx.doi.org/10.1145/362003.362025
http://dx.doi.org/10.1145/3383200
http://dx.doi.org/10.48550/arXiv.1911.02116
http://dx.doi.org/10.1145/363958.363994
http://dx.doi.org/10.48550/arXiv.1810.04805
http://dx.doi.org/10.48550/arXiv.1712.06751
https://seekstorm.com/blog/1000x-spelling-correction
https://seekstorm.com/blog/1000x-spelling-correction
https://github.com/wolfgarbe/SymSpell
https://pypi.org/project/contextualSpellCheck/
https://www.reuters.com/article/chatgpt-fastest-growing-user-base-analyst-note
https://www.reuters.com/article/chatgpt-fastest-growing-user-base-analyst-note
http://dx.doi.org/10.48550/arXiv.2010.11085
http://dx.doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

Levenshtein V. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In:
Proceedings of the Soviet Physics Doklady.

Li X, Liu H, Huang L. 2020. Context-aware stand-alone neural spelling correction. ArXiv preprint
DOI 10.48550/arXiv.2011.06642.

Liu Y. 2019. RoBERTa: a robustly optimized BERT pretraining approach. ArXiv preprint
DOI 10.48550/arXiv.1907.11692.

Loshchilov I, Hutter F. 2017. Decoupled weight decay regularization. ArXiv preprint
DOI 10.48550/arXiv.1711.05101.

Melli G, Eldallal A, Lazem B, Moreira O. 2020. GM-RKB WikiText error correction task and
baselines. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, 2424–
2430.

Näther M. 2020. An in-depth comparison of 14 spelling correction tools on a common benchmark.
In: Proceedings of the Twelfth Language Resources and Evaluation Conference, 1849–1857.

Norvig P. 2007.How to write a spelling corrector. Available at https://norvig.com/spell-correct.html.

Oflazer K, Saraçlar M. 2018. Turkish and its challenges for language and speech processing. In:
Turkish Natural Language Processing. Cham: Springer, 1–19.

Oral E, Mancuhan K, Erdem HV, Hatipoglu PE. 2024. Turkish typo correction for e-commerce
search engines. In: Proceedings of the Seventh Workshop on e-Commerce and NLP@
LREC-COLING 2024, 65–73.

Ozinov F. 2019. Jamspell. GitHub. Available at https://github.com/bakwc/jamspell.

Peters M, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer L. 2018. Deep
contextualized word representations. ArXiv preprint DOI 10.48550/arXiv.1802.05365.

Pollock JJ, Zamora A. 1984. Automatic spelling correction in scientific and scholarly text.
Communications of the ACM 27(4):358–368 DOI 10.1145/358027.358048.

Pruthi D, Dhingra B, Lipton ZC. 2019. Combating adversarial misspellings with robust word
recognition. ArXiv preprint DOI 10.48550/arXiv.1905.11268.

Radford A. 2018. Improving language understanding by generative pre-training. Available at
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.
pdf.

Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ. 2020.
Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
Machine Learning Research 21(140):1–67.

Safaya A, Kurtuluş E, Göktoğan A, Yuret D. 2022. Mukayese: Turkish NLP strikes back. ArXiv
preprint DOI 10.48550/arXiv.2203.01215.

Sakaguchi K, Duh K, Post M, Van Durme B. 2017. Robsut wrod reocginiton via semi-character
recurrent neural network. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Schweter S. 2020. BERTurk-BERT models for Turkish. Zenodo. Available at https://zenodo.org/
records/3770924.

Sennrich R, Haddow B, Birch A. 2015. Neural machine translation of rare words with subword
units. ArXiv preprint DOI 10.48550/arXiv.1508.07909.

Solak A, Oflazer K. 1993. Design and implementation of a spelling checker for Turkish. Literary
and Linguistic Computing 8(3):113–130 DOI 10.1093/llc/8.3.113.

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. 2014. Dropout: a simple
way to prevent neural networks from overfitting. The Journal of Machine Learning Research
15(1):1929–1958.

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 25/26

http://dx.doi.org/10.48550/arXiv.2011.06642
http://dx.doi.org/10.48550/arXiv.1907.11692
http://dx.doi.org/10.48550/arXiv.1711.05101
https://norvig.com/spell-correct.html
https://github.com/bakwc/jamspell
http://dx.doi.org/10.48550/arXiv.1802.05365
http://dx.doi.org/10.1145/358027.358048
http://dx.doi.org/10.48550/arXiv.1905.11268
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
http://dx.doi.org/10.48550/arXiv.2203.01215
https://zenodo.org/records/3770924
https://zenodo.org/records/3770924
http://dx.doi.org/10.48550/arXiv.1508.07909
http://dx.doi.org/10.1093/llc/8.3.113
http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

Stribling D, Xia Y, Amer MK, Graim KS, Mulligan CJ, Renne R. 2024. The model student: GPT-
4 performance on graduate biomedical science exams. Scientific Reports 14:5670
DOI 10.1038/s41598-024-55568-7.

Tay Y, Dehghani M, Rao J, Fedus W, Abnar S, Chung HW, Narang S, Yogatama D, Vaswani A,
Metzler D. 2021. Scale efficiently: insights from pre-training and fine-tuning transformers.
ArXiv preprint DOI 10.48550/arXiv.2109.10686.

Torunoğlu-Selamet D, Eryiğit G. 2014. A cascaded approach for social media text normalization
of turkish. In: Proceedings of the 5th Workshop on Language Analysis for Social Media (LASM),
62–70.

Tron V, Gyepesi G, Halácsky P, Kornai A, Németh L, Varga D. 2005. Hunmorph: Open Source
Word Analysis.

Vaswani A, Shazeer N, Parmer N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I.
2017. Attention is all you need. Advances in Neural Information Processing Systems
DOI 10.48550/arXiv.1706.03762.

Xue L, Constant N, Roberts A, Kale M, Al-Rfou R, Siddhant A, Barua A, Raffel C. 2020.MT5: a
massively multilingual pre-trained text-to-text transformer. ArXiv preprint
DOI 10.48550/arXiv.2010.11934.

Guzel Turhan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2889 26/26

http://dx.doi.org/10.1038/s41598-024-55568-7
http://dx.doi.org/10.48550/arXiv.2109.10686
http://dx.doi.org/10.48550/arXiv.1706.03762
http://dx.doi.org/10.48550/arXiv.2010.11934
http://dx.doi.org/10.7717/peerj-cs.2889
https://peerj.com/computer-science/

	Leveraging large language models for spelling correction in Turkish
	Introduction
	Related works
	Synthetically corrupted turkish dataset: noisywikitr
	Spelling correction methods
	Contextual spell check with large language models
	Experiments
	Conclusion
	flink8
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

