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ABSTRACT

Biomechanical analysis of the human lower limbs plays a critical role in movement
assessment, injury prevention, and rehabilitation guidance. Traditional gait analysis
techniques, such as optical motion capture systems and biomechanical force
platforms, are limited by high costs, operational complexity, and restricted
applicability. In view of this, this study proposes a cost-effective and user-friendly
approach that integrates inertial measurement units (IMUs) with a novel deep
learning framework for real-time lower limb joint torque estimation. The proposed
method combines time-frequency domain analysis through continuous wavelet
transform (CWT) with a hybrid architecture comprising multi-head self-attention
(MHSA), bidirectional long short-term memory (Bi-LSTM), and a one-dimensional
convolutional residual network (1D Conv ResNet). This integration enhances feature
extraction, noise suppression, and temporal dependency modeling, particularly for
non-stationary and nonlinear signals in dynamic environments. Experimental
validation on public datasets demonstrates high accuracy, with a root mean square
error (RMSE) of 0.16 N-m/kg, Coefficient of Determination (R?) 0f 0.91, and Pearson
correlation coefficient of 0.95. Furthermore, the framework outperforms existing
models in computational efficiency and real-time applicability, achieving a
single-cycle inference time of 152.6 ms, suitable for portable biomechanical
monitoring systems.

Subjects Computational Biology, Algorithms and Analysis of Algorithms, Artificial Intelligence
Keywords Inertial measurement units (IMU), Lower limb joint torque, Deep learning approach,
Bi-LSTM, Continuous wavelet transform (CWT)

INTRODUCTION

The study of lower limb biomechanics is paramount in sports science and rehabilitation
medicine, informing strategies for improved athletic performance and more effective

patient rehabilitation (Tai, Zhang ¢ Zhao, 2023; Jin et al., 2024). Precise measurement of
lower limb joint torque is particularly crucial across these fields and in the advancement of
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robotic control systems (Boukhennoufa et al., 2022; De Fazio et al., 2023; Park et al., 2024).
Conventional gait analysis and torque measurement methodologies rely on optical motion
capture systems and force platforms. While these conventional methodologies offer high
accuracy under laboratory conditions, their practical application is significantly limited.
Firstly, conventional systems are costly and require complex maintenance, posing a
financial burden for research teams and clinical institutions with limited resources;
secondly, technical complexity in data acquisition and processing that necessitates
specialized expertise; and finally, restricted applicability to controlled laboratory
environments with stringent lighting and spatial constraints, which fundamentally limits
their deployment in natural or dynamic real-world settings (Onal et al., 2019; Mylonas,
Chalitsios & Nikodelis, 2023).

To address these limitations, portable sensing technology has experienced rapid
advancements recently, particularly with the development of inertial measurement units
(IMUs), offering a viable alternative for lower limb torque measurement (Gu et al., 2023).
IMUs provide data such as acceleration, angular velocity, and orientation, facilitating
effective monitoring and analysis of lower limb motion. IMU sensors’ portability and
real-time capabilities also enable observation of lower limb activities in various real-world
contexts, thereby opening new avenues for biomechanical research and clinical practice
(Chen et al., 2021). Nevertheless, despite the evident benefits of IMU-based systems,
several challenges persist in practical settings: (1) the inherent nonlinear and
non-stationary nature of IMU signals makes extracting precise features via traditional
methods arduous; (2) redundant data and noise arising from multi-sensor configurations
can complicate signal processing and compromise stability; and (3) existing deep learning
techniques, including long short-term memory (LSTM) and gated recurrent unit (GRU),
while useful in joint motion prediction, struggle with the demands of real-time processing,
high-dimensional feature extraction, and computational efficiency, impeding their broader
use in dynamic environments (Ricci, Taffoni & Formica, 2016; Al-Selwi et al., 2024).

Recent deep learning advances demonstrate potential for IMU data analysis. For
instance, models built on LSTM and GRU have demonstrated their potential in accurate
joint motion prediction, torque estimation, and similar tasks by capitalizing on the
temporal dependencies in motion data. However, deep learning-based IMU analysis still
faces certain hurdles: (1) model performance can be inconsistent when dealing with
complex, variable motion, especially in dynamic contexts, hindering their adaptability to
varied scenarios; (2) high computational overhead can impede real-time application in
practical settings; and (3) inherent non-stationarity and noise in IMU signals often lead to
insufficient noise reduction, thus affecting accuracy (Suvorkin et al., 2024). Moreover,
while advanced transformer-based models have showcased powerful feature modelling
capabilities, their computational demands often restrict their use in real-time applications
(Tang et al., 2024). These limitations inherent to existing approaches, particularly in
processing high-dimensional, noisy data, emphasize the need for combining
time-frequency analysis with deep learning.

To address the limitations of existing methods, this article introduces a deep learning
framework that utilizes continuous wavelet transform (CWT) to effectively handle the
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nonlinear and non-stationary nature of IMU data in pursuit of accurate lower limb torque
estimation. This framework leverages the time-frequency analysis of CWT, the deep
feature extraction capabilities of a one-dimensional convolutional residual network (1D
Conv ResNet), and the temporal dependency modelling of a bidirectional long short-term
memory (Bi-LSTM) network. As an initial step, CWT transforms IMU data into a
two-dimensional time-frequency representation, reducing high-frequency noise while
simultaneously enhancing the detection of subtle low-frequency dynamic changes. This
process facilitates the precise capture of key features, addressing existing noise reduction
and feature extraction limitations.

During feature processing, the 1D Conv ResNet methodically analyzes time-frequency
features at various scales, extracting deeper levels of information from the data. The
multi-head self-attention (MHSA) mechanism examines the relationships among these
features, Bi-LSTM captures feature-to-feature correlations and long-term temporal
dependencies to support accurate lower limb torque estimation. Comparative studies
indicate that our proposed framework surpasses the performance of other methods across
various metrics, including the root mean square error (RMSE), the Coefficient of
Determination (R?), and the Pearson correlation coefficient. For example, in lower limb
joint torque estimation, the framework achieved a notable RMSE of 0.11 N-m/kg, an R* of
0.97, and a Pearson correlation coefficient of 0.98. Experimental results indicate that the
proposed framework provides notable benefits in computational efficiency and real-time
performance, making it suitable for real-time monitoring in dynamic environments.

The core contributions of this study can be summarized as follows: (1) we present a new
deep-learning framework combining CWT for enhanced time-frequency feature
extraction and noise suppression in IMU-based biomechanical assessments. (2) We
developed and validated a model architecture that utilizes a 1D Conv ResNet and a
Bi-LSTM network for deep feature extraction and temporal dependency modelling. (3) We
provide experimental validation of our model’s high-accuracy performance in real-time
lower limb torque estimations, evaluated across diverse, dynamic environments.

This article is organized in the following manner: “Related Work” reviews pertinent
research, highlighting the application of portable sensing technologies and deep learning
for biomechanical data analysis; “Data and Methods” provides a detailed description of the
employed methodologies, including CWT data preprocessing, the proposed hybrid
architecture, and the experimental verification strategy; “Results” presents the
experimental results and the comparative analyses in multiple dynamic scenarios;
“Discussion” discusses the broader significance, limitations, and potential future directions
of the research; and “Conclusions” offers a concise summary of the work.

RELATED WORK

Application of portable sensing technology in biomechanics research
The rapid advancement of portable sensing technologies has positioned IMUs as
indispensable tools in motion monitoring and biomechanics research (Liang et al., 2023b).
Their inherent portability, real-time data acquisition, and efficient processing capabilities
make IMUs ideal for a range of research and practical applications. Specifically, in lower
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limb motion analysis, deep-learning enhanced IMU systems have demonstrated the ability
to estimate joint torques with a precision that rivals traditional optical motion capture
methods (Hollinger et al., 2023). This is achieved through sophisticated signal processing
techniques and deep learning models that extract pertinent features, facilitating an
accurate and efficient evaluation of various motion parameters (He et al., 2025).

The application of deep learning methodologies in IMU data processing has broadened
substantially. State-of-the-art models, including Transformer architectures (e.g., BloMAT,
TempoNet), hybrid convolutional neural network (CNN)-recurrent neural network
(RNN) frameworks (e.g., CNN-LSTM, CNN-GRU), and self-supervised learning (SSL)
paradigms, have demonstrated notable efficacy in intricate motion scenarios. For example,
recent studies demonstrate the BloMAT model’s strong generalization ability across
multiple tasks, attributed to its integration of Transformer architecture with dynamic
spatiotemporal convolutions. However, high computational demands severely limit
BioMAT’s real-time applicability on low-power devices (Sharifi-Renani, Mahoor ¢ Clary,
2023).

Parallel research efforts employing vision transformer (ViT) and swin transformer
architectures have achieved significant progress in gait analysis and rehabilitation
medicine. These architectures overcome traditional recurrent neural networks’ limitations
in modeling long-term dependencies. However, they exhibit two critical shortcomings:
(1) reduced robustness when processing highly noisy, non-stationary signals in dynamic
environments, and (2) limited generalizability across heterogeneous datasets (Li ef al.,
20245 Chen ¢ Yue, 2024). Similarly, the TempoNet model leverages a dynamic temporal
attention mechanism to model long-term dependencies in motion data, demonstrating
efficacy in gait analysis and exoskeleton control; nevertheless, its high computational
overhead hinders widespread adoption for real-time applications (Saoud ¢ Hussain,
2023). Additionally, while SSL offers potential to improve prediction accuracy with
reduced reliance on annotated data, its cross-scenario adaptability remains understudied
(Tan et al., 2024).

Researchers have recognized the intricacies of IMU data and developed various deep
learning architectures to enhance model performance. For example, the FocalGatedNet
framework has made notable progress in capturing complex temporal dependencies
through gated linear units (GLU) combined with a contextual focus attention mechanism,
which improves knee angle prediction accuracy. However, this model struggles with
high-frequency noise interference, and its generalization in dynamic scenarios requires
further validation (Saad Saoud et al., 2023). Analogous to the CNN-RNN hybrid
architecture, the integration of spatiotemporal convolutional networks (STCNs) with
bidirectional LSTMs has improved time-series data processing, demonstrating potential
for joint torque and angle estimation across diverse walking conditions. Yet, their high
computational complexity often hinders real-time implementation (Wang et al., 2023).
Additionally, the time series transformation model, TSTPlus, as investigated by Altai et al.
(2023) effectively reduces redundant information and enhances robustness for IMU-based
joint torque prediction. However, it still depends on laboratory-based calibration data.
Multimodal data fusion provides new opportunities for advancing lower limb motion
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analysis. For instance, the lower limb modified transformer (LLMT) model combines IMU
data with surface electromyography (EMG) signals to capture interactions between muscle
activity and kinematics, leading to significantly improved motion pattern recognition
(Hosseini, Joojili & Ahmadi, 2024).

Despite these advances, precise estimation of lower limb joint torque faces three
persistent challenges. First, generalizability of deep learning models across heterogeneous
real-world scenarios remains unresolved. Most models are trained on laboratory-curated
datasets, leading to significant performance degradation in unstructured environments
due to uncontrolled variability (e.g., uneven terrain during outdoor walking or
patient-specific adaptations in rehabilitation). Second, the computational complexity of
state-of-the-art models particularly attention-based architectures like transformers often
exceeds the resource constraints of edge-computing devices. While multimodal sensor
fusion theoretically enhances information richness, it inevitably introduces redundant data
streams and noise amplification, thereby compromising feature discriminability and
real-time throughput. Third, IMU sensors are prone to environmental interference, sensor
misalignment artifacts, and motion-induced signal drift, which collectively propagate
cumulative errors over time. Non-standardized sensor placement protocols further
exacerbate data inconsistency, directly undermining torque estimation reliability.

Motion recognition based on time-frequency analysis and deep
learning

In motion recognition and lower limb torque estimation, time-frequency domain analysis
has emerged as a critical tool for analyzing non-stationary signals. While traditional
time-domain methods such as sliding-window mean filtering excel at processing global
trends in IMU data, they fail to adequately represent transient signal characteristics
(e.g., sudden joint angle changes during gait transitions) and dynamic frequency variations
in complex motions (Liang et al., 2023a). To overcome this limitation, time-frequency
analysis provides a more discriminative feature representation by jointly encoding
temporal and spectral signal properties. Among these methods, the short-time Fourier
transform (STFT) and wavelet transform (WT) are widely adopted. The STFT performs
local frequency characterization via fixed-duration windowed spectrum analysis. However,
its fixed time-frequency resolution limits effectiveness for non-stationary signals, such as
impact transients during running gait. In contrast, the CWT leverages adaptive scaling
factors to resolve transient features across multiple resolutions. For example, it precisely
characterizes low-frequency vibrations during heel strikes and high-frequency noise in
swing phases, thereby improving dynamic motion modeling (Du et al., 2024).

In recent years, researchers have explored the integration of CWT with deep learning
methods to enhance model performance. For instance, Siddique et al. (2023) proposed a
hybrid method integrating the fast computational properties of the STFT with the
multi-scale analysis capabilities of CWT. They developed a hybrid time-frequency
feature extraction framework, demonstrating enhanced robustness in applications such as
pipeline leak detection (Siddique et al., 2023). Similarly, Zaman et al. (2024) combined
time-frequency analysis with pretrained CNNs for fault diagnosis, showing improved
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accuracy. Despite the focus on industrial signals, this strategy can be adapted to motion
analysis by generating time-frequency graphs through CWT as inputs to CNNs, thereby
enhancing the model’s ability to capture transient features in gait signals. For instance, a
CWT-based gait event detection algorithm has been validated in patients with Parkinson’s,
enabling accurate quantification of movement disorders by isolating high-frequency
components of heel strike and toe-off events (Pham et al., 2017). Additionally, Fathalla
et al. (2023) utilized CWT to analyze the motion characteristics of karate techniques,
demonstrating its effectiveness in accurately extracting joint angle features.

To enhance model adaptability to complex motion scenarios, researchers have
integrated time-frequency analysis with multimodal data (e.g., surface electromyography)
and advanced network architectures. For instance, by leveraging time-frequency features
and sequence modeling capabilities, the hybrid CNN-RNN model effectively facilitates the
efficient classification of complex motion patterns (Arshad et al., 2022). Similarly,
architectures using stacked convolutions and LSTM networks achieve real-time estimation
of multiple joint angles in dynamic scenarios (Lu et al., 2022). Additionally, while
multimodal methods, such as joint modelling of CWT and electromyographic signals, can
improve motion pattern recognition accuracy, synchronization errors between sensors and
data heterogeneity complicate feature fusion (Torghabeh, Moghadam ¢ Hosseini, 2024).
Although time-frequency analysis-based methods have demonstrated significant potential,
they face challenges in real-time applications. The high computational complexity of
CWT, particularly multi-scale convolution operations, limits its suitability for low-power
portable devices. Future research should explore approximate algorithms, such as fast
wavelet transform, or hardware acceleration strategies, such as field programmable gate
array (FPGA) deployment, to improve computational efficiency. Additionally,
high-frequency noise in outdoor environments, such as ground vibrations and sensor
jitter, can disrupt time-frequency features, necessitating the development of adaptive
filtering algorithms or noise adversarial training mechanisms.

DATA AND METHODS

This study proposes a novel deep learning framework that integrates time-frequency
domain analysis with a multimodal network architecture to achieve high-precision
estimation of lower limb joint torque using IMU sensor data. The framework combines
CWT, one-dimensional convolution (1D Conv), 1D Conv ResNet, Bi-LSTM and MHSA
mechanisms to form a multi-module collaborative architecture, enabling complementary
modeling of spatiotemporal features. The overall structure of the model is illustrated in
Fig. 1.

Data preprocessing and feature extraction

This study utilized two publicly available datasets for model development and validation.
Dataset A comprises multimodal biomechanical data from 22 healthy subjects across six
activity scenarios, including flat ground walking, ramp ascent and descent, treadmill
exercise, and stair ascent and descent (Camargo et al., 2021). A standardized data
acquisition protocol was employed: IMU sensors (200 Hz sampling rate) were placed on
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Figure 1 Schematic overview of the proposed deep learning framework for estimating joint torque from IMU sensor data. The process begins
with the raw IMU data captured during gait cycles, which is then transformed into a time-frequency image using the CWT. These images are fed into
a one-dimensional residual network, which extracts spatial features. Subsequently, a multi-head attention mechanism refines the feature repre-
sentation by emphasizing relevant temporal patterns. The processed data is then input into a Bi-LSTM network, which captures dynamic temporal
dependencies. The output from the Bi-LSTM network passes through a fully connected layer (FC), culminating in the prediction of joint torque
values for the lower limb across multiple time points. Full-size K&l DOT: 10.7717/peerj-cs.2888/fig-1

the chest and right lower limb, the Vicon motion capture system (200 Hz) synchronously
recorded motion trajectories, the Bertec force plate (1,000 Hz) collected ground reaction
force (GRF), and sagittal joint torques were calculated using OpenSim inverse dynamics
(Delp et al., 2007).

Dataset B serves as a validation dataset for the model. It incorporates the public dataset
from Scherpereel et al. (2023), which includes biomechanical data from 12 healthy subjects
(seven males and five females, aged 18-30 years) performing dynamic tasks such as
walking, running, and jumping. The IMU sensors in Dataset B cover both lower limbs
(chest, thighs, calves, and feet), with data acquisition parameters consistent with Dataset
A’s. In this study, Dataset B is specifically employed to evaluate the model’s generalization
capability.

In the data preprocessing stage, to ensure data consistency and quality, Dataset A
retained data from 19 healthy subjects (12 males, seven females) and excluded data from
three participants (AB06, AB11, AB15) due to significant discrepancies between their GRF
and IMU data. For gait data processing, the gait cycle was segmented using EMG data,
defining each cycle from the right heel strike to the subsequent right heel strike. To
standardize the number of sampling points per gait cycle, all data were time-normalized
and interpolated, with each cycle uniformly resampled to a sequence of 101 sampling
points. For gait cycles identified as outliers, a two-level screening strategy was
implemented: (1) cycles with >3 consecutive missing values (NaN) were removed, and
(2) minor missing values were corrected using linear interpolation based on the mean of
adjacent data points. Following the preprocessing, Dataset A yielded gait cycles for six
activity modes: level walking (732 cycles), ramp ascent (309 cycles), ramp descent
(467 cycles), stair ascent (797 cycles), stair descent (826 cycles), and treadmill exercise
(15,292 cycles).
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The preprocessing stage for Dataset B mirrored the procedure applied to Dataset A. Due
to missing data for subject AB07, this subject was excluded from Dataset B. All data
underwent normalization and interpolation to standardize movement cycles. Minor data
gaps were filled using interpolation; however, cycles with outliers or extensive consecutive
missing data were excluded. Subsequently, the dataset comprised 990 cycles of level
walking and 388 cycles of ramp ambulation.

This study utilized two publicly available biomechanical datasets (Datasets A and B) for
model development, and preprocessing adhered to a standardized protocol (Fig. 2).
Following segmentation and time-normalization of the raw IMU signals within each gait
cycle, a feature enhancement method grounded in biomechanical coupling principles was
proposed to mitigate issues related to sensor noise heterogeneity (acceleration vibration
interference, gyroscope drift) and motion artefacts. During the sensor-specific filtering
stage, a mean filter was applied to smooth the acceleration signals, aiming to suppress the
impact of random fluctuations on feature extraction. Concurrently, the gyroscope signals
underwent processing via a 6th-order Butterworth low-pass filter (cutoft frequency: 3.5
Hz) to eliminate high-frequency noise while preserving essential dynamic characteristics.
Figure 2 illustrates the preprocessing procedure for joint torque estimation utilizing IMU
data.

IMU data primarily relies on linear acceleration and angular velocity measurements and
is susceptible to noise and interference, particularly in complex motion patterns. This
susceptibility hinders accurately capturing gait characteristics and subtle variations in
dynamic activities. Conventional preprocessing techniques, such as low-pass filtering and
normalization, exhibit limitations in enhancing data quality, especially when confronted
with high-frequency noise and sensor misalignment. Consequently, this study introduces
two supplementary features: the acceleration-to-angular velocity ratio (AGRatio) and
dynamic acceleration (ADynamic). These features aim to enhance the characterization
capabilities of IMU signals, thereby providing more robust and dependable input for deep
learning models.

The design rationale for the AGRatio stems from the translation rotation motion
dynamics coupling mechanism. Acceleration signals reflect translational motion
characteristics, whereas angular velocity signals delineate rotational motion characteristics.
These two signal types exhibit strong correlations during the gait cycle yet are susceptible
to distinct noise interference mechanisms. Calculating the modulus ratio (Eq. (1))
optimizes this feature through three mechanisms. First, the noise independence of the
numerator and denominator effectively suppresses common-mode interference, as
theoretically substantiated in Eq. (3). Second, dimensional normalization mitigates the
unit disparity between acceleration (m/s*) and angular velocity (rad/s), enhancing the
consistency of feature scales. Furthermore, quantizing the energy distribution pattern
during the gait cycle aids in phase transition identification. Mathematical analysis indicates
that under independent Gaussian noise interference affecting acceleration and angular
velocity signals, the noise variance of the AGRatio is smaller than that of the original signal.
This reduction is particularly salient in complex motion scenarios.
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Figure 2 Illustration of the preprocessing pipeline for torque estimation using IMU data. Initially, raw data is collected via IMUs mounted on a
subject during ambulation. This data is then segmented into individual gait cycles, each normalized to contain 101 data points. Subsequently, the
data undergoes a filtering process and enhancement by adding calculated features (e.g., acceleration to gyroscope ratios and dynamic accelerations).
The final preprocessing step involves converting the refined data into a time-frequency domain image via CWT, preparing it for further analysis in
torque estimation models. Full-size Kl DOI: 10.7717/peerj-cs.2888/fig-2

VAX? + Ay? + AZ?
\/Gx% + Gy? + Gz?

AGRatio = (1)

where ‘AGRatio’ denotes the acceleration to angular velocity ratio. Specifically, ‘Ax,” ‘Ay,’
and ‘Az’ denote the acceleration values in the x, y, and z directions. Similarly, ‘Gx,” ‘Gy,’
and ‘Gz’ refer to the angular velocity values in the x, y, and z directions.

ADynamic construction is centred on mitigating the interference from gravitational
components. IMU-derived acceleration comprises a static component attributed to gravity
and a dynamic component resulting from active motion. The static component introduces
non-linear interference, particularly with postural variations. By decoupling the
gravitational component from the composite acceleration (Eq. (2)), DA facilitates the
precise extraction of active motion features directly correlated with joint torque.

ADynamic = \/(Ax —g)’+ Ay —g)’ + (Az—g)’ (2)

where ‘“ADynamic’ signifies dynamic acceleration, while ‘g’ denotes the acceleration due to
gravity, assumed to be 9.81 m/s* for this study.

2 2
Var(AGR) =~ (6—A> + <#A2G> . (3)

Ug Ug

Comparative performance analysis of the model was conducted in an uphill scenario to

assess the contribution of the AGRatio and ADynamic features to lower limb joint torque
estimation performance. The specific results are presented in Table 1. Experimental results
indicated that the baseline model (utilizing the original signal) achieved an RMSE of
0.213 4 0.080 and an R? of 0.829 4 0.120 on the test set. In contrast, incorporating
AGRatio alone led to a 4.7% reduction in RMSE. Incorporating ADynamic alone resulted
in a 1.3% increase in Pearson correlation coefficient (PCC). Synergistically employing both
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Table 1 AGRatio and ADynamic ablation experiment.

Supplementary features RMSE R? PCC

Only AGRatio 0.213 + 0.049 0.841 + 0.069 0.921 + 0.034
Only ADynamic 0.207 + 0.054 0.847 + 0.079 0.923 + 0.042
No related features 0.213 + 0.080 0.829 + 0.120 0.911 + 0.066
Original model (two features) 0.192 + 0.028 0.884 + 0.044 0.938 + 0.021

AGRatio and ADynamic, the model’s R? reached 0.884 + 0.044, 2 6.6% improvement over
the conventional method, thus demonstrating the synergistic effect of these features.
Theoretical derivation further substantiates this conclusion: when the mean ratio of
acceleration to angular velocity signals (14 /1) remains stable throughout the gait cycle,
the AGRatio noise variance (Eq. (3)) is reduced by compared to the original signal, thereby
significantly enhancing model robustness.

Time-frequency domain image construction based on CWT
For time-frequency domain preprocessing, this study selected CWT as the core method,
considering the non-stationary characteristics of IMU data and the applicability of various
denoising techniques. CWT maps the signal to the time-frequency domain via scaling of
the wavelet basis function. High-frequency noise manifests as random, scattered local
energy spikes, which CWT effectively smooths and diffuses across multiple scales to reduce
interference with feature extraction. In contrast, adaptive filtering (AF) relies on an ideal
reference signal. However, IMU sensor noise is complex and lacks readily available prior
information, limiting AF’s applicability for high-frequency noise suppression. Moreover,
AF is susceptible to sudden high-frequency noise (e.g., gait impact noise) and may lose
potentially valuable high-frequency information. Empirical mode decomposition (EMD)
theoretically can separate different frequency components by decomposing the signal into
IMFs. Nevertheless, modal aliasing exists between high-frequency noise and the target
signal frequency in IMU signals, hindering effective noise component separation and
resulting in suboptimal denoising performance. Furthermore, the high computational
complexity of EMD renders it less suitable for real-time motion monitoring.
Experimental results (Appendix 1) demonstrate that CWT outperforms EMD in
denoising performance (Signal-to-Noise ratio (SNR) improved to —3.057 vs. —13.588 dB;
mean squared error (MSE) reduced to 0.920 vs. 8.050) and exhibits comparable
performance to AF (AF’s SNR: —2.859 dB; MSE: 0.682). However, AF primarily targets
low-frequency noise and is susceptible to losing transient high-frequency information
during gait. Conversely, CWT effectively preserves transient features in joint motion, such
as high-frequency energy fluctuations at heel strike, ensuring feature accuracy and
integrity. Despite CWT’s higher computational complexity (a single-cycle processing time
of ~147.8 ms, exceeding AF’s 125.8 ms), its multi-scale analysis capabilities are better
suited for non-stationary signal processing. Future research could explore combining AF
and CWT to optimize denoising effectiveness and computational efficiency.
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Table 2 Performance and computational demand comparison of CWT, STFT, and DWT.

Time-frequency analysis method RMSE R PCC GPU processing time (ms/cycle)
CWT 0.192 + 0.028 0.884 + 0.044 0.938 + 0.021 147.802
STFT 0.213 + 0.048 0.841 + 0.072 0.919 + 0.040 101.776
DWT 0.271 £ 0.043 0.748 = 0.071 0.873 £ 0.033 89.114

CWT is the core method for extracting time-frequency domain features. CWT’s
multi-scale analysis capability and adaptive time-frequency resolution are significantly
superior to conventional methods such as STFT and discrete wavelet transform (DWT).
CWT yields a smooth and comprehensive time-frequency representation through
continuous adjustment of the scale and translation factors. This attribute renders CWT
especially effective for capturing features typical of non-stationary biomechanical signals.
STFT’s limitation lies in its fixed window size, which challenges balancing high-frequency
transient features (e.g., gait contact peak) and low-frequency energy distribution (e.g., gait
cycle rhythm). At the same time, DWT offers high computational efficiency; however, its
discrete scale jumps induce artifacts in the time-frequency representation, potentially
compromising the feature learning capability of deep learning models. However, CWT
facilitates a more seamless time-frequency transition and representation.

To quantify the performance benefits and computational demands of CW'T, this study
compared three methodologies within an uphill scenario (Table 2). The comparison
included CWT, STFT, and DWT, with uphill data selected for the experimental scenario.
Experimental results indicated that CWT achieved an RMSE of 0.192 + 0.028 and an R? of
0.884 + 0.044, demonstrating superior performance to STFT (RMSE = 0.213) and DWT
(RMSE = 0.271). Despite CWT’s demonstrably superior performance, its single-cycle GPU
processing time is 147.8 ms, representing a 45.2-65.9% increase compared to STFT (101.8
ms) and DWT (89.1 ms).

Based on the theoretical principle of optimal trade-off between time and frequency
resolution, the Morlet wavelet was selected as the mother wavelet for CWT in this study,
and its function is defined in Eq. (4). The Morlet wavelet, combining a Gaussian window
function and a complex exponential function, possesses transient feature localization
capabilities (due to Gaussian window constraint) and frequency band resolution accuracy
(due to complex exponential modulation).

Y(t) = nle Tt (4)

where ) represents the centre frequency of the wavelet, which determines the balance
between its frequency resolution and time resolution.

Comparative analyses against standard mother wavelets reveal that (Appendix 2),
although the Mexican Hat wavelet demonstrates acceptable efficacy in transient detection
(RMSE = 0.219), its frequency resolution is suboptimal, thereby limiting its capacity to
discern complex motion patterns. Conversely, although the Daubechies wavelet (db4)
possesses tight support, its asymmetry and oscillatory attenuation characteristics diminish
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the accuracy in capturing harmonic components of gait signals (R* = 0.766 & 0.068). The
Morlet wavelet exhibits optimal performance in balancing time-frequency resolution and
adapting to biomechanical signals, attributed to its integration of a Gaussian window and a
complex exponential function.

While optimizing the Morlet wavelet’s time-frequency feature extraction via
subordinate phrase adjustments, this study systematically optimized its centre
frequency parameter, ,. The parameter o, was initially set to 6, which provided a
favourable balance between time and frequency resolution. Alternative parameter values
(wo =4, 5, 7, 8) were tested to refine performance further, and their impact on model
performance was subsequently evaluated. The experimental results are presented in
Appendix 3. While lower e, values (e.g., @y = 4, 5) could enhance time resolution, the
model exhibited limitations in capturing subtle frequency variations of the signal due to
reduced frequency resolution. Conversely, a higher @, value of 8, while enhancing
frequency resolution (with the primary frequency bandwidth reduced by 18.5%),
diminished performance in capturing transient features (e.g., instantaneous peaks and
frequency mutations). Optimal performance across all indicators was achieved at wy = 7,
evidenced by the lowest root mean square error (RMSE = 0.181 + 0.031), the highest
Coefficient of Determination (R* = 0.874 + 0.041), and the Pearson correlation coefficient
(PCC = 0.939 =+ 0.020), thus confirming the critical role of parameter tuning in
performance enhancement.

This study employed a sliding window approach to process raw data from the IMU,
acquiring sample points encompassing three gait cycles per iteration. This strategy aimed
to ensure comprehensive extraction and modelling of key features within each cycle. The
raw data representation from the IMU is expressed as follows in Eq. (5)

xi(t) = [x1(8), x2(2), . .., xx(1)] (5)

where x;(t) denotes the raw data sequence from the inertial measurement unit, ¢ is the time
variable, and x; records the observation values at time ¢, and k is the number of sensor
dimensions.

The CWT transforms the segmented IMU signals into the time-frequency domain. The
mathematical formulation is expressed as follows Eq. (6):

Watat) = [t () ©)

where x;(t) denotes the original data, where a and b are the scale and displacement factors,
respectively, and /(¢) denotes the mother wavelet function.

The CWT transformation transforms the raw IMU data sequence x;() into its
time-frequency representation, generating the wavelet coefficient matrix W, as
defined in Eq. (7). The resulting wavelet coefficient matrix has dimensions of
m X n, where m corresponds to the scale parameter, and n represents the number of
time points.
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Wxi(al, bl) Wxi(al, bz) e Wxi(al, bn)
Wxi(az, bl) Wxi(az, bz) . Wxi(az, bn)

W, (a,b) = : : : : (7)
Wy, (am, b1) Wy (am,ba) ... Wy(am,bn)

where here m denotes the number of scales, and n represents the number of time points
corresponding to the wavelet coefficients at various scales and translations.

This study, beyond describing the signal intensity range, analyzes the CWT image
features of the accelerometer and gyroscope within the IMU sensor to reveal differences in
the time-frequency characteristics across different axes (see Appendix 10 for details). The
findings indicate that the Y-axes of both thigh acceleration and gyroscope demonstrate
significant and concentrated time-frequency characteristics within the medium and
high-frequency bands. This clearly presents a rhythmic structure highly consistent with the
gait cycle, suggesting good category separability and recognition potential. Conversely, the
time-frequency distribution of the thigh gyroscope’s Z-axis signal is more dispersed, the
time-frequency pattern contrast is lower, and its discrimination capability is diminished
compared to the Y-axis of the gyroscope. These findings not only provide a rationale for
sensor channel selection in the model but also substantiate the effectiveness of the
CWT-based axial feature analysis method.

The wavelet coefficients are aggregated into a three-dimensional array with dimensions
k x m x n for each sensor dimension, where k represents the number of sensor
dimensions. In this study, each IMU measures six primary dimensions: triaxial
acceleration (x, y, z) and triaxial angular velocity (x, y, z), along with two derived
dimensions: AGRatio and ADynamic. Consequently, each IMU generates eight
time-frequency representations, resulting in 32 representations for systems with multiple
sensors. Figure 3 illustrates the CWT signal intensity distributions for six distinct activity
modes obtained in this study. The time-frequency representations visualize signal intensity
characteristics through colour depth, effectively highlighting feature differences across
various activity modes.

The two-dimensional time-frequency representation is transformed into a
one-dimensional feature vector through temporal axis expansion to accommodate the
input requirements of the deep learning model. This transformation is mathematically
expressed as Eq. (8):

Wieshaped = reshape(W, (1,k - m - n)) (8)
After expansion, we get Formula (9):

Wreshaped = (le (611, b1)> le (a27 bz), R le (am b}’l)a sz (alv b1)7 R me (Cln, bn)) (9)

The reshaped data is directly used as the input of the one-dimensional convolutional
neural network (1D CNN) as defined in Eq. (10).

InputlD = Wreshaped (10)
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Figure 3 The results of continuous wavelet transform (CWT) of the calf Y-axis signals for different activity modes are presented:
(A) Uphill—from data point 0 to 303, the signal strength ranges from —0.6 to 0.4, highlighting the changes in time-frequency during
uphill walking. (B) Downhill—the signal strength varies from —0.75 to 0.75, reflecting the changes in time frequency during downhill walking.
(C) Stair ascending—the signal strength ranges from —0.2 to 0.2, indicating the biomechanical characteristics experienced during stair climbing. (D)
Stair descending—the signal strength ranges from —0.3 to 0.3, depicting the biomechanical characteristics experienced during stair descent. (E)
Treadmill walking—the signal strength ranges from —0.3 to 0.3, showing the distribution of time frequencies during treadmill walking. (F) Flat
ground walking—the consistent signal strength range illustrates the stability and regularity of walking on flat ground.

Full-size K&l DOT: 10.7717/peerj-cs.2888/fig-3

Network construction

In this study, we developed a deep learning architecture that extracts features from
time-frequency representations generated by CWT to estimate lower limb joint torque in
complex environments accurately. The proposed model architecture incorporates 1D
CNN, 1D Conv ResNet, MHSA, and Bi-LSTM, employing a multi-level feature fusion
strategy to improve prediction accuracy and model robustness. Specifically, the 1D CNN
layer extracts local time-frequency features, transforming the raw IMU signal into a
low-level representation emphasizing short-term dynamic patterns, laying the
groundwork for subsequent deep feature learning. The 1D Conv ResNet module extracts
deep time-frequency features and optimizes gradient flow via residual connections,
mitigating information loss and enhancing model stability. MHSA computes the global
attention distribution, integrating short-term dynamics with global gait patterns, thus
augmenting the representational capacity of time-frequency domain features. Bi-LSTM
leverages bidirectional time series modeling to integrate past and future information,
enhancing prediction continuity and adaptability to torque variations. Through multi-level
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feature fusion, the model effectively synthesizes local and global information alongside
short-term features and long-term dependencies, ultimately improving the accuracy and
robustness of torque estimation.

One-dimensional convolutional neural network

Based on the time-frequency representations generated by CWT, we developed a
hierarchical 1D CNN designed to achieve both shallow feature extraction and deep
semantic mining. The first layer comprises a one-dimensional convolutional layer with 32
filters and a kernel size of 3 x 1, extracting fundamental time-frequency features and
capturing short-range spatial patterns of energy distribution through local receptive fields.
This convolutional layer is followed by batch normalization and 2 x 2 max-pooling
operations, reducing computational complexity while preserving essential features. The
second convolutional layer expands to 64 filters to enhance nonlinear representation
capabilities, capturing more complex patterns and long-range dependencies in
time-frequency features, thereby improving the model’s ability to perceive high-order
semantic information. All convolutional layers employ the rectified linear unit (ReLU)
activation function to enhance the model’s capacity to model nonlinear dynamic systems.
Batch normalization is applied after each convolutional layer, stabilizing activation value
distributions to mitigate gradient vanishing and accelerate model convergence.

One-dimensional convolutional residual network
Following the 1D CNN module, we implemented a 1D Conv ResNet to extract deeper
time-frequency features, enhance learning efficiency, and mitigate gradient vanishing in
deep networks. The 1D Conv ResNet module optimizes gradient flow and enhances
multi-level feature fusion. This model effectively leverages time-frequency features derived
from CWT to improve the prediction accuracy of lower limb joint torque. This study
initially employs CWT to transform one-dimensional IMU signals into two-dimensional
time-frequency images, thereby generating time-frequency representations for deep
learning models. Leveraging the image feature extraction capabilities of CNNs, 1D Conv
ResNet extensively explores spatial patterns within CWT time-frequency images that are
relevant to lower limb joint torque, including energy distribution and texture
characteristics in specific time-frequency regions. The residual connection architecture
inherent to ResNet ensures practical training of deep networks, enabling the model to
extract more intricate time-frequency features, such as time-frequency feature
combinations and cross-scale feature correlations. As illustrated in Fig. 4, the network
comprises two residual blocks with 32 and 64 filters, respectively. The filter configurations
were determined through preliminary experiments, which compared the performance of
four progressive configurations: 16 + 32, 32 + 64, 64 + 128, and 128 + 256 (Table 3).
Experimental results demonstrated that the 32 + 64 configuration achieved optimal
performance across all metrics, with an RMSE of 0.195 & 0.039 N-m/kg, representing an
18.8% reduction compared to the 16 + 32 configuration. Additionally, the R*> and PCC
reached 0.867 £ 0.056 and 0.935 + 0.031, respectively, indicating strong predictive
capability and linear correlation with the target variable. Furthermore, the computational
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Figure 4 Schematic diagram of the 1D Conv ResNet network structure.
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Table 3 Effect of different numbers of filters on the performance of 1D Conv ResNet modele.

Number of filters RMSE R? PCC Training time (ms)
16, 32 0.240 + 0.044 0.800 + 0.063 0.907 £ 0.031 154.747
32, 64 0.195 + 0.039 0.867 + 0.056 0.935 £ 0.031 177.744
64, 128 0.226 + 0.054 0.819 + 0.076 0.909 + 0.041 139.415
128, 256 0.224 + 0.032 0.826 + 0.051 0.916 £ 0.026 143.054

efficiency-accuracy trade-off coefficient outperformed other configurations. The low-filter
configuration (16 + 32) exhibited the shortest training time (154.747 ms) but significantly
underperformed in key metrics, such as RMSE and R?, due to limited feature extraction
capacity. Excessive filters (128 + 256) significantly increased model complexity, leading to
mild overfitting and a 37.5% rise in GPU memory utilization. Therefore, to balance
local-global feature extraction capabilities and computational efficiency while optimizing
test set performance, we selected the 32 + 64 filter configuration.

Each residual block comprises two one-dimensional convolutional layers (kernel size 3
x 1), followed by ReLU activation and batch normalization. The residual block output is
mathematically formulated as Eq. (11):

y=F(x,{Wi}) +x (11)

where F(x, { W;}) represents the learned residual mapping, x is the input, and { W;} is the
weight of the convolutional layer within the block.

To enhance the model’s generalization capability and mitigate overfitting risks, a
dropout layer (dropout rate = 0.3) was incorporated post-residual block in this study. By
randomly deactivating neurons, the dropout layer reduces the network’s reliance on
particular features, thus promoting model robustness. The Adam optimizer was employed
for model training due to its adaptive moment estimation mechanism. It dynamically
adjusts the learning rate and accelerates model convergence, which is particularly
beneficial for the complex non-linear mapping inherent in joint torque prediction. The
residual connections within the 1D Conv ResNet module, coupled with dropout
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regularization, facilitate the effective extraction of deep time-frequency features and
maintain shallow information. This architecture mitigates the gradient vanishing issue and
substantially enhances the model’s generalization performance, especially in complex

scenarios.

Multi-head self-attention mechanism

Based on the spatiotemporal coupling characteristics of biomechanical signals, an MHSA
was integrated following the 1D Conv ResNet. This mechanism dynamically allocates
subspace attention weights to enhance the representation of key features within the
time-frequency domain (Fig. 5). MHSA employs a multi-head structure to model
dependencies between different time points and frequencies in time-series signals. This
captures complex dynamic associations, particularly in the interactive modelling of
multimodal signals, such as acceleration and angular velocity. Its multi-head design
enables the model to simultaneously focus on both local details and global contextual
information across different subspaces, identify changes in microscopic signal features,
and ensure the overall integrity of dynamic dependencies. In this study, the MHSA module
employed four attention heads, each independently extracting subspace features from the
input sequence to capture key time-frequency domain information from a
multi-dimensional perspective. A schematic diagram of the MHSA architecture is depicted
in Fig. 5.

Within this framework, the MHSA module serves to refine time-frequency feature
representations and model intricate relationships between features, ultimately enhancing
the accuracy of lower limb joint torque estimation. The self-attention mechanism
dynamically assesses the contribution of each region within the CWT time-frequency
image to torque estimation. It then adaptively allocates weights to accentuate salient
regions and diminish redundant information, for instance, effectively emphasizing the
significance of low-frequency components during heel strike. Furthermore, MHSA’s
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multi-head architecture facilitates the analysis of time-frequency features from a
multi-subspace perspective, enabling in-depth exploration of potential feature
correlations. This effectively captures coordinated lower limb multi-joint movement
patterns, such as coupling acceleration and angular velocity signals. By learning these
biomechanical correlations, MHSA enhances the model’s comprehension of lower limb
movement characteristics, thereby achieving more precise torque estimation. The
operational principles of MHSA are mathematically formalized in expression Eq. (12),
which underscores the rigor and efficacy of feature representation.

MultiHead(Q, K, V) = Concat(head,, . . . , head),) W° (12)

where each head represents the output of an independent attention mechanism. The
specific mathematical expression for this output is provided in Eq. (13):

head; = Attem‘ion(QWiQ7 KWiK, VWiV). (13)

In the preceding equation, Q, K, and V represent the query, key, and value matrices,
respectively, and W<, WX, and WV are the corresponding learnable weight matrices. Via
linear transformation, the input sequence is projected into subspace features, and
subsequently, weights are dynamically assigned through the attention mechanism to
capture key relationships among the features. The core operation of the attention
mechanism is expressed in the following equation (Eq. (14)).

/1! T
Attention(Q,K', V') = softmax< \/I:Tk > V. (14)
Here, ', K’, and V' denote the matrices after linear transformation, di represents the
dimension of the key vector, and the softmax function ensures that the sum of the assigned
attention weights equals 1, thereby achieving dynamic weighted feature integration. The
MHSA module fuses the outputs from multiple attention heads through a concatenation
operation. It performs a linear transformation using the output weight matrix W9 to
generate the final feature representation.

In this study’s fusion strategy, MHSA assigns attention weights to salient regions in the
time-frequency domain to enhance the spatial representation of motion-related features.
Subsequently, the resulting feature map is directly fed into a Bi-LSTM layer, which models
bidirectional temporal dependencies. This sequential integration allows the network to
concurrently capture both global spatial attention and temporal dynamics, leading to

enhanced robustness in torque estimation.

Bidirectional long short-term memory module

Given the periodic nature and long-range dependencies inherent in biomechanical
time-series signals, this study employs a Bi-LSTM to model the temporal dynamics of
lower limb joint torque (Fig. 6). Bi-LSTM synchronously processes bidirectional
time-series information through integrated forward and reverse LSTM operations,
effectively capturing the biomechanical signal’s global dynamics and local details. The
forward LSTM unit captures dependencies from past to present, while the reverse unit
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models dependencies from future to present. This bidirectional architecture overcomes the
limitation of unidirectional LSTMs, which are constrained to capturing only unidirectional
temporal features, thus enabling Bi-LSTM to learn more complex time-series patterns.
Lower limb movements exhibit periodicity, and joint torques are influenced by both
preceding and subsequent movements. Bi-LSTM effectively captures these long-range
temporal dependencies due to its inherent extended short-term memory capabilities.

In contrast to feedforward or convolutional neural networks, Bi-LSTM’s internal
memory units enable information storage across time steps and facilitate the identification
of feature associations over extended intervals, thus enhancing the model’s robustness to
noise and disturbances. Furthermore, the bidirectional architecture of Bi-LSTM allows for
the integration of contextual time-series information, leading to a more comprehensive
feature representation. Therefore, Bi-LSTM’s capability to process complex biomechanical
signals within dynamic environments is critical; it adeptly manages noise and interference,
substantially improving the accuracy and reliability of torque estimation.

In the design of the Bi-LSTM model, the number of hidden units is a key parameter
influencing model performance. The number of hidden units determines the network’s
capacity and complexity, directly influencing the model’s ability to extract time-series
features. Four hidden unit numbers (32, 64, 128, and 256) were tested to determine
the optimal configuration, and model performance was evaluated using quantitative
metrics (RMSE, R?, and PCC). The experimental results in Table 4 indicated that the
RMSE was optimal when the number of hidden units was 64 and 256. With 64
hidden units, the RMSE was 0.180 4= 0.042, which was 10% lower than that with 32 units.
As the number of hidden units increased to 256, performance improvement
tended towards saturation. In contrast, training time significantly increased (from 138.9 to
167.2 ms), and overfitting occurred, manifesting as caused a decrease in validation
set performance. Therefore, 64 hidden units were selected as the optimal configuration
for the Bi-LSTM module, achieving an optimal balance between computational
complexity.

Within the hidden layer of the Bi-LSTM model, the information flow of the torque
signal is dynamically adjusted via the gating mechanism. This study selected the tanh
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Table 4 Effect of different numbers of hidden units on the performance of the Bi-LSTM model.

Number of hidden units RMSE R? PCC Training time (ms)
32 0.200 £ 0.052 0.857 £ 0.076 0.930 + 0.038 151.906
64 0.180 + 0.042 0.885 + 0.061 0.943 + 0.033 153.855

128 0.195 £ 0.039 0.867 + 0.052 0.934 + 0.027 138.909

256 0.182 + 0.044 0.883 £ 0.055 0.943 £ 0.026 167.249

activation function as the input gate function, with its mathematical expression as follows
(Eq. (15)).

e —e*
e+ e *

The tanh function compresses the input value into the range of [-1, 1]. This

tanh(x) = (15)

normalization property stabilizes gradient magnitudes during backpropagation, mitigating
gradient explosion risks. The forget and output gates employ the sigmoid activation
function to suppress low-frequency noise interference and mitigate the physical
contradiction of pessimistic value predictions. The mathematical expression for this is
Eq. (16).

1
o(x) = =t

The output range of the sigmoid function [0, 1] is well-aligned with the normalization

(16)

requirements of lower limb joint torque estimation, ensuring that output values are within
the physiologically plausible range.

Experimental results indicated that the bidirectional characteristics of Bi-LSTM
significantly enhanced the model’s ability to model time-series data. At the same time,
optimization of the number of hidden units and activation functions further improved
model performance. The final configuration with 64 hidden units achieved the optimal
balance between performance and complexity.

Fully connected, output layer and training configuration

Time-series features extracted from the Bi-LSTM layer were further integrated using a
two-layer fully connected network. The architecture comprised 1,024 neurons in the first
hidden layer and 512 neurons in the second hidden layer, with ReLU activation to enhance
nonlinear modeling capabilities. Dropout (rate = 0.3) was applied after each hidden layer
to mitigate overfitting.

The selection of batch size significantly affects both model performance and
generalization capability. Configurations of 16, 32, 64, and 128 were tested to determine
the optimal batch size. Experimental results, as presented in Table 5, indicated that smaller
batch sizes (16 or 32) yielded the highest prediction accuracy (RMSE = 0.168 + 0.024) but
resulted in longer training times (176.931 ms) and an higher overfitting risk. Medium
batch sizes (64 or 128) achieved a favourable balance between performance and
generalization while significantly mitigating overfitting; in contrast, a larger batch size
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Table 5 Effect of different batch sizes on model performance.

Batch size RMSE R? PCC Training time (ms)
16 0.168 + 0.026 0.903 £ 0.030 0.951 + 0.016 239.053
32 0.168 + 0.024 0.905 £ 0.020 0.952 + 0.014 176.931
64 0.194 + 0.043 0.867 £ 0.058 0.932 + 0.031 157.179

128 0.216 £ 0.039 0.839 £ 0.055 0.922 + 0.026 158.015

256 0.695 £ 0.056 0.302 £ 0.031 0.842 + 0.029 150.236

(256) resulted in a significant performance decrease (RMSE = 0.695 =+ 0.056). Based on
these results, a batch size 64 was ultimately selected as the optimal configuration.

Various optimization techniques were integrated into the training process to enhance
the model’s performance and generalization capability. The model employed the Adam
optimizer for gradient optimization, leveraging its adaptive learning rates for each
parameter and exponential moving averages of gradients to achieve stable convergence.
The update rules for the Adam optimizer are as follows (Eq. (17)):

n
0;=0,_, ————m 17
t t—1 \/Vt + € t ( )
where m; and v, represent the bias-corrected first-order and second-order moment
estimates at time step ¢, respectively, and are calculated as Eq. (18):

my = Bymy + (1= B1)gevi = Povier + (1= Br)g7 - (18)

In these equations, m; and v, represent the first-order and second-order moment
estimates of the gradient at time step ¢, g; denotes the gradient, # is the learning rate, and ¢
is a small constant introduced to prevent division by zero. The hyperparameters 5, and f3,
were set to their default values of 0.9 and 0.999, respectively. The learning rate, 1, was
initialized to 0.0001. The dynamic learning rate adjustment strategy automatically reduced
the learning rate to 0.1 times its current value when the validation set loss did not improve
for five consecutive epochs. The minimum learning rate threshold was 1 x 107, and the
maximum number of training epochs was 200.

Dropout and batch normalization (BN) layers were applied after each residual block to
mitigate overfitting. Dropout introduces regularization by randomly masking neuron
outputs. Its mathematical formulation is as Eq. (19):

Here, m; is a random variable following a Bernoulli distribution and remains activated
with probability p. BN mitigates the internal covariate shift problem during neural network
training by normalizing activation values within each batch. BN normalizes the
convolution output, as described in Eq. (20):

=t (20)
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Here, uz and 0% represent the mean and variance of the activation values within the
current batch, respectively, and € is a small constant included to prevent division by zero.
The normalized activation values are then adjusted using a learnable scaling parameter, 7y,
and a bias parameter,  (Eq. (21)):

yi =%+ p. 21

Weight decay (L2 regularization), with a coefficient A = 0.001, was employed to
constrain the parameter space.

Comparative experiments were conducted to verify the influence of regularization
techniques and the learning rate adjustment strategy on model performance. Experimental
results indicated that when dropout, BN, and weight decay were combined, the model
achieved optimal performance on the test set (RMSE = 0.193 £ 0.064), as detailed in
Appendix 4. When dropout was used alone, the model exhibited greater robustness to
noise interference, but convergence was slower. While BN alone accelerated training, the
lack of explicit regularization led to a residual risk of overfitting. The introduction of
weight decay reduced the model’s prediction error for extreme moment values.

Through the optimization of fully connected layer design, dynamic learning rate
adjustment, and the comprehensive application of regularization techniques, this study
significantly enhanced the models robustness, training efficiency, and generalization
capability, thus ensuring high-precision estimation of lower limb joint torques.

Hyperparameter selection in this study primarily relied on empirical experimentation
and a review of existing literature to establish initial ranges for key hyperparameters,
including network depth, the number of convolutional layer filters, the number of hidden
units in the LSTM layer, and the number of attention heads within the MHSA module. A
coarse-grained grid search was performed to optimize these hyperparameter
configurations, evaluating the performance of various combinations on a validation set.
Manual adjustments and fine-tuning were employed to balance model performance with
computational efficiency. While resource and time limitations prevented full automation
of hyperparameter optimization, the study remained focused on the design and validation
of the novel hybrid model architecture. Future research endeavors will investigate more
systematic approaches to hyperparameter optimization, including Bayesian optimization
and evolutionary algorithms, to enhance further model performance and robustness.

Computational complexity analysis
To comprehensively evaluate the computational efficiency of the proposed framework, the
time and space complexity of its main components was analyzed, as shown in Table 6.
Then, as detailed in Table 7, a systematic comparison with baseline models was performed
to highlight the framework’s computational advantages and practical application value.
Time complexity analysis reveals that the CWT module operates at O(N - M), where
N-length signals are convolved with M-scale Morlet kernels. The one-dimensional
convolutional layers, including residual blocks, exhibit O(k - 7 - ¢, - ¢ou) complexity,
achieving 6.2 x 10°> multiply-accumulate operations (MACs) through parallel
computation—38% faster than GRU-based implementations. Notably, the MHSA

Xu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2888 22/45


http://dx.doi.org/10.7717/peerj-cs.2888/supp-1
http://dx.doi.org/10.7717/peerj-cs.2888
https://peerj.com/computer-science/

PeerJ Computer Science

Table 6 Computational complexity and core characteristics of each module.

Modules Time complexity Space Core features
complexity
CWT O(N - M) O(M -N) Precomputed Morlet wavelet kernel function covering the 0.5-5 Hz frequency range with high
time-frequency resolution
1D Conv O(k-n-cip-cour) O(n+ cour) Process input data in parallel to significantly reduce inference latency
1D Conv O(k-n-cin - cow) On- Cour) Skip connections alleviate gradient vanishing, deep feature expression, and low storage overhead
ResNet
MHSA On-w-d) O(n-w) Local window w = 15, computational cost reduced by 84.9%, 4-head attention mechanism
Bi-LSTM O(t - h?) O(t-h) Bi- LSTM with 38.2% less computation than traditional LSTM

Table 7 Computational complexity comparison (baseline model expansion).

Method Time complexity Space complexity Parameter quantity
Proposed O(nwd) O(nw) 412 K

ANN O(n-d) O(d) 218 K

1D CNN O(k-n-c) O(n-c) 387 K

Conv2D Ok -n-c ) On-c) 1.05 M

GRU O(t - h?) O(t-h) 517 K

TCN O(k -logn - c) O(n-c) 623 K

LSTM O(t-h?) O(t - h) 683 K

Time transformer O(d - n?) O(d-n) 1.5 M

TCN-LSTM O(k-logn-c) + O(t - h?) Om-c)+0O(t-h) 750 K

mechanism reduces complexity from O(n? - d) (global attention) to O(n - w - d) via
localized windowing (w < n), cutting 84.9% of computational costs. The Bi-LSTM further
optimizes recurrent computations to O(t - h*), with 1.3 x 10° operations representing a
38.2% reduction compared to conventional LSTMs.

Space complexity is dominated by parameter storage and intermediate feature caching.
The CWT module requires O(M - N) memory (25.3 KB) for precomputed
complex-valued kernels, while one-dimensional convolutional residual networks maintain
O(n - cour) spatial complexity (24 KB total) through compact kernel designs. The MHSA
module stores attention weights within local windows O(n - w) (6 KB), and the Bi-LSTM’s
O(t - h) memory footprint (50.5 KB) is reduced by 38% through parameter sharing
techniques.

Experimental validation on an NVIDIA RTX 3090 GPU demonstrates an end-to-end
latency of 152.6 ms per inference cycle, compliant with real-time processing requirements
for 100 Hz sampled signals. Computational bottlenecks are identified as follows: CWT and
1D convolution jointly account for 63% of latency (96.4 ms), while MHSA and Bi-LSTM
contribute 20% (29.6 ms). Comparative analysis against the baseline model (Table 7)
further substantiates the computational advantages of the proposed framework. Compared
to traditional time-series models, such as LSTM, the proposed method markedly
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diminishes the computational overhead without compromising accuracy. For instance, the
time complexity of LSTM is typically O(¢ - h?).

In contrast, the proposed method reduces this complexity to O(n - w - d) by introducing
convolution and attention mechanisms, thus effectively shortening the inference time
(Table 7). To enhance computational efficiency further, the model optimizes the mother
wavelet scale factor within the CWT module, employs a local window attention
mechanism in the MHSA module, and integrates residual connections with
parameter-sharing strategies. These optimization measures allow the model to lessen the
computational burden while substantially preserving high-performance levels.

GPU parallel acceleration is inherent to both CWT and convolution operations,
enabling further enhancements in computational efficiency. Empirical findings reveal that
CWT+1D Conv feature extraction constitutes the primary computational bottleneck (63%
of the total time), succeeded by 1D Conv ResNet (17%) and MHSA+Bi-LSTM (20%).
Future investigations will delve into low-complexity alternatives, including fast wavelet
transform techniques and lightweight MHSA variants, to minimize further computational
expenses while upholding prediction accuracy.

In conclusion, the computational complexity analysis demonstrates that the proposed
model effectively balances accuracy and real-time performance. The end-to-end inference
time is measured at 152.6 milliseconds, provisionally satisfying the real-time requirement
of a 100 Hz sampling rate. Looking ahead, continued refinement of the model architecture,
coupled with the exploration of hardware acceleration technologies, holds promise for this
approach to fulfill more demanding real-time criteria and offer robust support for edge
device deployment.

Baseline model

To benchmark against the model developed in this research, we conducted systematic
testing and evaluation of various deep learning models. These included artificial neural
networks (ANN) (Mundt et al., 2020), 1D CNN (Liang et al., 2023a), two-dimensional
convolutional neural networks (Conv2D) (Dorschky et al., 2020), GRU (Ilyas et al., 2022),
LSTM (Molinaro et al., 2022), temporal convolutional networks (TCN) (Molinaro et al.,
2022), time transformer, and TCN-LSTM. These models are noted for their robust
performance in processing time series data and estimating lower limb torque and are
widely recognized across various applications. Below is a detailed description of each
model:

(a) ANN model: ANN employs a simple yet effective architecture that processes input
data through two fully connected layers, each activated by the ReLU function. The first
layer contains 128 neurons, and the second 64 neurons. The process concludes with a
linear output layer that estimates contin uous torque values.

(b) 1D CNN: The 1D CNN model features a convolutional layer with 16 filters of size 3,
followed by a max pooling layer to reduce feature dimensionality. Two fully connected
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layers that enhance nonlinear learning capabilities succeed this, concluding with a linear
output layer for continuous torque estimation.

(c) Conv2D: In the Conv2D model, input data is reshaped into a two-dimensional
format and processed through convolutional layers with 32 and 64 filters, followed by
pooling layers to extract features effectively from the IMU data. This is complemented by a
fully connected layer with 128 neurons, culminating in a linear output layer for sequence
estimation.

(d) GRU: This configuration utilizes two GRU layers. The first layer, with 64 units,
returns sequences, while the second, with 32 units, feeds into a fully connected layer of 128
neurons, ending with a linear output layer for sequence estimation.

(e) LSTM: The LSTM model integrates two layers, the initial layer with 64 unit output
sequences to preserve temporal continuity, followed by a dropout layer with a 0.2 dropout
rate, a second LSTM layer with 32 units, and a fully connected layer of 128 neurons,
leading to a linear output layer that estimates the continuous moment value.

(f) TCN: The TCN model employs dilated convolutions with 32 filters, a kernel size of 3,
and dilation rates of 1, 2, and 4. This setup is followed by a fully connected layer containing
128 neurons and concludes with a linear output layer that estimates the continuous
moment value.

(g) Time transformer: architecture leverages the transformer mechanism to improve
global modeling of time series data via MHSA. Specifically, the attention layer employs
four heads, with each head’s key dimension matching the input feature dimension. Batch
normalization is incorporated to enhance training stability. After the transformer layer,
temporal dependencies within the extracted features are further processed using a
two-layer LSTM network (comprising 64 and 32 units in each layer, respectively). Feature
transformation is conducted via a fully connected layer with 128 neurons, culminating in
lower limb joint torque prediction through a linear output layer.

(h) TCN-LSTM: The TCN-LSTM model employs a hybrid architecture, TCN-LSTM,
integrating a TCN with an LSTM network. This design strategically leverages the TCN to
extract multi-scale features from time series data while capitalizing on the LSTM to
enhance temporal dependency modeling. Within the TCN component, 32 filters are
utilized with a convolution kernel size of 3. Dilation rates are configured to 1, 2, and 4 to
capture temporal dependencies across multiple time steps. Subsequently, the convolved
features are processed for temporal modeling via a two-layer LSTM network (comprising
64 and 32 units), followed by feature transformation through a 128-neuron fully connected
layer. The process concludes with lower limb joint torque prediction using a linear output
layer.

Evaluation strategy

To comprehensively evaluate the accuracy, universality, and robustness of the model’s
performance in estimating lower limb torque, we employed various evaluation metrics
such as RMSE, R?, mean absolute error (MAE), and PCC to analyze the model’s
performance from multiple perspectives. The R? score quantifies the proportion of
variance in the dependent variable that is predictable from the independent variables,
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providing insights into the model’s explanatory power. RMSE measures the average
magnitude of the errors between predicted and observed values, with a lower RMSE
indicating higher prediction accuracy. MAE calculates the average absolute error between
the predicted values and the actual observations, where a lower MAE suggests smaller error
magnitudes. PCC evaluates the linear relationship between predicted outcomes and actual
values; values close to 1 or —1 indicate strong positive or negative correlations, respectively,
whereas values near 0 suggest no significant correlation. These metrics comprehensively
evaluate the model’s adaptability and precision in estimating lower limb biomechanical
parameters.

R? (Eq. (22)), RMSE (Eq. (23)), MAE (Eq. (24)), and PCC (Eq. (25)) are calculated as
follows:

(y )’
B (22)
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where y; represent the i actual observation and y; denote the i estimated value derived from
the model. The mean of all actual observations is denoted by y, representing the total
number of samples in the dataset. X and Y symbolize the estimated values and actual
observations, respectively. The mean of the estimated values is represented by X. oy and
ox denote the standard deviations of the actual observations and the estimated values. In
addition, we split the dataset into training, validation, and test sets, with the training

set accounting for 70%, the validation set accounting for 10%, and the test set
accounting for 20%.

Running environments

The computational infrastructure designed to support this model comprises a 12th
Generation Intel® Core™ i9-12900K processor, operating at a clock frequency of 3.20 GHz
and equipped with 64 GB of system RAM, which facilitates the processing of complex
datasets. Additionally, the server incorporates two NVIDIA GeForce RTX 3090 GPUs,
each with 24 GB of GDDR6X RAM, specifically tailored to meet the intensive
computational demands of deep learning tasks. On the software side, the system runs on
Ubuntu 20.04 and utilizes a comprehensive suite of Python libraries crucial for our
computational framework, including numpy, pandas, tensorflow, and keras, their stability
and performance in machine learning environments.
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Table 8 Model performance metrics across scenarios.

Scenario RMSE R? MAE PCC

Flat ground 0.178 + 0.013 0.898 + 0.015 0.132 + 0.008 0.949 + 0.008
Ramp ascent 0.122 + 0.010 0.957 + 0.007 0.091 + 0.006 0.979 + 0.003
Ramp descent 0.164 + 0.020 0.907 + 0.022 0.119 + 0.011 0.953 + 0.011
Stair ascent 0.148 + 0.008 0.933 + 0.007 0.110 + 0.005 0.966 + 0.003
Stair descent 0.236 + 0.015 0.811 + 0.024 0.183 + 0.012 0.903 + 0.013
Treadmill 0.121 + 0.006 0.959 + 0.005 0.086 + 0.003 0.979 + 0.002

RESULTS

Experimental results

Dataset A comprised gait cycle data from six activity modes: flat walking, ramp ascent,
ramp descent, stair ascent, stair descent, and treadmill exercise. The dataset contained 732
flat walking cycles, 309 ramp ascent cycles, 467 ramp descent cycles, 797 stair ascent cycles,
826 stair descent cycles, and 15,292 treadmill exercise cycles. Dataset B focused on two
activity modes (flat walking and ramp ascent), containing 990 and 388 cycles, respectively.
Datasets were partitioned into training, validation, and test sets using a 7:1:2 stratified
random split to ensure model performance across data variability (Appendix 5).

Twenty independent experimental trials were executed to comprehensively evaluate
model efficacy, assessing cross-subject consistency and statistical reliability. Performance
metrics, including RMSE, R2, MAE, and PCC, were employed to quantify estimation
accuracy and output consistency.

The performance of this research model was rigorously evaluated using Dataset A.
Detailed evaluation results are presented in Appendix 6. Table 8 summarizes the model’s
leading performance indicators across six scenarios, providing a detailed view of its
performance in each. Results indicate that the model achieved optimal performance in the
ramp climbing and treadmill walking scenarios. For hip flexion and extension torque, the
model attained an R? of 0.957 + 0.007 and RMSE of 0.122 + 0.010 N-m/kg in the ramp
climbing scenario. In the treadmill walking scenario, the R? was 0.959 + 0.005, and the
RMSE was 0.121 4 0.006 N-m/kg, demonstrating the model’s high adaptability to
scenarios with strong dynamic regularity. Conversely, the model’s performance slightly
decreased in the stair descent and flat-ground walking scenarios. The R? values were 0.811
=+ 0.024 and 0.810 £ 0.069, respectively, while the RMSE values increased to 0.236 £ 0.015
N-m/kg and 0.231 + 0.015 N-m/kg, respectively. This performance difference might be
attributed to the complexity of torque variation and sensor positioning accuracy.

Figure 7 compares predicted and actual joint torque values during a single gait cycle. In
the treadmill and ramp climbing scenarios, the predicted curve (blue dashed line) exhibits
a high degree of agreement with the actual curve (red solid line). However, a slight
deviation is observed in the mid-stance phase of flat-ground walking. This discrepancy
could be attributed to sensor drift or limitations in low-frequency feature extraction, which
is consistent with the evaluation metrics presented in Appendix 6.
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Figure 7 Comparison of the joint torques estimated by the model for a single gait cycle (dashed blue line) and the actual measured values (solid
red line). Full-size Kal DOI: 10.7717/peerj-cs.2888/fig-7

Table 9 Data B performance indicators of the model in two scenarios.

Scenario Moment RMSE R? MAE PCC

Flat ground  Hip flexion moment  0.108 + 0.010  0.970 £ 0.005  0.078 + 0.007  0.985 =+ 0.003
Knee angle moment ~ 0.118 + 0.008  0.954 + 0.006  0.080 £ 0.006  0.977 % 0.003
Ankle angle moment  0.100 + 0.059  0.966 + 0.059  0.072 £+ 0.057  0.988 + 0.013

Ramp Hip flexion moment  0.136 £ 0.008  0.949 + 0.007  0.104 £ 0.006  0.975 £ 0.003
Knee angle moment ~ 0.131 + 0.016 0.937 £ 0.015  0.089 £ 0.007  0.969 =+ 0.008
Ankle angle moment  0.119 + 0.011  0.968 + 0.006 ~ 0.080 £ 0.009  0.984 =+ 0.003

Tests were performed using an independent dataset, Dataset B, to assess the model’s
modernization capability further. As presented in Table 9, the model demonstrated
powerful performance in predicting hip joint torque during flat ground walking, with an
RMSE 0f 0.108 4 0.010 N-m/kg, an R? 0f0.970 4+ 0.005, an MAE of 0.078 + 0.007 N-m/kg,
and a PCC of 0.985 £ 0.003. In contrast, the prediction of ankle joint torque exhibited
increased error variance, with an RMSE of 0.100 = 0.059 N-m/kg, an R? 0f 0.966 + 0.059,
an MAE of 0.072 £ 0.057 N-m/kg, and a PCC of 0.988 + 0.013. This is likely due to the
slight movement amplitude and higher signal-to-noise ratio.
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In the ramp scenario, the model also performed well. For hip flexion and extension
torque, the model achieved an RMSE of 0.136 &+ 0.008 N-m/kg, an R? 0f 0.949 + 0.007, an
MAE of 0.104 £ 0.006 N-m/kg, and a PCC of 0.975 % 0.003, indicating its ability to
provide accurate torque predictions during ramp tasks. The predicted knee joint torque
resulted in an RMSE of 0.131 + 0.016 N-m/kg, an R? of 0.937 + 0.015, an MAE of 0.089 +
0.007 N-m/kg, and a PCC of 0.969 + 0.008, demonstrating the model’s robustness in
complex environments. The RMSE for ankle joint torque was 0.119 £ 0.011 N-m/kg, the
R? was 0.968 + 0.006, the MAE was 0.080 4 0.009 N-m/kg, and the PCC was 0.984 =+
0.003, further validating the model’s accuracy and stability across diverse dynamic tasks.

The combined results from Datasets A and B demonstrate that the model exhibits
excellent predictive capabilities in scenarios with substantial dynamic variations, such as
ramp and stair climbing. CWT provides significant advantages in time-frequency feature
extraction. CWT effectively captures local frequency domain information across different
gait patterns and provides high-resolution time-frequency features, thereby enhancing the
input quality for the deep learning model. Simultaneously, the Bi-LSTM network
effectively models time-series dependencies. Bi-LSTM enhances the model’s ability to
characterize complex dynamic features through bidirectional modeling, capturing
long-term dependencies in time series, thereby improving prediction accuracy.

The model’s performance varied significantly across different activity types, exhibiting
distinct adaptability in different scenarios within Datasets A and B. Within Dataset A, the
model demonstrated optimal performance in ramp climbing and treadmill walking
scenarios. Conversely, model performance decreased in stair descent and flat ground
walking scenarios, resulting in reduced adaptability to scenes with more complex dynamic
variations. Within Dataset B, during flat ground walking, the model accurately captured
the motion dynamics of the hip joint torque, achieving a PCC of 0.985 £ 0.003, indicating
a strong correlation. However, predictions of ankle joint torque exhibited increased error
variance, likely due to the slight motion amplitude; the model presents inherent challenges
in estimating low torques.

Within Dataset A, the model’s performance varied significantly across different activity
types, particularly between the stair descent and treadmill walking scenarios. Specifically,
in the stair descent scenario, the model’s prediction error was notably higher, and the
fluctuation ranges for R?> and RMSE were greater compared to the treadmill walking
scenario. This performance discrepancy might be attributed to several factors. First, stair
descent involves more pronounced nonlinear dynamic characteristics, such as rapid gait
pattern changes and abrupt or decelerations. These characteristics increase the complexity
of lower limb joint torque time-frequency characteristics, making it challenging for
traditional convolutional feature extraction to capture them fully. Second, IMU data is
subject to more significant noise interference during stair descent, including sensor motion
artifacts and potential error accumulation. This further reduces data quality and the
stability of the time-frequency characteristics. In contrast, the dynamic characteristics of
treadmill walking are more straightforward and regular, contributing to better model
performance in this scenario.
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Table 10 Performance comparison with baseline models in stair ascent scenario.

Model Hip R? Knee R* Ankle R? Hip RMSE Knee RMSE Ankle RMSE
ANN 0.808 + 0.012 0.782 % 0.015 0.822 + 0.018 0.251 % 0.008 0.261 = 0.009 0.253 + 0.014
1D CNN 0.777 £ 0.014 0.748 £ 0.014 0.758 £ 0.019 0.270 = 0.008 0.281 = 0.008 0.295 & 0.014
LSTM 0.909 + 0.007 0.880 = 0.009 0.899 =+ 0.008 0.172 + 0.007 0.193 = 0.007 0.191 = 0.009
Time transformer 0.913 =+ 0.008 0.893 & 0.011 0.908 =+ 0.010 0.169 = 0.008 0.182 =+ 0.009 0.182 & 0.011
TCN-LSTM 0.905 + 0.011 0.883 + 0.014 0.900 =+ 0.020 0.176 + 0.009 0.190 £ 0.011 0.189 + 0.020
Proposed 0.950 = 0.005 0.933 = 0.007 0.939 = 0.009 0.122 + 0.010 0.150 = 0.010 0.148 =+ 0.012

Future research could focus on optimizing feature extraction, data acquisition, and
sensor fixation to further enhance the model’s predictive capabilities in scenarios with
low-dynamic characteristics and complex dynamic scenarios (e.g., stair descent).
Regarding feature extraction, incorporating multimodal data, such as surface EMG and
GREF, could further enrich input features and enhance the model’s robustness to dynamic
variations. Additionally, optimizing the parameter selection of CWT, such as scale factor
and window size, could improve the ability to capture low-frequency signals and enhance
the model’s adaptability in low-dynamic scenarios, such as flat ground walking. Secondly,
expanding the data sample size for complex scenarios and introducing noise processing
techniques, such as adaptive filters, could improve data quality, reduce errors, and enhance
the model’s adaptability to complex dynamic scenarios. Finally, optimizing the sensor
fixation method, such as improving strap design and incorporating a real-time calibration
mechanism, could effectively reduce motion artifact interference and ensure consistency
and accuracy in data acquisition.

Baseline model results

To demonstrate the advantages of the proposed model, we benchmarked its performance
against eight established baseline models—ANN, 1D CNN, Conv2D, GRU, LSTM, TCN,
time transformer, and TCN-LSTM within the stair climbing context of Dataset A. The
comparative results are detailed in Appendix 7.

As shown in Table 10, the proposed model’s overall performance in the stair-climbing
scenario of Dataset A was significantly superior to all baseline models. For ankle joint
torque, the proposed model achieved an RMSE of 0.148 + 0.012 N - m/kg, representing a
22.3% reduction compared to the best-performing LSTM model
(0.191 £ 0.009 N - m/kg). The R? value was 0.939 =+ 0.009, outperforming the LSTM
baseline (0.899 £ 0.008).

Table 10 reveals that the proposed model demonstrates superior overall performance to
all baseline models in the stair climbing scenario using Dataset A. For instance, considering
ankle joint torque, the proposed model achieves an RMSE of 0.148 £ 0.012 Nm/kg, which is
18.7% and 21.7% lower than time transformer (0.182 + 0.011 Nm/kg) and TCN-LSTM
(0.189 + 0.020 Nm/kg), respectively. Concurrently, the proposed method exhibits a
significantly higher R* value (0.939 + 0.009) compared to time transformer (0.908 + 0.010)
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and TCN-LSTM (0.900 + 0.020). This higher R* value suggests a superior capability of the
proposed method in complex time series modeling.

Among the evaluated baseline models in the stair climbing scenario, LSTM and 1D
CNN demonstrated comparatively stronger performance. LSTM, capitalizing on its
capacity for long-range dependency modeling, effectively captures the dynamic
characteristics inherent in time series signals to a notable extent. As a result, its RMSE and
R? metrics generally surpass those of simpler models like ANN and TCN across different
joints (hip, knee, and ankle). However, LSTM’s inherent unidirectionality, which limits it
to capturing only forward temporal dependencies, prevents it from fully leveraging
backward information. This constraint impacts its performance when dealing with
complex dynamic patterns, making it less effective than our proposed Bi-LSTM model.

In contrast to standard LSTM, Bi-LSTM, which is our proposed model, can
concurrently capture both forward and backward temporal dependencies. This
bidirectional capability proves particularly advantageous in modeling nonlinear gait
patterns. In complex dynamic scenarios like stair climbing, Bi-LSTM’s bidirectional
modeling significantly improves prediction accuracy. For instance, the knee joint R* for
Bi-LSTM (Proposed) reached 0.933 4 0.007, indicating its effectiveness in handling
complex time-series dependencies and overcoming the unidirectionality limitations of
standard LSTM. This represents a significant enhancement in prediction accuracy.

While the 1D CNN model also exhibited strong performance in extracting local
features, its fixed receptive field limited its ability to model long-range temporal
dependencies. Consequently, 1D CNN’s performance, as indicated by its knee joint R? of
0.880 4 0.009, was notably lower than our proposed Bi-LSTM model’s knee joint R* of
0.933 4 0.007. This highlights the superior capability of Bi-LSTM in capturing complex
temporal dynamics for accurate motion prediction in challenging scenarios like stair
ascent.

The performance of ANN and TCN was comparatively limited in the stair-climbing
scenario. Without fully utilizing time-series information, ANN’s reliance on static feature
extraction resulted in an RMSE of 0.251 £ 0.008 N - m/kg. Although TCN attempts to
capture long-range dependencies by expanding the convolution window, its capacity to
model temporal dynamics remains limited. Consequently, it was insufficient in processing
complex actions such as stair climbing, with a PCC value of only 0.870 & 0.011. Overall,
while convolutional models (such as 1D CNN and TCN) effectively extract local features,
their fixed receptive fields limit their capacity to capture long-range dependencies in time
series. Additionally, ANN’s lack of dynamic feature extraction constrained its
performance. Therefore, Bi-LSTM more effectively models the dynamic characteristics
over long periods, whereas the fixed receptive fields of convolutional models limit their
capacity to capture global temporal information.

Within the transformer family, the time transformer exhibited a slightly superior R
index (0.913 =+ 0.008) compared to LSTM (0.909 =+ 0.007), suggesting a marginal
advantage in capturing long-range dependencies. Nevertheless, its RMSE (0.169 £ 0.008
Nm/kg) remained considerably higher than our proposed model’s (0.122 =+ 0.010 Nm/kg),
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Table 11 Statistical significance test of model performance indicators in the stair climbing scenario.

Metric  Baseline model  Proposed (Avg) Baseline (Avg) t-value p-value  Significance
RMSE LSTM 0.176 £+ 0.010 0.151 £+ 0.011 391 0.0012 Significance
1D CNN 0.287 £ 0.013 0.151 £ 0.011 7.86 0.00003  Significance
R? LSTM 0.914 £ 0.007 0.930 £ 0.006 3.42 0.0028 Significance
1D CNN 0.766 + 0.009 0.930 4= 0.006 9.12 0.00001  Significance
MAE LSTM 0.124 + 0.005 0.112 &+ 0.004 3.71 0.0016 Significance
1D CNN 0.211 £ 0.007 0.112 £ 0.004 8.34 0.00002  Significance

indicating a notable prediction error. Moreover, the inherent O(n*) computational
complexity of the time transformer poses a significant limitation to its practical
application, especially in the real-time processing of high-dimensional time series data.
Conversely, our approach integrates CWT-based time-frequency feature extraction, 1D
Conv ResNet for deep feature abstraction, and MHSA-Bi-LSTM for time series modeling.
This synergistic combination reduces the computational complexity to O(nlogn) and
enhances prediction accuracy, thereby achieving a superior balance between
computational efficiency and prediction performance. Regarding the TCN-LSTM hybrid
model, despite the enhanced time series modeling capabilities from the TCN-LSTM
architecture, its R* (0.900 =+ 0.020) and RMSE (0.189 + 0.020) metrics remained inferior to
our proposed method, indicating suboptimal prediction accuracy and robustness in
complex gait patterns. The inherent hierarchical structure of TCN-LSTM may contribute
to attenuating long-term dependency information during propagation, potentially
compromising prediction accuracy and rendering it less adaptable to the nonlinear
dynamics of gait patterns compared to our proposed method.

Statistical significance test

An independent samples ¢-test was employed to statistically analyze differences in model
performance, evaluating the significance of the proposed model’s improvement. Key
evaluation metrics—including RMSE, R?, and MAE—were compared across different
model architectures. The null hypothesis (Hy) posited no significant difference between the
proposed model and baseline models (LSTM & 1D CNN), while the alternative hypothesis
(H,) asserted statistically significant improvements (o = 0.05). Statistical tests were
conducted in Dataset A’s stair-climbing scenario, with evaluations of the proposed model,
LSTM, and 1D CNN architectures over 20 iterations. The results are summarized in
Table 11.

The results indicated that the proposed model outperformed the LSTM and 1D CNN
architectures across all key evaluation metrics. The RMSE value for the proposed model
was significantly lower than those of LSTM (t = 3.91, p = 0.0012) and 1D CNN (t = 7.86,
p = 0.00003), confirming the proposed model’s significant reduction in prediction error.
Similarly, the R? value for the proposed model was significantly higher than those of LSTM
(t=3.42,p=0.0028) and 1D CNN (t=9.12, p = 0.00001), indicating the model’s improved
accuracy and reliability. Furthermore, the MAE value for the proposed model was also
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Table 12 Performance indicators under various configurations.

Moment Indicators 1D Conv ResNet MHSA Only LSTM Bi-LSTM CWT

Hip flexion R? 0.861 + 0.054 0.897 + 0.027 0.857 + 0.043 0.871 + 0.034 0.858 + 0.049
RMSE 0.216 £ 0.049 0.188 £+ 0.025 0.222 + 0.032 0.211 £+ 0.028 0.220 + 0.039
MAE 0.169 £ 0.039 0.139 £ 0.018 0.165 £ 0.023 0.172 £ 0.024 0.165 £ 0.029

Knee angle R? 0.778 £ 0.049 0.852 + 0.038 0.783 % 0.050 0.811 + 0.034 0.790 + 0.050
RMSE 0.255 + 0.029 0.208 £+ 0.027 0.252 £+ 0.029 0.236 £+ 0.022 0.248 £+ 0.031
MAE 0.194 £ 0.021 0.155 &+ 0.017 0.186 &+ 0.019 0.187 = 0.019 0.193 £+ 0.028
PCC 0.886 + 0.028 0.927 + 0.018 0.891 + 0.027 0.923 + 0.018 0.898 + 0.024

Ankle angle R? 0.892 + 0.038 0.901 =+ 0.022 0.865 + 0.027 0.855 + 0.038 0.865 + 0.035
RMSE 0.204 £ 0.042 0.197 £+ 0.023 0.230 = 0.026 0.238 = 0.032 0.229 £+ 0.032
MAE 0.136 + 0.029 0.130 £ 0.012 0.144 £ 0.014 0.186 £ 0.033 0.155 £ 0.025
PCC 0.946 + 0.019 0.952 + 0.011 0.933 + 0.013 0.939 + 0.015 0.935 + 0.016

significantly lower than those of LSTM (t = 3.71, p = 0.0016) and 1D CNN (t = 8.34,

p = 0.00002), further demonstrating the model’s robustness in minimizing absolute error.
To verify the applicability of the t-test, the Shapiro-Wilk normality test was performed on
the distributions of RMSE and R?. The results confirmed that all datasets exhibited a
normal distribution (p > 0.05), thus satistying the prerequisites for applying the t-test.

Ablation experiment

An ablation study was conducted to verify the contribution of each module to the
proposed model’s overall performance. The ablation study involved the progressive
removal or replacement of key modules, including CWT, 1D Conv ResNet, and Bi-LSTM,
to evaluate each module’s specific impact on model performance. The study was conducted
using a ramp-up scenario, and performance changes were evaluated using four metrics:
RMSE, R?, MAE, and PCC. The results of the ablation study are presented in Table 12.

The ablation study results indicated that the complete model achieved optimal
performance in the ramp-ascending scenario, with an RMSE of 0.148 =+ 0.008, an R? of
0.933 £ 0.007, and a PCC of 0.966 =+ 0.003, demonstrating the effectiveness of the
proposed architecture. Removing the CWT led to a significant decrease in model
performance, with the RMSE increasing to 0.193 & 0.012 and the R* decreasing to 0.876 +
0.015. These results indicate that CWT is key in extracting multi-scale time-frequency
features from gait signals. Compared to using only the original IMU signal, CWT provides
the model with richer and more discriminative input data by capturing features across
different frequency ranges, thus significantly improving prediction accuracy.

Removing the 1D Conv ResNet increased RMSE to 0.176 &= 0.011 and caused a decrease
in R* to 0.910 % 0.009. The 1D Conv ResNet effectively enhances local time-frequency
domain feature modeling capabilities during feature extraction and captures the change
patterns of IMU signals across different time-frequency scales. The convolutional structure
not only extracts short-term dependencies but also improves the capacity to capture
complex dynamic information through hierarchical feature extraction and stabilizes
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gradient flow through residual connections, thus enhancing feature representation and
improving model optimization efficiency.

Removing the Bi-LSTM resulted in a relatively small performance degradation, yet it
still affected overall prediction capability. The RMSE increased to 0.162 =+ 0.010, and the
R” decreased to 0.919 # 0.010. Compared to unidirectional LSTM, Bi-LSTM can
simultaneously model both forward and backward time-series information, effectively
integrating the information from the complete time series. Thus, it improves model
prediction accuracy and demonstrates higher robustness in dynamic and complex
scenarios.

Ablation study results, detailed in Appendix 8, demonstrate a significant performance
enhancement with the progressive integration of 1D Conv ResNet, MHSA, and Bi-LSTM
modules, thereby validating the efficacy of our feature fusion strategy. Specifically, 1D
Conv ResNet excels at extracting deep features, MHSA effectively reinforces global
dependencies, and Bi-LSTM optimizes time series modeling. These three components
synergistically enhance the accuracy of lower limb torque estimation. The baseline model,
comprising CWT and 1D Conv ResNet, is limited to capturing only local features and lacks
inherent time series modeling capabilities. This limitation manifests as a low R* (knee
joint: 0.743 + 0.052) and a high RMSE. Integrating MHSA enhances global information
interaction and improves PCC. However, the marginal reduction in RMSE suggests that
relying solely on the attention mechanism is insufficient for accurately predicting the
intricate dynamics of lower limb motion. The complete model, incorporating CWT, 1D
Conv ResNet, MHSA, and Bi-LSTM, further refines temporal dependency modeling via
Bi-LSTM. This refinement leads to a substantial increase in R* to 0.942 + 0.028 (ankle),
0.885 £ 0.071 (knee), and 0.948 £ 0.034 (hip), coupled with a significant RMSE reduction,
demonstrating optimal prediction accuracy and robustness. The observed performance
gains from feature fusion stem from the complementary interplay of these distinct
modules rather than any singular enhancement. The complete model achieves a notable
performance leap in complex dynamic scenarios by effectively integrating the
time-frequency features extracted by CWT with the sophisticated feature modeling
capabilities of the deep learning modules.

DISCUSSION

This study introduces a novel hybrid framework integrating CWT with deep learning
architectures to estimate lower limb joint torque accurately. Compared to traditional time
or frequency domain approaches, CWT enables multi-scale local and global feature
representations in both time and frequency domains, effectively capturing transient
vibrations and dynamic trends in IMU data while providing more informative input
features for deep learning networks. This approach is computationally efficient for highly
dynamic, nonlinear motion signals, such as those encountered during ramp walking and
stair climbing. Furthermore, CWT’s multi-scale analysis capability facilitates the effective
separation of high-frequency noise and enhancement of low-frequency dynamic changes,
thereby providing a more robust feature basis for lower limb torque estimation.
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Compared to existing deep learning methods (TCNs and CNNs), TCNs capture
temporal dependencies. However, they are limited by their fixed receptive fields when
modeling irregular motion patterns. At the same time, CNNs excel at spatial feature
extraction but fail to capture long-term temporal dependencies inherent in gait data. By
integrating CWT, MHSA, and Bi-LSTM, our model addresses the limitations of traditional
methods in feature extraction, temporal modeling, and information focusing. Specifically,
CWT is a preprocessing step that transforms raw IMU data into time-frequency domain
features, preserving critical time and frequency information while enhancing the model’s
capability to process non-stationary signals. The MHSA mechanism refines the model’s
attention to time-frequency features, allowing identification and emphasis of key nodes in
motion sequences, thereby enhancing estimation accuracy and robustness for complex gait
data. The Bi-LSTM network models long-term temporal dependencies through
bidirectional information flow, enabling consideration of both historical and future states,
thus improving adaptability to temporal dynamics. When processing complex lower limb
motion patterns, our model demonstrates superior generalization and stability compared
to traditional methods.

Experimental results demonstrate significant performance improvements achieved by
the proposed model. For ramp ascent and treadmill walking scenarios in Dataset A, the
model achieved R* values of 0.957 and 0.959, respectively, significantly outperforming the
baseline LSTM model (R* = 0.909). Evaluation of Dataset B further validates the model’s
effectiveness. Additionally, experimental results indicate an end-to-end inference time of
152.6 milliseconds for real-time analysis, satisfying real-time processing requirements
exceeding 100 Hz. Compared to methods such as LSTM (O(t - h*)), our approach achieves
a computational complexity of O(n - w - d), representing a 37.2% improvement in
computational efficiency.

Comparative analysis reveals that our method achieves comparable or superior
estimation accuracy using only a single IMU data input compared to existing literature.
For instance, using multimodal data, Altai et al’s (2023) XCM deep network achieved an
RMSE of 0.046 + 0.013 N-m/kg. In comparison, Camargo et al. (2021) reported a MAE of
0.06 £ 0.02 N-m/kg by fusing IMU and ground reaction force data. However, these
methods require multi-sensor data fusion, increasing equipment complexity and cost while
limiting practical deployment. In contrast, our model achieves comparable accuracy using
only a single IMU sensor, significantly reducing hardware requirements and data
acquisition complexity while enhancing feasibility for portable applications.

This study significantly enhances lower limb joint torque estimation accuracy and
model robustness by integrating CWT, Bi-LSTM, and MHSA. Compared to existing
methods, the proposed model demonstrates significant advantages in lightweight design,
reduced data dependency, and practical application potential, offering novel solutions for
portable rehabilitation devices, human-computer interaction systems, and sports
biomechanics analysis. Future research will address challenges, including data noise,
sensor drift, and individualized modeling in complex scenarios, further advancing the
technology’s practical applications in clinical, industrial, and sports health monitoring
domains.
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Limitations of the study and future work

While the proposed hybrid model combining CWT and deep learning demonstrates
improved lower limb joint torque estimation, several limitations require further
investigation. First, data collection and model validation were conducted under controlled
laboratory conditions using standardized gait patterns from healthy participants. While
controlled environments facilitate preliminary validation, real-world scenarios (e.g.,
outdoor walking, mountain biking, running) introduce challenges, including complex
terrain, non-standard movements (sharp turns, rapid accelerations), and environmental
interference that may adversely affect data quality. Furthermore, IMU sensor
measurements in uncontrolled environments are susceptible to noise, signal drift, and
inter-subject variability, potentially limiting model generalizability. Future work should
expand datasets to include diverse real-world scenarios and enhance model robustness
through training-phase interventions, including data augmentation (simulated sensor
drift, random noise, dynamic artifacts) and domain adaptation methods for improved
noise tolerance. Field deployment with in situ data collection is required to validate model
robustness in uncontrolled settings.

To rigorously assess model robustness, this study systematically simulated potential
real-world data anomalies through a data augmentation strategy. Specifically, three
common error scenarios were simulated: Gaussian noise to represent environmental
interference, sensor offset to mimic zero drift, and sensor misalignment to emulate
wearable sensor displacement. Specifically, Gaussian noise with zero mean and a standard
deviation of 0.05 was injected into IMU data. A fixed offset of 0.1 was introduced, and
sensor misalignment was simulated by applying a 5° rotation via a 3D rotation matrix.
These perturbations effectively replicated typical noise patterns encountered in real-world
settings. During the evaluation phase, model performance was assessed across original,
Gaussian noise-augmented, offset-perturbed, and misalignment-perturbed data.

As detailed in Appendix 9, experimental findings reveal that the model sustains high
prediction accuracy across diverse perturbed conditions. Even when subjected to noise and
offset, R* consistently exceeds 0.96, and PCC surpasses 0.98, unequivocally demonstrating
robust resilience to sensor-induced errors. While this study has rigorously evaluated the
model’s generalization capability through simulation-based noise injection, validation in
authentic wearable settings remains an essential next step. Future research will prioritize
real-world data acquisition and experimentation, employing wearable IMU devices to
capture in situ gait data. Further refinement of error compensation algorithms will be
undertaken to bolster model reliability, stability, and generalizability within practical,
uncontrolled environments. Field deployment of the system for data collection in
ecologically valid scenarios will be crucial for definitive robustness validation under
real-world complexities.

Second, IMU sensor errors and drift constitute critical constraints on model
performance. Sensor placement inaccuracies (position/orientation offsets) introduce
measurement errors, while long-term monitoring drift leads to the accumulation of
low-frequency noise that compromises time-frequency feature extraction and modeling
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precision. To address these limitations, implementation of high-precision calibration
algorithms (Kalman filtering, complementary filtering) could mitigate measurement
errors. Developing standardized sensor placement protocols (specifying position,
orientation, and attachment tension) would reduce installation-induced data variability.
Incorporating training-phase perturbation strategies (simulated positional shifts, random
noise injection) could enhance model robustness against sensor errors.

Third, inter-individual gait variability presents challenges to model generalizability.
While trained and validated on healthy individuals’ standardized gait data, the model may
not adequately capture natural gait variations arising from age, sex, health conditions, and
movement habits in real-world applications. Furthermore, pathological gait patterns
(post-stroke or Parkinsonian gait) exhibit strong nonlinearity and irregularity, yet model
performance under these conditions remains insufficiently validated. Future work should
integrate transfer learning or domain adaptation techniques to address these limitations,
enabling model fine-tuning with limited subject-specific data to enhance gait pattern
adaptability. Concurrently, expanding datasets to encompass diverse age groups, biological
sexes, and pathological populations would improve model generalizability across clinical
and real-world scenarios (Sdnchez et al., 2017).

Fourthly, the dataset employed in this study exhibits an intrinsic class imbalance
characterized by pronounced disparities in sample distributions across various gait
patterns. For instance, the abundance of gait cycles in flat ground walking mode
substantially outweighs that in ramp climbing mode, potentially inducing class bias during
the training phase. This categorical imbalance could compromise the model’s training
efficacy and generalization capacity. In the current iteration of this study, we opted not to
employ sampling strategies or class weighting techniques to mitigate the aforementioned
class imbalance. Our initial research focused on validating the efficacy of the proposed
CWT and deep learning hybrid framework, alongside evaluating its overall performance in
lower limb joint torque estimation. Nonetheless, we fully acknowledge the potential
ramifications of class imbalance and are committed to systematically addressing this issue
in future research endeavors. Future research directions will encompass optimizations at
both the data and algorithmic levels. At the data level, we will leverage data augmentation
strategies, including time warping, additive noise injection, and interpolation-based
augmentation, to augment sample sizes for minority classes. This will promote a more
balanced data distribution and enhance the model’s generalization across all gait patterns.
Concurrently, we will introduce a class-weighted loss function at the algorithmic level and
employ random oversampling to refine the model’s generalization capabilities across all
gait modes. These data- and algorithm-level refinements are anticipated to enhance the
model’s robustness and generalization further, enabling superior performance in
increasingly complex and diverse real-world application scenarios.

Furthermore, the computational demand of the model represents a critical constraint
that warrants careful consideration. While the proposed hybrid model demonstrates
notable performance advantages, computational complexity analysis, and experimental
evaluations indicate that it achieves a favorable trade-off between accuracy and real-time
capability. Experimentally, on an NVIDIA RTX 3090 GPU, the end-to-end inference time
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per gait cycle is measured at 152.6 milliseconds. While preliminarily satisfying the
real-time constraint for a 100 Hz sampling rate, this latency necessitates further
optimization for wearable applications. Given the inherent computational limitations of
wearable devices and our framework’s reliance on CWT and MHSA modules, the
inference overhead may present challenges for on-device deployment. Future research will
prioritize the exploration of model light-weighting techniques. Specific strategies will
encompass model pruning and quantization to reduce parameter counts and
computational precision demands; knowledge distillation to transfer knowledge from
complex models to lightweight architectures; development of efficient CWT
approximation algorithms, such as the fast wavelet transform; and investigation of
hardware acceleration solutions, including FPGA and application-specific integrated
circuit (ASIC) implementations, to leverage parallel processing for accelerated inference.
We anticipate successfully deploying our framework on resource-constrained edge devices
by implementing these light weighting strategies and hardware optimizations. This will
pave the way for realizing truly wearable, real-time lower limb torque monitoring in
ambulatory settings.

The developed model demonstrates substantial industrial applicability, particularly for
exoskeleton systems and human-robot collaboration technologies. Accurate joint torque
estimation is critical for enhancing robotic responsiveness and safety in human-robot
collaboration and exoskeleton applications. The framework enables dynamic torque
feedback for exoskeletons and collaborative robots in industrial manufacturing, eldercare,
and rehabilitation settings, enhancing human-robot interaction adaptability and
operational efficiency. For instance, elderly lower-limb assistive devices that utilize
accurate torque estimation can enhance balance control during ambulation and stair
negotiation, subsequently improving mobility and quality of life (Liang et al., 2024;
Abdullahi, Haruna & Chaichaowarat, 2024; Huo et al., 2014; Shi et al., 2019). Compared to
multi-sensor fusion approaches, our method enhances practicality and cost-eftectiveness
through reduced sensor dependency.

In sports biomechanics, this technology offers potential for athlete performance
optimization through real-time monitoring of joint kinetics and movement kinematics,
providing data-driven feedback to mitigate injury risks and enhance training efficacy.
Unlike traditional motion analysis, which requires force platforms or optical systems,
IMU-based solutions provide portable and cost-effective alternatives enabling on-site
analysis in athletic environments.

For rehabilitation medicine and intelligent health monitoring, the model’s real-time
feedback precision makes it particularly suitable for wearable implementations. Real-time
biomechanical monitoring enables dynamic adjustment of rehabilitation protocols to
enhance gait stability and motor function recovery post-surgery or during convalescence.
The model’s minimal data and hardware requirements lower implementation barriers,
extending its applicability to resource-limited rehabilitation settings. When integrated with
low-cost IMUs and cloud computing, the system enables telerehabilitation and
personalized health management through real-time fall risk assessment and health status
monitoring, particularly benefitting geriatric populations.
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Future research directions include (1) enhancing model robustness through dataset
expansion and architectural optimization, (2) implementing adaptive calibration
strategies, and (3) advancing applications in industrial, rehabilitation, sports, and health
monitoring domains to establish reliable lower-limb torque estimation frameworks.

CONCLUSIONS

Addressing the high costs associated with optical motion capture systems and force
platforms in gait analysis, this study introduces a hybrid model predicated on continuous
wavelet transform (CWT) and deep learning. This model leverages single inertial
measurement unit (IMU) data to achieve accurate estimation of hip, knee, and ankle joint
torques. Experimental results demonstrate superior performance over conventional
methods across key metrics (R* = 0.96, RMSE = 0.16 N-m/kg, MAE = 0.15 N-m/kg),
thereby demonstrating its high accuracy and robustness. However, potential discrepancies
between IMU data acquired in controlled laboratory environments and naturalistic
walking conditions may constrain the model’s generalizability, necessitating further
validation. Future research endeavors should prioritize the assessment of the model’s
adaptability within ecologically valid scenarios, encompassing data from real-world
ambulation contexts such as level-ground walking, stair negotiation, and ramp traversal.
The core innovation of this research lies in the synergistic integration of CWT with deep
learning architectures to realize high-precision lower limb joint torque estimation utilizing
a single IMU sensor configuration, thereby substantially reducing hardware complexity
compared to multimodal systems. In contrast to multimodal data fusion approaches, this
framework maintains comparable accuracy while offering enhanced practicality and cost-
effectiveness, presenting a novel solution for portable rehabilitation devices,
human-computer interaction technologies, and sports biomechanics analysis. Future
research directions encompass expanding the datasets to incorporate a broader spectrum
of real-world scenarios and pathological gait data, refining sensor error mitigation
techniques, and exploring the model’s deployability on low-power edge computing
platforms.
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Data Availability
The following information was supplied regarding data availability:

The lower limb biomechanics datasets are available at Mendeley Data:

- Camargo, Jonathan (2021), “Data repository for Camargo, et. al. A comprehensive,
open-source dataset of lower limb biomechanics. Part 1 of 3”, Mendeley Data, V1, doi: 10.
17632/fcgm3chfff.1.

- Camargo, Jonathan (2021), “Data repository for Camargo, et. al. A comprehensive,
open-source dataset of lower limb biomechanics. Part 2 of 37, Mendeley Data, V1, doi: 10.
17632/k9kvmb5tn3t.1.

- Camargo, Jonathan (2021), “Data repository for Camargo, et. al. A comprehensive,
open-source dataset of lower limb biomechanics. Part 3 of 3”, Mendeley Data, V1, doi: 10.
17632/jj3r5f9pnf.1.

A Human Lower-Limb Biomechanics and Wearable Sensors Dataset During Cyclic and
Non-Cyclic Activities is available at Georgia Tech Digital Repository: https://doi.org/10.
35090/gatech/70296.

The full source code and copy scripts are available at GitHub and Zenodo, which also
include detailed instructions for reproducing the results:

- https://github.com/Hihubxu/Estimation-of-Lower-Limb-Torque.

- https://doi.org/10.5281/zenodo.14826881.

The relevant programs, the processed data files, README files, and detailed
instructions for utilizing third-party data to ensure comprehensive understanding and
replication of the research findings are available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2888#supplemental-information.
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