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ABSTRACT
Automatic Dependent Surveillance-Broadcast (ADS-B) is a vital communication
protocol within air traffic control (ATC) systems. Unlike traditional technologies,
ADS-B utilizes the Global Positioning System (GPS) to deliver more accurate and
precise location data while reducing operational and deployment costs. It enhances
radar coverage and serves as a standalone solution in areas lacking radar services.
Despite these advantages, ADS-B faces significant security vulnerabilities due to its
open design and the absence of built-in security features. Given its critical role,
developing an advanced security framework to classify ADS-B messages and identify
various attack types is essential to safeguard the system. This research makes several
key contributions to address these challenges. First, it presents a comprehensive
review of state-of-the-art machine learning and deep learning techniques, critically
analyzing existing methodologies for ADS-B intrusion detection. Second, a detailed
attack model is developed, categorizing potential threats and aligning them with key
security requirements, including confidentiality, integrity, availability, and
authentication. Third, the study proposes a robust and accurate Intrusion Detection
System (IDS) using three advanced deep learning models—TabNet, Neural Oblivious
Decision Ensembles (NODE), and DeepGBM—to classify ADS-B messages and
detect specific attack types. The models are evaluated using standard metrics,
including accuracy, precision, recall, and F1-score. Among the tested models,
DeepGBM achieves the highest accuracy at 98%, outperforming TabNet (92%) and
NODE (96%). The findings offer valuable insights into ADS-B security and define
essential requirements for a future security framework, contributing actionable
recommendations for mitigating threats in this critical communication protocol.
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INTRODUCTION
With advancements in technology and the growing demands of the aviation industry, its
operations have become increasingly reliant on computer systems and advanced
technologies. However, as this dependency grows, so do the risks, vulnerabilities and
potential threats. Cybersecurity incidents within the aviation sector are increasing rapidly
due to the rise in system connectivity and inherent vulnerabilities (Chen & Liu, 2023).

In 2008, approximately 800 security incidents were identified, with around 150 cases
still unresolved (Wu, Shang & Guo, 2020). According to the Airbus Group report, the
company faces an average of 12 cyber-attacks annually (Coyne, 2016). These growing
security concerns and the significant financial implications underscore the need for
heightened attention to the protection of critical networks, including aviation systems. In
response to an increasing number of attacks since 2003, securing systems that support
essential infrastructures—such as smart grids and aviation networks—has become a top
priority (Smith, 2010). Cyberattacks in the aviation industry are often aimed at disrupting
national economies, eroding user trust, and compromising passenger safety. This is why
aviation systems were traditionally designed to operate independently and were supported
by robust security policies, rules, and regulations. However, the introduction of the Next
Generation Air Transportation System (NextGen) project, initiated in the USA in 2005,
marked a shift toward modernizing aviation infrastructure (Wu, Shang & Guo, 2020).

The primary objective of the NextGen project was to enhance the safety and security of
the aviation industry, mitigate the risk of cyber-attacks, and build greater user trust. A
central component of this initiative was the ADS-B system, a critical communication
protocol designed to address future airspace requirements by improving passenger safety,
air traffic control, and overall airspace management (Braeken, 2019).

The ADS-B system consists of two key components: ADS-B OUT and ADS-B IN.
ADS-B OUT, also referred to as the transmitter, enables aircraft to broadcast their
position, identity, and other key details to surrounding aircraft and ground stations using a
1,090 MHz frequency, as defined by the Global Navigation Satellite System (GNSS).
Conversely, ADS-B IN is installed on aircraft to receive these broadcast messages. ADS-B
has become one of the most reliable and widely trusted surveillance protocols included in
the International Civil Aviation Organization (ICAO) Global Air Navigation Plan
(GANP), which forms part of the NextGen project to enhance safety and security in air
transportation systems. Its primary purpose is to improve air traffic control/management
(ATC/ATM) systems by delivering precise, accurate, and detailed information about an
aircraft’s 3D position during various flight phases, including departure, en route, and
arrival. Aircraft equipped with ADS-B OUT periodically broadcast messages at a
maximum data rate of 1 Mbit/sec, containing critical information such as position,
altitude, and velocity. These positions are calculated using GNSS, with GPS satellites
serving as the primary source in most cases.

From 2020 onwards, regulations set by the Federal Aviation Administration (FAA) and
the European Union Aviation Safety Agency (EASA) mandated that all aircraft operating
within U.S. and European airspace must be equipped with ADS-B capabilities (Kožović
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et al., 2023). Despite its many advantages, ADS-B has significant security vulnerabilities
due to the absence of fundamental security features, such as authentication, message
confidentiality, and data integrity (McCallie, Butts &Mills, 2011a). These deficiencies leave
the system exposed to various types of attacks, including message injection, deletion,
modification, jamming, and eavesdropping (McCallie, Butts & Mills, 2011a). Alarmingly,
an experienced attacker can execute these attacks with relative ease using tools such as
software defined radios (SDRs) (Costin & Francillon, 2012). The subsections will presents
the research problem, motivations, contributions and the structure of the rest of the article.

Research problem and motivations
Several research articles have explored ADS-B vulnerabilities, attacks, and corresponding
security techniques. However, to the best of our knowledge, the existing security solutions
fail to comprehensively address all identified vulnerabilities and attacks. The existing
security techniques address one or more known attacks on ADS-B but fall short of
providing a defense mechanisms against a comprehensive set of attacks. This gap in
coverage serves as the primary motivation for undertaking the proposed research. There is
a pressing need to review the latest research on ADS-B vulnerabilities and corresponding
security solutions. Given the critical importance of ADS-B in modern aviation, it is
imperative to classify and compare the published security techniques systematically. This
would help guide the development of a robust, accurate, and precise framework to enhance
ADS-B security and safeguard its operations effectively.

Research contributions
This article makes the following significant contributions:

. Comprehensive ADS-B attack model: We present a detailed and systematic attack
model for ADS-B systems, identifying potential threats and corresponding attack
vectors. This analysis highlights the impact of these threats on ADS-B security and aligns
them with core security requirements, including confidentiality, availability, integrity,
and authentication (CIA+A).

. Innovative IDS: We propose a robust, precise, and accurate IDS leveraging three
advanced deep learning models: TabNet, NODE, and DeepGBM. The system classifies
ADS-B messages as either benign or malicious and further distinguishes between
different attack types. Model performance is rigorously validated using standard
evaluation metrics, demonstrating high accuracy and resilience against ADS-B threats.

. Security framework requirements and future research directions: We define critical
security requirements for developing a comprehensive ADS-B security framework and
identify current challenges in safeguarding the protocol. Additionally, we provide
recommendations for future research, including the integration of time-series analysis,
blockchain technology, hybrid techniques to improve ADS-B security.
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Article structure
The remainder of this article is structured as follows: “Literature Review” provides a review
of state-of-the-art machine learning and deep learning-based security solutions. “ADS-B
Security” offers an overview of the ADS-B protocol, including its working principles and
message structure. This section also presents a detailed attack model, identifying security
threats associated with ADS-B, attacks corresponding to these threats, and the related
security requirements. “Methodology” describes the proposed research methodology,
including dataset generation and preprocessing steps. It also explains the selected deep
learning models in detail. “Experimental Results” provides details about the experiments
with the implemented models. “Discussion” provides an in-depth discussion of the results,
including a comparison of training and testing accuracy and a performance comparison of
the implemented models. “ADS-B Security Requirements, Challenges and Future
Directions” outlines the identified security requirements, current challenges, and potential
future research directions. “Conclusion” concludes the article with a summary of findings
and recommendations. Figure 1 illustrates the structure of the proposed research article.

LITERATURE REVIEW
In the existing literature, several researchers have identified ADS-B vulnerabilities and
associated attacks (Purton, Abbass & Alam, 2010; McCallie, Butts & Mills, 2011b; Viveros,
2016; Manesh & Kaabouch, 2017; Mirzaei, De Carvalho & Pschorn, 2019) and suggested
different security solutions (Kim, Jo & Lee, 2017; Zhang et al., 2023; Yang et al., 2017;
Sciancalepore & Di Pietro, 2019) to protect ADS-B from the various attacks. At present,
three main approaches are employed to protect ADS-B systems: cryptography,
multilateration, and artificial intelligence techniques such as machine learning and deep
learning. This study focuses on leveraging machine learning and deep learning methods
for classifying ADS-B messages (malicious and non-malicious) and detecting potential
attacks. In recent years, advancements in artificial intelligence, particularly in machine
learning and deep learning, have gained significant attention due to their flexibility and
applicability across various fields. These techniques have proven effective for a wide range
of tasks, including classification, regression, and prediction. Specifically, machine learning
methods like attack classification and anomaly detection have found extensive use in
numerous cybersecurity applications (Buczak & Guven, 2015).

Kacem et al. (2021) proposed a machine learning-based framework for classifying
ADS-B attacks using a dataset of three flights from Lisbon to Paris. The authors used three
ML models: support vector machine, random forest, and decision tree, and identified that
the result of the decision tree is best with 92% accuracy. Similarly, Wang, Zou & Ding
(2020) proposed a spoofing attack detection mechanism based on a long short-term
memory algorithm. The authors used a dataset of Sun et al. (2018) for the model training.
Ying et al. (2019) introduced a new concept called SODA based on a two-step deep neural
network for classifying aircraft and messages to identify spoofing attacks. To identify
spoofing attacks, the authors used XGBoost, SVM, and LR for model training. Khan et al.
(2021) proposed a machine learning-based IDS system for the ADS-B protocol. The attacks
included a jumping attack, a false information attack, a false heading attack, and a false
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squawk attack. The authors used OpenSky for normal messages and OpenScope for
malicious messages for dataset collection. Yue et al. (2023) used the GAN-LSTM algorithm
to detect abnormal messages and analyze flight image frames.

Wahlgren & Thorn (2021) proposed the outline of security issues within ATC and
proposed a machine learning-based solution for identifying spoofing attacks. For the
identification of spoofing attacks, authors train support vector machine algorithm on the
collected dataset with 83.10% accuracy. Li et al. (2019) proposed a generative adversarial
network-based attack detection system for ADS-B to improve the robustness and accuracy.
Authors considered different types of injection attacks with an average accuracy of 98%.
Luo et al. (2021) proposed an anomaly detection framework for ADS-B data based on the
VAE-SVDD model. They considered five attacks: constant position deviation attack,
denial-of-service (DOS) attack, velocity drift attack, random position deviation attack, and
flight replacement attack. Slimane et al. (2022) proposed a message injection attack
detection framework for ADS-B using an SVM algorithm. OpenSky networks were used
for data collection, and the malicious data, they performed multiple message injection
attacks in simulated environments using non-malicious data. Khoei et al. (2024) proposed
a false data injection attack detection framework for the ADS-B system based on four
recurrent neural network (RNN) models: long short-term memory (LSTM), gated
recurrent unit (GRU), bidirectional gated recurrent unit (Bi-GRU), and bidirectional long
short-term memory (Bi-LSTM). The dataset comprises 22,315 equally distributed into
legitimate messages 11,158 and non-legitimate messages 11,157.

Shabtai & Habler (2021) proposed an anomaly detection system for ADS-B based on a
deep learning model. The authors used an LSTM encoder-decoder of deep learning. They
used Flightradar as a data source and collected 13 datasets with 4.5% false accept rate

Figure 1 Structure of the article. Full-size DOI: 10.7717/peerj-cs.2886/fig-1
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(FAR). Çevik & Akleylek (2024) discussed ADS-B vulnerabilities, analyzed existing
machine learning and deep learning-based anomaly detection techniques, and drew a road
map for future research directions. Manesh et al. (2019) highlighted the efficiency of
machine learning models for the detection of jamming attacks; the authors presented a
comprehensive study. Difference-supervised machine learning models, including decision
tree, k-nearest neighbour, support vector machine, and artificial neural network, were used
and analyzed.

Vajrobol et al. (2025) efficiently integrate state-of-the-art models in ensemble learning
and explainable artificial intelligence (XAI) achieving transparency and accuracy.
However, the scalability and practical deployment of such advanced models in real-world
ATC systems could pose challenges, particularly regarding integration with existing
infrastructure and handling high data volumes in real-time. Abu Al-Haija & Al-Tamimi
(2024) developed a robust and efficient machine learning-based injection attack detection
model, including path modification, ghost aircraft injection, and velocity drift to secure
ADS-B systems. The article successfully demonstrates a highly effective model for ADS-B
message injection detection, surpassing previous studies regarding robustness and
accuracy. However, the reliance on a relatively small dataset and the lack of real-world
deployment with existing aviation systems limit its immediate applicability.

Khoei et al. (2024) investigate the effectiveness of RNN-based models, including GRU,
LSTM, Bi-GRU, and Bi-LSTM in detecting injection attacks in ADS-B data. However, the
dependency on a small dataset and the computational intensity of the models during
training might limit the performance in real-time deployment of the proposed approach.
Luo et al. (2024) introduced ADS-Bpois, a novel poisoning attack method targeting deep
learning-based ADS-B time-series unsupervised anomaly detection models. The study
aims to explore these models’ vulnerability to poisoning attacks and focuses on crafting
stealthy poisoning samples that effectively disrupt anomaly detection while remaining
undetected, emphasizing the high safety demands of the aviation industry. While the
results highlight the importance of addressing security gaps in aviation systems, the
research lacks practical mitigation strategies, focusing primarily on attack feasibility rather
than defense mechanisms. Kacem & Tossou (2024) proposed a novel Transformer-based
deep learning model for detecting replay attacks on ADS-B systems. The research aims to
improve detection accuracy while maintaining low false positive and false negative rates.
The study uses a relatively small and balanced dataset, limiting its generalizability.
Real-world applications may require validation on larger, more diverse datasets with
imbalanced attack-to-benign message ratios. Azz et al. (2024) explores anomaly detection
in ADS-B data using both supervised (SML) and unsupervised machine learning (USML)
techniques. The authors aim to identify abnormal ADS-B messages while comparing the
effectiveness of both techniques in anomaly detection scenarios. The authors use
real-world ADS-B data collected in Abu Dhabi, supplemented with synthetic anomalies for
analysis. However, the reliance on synthetic anomalies and the limited scope of real-world
data may impact the generalizability of the findings to broader scenarios.

Zhong et al. (2024) introduces the Frequency Enhanced Patch Attention Network
(FEPAN), an innovative method to detecting spoofing attacks in ADS-B data. The
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proposed techniques combine discrete cosine transform (DCT) for frequency
enhancement with a patch-based attention mechanism to effectively identify anomalies in
time-series ADS-B data, particularly during complex flight scenarios. While the model
outperforms conventional architectures like Transformers and TimesNet, its reliance on
simulated attack data raises concerns about its robustness in real-world, large-scale
deployments. Zuo et al. (2023) introduced a machine learning-based technique for
detecting GNSS interference using multi-index features derived from ADS-B data. The
technique’s aim is to improve the accuracy and reliability of GNSS interference detection
by combining multiple spatiotemporal features and employing deep learning models.
However, the proposed technique’s reliance on specific GNSS interference scenarios may
reduce its generalizability to diverse, real-world conditions. Ali & Leblanc (2024) presented
a survey article on the vulnerabilities of ADS-B systems, identifying major threats such as
eavesdropping, jamming, message injection, deletion, and modification. To enhance
ADS-B security and ensure aviation safety, the authors evaluates different mitigation
techniques, including timestamp authentication, encryption, multilateration, and
multichannel receivers. Table 1 presents a cumulative summarised form of the existing
machine learning and deep learning-based attack detection techniques for the ADS-B
protocol.

ADS-B SECURITY
This section provides an overview of the ADS-B protocol including ADS-B working
principles and message format. This section also presents ADS-B attack model by
highlighting eavesdropping, message injection, spoofing, and modification attacks based
on the associated security threats and requirements.

ADS-B overview
ADS-B is a critical communication protocol within the NextGen project, initiated by the
FAA in 2005. It is widely used for airspace surveillance to accurately track the location of
commercial aircraft. Compared to traditional surveillance protocols, ADS-B is significantly
more efficient, safer, and flexible (Ahmed, 2024). Its benefits include enhanced collision
avoidance, improved situational awareness, and reliable airspace surveillance, especially in
non-radar environments.

ADS-B also improves operational efficiency by increasing accuracy, enabling faster
clearance approvals, enhancing aircraft separation, and facilitating smoother visual
approaches. Additionally, it optimizes departures and direct routing, resulting in fuel and
time savings while increasing airspace capacity. The ADS-B network operates on a 1,090
MHz radio frequency, which requires low-cost maintenance and is more affordable to
install compared to conventional radar systems (McCallie, Butts & Mills, 2011a).

ADS-B working
ADS-B brings massive advantages to the aviation industry by replacing radar technology.
Radar depends on antennas and radio signals to determine the accurate location of aircraft.
On the other hand, ADS-B uses satellite signals to track aircraft location and movements.
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Table 1 Cummulative summary of machine learning and deep learning-based attack detection techniques. Support vector machines (SVM),
decision tree (DT), and random forest (RF), long short-term memory (LSTM), generative adversarial network–long short-term memory
(GAN-LSTM), logistic regression (LR), k-nearest neighbor (KNN), generative adversarial network (GAN), support vector data description (SVDD).

Ref. Objectives Dataset Attacks Implemented
models

Kacem
et al.
(2021)

In this research article, the authors
propose a machine learning-based
framework for classifying ADS-B
attacks.

The authors used a dataset of three
flights from Lisbon to Paris but did not
share the dataset details and any link to
access the dataset.

Replay attack, ghost aircraft
injection attack and multiple
ghost aircraft injection attack.

SVM, DT, and
RF.

Wang,
Zou &
Ding
(2020)

The authors proposed a spoofing attack
detection technique based on the long
short-term memory (LSTM)
algorithm.

The dataset for the experiments is
downloaded from the GitHub project
(Sun et al., 2018).

Spoofing attack LSTM

Yue et al.
(2023)

Based on the GAN-LSTM algorithm, the
authors proposed an attack detection
system for analyzing flight image
frames. The system marked abnormal
locations and discards abnormal
images using suspicious frame
screening and normalized
cross-correlation methods.

The authors did not share the dataset
details

Fake injection, anomaly track,
abnormal speed, jamming attack,
and abnormal altitude

GAN-LSTM

Ying et al.
(2019)

To identify spoofing attacks, the authors
introduce a new concept called SODA
based on a two-step deep neural
network for classifying aircraft and
messages.

For dataset collection, the authors used
an SDR-based spoofer and ADS-B
receiver. They used 18,675 benign
messages and 45,788 malicious
messages.

Spoofing attacks XGBoost, LR,
and SVM

Khan
et al.
(2021)

In this article, the authors generate a
dataset based on selected attacks and
propose a machine learning-based IDS
system for the ADS-B protocol.

In this article, the authors generate a
dataset based on selected attacks and
propose a machine learning-based IDS
system for the ADS-B protocol.

Jumping attack, false information
attack, false heading attack, and
false squawk attack

LR, Naive
Bayes, and
KNN.

Wahlgren
& Thorn
(2021)

In this article, the authors outline
security issues within ATC and
propose a machine learning-based
solution for identifying spoofing
attacks.

The authors used OpenSky for normal
messages and OpenScope for
malicious messages for the dataset.

Spoofing attacks SVM

Li et al.
(2019)

The authors proposed a generative
adversarial network-based attack
detection system for ADS-B to
improve the robustness and accuracy.

The authors trained the model on
normal messages only.

Injection attacks GAN-LSTM

Luo et al.
(2021)

In this article, the authors proposed an
anomaly detection framework for
ADS-B data based on the VAE-SVDD
model.

The authors extracted 50 flight data
from OpenSky for normal messages
and generated attack data by artificial
construction.

Constant position deviation attack,
random position deviation attack,
velocity drift attack, DOS attack,
and flight re-placement attack

VAE-SVDD

Slimane
et al.
(2022)

The authors proposed an SVM
algorithm-based framework for
message injection attack detection in
an ADS-B environment.

The authors used OpenSky for data
collection. For malicious data, they
performed a message injection
simulation.

Message injection attack SVM

Khoei
et al.
(2024)

In this study, the authors proposed a
false data injection at-tack detection
framework for the ADS-B system
based on different RNN models.

The dataset consists of a total of 22,315
messages equally distributed into
legitimate messages 11,158 and
non-legitimate messages 11,157.

False data injection attack LSTM, GRU,
Bi-GRU,
Bi-LSTM
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ADS-B broadcasts aircraft positional data for surveillance purposes used by surrounding
aircraft and ground based air traffic management (ATM) to monitor and track aircraft at
any time in the airspace. ADS-B system relies on GNSS, radio frequency and ground-based
ATC (Ukwandu et al., 2022). Aircraft with ADS-B OUT capability broadcast their
positional data periodically using 1090 MHz radio frequency after receiving them from
GNSS. The aircraft with ADS-B IN capability and the ground-based ATCs receive the
broadcast data. The received data is utilized for airspace monitoring and surveillance.
Figure 2 presents the graphical representation of the protocol working (Chevrot, 2022).

ADS-B message
Figure 3 provides a graphical representation of the division of an ADS-B message. The
message has a total length of 112 bits and is divided into the following sections: downlink
format (DF), code format (CF), ICAO aircraft address (AA), ADS-B message data, and
parity check (DO & RTCA, 2009). To enhance positional accuracy, messages containing
aircraft position and velocity are broadcast twice per second, while aircraft identification

Figure 2 Working of ADS-B protocol. Full-size DOI: 10.7717/peerj-cs.2886/fig-2
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information is broadcast every 5 s. This approach reduces workload by segmenting the
message broadcasts into manageable chunks (Costin & Francillon, 2012).

ADS-B attack model
Figure 4 presents a comprehensive overview of the ADS-B attack model, including
eavesdropping, message injection, spoofing, and message modification attacks. We have
only considered ground-based attackers with the capability of message receiving
(eavesdropping) and broadcasting (message injection, spoofing, and message
modification) using Software Define Radio (SDR). We utilized different colors to
differentiate the attacks and attackers. Ying et al. (2019) proposed an attack model by
covering replay and ghost aircraft injection attacks from the perspective of ground-based
attackers. They also proposed a deep neural network-based spoofing attack detection
framework for ADS-B. Luo et al. (2024) illustrated a poisoning attack model against
ADS-B and proposed an anomaly detection framework for poisoning attack detection.
Zhang et al. (2023) considered the ADS-B vulnerabilities, and the authors presented the
DoS attack model on the data link layer. Similar Leonardi & Sirbu (2021) illustrated GNSS

Figure 3 ADS-B protocol message format. Full-size DOI: 10.7717/peerj-cs.2886/fig-3

Figure 4 Illustration of ADS-B attack by a ground-based attacker (eavesdrop, message modification,
message injection and spoofing). Full-size DOI: 10.7717/peerj-cs.2886/fig-4
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spoofing, message tempering and fake ADS-B message injection attacks in their attack
model. In Fig. 4 we provide an enhanced attack model based on the identified threats.

ADS-B is a wireless communication protocol, and messages are broadcast without any
security requirements, such as encryption, authentication, etc., which makes ADS-B
vulnerable to several threats. The potential threats associated with ADS-B include
eavesdropping, message modification, jamming, and spoofing. Based on the ADS-B
infrastructure, attacks can be divided into two categories: attacks on ADS-B broadcast
information and attacks on navigation information. ADS-B depends on GNSS as a primary
source of navigation data. If an attacker modifies or blocks the navigation signal, this can
have serious consequences for the aircraft (Dacey, 2002; Wu, Shang & Guo, 2020). Our
research focuses on the attacks that target ADS-B broadcast information. Based on the
security requirements of the ADS-B protocol, attacks on ADS-B are divided into four
categories: confidentiality, integrity, availability, and authentication. Figure 5 presents the
classification of attacks based on the identified security threats.

Confidentiality
Confidentiality ensures that information is accessible only to authorized individuals or
systems such as aircraft and ground-based ATCs and remains hidden from unauthorized
access. Any activity that makes ADS-B messages available to malicious or unauthorized
entities will breach data confidentiality. Due to their openness and unencrypted nature
(Huang, Yang &Wu, 2014) of ADS-B protocol, eavesdropping is one of the most common
threats to ADS-B messages. Eavesdropping on ADS-B protocol exposes critical
information (Wu, Shang & Guo, 2020). Some specific attacks under the eavesdropping
threat are passive eavesdropping, traffic analysis, data harvesting, correlation attacks, etc.
Some researchers specifically investigate the issue of ADS-B confidentiality by proposing
lightweight encryption mechanisms (Zeng, 2021; Kacem et al., 2022; Yang, Li & Shen, 2022;
Habibi Markani et al., 2023). However, eavesdropping threats are out of the scope of this
research article due to the protocol’s open broadcast of clear-text messages by default.

Integrity
Integrity ensures that data is not altered, tampered with, or corrupted, whether accidentally
or maliciously. ADS-B messages should not be modified, deleted or forged during
transmission. ADS-B message modification threats target the data integrity. These attacks
in ADS-B network are the most challenging (Strohmeier, Lenders & Martinovic, 2014). To
launch such attacks, the attacker needs be part of the network. There are three main
techniques to successfully implement message modification attacks: bit flipping,
overshadowing, and combined message injection and deletion (Manesh & Kaabouch,
2017). The following are some specific attacks under the message modification threat:

. Aircraft standing still attack: This attack falsely indicates that an aircraft is standing on
the ground or air when it is in motion. In this attack, the attacker has to modify the
positional and velocity fields of the ADS-B message broadcasted by aircraft to deceive
nearby aircraft and ATC. Cestaro et al. (2023) performed this attack in an OpenScope
simulation environment. To the best of our knowledge, none of the prior research has
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worked on the detection of this attack using machine learning or deep learning
techniques.

. False alarm attack: In the context of the ADS-B environment, this attack involves
intentionally broadcasting misleading status alarms related to an aircraft. This attack
aims to create panic or confusion among pilots, ATCs, or other entities responsible for
air traffic by generating false alerts or signals. Again, there is no prior research to detect
this attack using machine learning or deep learning techniques.

. Displaying false information: This attack involves injecting ADS-B messages with
incorrect identification, position, velocity, or other parameters about the aircraft. To
perform this attack, the attacker has to spoof ADS-B signals to send misleading
information to nearby aircraft and ATC. Displaying false information attack is simulated
by Cestaro et al. (2023), Blåberg et al. (2020), Boström & Börjesson (2022), Wahlgren &
Thorn (2021) in OpenScope environment and (Khan et al., 2021) proposed a mechanism
for its detection.

Figure 5 ADS-B attack classification. Full-size DOI: 10.7717/peerj-cs.2886/fig-5
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. Jumping aircraft: This attack involves modifying broadcasted aircraft positional data
through ADS-B to show aircraft appearance with unrealistic jumps between locations.
To perform this attack, the attacker has to be part of ADS-B communication, intercept,
modify, and rebroadcast ADS-B messages after modifying positional data. The jumping
attack is simulated in the research studies by Cestaro et al. (2023), Blåberg et al. (2020),
Boström & Börjesson (2022), Wahlgren & Thorn (2021).

. Message deletion attack: In this attack, an adversary deletes legitimate ADS-B messages,
potentially making aircraft invisible to others and causing collision risks. This can be
achieved by inducing large bit errors in the ADS-B message, leading the receiver to deem
it corrupted and drop it. ADS-B discards messages with more than five bit errors. The
attacker can also transmit a time-synchronized inverse signal that disrupts or destroys
the ADS-B message during transmission. However, this method is more complex and
less efficient. Manesh & Kaabouch (2017), Fried & Last (2021) discussed the impact of
message deletion on ADS-B communication.

Availability
Availability ensures that authorized users have reliable and timely access to information,
systems, and resources whenever needed. DoS is the biggest threat to ADS-B availability
because it makes ADS-B messages unavailable to authorized entities. Message jamming,
non-responsive aircraft, and message delay attacks negatively impact availability. The
purpose of these attacks is to render the system ineffective or unreliable.McCallie, Butts &
Mills (2011a) and Sciancalepore & Di Pietro (2019) discussed the availability issues from
the perspective of security requirements.

. Message jamming attack: This attack involves deliberately disrupting or overpowering
the ADS-B signals used for communication between aircraft and ground stations,
compromising situational awareness and air traffic management. The attacker floods the
frequency spectrum used by ADS-B with high-power noise or irrelevant signals, blocking
legitimate transmissions. High-power RF transmitters, software-defined radios (SDRs),
and drone-mounted jamming devices among others can be used to launch this attack.
The message jamming attack is simulated by Cestaro et al. (2023), Blåberg et al. (2020),
Boström & Börjesson (2022), Wahlgren & Thorn (2021) using the OpenScope
environment.

. Non-responsive aircraft: This attack involves preventing legitimate ADS-B messages
from being transmitted or received by the ground stations and other aircraft by blocking
the signal. This attack affects communication and makes this aircraft invisible. The
reason behind this attack may be a malicious actor intentionally disabling the ADS-B
transponder or a technical malfunction. Non-responsive aircraft attack is simulated by
Cestaro et al. (2023).

. Message delay attack: An attacker intentionally delays the transmission or reception of
legitimate ADS-B messages between aircraft and ground stations to disrupt the accurate
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real-time representation of aircraft positions, leading to potential safety and operational
hazards. Message delay attack is simulated by Cestaro et al. (2023).

Authentication
Authentication is the process of verifying the identity of a user, device, or system before
granting access to resources. It ensures that entities are who they claim to be. Spoofing and
message injection are the most common threats to ADS-B authentication due to the lack of
security techniques to verify the authenticity and identification of transmitting aircraft.
Without an authentication mechanism, the receiver of the ADS-B messages cannot be sure
of the identity of the transmitter. TajDini, Sokolov & Skladannyi (2021) used the LSTM
model for the detection of spoofing attacks with ADS-B communication stream.

. Aircraft spoofing: This attack occurs when the attacker transmits counterfeit ADS-B
messages containing fabricated information such as flight number, position, altitude,
speed, and identification. This type of attack is due to the ADS-B system’s lack of
encryption and authentication mechanisms, which allows attackers to inject misleading
data. TajDini, Sokolov & Skladannyi (2021) considered this attack for anomaly detection
in ADS-B communication.

. Ghost injection: The attacker creates “ghost” aircraft that does not exist but appears as an
actual entity for ADS-B receivers. Slimane et al. (2022) and Price et al. (2023) used this
attack for anomaly detection in ADS-B communication.

. Virtual trajectory modification: The attacker sends spoofed messages that can falsely
show aircraft making unexpected turns, changes in altitude, or other erratic movements.
The attacker has to intercept ADS-B messages, modify the positional data of received
messages, and rebroadcast them to show that the aircraft is on a different path than its
actual path. This misleads nearby aircraft and ATC about the actual flight path. Khan
et al. (2021) considered this attack for anomaly detection in ADS-B communication.

METHODOLOGY
We propose a deep learning-based intrusion detection system for ADS-B. Figure 6
illustrates the workflow of this system. The following phases are involved in the proposed
system.

. The dataset is generated using the updated version of the OpenScope, a free tool for
simulating ADS-B data, and OpenSky network.

. The generated dataset is preprocessed by performing different techniques such as
removing null, duplicates and missing values.

. The dataset is divided into training, validation and testing parts for the experiments.

. Three deep learning models namely TabNet, NODE and DeepGBM are trained using
selected features.

. The models’ performance is evaluated based on standard evaluation metrics including
accuracy, precision, recall and F1-score.
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Dataset generation
We generated a novel dataset for the proposed research article containing malicious and
non-malicious messages for deep learning model training and testing. The generated
dataset contained 20 features listed in Table 2.

. Malicious data collection: The malicious messages are generated using the updated
version of OpenScope, a real-time aviation and ATC simulation platform designed for
analyzing and testing ATM systems, pilot-controller interactions, and surveillance
technologies like ADS-B. The simulator provides a synthetic air traffic environment that
enables engineers, researchers and aviation professionals to simulate real-time air traffic
scenarios, evaluate security vulnerabilities and mitigation strategies, and generate
synthetic ADS-B messages. We generate nine different types of attacks in the OpenScope
including message delay attacks, transponder code alteration, non-responsive aircraft,
ghost injection, trajectory modification, aircraft standing still, aircraft spoofing, aircraft
displaying false information, and jumping aircraft. Using the simulator we generate
163,490 malicious messages of the selected attacks. The malicious messages are
generated by modifying different parts of the ADS-B message such as latitude, longitude,
altitude, transponder code, heading, and aircraft id, etc.

. Benign messages: The benign messages are obtained from OpenSky network, a
crowdsourced, real-world air traffic surveillance system that collects and provides
open-access ADS-B messages for aviation applications and research purposes. OpenSky
is a non-profit organization aimed at improving air traffic security analysis, monitoring,
and airspace research by offering a large-scale dataset of real-time aircraft movements.
We downloaded 180,716 benign messages.

Figure 6 Proposed methodology for deep learning-based IDS. Full-size DOI: 10.7717/peerj-cs.2886/fig-6
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Data preprocessing
To achieve optimal accuracy, it is essential to preprocess the dataset before training and
testing the models. We applied several data preprocessing techniques to prepocess the
dataset. During the process of data collection including malicious and non-malicious
messages, we noticed some unnecessary columns, duplicates records and record with null
values.

. Removing duplicate values: These are repeated entries in the dataset that can introduce
biases by overrepresenting specific patterns. It is important to remove the duplicate
records from the dataset to increase the model’s performance. We remove all duplicate
records during preprocessing.

. Removing null values: The presence of null or missing values in the datasets can affect
the dataset’s statistical properties and lead to inaccurate predictions. Addressing missing
data is an important part of data preprocessing to ensure the dataset is clean, complete,
and suitable for analysis.

. Removing unnecessary columns: Unnecessary columns can add redundant
information and increase dataset complexity which may distort feature importance and
negatively affect model accuracy and processing time. The original dataset contains 20
features. Features including id, taxi_start, takeOffTime, airlineId, flightNumber, origin,
and destination were determined as unnecessary during feature engineering and were
removed.

Table 2 Dataset features.

Attribute Description

Id Message unique identification

Callsign Aircarft identification

Airlineid Airline identification

Transpondercode Identify and track the aircraft

Speed Flight velocity information

FlightNumber Flight identification number

Origin Flight starting point

GroundTrack For tracking and navigation

Altitude For safe separation

Latitude Geographical data

Heading For aircraft navigation and trajectory information

Longitude Geographical data

Distance Flight tracking and planning

GroundSpeed Real speed over the surface

Radial For position and navigation

TakeOffTime Tracking flight scheduling and duration

TrueAirSpeed For actual speed identification

Taxi_start Tracking ground operations

Destination Endpoint identification

AttackType Attack type identification
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Figure 7 represents the dataset’s distribution of malicious and non-malicious messages
after the preprocessing step.

Evaluation criteria
The performance of the proposed models is evaluated using standard metrics including
accuracy, precision, recall and F1-score. Equations (1), (2), (3), and (4) provide the
mathematical formulae for accuracy, precision, recall and F1-score, respectively.

. Accuracy (A): The ratio of correctly predicted instances to total instances.

A ¼ TP þ TN
TP þ FP þ FN þ TN

: (1)

. Precision (P): The proportion of true positive predictions to total positive prediction.

P ¼ TP
TP þ FP

: (2)

. Recall (R): The proportion of actual positive instances correctly predicted.

R ¼ TP
TP þ FN

: (3)

Figure 7 Distribution of malicious and benign messages. Full-size DOI: 10.7717/peerj-cs.2886/fig-7
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. F1-score: The harmonic mean of precision and recall.

F1----score ¼ 2� P � R
P þ R

: (4)

Deep learning models
For this research, three deep-learning models were selected: TabNet, NODE, and
DeepGBM. These models were chosen due to their ability to handle tabular data effectively
and their proven performance in complex classification tasks.

TabNet
The tabular network (TabNet) is a powerful deep-learning model that performs very well
on tabular data. TabNet combines decision trees and spare attention to achieve
performance and interpretability in classification tasks. Its ability to focus on the most
critical features reduces noise in the data, which is crucial for ADS-B message
classification. The first task is to classify the ADS-B message, which can be resolved using
the TabNet binary classification problem. The second task is identifying the corresponding
attack type (e.g., trajectory modification, ghost injection, message delay, etc.), which can be
modeled using the TabNet multi-class classification problem.

We give input to the model in the form of feature vector X 2 Rn, where n represents the
number of features in the dataset. The TabNet attention method assigns appropriate
weights to the selected features. TabNet calculates attention weights A 2 Rn against each
feature vector X using the formula shown in Eq. (5).

A ¼ softmax Wa � Xð Þ (5)

where:

. Wa–is the learned weight matrix.

. X–is the input feature vector.

. The softmax method confirms that the attention weights sum to 1, highlighting the
important features.

Based on the decision rule, TabNet predicts each step; the prediction can be formulated
as shown in Eq. (6):

Yt ¼ f Wt � ðA� XÞð Þ (6)

where:

. Yt–the prediction at step t.

. Wt–weight matrix for the decision at step t.

. �–represents the element-wise multiplication, the attention weights A and input X.

. f –activation function.
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After adding individual step predictions and T decision steps, the final prediction is
calculated for the message classification ŷ as shown in Eq. (7):

ŷ ¼
XT

t¼1

Yt: (7)

The above can be used for both message classification and attack type identification.
TabNet’s sparse attention technique focuses on the dataset’s most applicable features,
helping the model improve its results on message classification and attack type
identification.

Neural oblivious decision ensembles
Neural oblivious decision ensembles (NODE) is a robust deep learning technique suitable
for tabular data, such as the ADS-B protocol dataset. It combines the advantages of neural
networks and decision trees, allowing it to capture complex patterns and interactions in
data. NODE is a suitable model for message classification and attack-type identification.

From the perspective of our research problem, the first step is to classify ADS-B
messages as malicious or benign. If the message is classified as malicious in the first step,
then the next step is identifying the corresponding attack type. This problem is solved
using multi-class classification. The NODEmodel uses a special kind of decision tree called
an oblivious decision tree in which nodes share similar decision rules. The following
formula represents the operation of each tree in the ensemble as shown in Eq. (8).

TjðXÞ ¼
XL

l¼1

WjlI fjðXÞ 2 Bjl
� �

(8)

where:

. TjðXÞ–denotes the results of the j-th tree in the ensemble for input X.

. Wjl–denotes the weight connected with leaf l of tree j.

. fjðXÞ–denotes the decision function for tree j, which calculates the input X.

. Bjl–denotes the set of input that leads to leaf l in tree j.

. Ið�Þ–denotes indicator function that calculates to 1 if fjðXÞ 2 Bjl, otherwise 0.

The final output is achieved by adding the outputs of several oblivious decision trees.
The prediction of an ensemble with M trees is shown in Eq. (9).

ŷ ¼
XM

j¼1

TjðXÞ: (9)

The above formula allows NODE to merge the strengths of every tree in the ensemble to
make a more accurate and robust prediction. For individual attack type detection (multi-
class classification), the categorical cross-entropy loss is used (Eq. (10)):

Lmulti ¼ � 1
N

XN

i¼1

XK

k¼1

yik logðŷikÞ (10)
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where:

. N –denotes the number of samples.

. K –denotes the number of classes.

. yik –denotes the true label for sample i and class k.

. ŷik denotes the predicted likelihood for sample i and class k.

DeepGBM
DeepGBM is a deep learning-based hybrid model that combines the strength of Gradient
Boosting Machines and deep neural networks to enhance the model performance for
tabular data. DeepGBM provides a robust solution for binary and multi-class classification
of ADS-B messages. DeepGBM solves binary classification with the power of deep neural
networks and the predictive capabilities of decision trees. It performs multi-class
classification for identifying individual attack type after the message is classified as
anomalous.

For an ADS-B dataset X ¼ fx1; x2;…; xng with n features, the GBM component of the
model produces an output for individual data point with the help of an ensemble of
decision trees as shown in Eq. (11):

ŷGBMðXÞ ¼
XM

m¼1

amTmðXÞ (11)

where:

. TmðXÞ–denotes the result of the m-th decision tree.

. am–denotes the weight with the m-th tree.

. M–denotes the total number of trees in the ensemble.

For further refinement, the result from the GBM trees ŷGBM is forwarded to a
multi-layer deep neural network (DNN), and its output ŷDNN is formulated as shown in Eq.
(12).

ŷDNN ¼ gðW � ŷGBM þ bÞ (12)

where:

. gð�Þ–denotes the activation function (sigmoid, etc.).

. W–denotes the weight matrix for the DNN layer.

. b–denotes the bias vector.

The final output ŷ for the message classification (anomalous or non-anomalous) and
individual attack type identification is the output of the DNN as shown in Eq. (13).

ŷ ¼ ŷDNN (13)
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EXPERIMENTAL RESULTS
The experiments were conducted using Google Colab. The dataset was split into two parts:
80% for training and 20% for testing. A larger portion of the data is allocated for training to
give the model sufficient data to learn patterns, features, and relationships within the
dataset. A smaller portion is reserved for testing to assess the model’s performance on
unseen data and evaluate its generalizability.

TabNet
We use the TabNet Library which provides the TabNetClassifier for training tabular deep
learning models. We set up the classifier, tune the hyperparameters such as max_epochs,
batch_size, and learning_rate, and finally train and test the model. Figure 8 illustrates the
training accuracy vs. validation accuracy of the TabNet model over 50 epochs for the task
of ADS-B attack detection. The x-axis represents the number of epochs, or iterations, the
model underwent during training. Each epoch corresponds to one complete pass over the
training dataset. The y-axis represents the accuracy of the model. The orange line
represents the accuracy of the model measured on the validation dataset, which is separate
from the training data and is used to evaluate the model’s generalizability. The validation
accuracy closely follows the trend of the training accuracy shown with blue line. Training
accuracy refers to the accuracy of the model when predicting labels on the training dataset,
which it has seen during learning phase. Around epoch 10, the training accuracy reaches
approximately 85%, and continues to increase up to around 92% at the 50th epoch. This
shows that the model not only improves on the training data but also generalizes well to
validation data, enabling it to effectively detect attacks.

The confusion matrix illustrated in Fig. 9 is a detailed evaluation of the TabNet model
for ADS-B attack detection. The diagonal values from the top left to the bottom right

Figure 8 Training graph of TabNet model across 50 epochs.
Full-size DOI: 10.7717/peerj-cs.2886/fig-8
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represent the cases where the model made correct predictions. The TabNet model
performs well in classifying certain attack types, such as Ghost injection, No attack, and
Non-responsive aircraft and Transponder code alteration with high accuracy. For example,
the Ghost injection class has 4,057 instances, all of which are correctly classified, showing
100% accuracy for this class. For No attack class, there are 19,420 correct predictions out of
19,919 total instances with 97.49% accuracy. However, the model struggles with attack
types having subtle changes. Aircraft standing still class has an accuracy of 38.55%, with
significant misclassifications into other classes. Message delay class has an even lower
accuracy of only 8.52%, indicating the model has a hard time detecting this attack type.
This confusion matrix helps highlight where the model can be improved, particularly for
attack types that share similar characteristics.

Neural oblivious decision ensembles
We initialize a NODE model with parameters defining the number of oblivious trees, tree
depth, and learning rate. The model is trained using cross-entropy loss and an Adam

Figure 9 Confusion matrix of TabNet model. Full-size DOI: 10.7717/peerj-cs.2886/fig-9
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optimizer. After training, the NODEmodel’s performance is assessed. Figure 10 represents
the training vs. validation accuracy of the NODE model over 10 epochs.

Both training accuracy (blue line) and validation accuracy (orange line) increase sharply
within the first couple of epochs. This shows that the model is learning quickly at the
beginning. Both training and validation accuracy remain close, indicating that the model
does not overfit and is generalizing well to the validation data. After epoch 4, the training
and validation accuracy stabilize around 95%, indicating that the model has learned an
optimal decision boundary and continues performing well on both the training and
validation sets.

The confusion matrix in Fig. 11 shows how well the NODE model classifies different
attack types. Most attack types are detected by the NODE model correctly with high
accuracy. Ghost injection class has 100% accuracy. The model performs exceptionally well
on Non-responsive aircraft attacks, with 2,048 correct predictions out of 2,060 instances,
achieving an accuracy of 99.37%. Non-responsive Aircraft, No attack, and Aircraft
displaying false information have 99%, 97.00% and 96% accuracy respectively.

On the other hand, some classes have low accuracy. Only 62 out of 239 instances of
Message Delay are correctly classified, yielding an accuracy of 56.49%. Misclassifications
are frequent for this attack, with many instances being wrongly classified as Aircraft
spoofing or Aircraft standing still. This indicates that the NODE model struggles to
differentiate Message Delay from other attack types. Similarly, Aircraft standing still has
only 44.44% accuracy. A significant number of messages of this class are misclassified as
Jumping aircraft and Aircraft displaying false information. This is likely due to the small
number of samples in the dataset, which constrained the model’s ability to learn patterns
for these scenarios.

Figure 10 Training graph of NODE model across 10 epochs.
Full-size DOI: 10.7717/peerj-cs.2886/fig-10
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DeepGBM
LightGBM is first used to train a gradient-boosted decision tree model, generating leaf
indices for the input data. These leaf indices serve as input features for a neural network
component of DeepGBM. A feed-forward neural network is defined and trained. Figure 12
illustrates the training vs. validation accuracy of the DeepGBMmodel across 16 epochs. In
the initial epochs, both the training accuracy (blue line) and the validation accuracy
(orange line) increase sharply. This shows that the model is learning quickly and
efficiently. Around epoch 4, accuracy dips slightly, but the model quickly recovers. This dip
could be caused by changes in the learning rate or the difficulty of certain batches. Both the
training and validation accuracies hover around 98-99% towards the later epochs. The
model seems to converge well, showing that it is learning effectively without overfitting, as
the validation accuracy closely follows the training accuracy.

The confusion matrix in Fig. 13 provides a detailed look at the DeepGBM model’s
performance for each attack type. It accurately detects most attack types. All 2,751

Figure 11 Confusion matrix of NODE model. Full-size DOI: 10.7717/peerj-cs.2886/fig-11
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messages of Transponder code alteration are classified correctly achieving 100% accuracy.
Only 1 instance of Ghost Injection is misclassified out of 4,057, leading to 99.98% accuracy
for this class. Only 16 out of 2,275 messages are misclassified in Aircraft displaying false
information class, and 25 out of 2,781 messages are misclassified in Non-responsive aircraft
class achieving 99.3% and 99.1% accuracy, respectively. 19,704 out of 19,915 instances of
the No attack class are correctly classified and only 180 instances are misclassified,
resulting in an accuracy of 98.92%. This indicates that the DeepGBMmodel can effectively
and accurately detect these attack type.

The DeepGBM model struggles to accurately detect Message Delay class. Only 160 out
of 317 instances of Message Delay are correctly classified, with many instances being
confused with other classes. This results in an accuracy of only 50.47%.

DISCUSSION
In this research article, we implemented and compared three novel deep learning models:
TabNet, DeepGBM, and NODE for ADS-B message classification (malicious and non-
malicious) and attack type detection. The following discussion provides a comparative
analysis of the performance of each model based on training, testing accuracy, and other
evaluation metrics (precision, recall, F1-score) for each attack type.

Training accuracy comparison
TabNet model demonstrated a slower, more gradual improvement in training accuracy,
reaching approximately 91% after 50 epochs. The gradual increase suggests that TabNet
learned progressively with a smooth convergence. NODE rapid learning curve reaching
95% accuracy after just a few epochs. This indicates that NODE, can learn more quickly
and effectively. DeepGBM, in contrast, achieved rapid convergence, reaching near-perfect

Figure 12 Training graph of DeepGBM model across 16 epochs.
Full-size DOI: 10.7717/peerj-cs.2886/fig-12
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accuracy of 98–99% by epoch 10. However, slight fluctuations indicate occasional
overfitting or sensitivity to certain batches of data during training. Both DeepGBM and
NODE consistently outperformed TabNet in terms of training accuracy, but these gains do
not necessarily translate into better generalization, as shown in the testing accuracy
comparison.

Testing accuracy comparison
Figure 14 represents the comparison of the selected deep learning models in terms of
testing accuracy. TabNet achieved a testing accuracy of 92.7%, which is lower than the
other two models. While TabNet’s slower learning rate during training may have
contributed to its lower testing accuracy, this behavior indicates strong generalization.
NODE, with a testing accuracy of 96.17%, also generalized well to unseen data. NODE
outperformed TabNet, but its performance was slightly below DeepGBM. DeepGBM
displayed consistently higher testing accuracy of 98.07%, outperforming the other models.

Figure 13 Confusion matrix of DeepGBM model. Full-size DOI: 10.7717/peerj-cs.2886/fig-13
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This indicates that DeepGBM strikes a good balance between robustness and fast learning
on unseen data, leading to superior performance in attack-type detection.

Precision, recall and F1-score comparison
Table 3 compares precision, recall, and F1-score for each attack type across the three
models. The metrics clearly show how each model handles specific attack types in ADS-B.
Ghost Injection attacks: All three models achieved perfect scores for this attack type,
indicating that its nature is easier to detect and that the models can distinguish it reliably.
No attack (benign messages): DeepGBM and NODE achieved higher precision, recall, and
F1-score than TabNet, with DeepGBM marginally outperforming NODE in all metrics.
This suggests that both models are highly reliable for identifying benign ADS-B messages.
Aircraft displaying false information attack: DeepGBM and NODE outperformed TabNet
on this attack type, achieving higher precision, recall, and F1-score. Jumping Aircraft
attacks: DeepGBM achieved the best results for this attack type, with an F1-score of 0.87,
while NODE and TabNet trailed slightly behind.

Aircraft standing still attacks: TabNet struggled with this attack type, achieving an
F1-score of 0.52, indicating significant confusion with other classes. Both DeepGBM (0.87)
and NODE (0.56) performed better. Message Delay attacks: TabNet and NODE struggled
the most with this attack, achieving F1-score of 0.16 and 0.38, respectively, while
DeepGBM performed better with an F1-score of 0.50. The low recall across all models for
this class suggests that Message Delay is a more complex attack type to detect, and further
improvements in handling this type are needed.

Figure 14 Comparison of testing accuracy of the three deep learning models.
Full-size DOI: 10.7717/peerj-cs.2886/fig-14
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Comparison with existing work
Table 4 presents a comparative analysis of our research with existing research in the field of
ADS-B attack detection using machine learning and deep learning. The comparison is
based on several key parameters, including the considered attack types, datasets, deep
learning models, and attack detection performance. Table 4 includes multiple studies from
different authors. Each study addresses various ADS-B attacks. The comparison is
organized by reference citations, ensuring clarity in identifying contributions from
different researchers. Our study progresses the state-of-the-art by investigating new attack
scenarios (as mentioned in the attacks column), and new deep learning models which have
not been explored before.

Our research utilizes both OpenScope and OpenSky, improving the robustness of the
research by using diverse data sources. Several existing studies solely rely on simulated
datasets, which may limit real-world applicability. Each study applies different machine
learning and deep learning models to detect ADS-B attacks. We leverage TabNet, NODE
and DeepGBM which are cutting-edge deep learning models. The DeepGBM model
achieves the highest accuracy (98.07%), demonstrating superior attack detection
capabilities. By demonstrating the efficacy of these models in classifying ADS-B data with
high accuracy, our research contributes to the body of knowledge by introducing scalable,
interpretable, and efficient methods for enhancing cybersecurity in aviation
communication systems. Furthermore, this work highlights the potential of deep tabular
models in critical infrastructure protection, offering a pathway for more resilient and
intelligent air traffic monitoring systems.

ADS-B SECURITY REQUIREMENTS, CHALLENGES AND
FUTURE DIRECTIONS
This section explains the requirements necessary for developing a security framework for
the ADS-B protocol. It also discusses the current challenges and possible future research
directions for researchers (Ahmed et al., 2024).

Table 3 Performance comparison of classification of different attack types using TabNet, DeepGBM, and NODE.

Class Attack type TabNet DeepGBM NODE

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

0 Ghost injection 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1 No attack (benign) 0.91 0.97 0.94 0.97 0.99 0.98 0.96 0.97 0.97

2 Aircraft standing still 0.82 0.39 0.52 0.97 0.78 0.87 0.77 0.44 0.56

3 Aircraft displaying false info 0.84 0.79 0.81 0.84 0.99 0.91 0.89 0.96 0.92

4 Jumping aircraft 0.84 0.71 0.77 1.0 0.77 0.87 0.79 0.87 0.83

5 Transponder code alteration 0.91 0.97 0.94 1.0 1.0 1.0 0.98 0.97 0.97

6 Trajectory modification 0.86 0.66 0.72 0.95 0.97 0.96 0.93 0.87 0.90

7 Non-responsive aircraft 1.0 0.97 0.99 1.0 0.99 0.99 1.0 0.99 1.0

8 Aircraft spoofing 0.87 0.64 0.74 0.98 0.97 0.97 0.93 0.92 0.92

9 Message delay 0.96 0.09 0.16 0.95 0.34 0.50 0.73 0.26 0.38
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Security requirements
To design an effective and applicable security solution for securing the ADS-B protocol
from different attacks should fulfil the following security requirements (Ahmed et al.,
2024):

. Cryptography elements: Despite the limited message size in standard ADS-B packets, the
solution’s security level should not be compromised.

. No modifications in hardware: The proposed security solution should require a simple
software update without requiring hardware modifications in terms of maintenance and
cost.

Table 4 Comparison of our work with existing research.

Ref. Attacks Dataset Implemented models Best model

Khoei et al. (2024) . False data injection attack Simulated . LSTM
. GRU
. Bi-GRU
. Bi-LSTM

GRU 94.61%

Slimane et al. (2022) . Message injection attack Simulated . SVM SVM 95.32%

Luo et al. (2021) . Constant position deviation attack
. Random position deviation attack
. Velocity drift attack
. DoS attack
. Flight replacement attack

OpenSky and simulation . VAE-SVDD VAE-SVDD 92.89%

Li et al. (2019) . Injection attack Simulated . GAN-LSTM GAN-LSTM 98%

Ying et al. (2019) . Spoofing attack Simulated . XGBoost
. LR
. SVM

XGBoost 78.37%

Kacem et al. (2021) . Replay attack
. Ghost aircraft injection attack
. Multiple ghost aircraft injection attack

OpenSky . SVM
. DT
. RF

DT 92%

Our work . Aircraft spoofing
. Transponder code alteration
. Message delay
. Non-responsive aircraft
. Aircraft standing still
. Ghost injection
. Aircraft displaying false info.
. Jumping aircraft
. Stationary aircraft

OpenScope and OpenSky . TabNet
. DeepGBM
. NODE

DeepGBM 98.7%
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. Packet loss events: Given the prevalent packet loss phenomena in the 1090ES frequency
band, effective security solutions should demonstrate resilience against incomplete
packet reception caused by obstacles and other factors.

. Backward compatibility: New security solutions should seamlessly integrate with existing
systems, allowing aircraft that have yet to update their systems to continue operating.

. Standard compliance: Security solutions must align with the ADS-B protocol’s updated
version to ensure message format and communication logic compliance.

. Limited message overhead: Security techniques must introduce a minimal additional
message overhead to avoid congestion on the 1090ES frequency band.

Challenges and future research directions
ADS-B stands out as a leading protocol within ATC. Its principal strengths stem from
leveraging GPS as a location provider, resulting in better location accuracy (Ahmed et al.,
2024). Furthermore, it presents a cost-effective alternative with significant operational
expenses and lower deployment than traditional radar technologies. ADS-B augments
radar coverage and functions independently in areas missing radar support. Although
these notable benefits exist, the broader adoption of ADS-B faces constraints due to
associated security weaknesses, primarily linked to the protocol’s open broadcast of
clear-text messages and absence of mechanisms to ensure integrity or authenticity, making
them susceptible to manipulation using affordable hardware and open-source software.
This has raised alarms about the potential exploitation of security loopholes.

Despite the gravity of the abovementioned concerns, only a few researchers have
endeavored to propose practical strategies for moderating such vulnerabilities. Addressing
this issue is complex, primarily due to the impracticality of modifying the ADS-B message
format. Such modifications would render the already extensively implemented base
obsolete, posing a significant challenge in enhancing the protocol’s security without
disrupting existing systems. This underscores the need for innovative solutions that
balance maintaining compatibility with current infrastructure and fortifying the security of
ADS-B transmissions against potential tampering.

In the future landscape of aviation, the anticipated growth in the number of aircraft in
the airspace poses a challenge, potentially leading to congestion and a surge in ADS-B
messages. Addressing the need for swift and accurate reception and processing of these
messages while expanding the transmission range on the ADS-B 1090ES frequency to
mitigate message loss and congestion is a critical focal point for further investigation
(Ahmed et al., 2024).

. Blockchain integration: Using blockchain technology for secure and tamper-proof
logging of ADS-B messages and anomaly detection events can enhance transparency and
accountability. Blockchain’s decentralized nature removes the need for a central
authority, reducing the risk of single points of failure. By hashing ADS-B messages and
storing the hash on the blockchain, the integrity of each message can be verified.
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However, lightweight consensus mechanisms are needed to validate and append
messages efficiently without overloading the system. Pioneering work by Habib et al.
(2022) introduced blockchain technology for identity recognition by employing P2P
technology for distributed data storage and authentication. This technique showcases
high security, reliability, and scalability, offering identity authentication across different
infrastructures. Articles such as “Aviation Blockchain Infrastructure” (ABI) propose
leveraging blockchain for effective, secure, and private communication between aircraft
and authorized individuals (Reisman, 2019).

. Machine learning applications: Given the importance of abnormal data detection,
particularly in a non-encrypted and open protocol like ADS-B, machine learning
provides a compelling solution. In recent years, a surge in anomaly detection techniques
based on machine learning has been witnessed, with deep learning gaining prominence
in various domains. In the context of ADS-B, machine learning and deep learning
models can significantly enhance anomaly detection by leveraging time-series algorithms
that take advantage of the rapid and continuous updates in ADS-B messages. By
correlating message timestamps and extracting complex patterns, these models improve
detection accuracy without requiring additional sensors, maintaining compatibility with
existing ADS-B protocols. Previous research, including studies by Kakimoto et al. (2024),
Akerman, Habler & Shabtai (2019), Chen et al. (2019), has demonstrated efficacy of deep
learning techniques to enhance ADS-B system security.

. Multi-layered security framework: The existing security solutions proposed by
researchers provide a limited level of security. Researchers must design and test a
security framework based on multi-layered security that can detect and defend ADS-B
systems from different attacks. Designing hybrid systems by combining machine
learning with rule-based systems can create a robust multi-layered defense approach.

. High attack detection with low false alarm: Researchers face challenges in developing an
attack detection method with low false alarms and high attack detection rate. Future
research can focus on developing and fine-tuning sophisticated models, such as graph
neural networks (GNNs) and attention-based architectures.

CONCLUSION
ADS-B is a critical communication protocol in ATCenvironments. Unlike traditional
technologies, ADS-B leverages GPS to provide more accurate and precise location
information while offering lower operational and deployment costs. Despite the
advantages of the ADS-B, it is susceptible to multiple security vulnerabilities due to its
open nature and lack of built-in security features. This study presented a deep
learning-based framework for detecting anomalous ADS-B messages and identifying
various attack types, leveraging cutting edge models such as TabNet, NODE and
DeepGBM. Experiments show that DeepGBM provides the best results, with 98% attack
classification accuracy, compared to TabNet’s 92% and NODE’s 96%. The proposed
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research approach demonstrates high accuracy, effectiveness and robustness in
distinguishing between normal and malicious ADS-B transmissions.

Limitation
The proposed research presents a well-structured deep learning-based intrusion detection
system for ADS-B attack detection, achieving high accuracy. However, its effectiveness in
real-world aviation environments may be limited due to the computational challenges,
dataset constraints, and lack of real-time detection capabilities.

Future work
Future research will strive to further improve datasets and investigate lightweight
mechanisms for real-time anomaly detection. Another future direction is hybrid security
techniques by combining cryptography, artificial intelligence, and multilateration-based
verification to enhance ADS-B authentication and data integrity. Additionally, adversarial
robustness testing is essential to ensure practical viability in live ATC environments. As the
aviation industry moves toward next-generation ATM, intelligent and secure ADS-B
systems will play a crucial role in safeguarding global airspace.
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