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ABSTRACT
Hyperdimensional computing (HDC, also known as vector-symbolic
architectures—VSA) is an emerging computational paradigm that relies on dealing
with vectors in a high-dimensional space to represent and combine every kind of
information. It finds applications in a wide array of fields including bioinformatics,
natural language processing, machine learning, artificial intelligence, and many other
scientific disciplines. Here we introduced the basic foundations of the HDC, focusing
on its application to biomedical sciences, with a particular emphasis to
bioinformatics, cheminformatics, and medical informatics, providing a critical and
comprehensive review of the current HDC landscape, highlighting pros and cons of
applying this computational paradigm in these specific scientific domains. In this
study, we first selected around forty scientific articles on hyperdimensional
computing applied to biomedical data existing in the literature, and then analyzed
key aspects of their studies, such as vector construction, data encoding, programming
language employed, and other features. We also counted howmany of these scientific
articles are open access, how many have public software code available, how many
groups of authors, journals, and conferences are most present among them. Finally,
we discussed the advantages and limitations of the HDC approach, outlining
potential future directions and open challenges for the adoption of HDC in
biomedical sciences. To the best of our knowledge, our review is the first open brief
survey on this topic among the biomedical sciences, and therefore we believe it can be
of interest and useful for the readership.
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Keywords Hyperdimensional computing, Vector-symbolic architectures, Biomedical sciences,
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INTRODUCTION
The escalating energy demands of conventional computing systems recently raised
concerns regarding their long-term sustainability. As computational demands continue to
escalate, it also increases the environmental impact of these energy requirements (Katal,
Dahiya & Choudhury, 2022). Consequently, research has increasingly focused on
alternative computing paradigms capable of circumventing these limitations and offering
more efficient, scalable, and sustainable solutions. Hyperdimensional computing (HDC)
(Kanerva, 2009) represents one such paradigm that has gained significant attention in
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recent years, tackling complex computational challenges in various scientific domains,
including biomedical sciences.

Unlike traditional computing, which relies on manipulating bits in a sequential manner,
HDC draws inspiration from the way the human brain is able to represent and process
information. Our brain excels at handling complex, noisy, and often incomplete
information, performing tasks like pattern recognition, association, and generalization
with remarkable speed and efficiency. It achieves this through a massively parallel
architecture, where billions of neurons interconnected via trillions of synapses process
information collectively (Mehonic & Kenyon, 2022).

HDC attempts to emulate these principles by representing data as points in a
high-dimensional space, typically using vectors with thousands of dimensions. These
vectors, often referred to as hypervectors, serve as a fundamental building block for
representing and manipulating information. The high dimensionality of these
representations offers several advantages. Firstly, it allows for a holographic representation
of data, where information is distributed across the entire vector, making HDC inherently
robust to noise and data corruption. Secondly, it enables the use of simple, neurally
plausible operations for computation, such as vector addition, multiplication, and
permutation, which can be implemented efficiently in hardware (Aygun et al., 2023).

Key principles and advantages of hyperdimensional computing
At its core, HDC operates on the following key principles (Kanerva, 2009):

(1) High-dimensional representations: information is encoded using random binary or
bipolar high-dimensional vectors, usually with 10-thousand dimensions. Note that this
number is not arbitrary. In high-dimensional spaces, randomly generated vectors tend
to be nearly orthogonal. This property guarantees that vectors representing different
information remain distinct and easily distinguishable in the same space;

(2) Randomized encoding: data is mapped to hypervectors using randomized encoding
techniques, ensuring that similar data points are mapped to nearby points in the
hyperspace, regardless of the nature of data (e.g., images, text, biomedical signals);

(3) Holographic representation: information is distributed across the entire hypervector,
providing robustness to noise and data corruption. Instead of having localized or
sparse encoding where a small subset of dimensions carries most of the information,
every component of the hypervector contributes to the representation. This brings a
series of advantages:

(a) Robustness: since the information is spread out, the representation is resilient to
noise or corruption in any subset of the dimensions. Even if some dimensions are
altered or lost, the overall information can be recovered;

(b) Graceful degradation: partial damage leads to a proportional decrease in the fidelity
of the representation rather than a catastrophic loss;
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(4) Simple operations: computation is performed using simple arithmetic operations like
the element-wise addition, multiplication, and permutation of vectors. These
operations are at the base of the so called Multiply-Add-Permute (MAP) model, and
each of them carries different and unique mathematical properties:

a. Binding 5: it is implemented as element-wise multiplication (or, for binary
hypervectors, XOR). It brings the following mathematical properties:

(i) Invertibility: the binding operation is approximately invertible. It means that, given
c ¼ a 5 b, both a and b can be recoverable;

(ii) Associativity and commutativity: the order of binding operations does not affect the
result.

b. Aggregation/bundling 4: it aggregates multiple hypervectors to form a single
hypervector representation of a set or group of items c ¼ a � b. It is implemented as
the element-wise sum followed by a normalization to make sure that the resulting
hypervector remains in the same representational space as the original hypervectors. It is
characterized by the following properties:

(i) Superposition principle: The bundling operation distributes information from all
contributing hypervectors across the resulting hypervector in a way that retains
key features of the original set. While individual hypervectors are not perfectly
preserved, their influence remains in a distributed manner that allows to recognize
and retrieve patterns from the aggregated representation;

(ii) Noise tolerance: because the operation involves summing up many
high-dimensional vectors, the signal of interest is maintained while random noise
tends to cancel out due to averaging effects.

c. Permutation p: it is used to introduce order or structure into the hypervector
representations. A permutation operation p acts as a fixed, bijective reordering of the
dimensions of a hypervector, shifting elements by a fixed number of positions. It also
brings the following properties:

(i) Invertibility: since a permutation is a bijective mapping, it is invertible. This means
that the original order of the elements can be recovered by applying the inverse
permutation, or shifting elements back to the same number of positions initially
used to build the permuted representation of the hypervector;

(ii) Preservation of similarity: although permutation changes the positions of the
elements, it preserves the overall distribution and statistical properties of the
hypervectors.

The set of hypervectors, together with the encoding logic and its arithmetic operations
on vectors, is called vector-symbolic architecture.
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These principles give rise to several advantages that make HDC particularly well-suited
for a wide range of applications:

. Robustness to noise and errors: the distributed nature of information in hypervectors
makes models encoded through the HDC paradigm tolerant to noise and errors;

. Computational efficiency: simple vector operations can be implemented efficiently in
hardware, leading to fast and energy-efficient computation. An example is the
development of an FPGA-based accelerator for HDC, which achieved significant
speedups and energy savings compared to traditional CPU implementations. This makes
HDC suitable for real-time applications in resource-constrained environments (Chen,
Barkam & Imani, 2023);

. Data agnosticism: HDC can be applied to any kind of data, regardless of its nature,
making it extremely versatile and suitable for a wide range of applications, ranging from
robotics (Hassan et al., 2024), to natural language processing (Berster, Caleb Goodwin &
Cohen, 2012), image recognition (Neubert & Schubert, 2021), and many others,
demonstrating the HDC’s ability to handle diverse data sources in very different and
specific contexts efficiently;

. Scalability: the inherent parallelism of HDC allows for efficient scaling to handle large
datasets and complex computations. It is crucial for applications involving big data and
real-time processing (Heddes et al., 2024).

The Dollar of Mexico and the promise of hyperdimensional computing
The foundation of HDC is rooted in the idea that information can be represented and
manipulated using high-dimensional vectors, typically consisting of thousands of
dimensions. One of the earliest illustrations of this concept is the “What’s the Dollar of
Mexico?” problem (Kanerva, 2009), introduced by Pentti Kanerva to demonstrate how
distributed representations can encode semantic relationships. The problem states that if a
system knows the relationships Dollar → USA and Peso → Mexico, it should infer that
Dollar of Mexico likely refers to Peso, despite never having encountered this specific phrase
before.

Mathematically, this is achieved using vector-symbolic architectures (VSAs), where
concepts are represented as high-dimensional random vectors, and relationships are
encoded through arithmetic operations such as vector binding and bundling as discussed
above. Given the vector representations of the concepts Currency and Country, and Dollar
and USA, their relationship can be represented as:

VUSA ¼ Currency 5 Dollarð Þ � Country 5 USAð Þ;
where 5 and 4 denote the binding and bundling operations, respectively. Analogously,
the relationship between Peso and Mexico can be defined as VMexico ¼
Currency 5 Pesoð Þ � Country 5 Mexicoð Þ. Finally, the binding between VUSA and
VMexico produces a new vector that represents the reality that we are trying to encode. In
order to answer the initial question, a simple binding between this final vector with the

Cumbo and Chicco (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2885 4/27

http://dx.doi.org/10.7717/peerj-cs.2885
https://peerj.com/computer-science/


vector representation of Dollar produces a new vector which is very similar to the vector
representation of Peso. This can be verified by computing the cosine similarity between this
final vector and all the other vectors computed so far.

This principle—where information is stored and retrieved based on patterns of
similarity rather than explicit lookup tables—forms the backbone of HDC. Over the years,
researchers have leveraged these properties to build robust models capable of handling
noisy, uncertain, and large-scale data, making HDC particularly appealing for different
kinds of problems, including biomedical applications.

It represents a paradigm shift in computing, offering a powerful and efficient alternative
to traditional approaches. Its unique ability to handle high-dimensional data, robustness to
noise, and computational efficiency make it a promising candidate for addressing the
challenges posed by the ever-growing complexity and scale of data-driven applications. As
research in HDC continues to advance, we can expect to see its adoption in an even wider
range of fields, paving the way for a new era of intelligent and efficient computing systems.

Hyperdimensional computing and biomedical sciences
While a broader potential of HDC is clear, its application to biomedical sciences presents a
particularly compelling case. This review focuses specifically on the intersection of HDC
and biomedical sciences, encompassing medical informatics, bioinformatics, and
cheminformatics. As illustrated in Fig. 1, the number of publications exploring HDC
within these domains has steadily increased over the past decade (with the exception of
2019 and 2023), highlighting the growing interest and potential of this technology in these
specific scientific domains.

This review is particularly crucial due to the rapid evolution and relative novelty of
HDC in the biomedical domain. While promising, this field is still in its early stage,
characterized by a diversity of approaches and a lack of standardized methodologies.

The motivations for this review systems from several key factors that distinguish it from
previous surveys, particularly those with a general or solely technical focus:

(1) The biomedical applications of HDC are evolving at an unprecedented rate, with novel
approaches and implementations emerging frequently. While previous surveys have
outlined the theoretical and algorithmic foundations of HDC (Stock et al., 2024), this
review captures the latest trends and breakthroughs specific to biomedical sciences. It
offers an updated perspective that reflects the current research landscape, making it
indispensable for readers who wish to stay abreast of state-of-the-art developments;

(2) As mentioned above, unlike prior surveys that address HDC from a broad,
interdisciplinary viewpoint, this paper zooms in on biomedical applications. By
bridging the gap between general HDC methodologies and domain-specific needs, this
review serves as a specialized resource for biomedical researchers and practitioners;

(3) The field of HDC in biomedicine is still in its nascent stages, characterized by a
diversity of approaches and a lack of standardized methodologies. This review
synthesizes the existing literature to help readers identifying promising avenues for
future innovations in this field;
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Our target audience encompasses both researchers actively working in HDC and those
in related biomedical fields seeking to explore the potential of this novel computational
paradigm. By providing them with a critical evaluation of the current landscape, as well as
identifying gaps and future directions, this review aims to equip readers with the
knowledge and insights needed to advance HDC applications in biomedical sciences.

In summary, this article offers a unique contribution by focusing specifically on the
intersection of HDC and biomedicine, delivering a synthesis of recent progress, a critical
evaluation of existing challenges, and practical guidance for future research. For readers
seeking to understand not only the theoretical foundations but also the practical potential
and future trajectory of HDC in biomedical sciences, this review serves as an essential
resource that complements and extends previous surveys.

To the best of our knowledge, no surveys on biomedical applications of HDC exist in the
scientific literature. The already-mentioned study by Stock et al. (2024) recently presented a
technical guide or introduction aimed at explaining the fundamentals of HDC and
demonstrating its potential through specific applications in bioinformatics. In particular,
their article is structured to provide an introduction to the HDC concepts, outline the
computational advantages of HDC from a general perspective, and highlight selected case
studies and applications across the bioinformatics field. Although useful and interesting,
this article does not outline the applications of HDC in biomedical sciences; we fill this gap
by presenting our short survey here.

SURVEY METHODOLOGY
Our literature review aims to provide a comprehensive overview of the current state of
hyperdimensional computing in biomedical sciences. To ensure a systematic and rigorous

Figure 1 Number of research articles considered in this survey on hyperdimensional computing
applied to biomedical sciences published over time. Note that 2025 refers only to January and the
first half of February. Full-size DOI: 10.7717/peerj-cs.2885/fig-1
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approach, we adopted guidelines outlined in Pautasso’s (2013) rules on writing a literature
review throughout the survey methodology.

Search strategy and selection criteria
Our bibliographic research employed a systematic search strategy across Google Scholar
and the collection of scientific articles in the hd-computing repository at https://www.hd-
computing.com. The latter represents a valuable resource to help the HDC/VSA scientific
community by collecting software, video courses and webinars, in addition to scientific
articles about the application of the HDC paradigm to specific technological problems.

To ensure a comprehensive and unbiased review, we conducted a systematic search of
the literature using a multi-pronged approach. In particular, we utilized a combination of
keywords and their variations to ensure a broad capture of relevant articles among those
operating in the context of biomedical sciences: (“Hyperdimensional Computing” OR
“Vector-Symbolic Architectures”) AND (“Bioinformatics” OR “Cheminformatics” OR
“Medical Informatics” OR “Biomedical Sciences”)

Our search yielded a pool of 41 articles. To focus our review on the most relevant
studies, we applied the following inclusion criteria:

. Focus on HDC: articles must primarily focus on the application of HDC techniques;

. Relevance to biomedical sciences: articles must address problems within bioinformatics,
cheminformatics, or medical informatics;

. Peer-reviewed publications: we prioritized peer-reviewed journal articles and conference
proceedings articles. However, we also considered preprints of significant interest and
potential impact.

Data extraction and categorization
We extracted a comprehensive set of features from each selected article in support of our
analysis of HDC applications in biomedical sciences. These features were carefully chosen
to provide insights into various aspects of the research, including:

(1) Bibliographic information:

○ Theme: categorized the primary application domain of the article into bioinformatics,
cheminformatics, or medical informatics;

○ Venue: recorded the journal or conference name where the article was published;

○ Article type: classified the publication type as a journal article, conference
proceedings article, or preprint;

○ Open access: noted whether the article was freely available in an open-access format.

(2) HDC methodology:

○ Vector construction: documented the specific methods used to construct the
hypervectors, such as random projection, learned embeddings, or domain-specific
encodings;
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○ Data encoding: described the techniques employed to encode different data types
(e.g., DNA sequences, molecular structures, patient records) into hypervectors;

○ Data combination: analyzed the operations used to combine encoded data, including
vector addition, multiplication, and permutation operations.

(3) Application and evaluation:

○ Scientific problem: summarized the specific biomedical problem addressed in the
article;

○ Number of patients and samples: recorded the dataset size, including the number of
patients or samples used in the study;

○ Hardware: extracted information about any specialized hardware utilized for HDC
implementation, such as classical CPUs, GPUs, ASICs, or FPGAs;

○ Robustness: analyzed any reported metrics or discussions related to the model’s
robustness to noise;

○ Programming language(s): identified the programming language(s) used for
implementing HDC models (for example, Python, MATLAB, R, C/C++, and Rust);

○ Software availability: determined whether the software or code developed for the
study was publicly available.

Analysis framework
The extracted data allowed us to analyze the trends and characteristics of HDC
applications in biomedical sciences. We will present our findings by focusing on each of
the extracted features, highlighting the following aspects:

. Themes: we will discuss the prevalence of HDC in each of the three themes
(bioinformatics, cheminformatics, and medical informatics), identifying areas where
HDC has been particularly successful or is gaining traction;

. Methodological Trends: we will analyze the commonalities and differences in HDC
methodologies employed across different studies, examining the suitability of specific
techniques for particular biomedical problems;

. Open Science Practices: we will investigate the adoption of open science practices, such
as open access publication and software sharing, within the HDC community.

By systematically analyzing these features, this literature review aims to provide a
comprehensive and insightful overview of the current landscape of HDC in biomedical
sciences, identifying research gaps, and highlighting future directions for this promising
field.

We identified a pool of 62 research articles over three scientific themes, i.e., medical
informatics (Buteau et al., 2024; Chen et al., 2024a, 2024b; Du et al., 2024; Gaddi et al.,
2024; Ponzina et al., 2024; Salerno & Barraud, 2024; Cohen et al., 2012; Moon et al., 2013;
Kleyko et al., 2016, 2017; Rahimi et al., 2017a, 2017b, 2018; Burrello et al., 2018, 2019a,
2019b, 2021; Lagunes & Lee, 2018; Burkhardt et al., 2019; Asgarinejad, Thomas & Rosing,
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2020; Billmeyer & Parhi, 2021; Ge & Parhi, 2021, 2022; Menon et al., 2021, 2022; Pale,
Teijeiro & Atienza, 2021, 2022a, 2022b, 2022c, 2023; Watkinson et al., 2021a, 2021b;
Schindler & Rahimi, 2021; Ni et al., 2022; Shahroodi et al., 2022; Ung, Ge & Parhi, 2022;
Wang, Ma & Jiao, 2022; Topic et al., 2022; Segura et al., 2024; Ge et al., 2024; Xu & Parhi,
2024; Katoozian, Hosseini-Nejad & Dehaqani, 2024; Jeong et al., 2024; Colonnese et al.,
2025), bioinformatics (Barmpas et al., 2024; Fan et al., 2024;Mohammadi et al., 2024; Pinge
et al., 2024; Imani et al., 2018; Kim et al., 2020; Cumbo, Cappelli & Weitschek, 2020;
Poduval et al., 2021; Chen & Imani, 2022; Zou et al., 2022; Barkam et al., 2023; Verges et al.,
2024; Xu et al., 2024; Cumbo et al., 2024), and cheminformatics (Ma, Thapa & Jiao, 2022;
Jones et al., 2023, 2024), with 32 of them falling under the medical informatics category
(78.05%), 7 belonging to the bioinformatics domain (17.07%), and the remaining 2 about
cheminformatics (4.88%) (Fig. 2B).

In the context of three macro thematic categories, we manually classified the
whole set of 62 articles based on the specific scientific problem that the authors
aimed at addressing with their research. In particular, we identified 28 scientific problems,
with the most discussed being seizure detection (14/39 articles under the medical
informatics theme), followed by biosignal classification and sequence matching and
alignment with roughly the same number of manuscripts (7/39 articles under the
medical informatics theme, and 6/20 articles under the bioinformatics theme, respectively)
(Fig. 2A).

Figure 2 Distribution of publications over 15 scientific problems discussed in the research articles considered in this survey (A), and the
distribution of research articles across the three areas of biomedical sciences, i.e., medical informatics, bioinformatics, and cheminformatics,
with a strong prevalence of articles falling into the first category (B). Full-size DOI: 10.7717/peerj-cs.2885/fig-2
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Examining the methodological choices employed across the surveyed literature reveals a
diverse landscape with a few dominant trends and some concerning ambiguities (Fig. 3).

In particular, Fig. 3A highlights the prevalence of random vector generation methods,
with ~50% of the studies utilizing either binary (23 articles) or bipolar (12 articles), and the
other ~50% failing to explicitly specify their approach (27 articles), making it difficult to
assess the potential impact of vector generation choices on the reported results.

Analogously, Fig. 3B shows the different data encoding techniques employed in all the
62 studies, revealing a perfect balance between record-based encoding (20 articles) and
n-gram representations (20 articles). Interestingly, a small subset (5 articles) employs a
combination of both. However, a concerning number of studies (17 articles) again lack
specificity in describing their encoding strategy.

Finally, Fig. 3C examines data modeling techniques, revealing a striking dominance of
the MAP-model (45 articles). This finding suggests a potential convergence towards this
approach within the HDC community, at least in the context of biomedical applications.
However, a substantial number of studies (17 articles) also fails in clearly specifying the
employed modeling technique.

23 (37.10%)

12 (19.35%)

27 (43.55%)

0

10

20

binary bipolar unspecified
random vectors

pu
bl

ic
at

io
ns

A
20 (32.26%) 20 (32.26%)

5 (8.06%)

17 (27.42%)

0

5

10

15

20

record−based n−gram record−based
and n−gram

unspecified

data encoding

pu
bl

ic
at

io
ns

B
45 (72.58%)

17 (27.42%)

0

10

20

30

40

MAP model unspecified
or unclear

data modeling

pu
bl

ic
at

io
ns

C

Figure 3 Distribution of research articles based on the type of random vectors (i.e., binary, bipolar, and unspecified–A), data encoding
technique (i.e., record-based, n-gram, record-based and n-gram, and unspecified–B), and data modeling method (MAP model and
unspecified or unclear–C) used for building the HDC architecture over the set of manuscripts considered in this study.

Full-size DOI: 10.7717/peerj-cs.2885/fig-3
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It is worth noting that one critical aspect that still remains largely unexplored in the
literature considered in this review is the role of randomness in hypervector generation
and its potential impact on both model accuracy and hardware efficiency. This lack of
investigation is likely due to the intrinsic nature of HDC, where information is encoded
into randomly generated hypervectors by design. Since randomness is a fundamental
principle of HDC, it is very likely that authors implicitly accept it without examining how
different randomness strategies might affect accuracy or computational efficiency.
However, vector generation and encoding are among the most computationally expensive
steps in an HDC system, and understanding potential trade-offs between randomness,
accuracy, and hardware performance could be particularly valuable specifically for
biomedical applications, where precision and resource constraints are critical. Future
research should explore whether alternative encoding methods—such as semi-random or
structured approaches—could improve performance while maintaining the robustness of
HDC models.

It is also worth to note that ~40% of the research articles considered in this study that
propose a HDC-based software solution also do not mention the hardware architecture for
which their software has been designed to work on (Fig. 4A). Furthermore, the limited
exploration of specialized hardware like ASICs and neuromorphic systems indicates a
potential gap in leveraging the full potential of HDC for computationally demanding
biomedical tasks.
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As a direct consequence, when the authors do not mention the specific hardware for
which their software has been designed and tested, they also usually omit the programming
language used to develop their software (Fig. 4B). For all the other cases, Python is the most
used programming language in this context, followed by MATLAB, and finally R, C/C++,
and Rust with no more than two references each.

A lack of transparency and reproducibility is evident in the alarming trend of
withholding the source code used to design and build the HDC models in these specific
scientific fields of biomedical sciences (Fig. 4C). This lack of openness represents a
fundamental breach of scientific principles, severely hindering the progress and credibility
of the field and raising concerns about the thoroughness and scientific rigor of these
studies, clearly standing in the opposite direction with respect to the core values of FAIR
principles (Wilkinson et al., 2016).

More importantly, the refusal to share source code is even more concerning considering
that, in most of the cases, authors have taken the time to assign specific names to their
software, highlighting a deliberate choice towards obfuscation rather than openness.
Without access to the code, the scientific community is left to accept results on blind faith.
Independent verification becomes impossible, hindering the identification of potential
errors, biases, or overstated claims. This practice stifles collaborative progress, as
researchers are unable to build upon existing work, forcing them to reinvent the wheel or
resort to potentially less efficient solutions.

Analyzing the publication venues of HDC research in biomedical sciences reveals a
significant skew towards conference proceedings over peer-reviewed journals (Table 1 for a
list of journals and number of published articles, and Table 2 for a list of conferences
alongside the number of articles published in their proceedings and their publisher). While
it is generally common in rapidly evolving fields, this trend raises concerns one more time
about the long-term impact and acceptance of HDC within the broader scientific
community.

As it is evident from this data, a striking majority of publications appear in conference
proceedings, with IEEE conferences dominating the landscape. While conferences offer a
valuable platform for a rapid dissemination of research findings, they often lack the
rigorous peer-review processes typical of academic journals.

The disparity in publication venues raises concerns about the rigor and transparency of
HDC research in biomedical sciences. The fact that the number of articles published in
conference proceedings (34) significantly outweigh those published in peer-reviewed
journals (21) suggests a potential lack of peer-review scrutiny (Fig. 5A).

In fact, conference proceedings publications allow for a faster spread of new ideas, but
they have several drawbacks compared to journal publications. Typically, the peer review
process for conference proceedings is more superficial, as conference organizers need to
accept a certain number of articles to cover the costs of organizing the conference.
Additionally, conference proceedings are usually short (4–8 pages), which limits the space
available for demonstrations, specific experiments, and in-depth scientific discussions
(Ernst, 2006).
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Table 1 Ranking of journals and preprint servers per number of published articles.

Journal Publisher Articles

arXiv preprint Cornell University 6

Scientific Reports Springer Nature 2

Journal of Signal Processing Systems Springer Nature 2

IEEE Transactions on Biomedical Engineering IEEE 2

Frontiers in Neurology Frontiers 2

Algorithms MDPI 1

Bioinformatics Oxford University Press 1

biorXiv preprint Cold Spring Harbor Laboratory 1

IEEE Access IEEE 1

IEEE Design & Test IEEE 1

IEEE Embedded Systems Letters IEEE 1

IEEE Internet of Things Journal IEEE 1

IEEE Journal of Biomedical and Health Informatics IEEE 1

IEEE Journal on Exploratory Solid-State Computational
Devices and Circuits

IEEE 1

IEEE Open Journal of Circuits and Systems IEEE 1

IEEE Transactions on Biomedical Circuits and Systems IEEE 1

IEEE Transactions on Neural Networks and Learning
Systems

IEEE 1

Journal of Biomedical Informatics Elsevier 1

Mobile Networks and Applications Springer Nature 1

Proceedings of the IEEE IEEE 1

Sensors MDPI 1

Table 2 Ranking of conferences per articles published in their proceedings.

Conference Publisher Articles

Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC)

IEEE 7

Design, Automation and Test in Europe Conference and Exhibition (DATE) IEEE 4

IEEE Biomedical Circuits and Systems Conference (BioCAS) IEEE 3

AMIA Annual Symposium Proceedings AMIA 2

Asilomar Conference on Signals, Systems, and Computers IEEE 2

IEEE International Conference on Bioinformatics and Bioengineering (BIBE) IEEE 2

IEEE International Conference on Bioinformatics and Biomedicine (BIBM) IEEE 2

Proceedings on the IEEE/ACM International Conference on Computer-Aided
Design

IEEE 2

ACM/IEEE Design Automation Conference (DAC) IEEE 1

IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM)

IEEE 1

IEEE Congress on Evolutionary Computation (CEC) IEEE 1

IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) IEEE 1

(Continued)
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Moreover, journal articles have a stronger impact on scientific literature than
conference proceedings (Lisée, Larivière & Archambault, 2008). As Cynthia Lisée and
coauthors explain: “The evidence thus shows that conference proceedings have a relatively
limited scientific impact, on average representing only about 2% of total citations, that their
relative importance is shrinking, and that they become obsolete faster than the scientific
literature in general” (Lisée, Larivière & Archambault, 2008).

Additionally, Fig. 5B highlights the overwhelming influence of IEEE (40 articles) as the
primary publisher in the field. This dominance, while indicative of the strong presence of
HDC research in IEEE conferences, also raises concerns about potential publication biases
and the need for greater diversity in dissemination channels.

Most concerning, however, is the stark disparity in open access publication revealed in
Fig. 5C. Amere 27 articles are classified as open access, compared to a staggering 35 articles
that are not freely available.

Table 2 (continued)

Conference Publisher Articles

IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP)

IEEE 1

IEEE International Symposium on Biomedical Imaging (ISBI) IEEE 1

Proceedings of the Annual International Symposium on Computer Architecture ACM 1

Proceedings of the EAI International Conference on Bio-inspired Information and
Communications Technologies (formerly BIONETICS)

ACM 1
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Figure 5 Bar graph with the distribution of the 62 research articles considered in this study over the publication venues. (A) Conference
proceedings, journals, and preprints; (B) publishers; (C) open access. Full-size DOI: 10.7717/peerj-cs.2885/fig-5
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In our literature review, we also collected data regarding the most present single authors
(Table 3) and the most present groups of authors (Table 4). As one can notice, Tajana
Rosing (currently at University of California San Diego), Abbas Rahimi (currently at IBM
Research Zurich), and Mohsen Imani (currently at University of California Irvine) resulted
being the researchers with the highest number of authored studies in our survey, with nine
and seven publications respectively (Table 3).

Table 3 Ranking of authors by number of publications, with a minimum of three articles, alongside
the most prevalent scientific problem discussed in their articles. When None, specific scientific pro-
blems are discussed in one article only.

Author Articles Most prevalent scientific problem

Tajana Rosing 10 Sequence Matching and Alignment (2/10)

Abbas Rahimi 9 Seizure Detection (6/9)

Mohsen Imani 8 Sequence Matching and Alignment (6/8)

Niema Moshiri 5 None

Kaspar Schindler 5 Seizure Detection (5/5)

Luca Benini 5 Seizure Detection (4/5)

Jan Rabaey 5 Biosignal Classification (3/5)

Una Pale 5 Seizure Detection (4/5)

Tomas Teijeiro 5 Seizure Detection (4/5)

David Atienza 5 Seizure Detection (4/5)

Keshab Parhi 5 Biosignal Classification (2/5), Seizure Detection (2/5)

Alessio Burrello 4 Seizure Detection (4/4)

Lulu Ge 4 Seizure Detection (2/4)

Weihong Xu 4 None

Tony Givargis 4 None

Alexandru Nicolau 4 None

Zhuowen Zou 3 Sequence Matching and Alignment (2/3)

Trevor Cohen 3 None

Pentti Kanerva 3 Biosignal Classification (2/3)

Yeseong Kim 3 Sequence Matching and Alignment (2/3)

Jaeyoung Kang 3 None

Flavio Ponzina 3 None

Table 4 Ranking of groups of authors by number of publications.

Group of authors Articles

David Atienza, Una Pale, Tomas Teijeiro 5

Luca Benini, Alessio Burrello, Abbas Rahimi, Kaspar Schindler 2

Lulu Ge, Keshab Parhi 2

Tony Givargis, Victor Jow, Alexandru Nicolau, Alexander Veidenbaum, Neftali Watkinson 2
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It is also worth noting, as we highlighted in Table 3, that the most present single authors
are more leaning towards the study of three scientific problems, that are biosignal
classification, seizure detection, and sequence matching and alignment.

Regarding author groups, the team consisting of David Atienza, Una Pale, and Tomas
Teijeiro has resulted being quite productive, by publishing five scientific articles on HDC
applied to biomedical data (Table 4). The following most present groups of authors are (i)
Luca Benini, Alessio Burrello, Abbas Rahimi, and Kaspar Schindler, (ii) Lulu Ge and
Keshab Parhi, (iii) and Tony Givargis, Victor Jow, Alexandru Nicolau, Alexander
Vaidenbaum, and Neftali Watkinson with two published scientific articles for each group.
Other groups of authors have less publications. Interestingly, Abbas Rahimi and Mohsen
Imani are the most productive authors in our survey, but they do not belong to the groups
of most prolific authors.

DISCUSSION
As we observed earlier, it is clear that most applications of HDC pertain to medical
informatics, with 63% of the articles related to this scientific subject (Fig. 2B). Among the
62 studies analyzed, the most frequent medical application was seizure detection, with 14
studies focusing on HDC for this purpose. Biosignal classification of EEG data and DNA
sequence matching alignment are also common biomedical applications of HDC, with
seven and six articles, respectively (Fig. 2A).

Regarding hardware, a large fraction of the articles (37%) did not report information,
while around 31% claimed the use of HDC with CPUs (Fig. 4A).

Information about the programming languages employed in a scientific study is pivotal
for its reproducibility, but most of the articles considered in our survey (37 out of 62) did
not report this component (Fig. 4B). Among the articles that did include this information,
Python was the most commonly used programming language. This result is not surprising,
as Python is the most popular coding language worldwide according to PYPL (PYPL Index,
2025). Unfortunately, 81% of the studied articles did not provide their software code in
public repositories, such as GitHub packages, making it impossible to reproduce their
experiments. This lack of reproducibility is a major drawback of the articles considered in
this survey.

Moreover, open science best practices (Chicco, Oneto & Tavazzi, 2022) were not
followed by most authors of the 62 articles studied here; only 27 of these articles were
published in open access journals, conference proceedings, or preprint servers (Fig. 5C).
This is unfortunate, as most of the articles presented here cannot be read for free by
individuals outside academic institutions.

No particular journal stood out as the main publishing venue for HDC in biomedicine;
in fact, the arXiv preprint server was the most common publication site for long articles,
with six preprints released there (Table 1). While preprint servers can be useful for
disseminating new ideas, we know that their articles are not peer-reviewed, so we
recommend that readers approach them with caution (Lin et al., 2020; Flanagin,
Fontanarosa & Bauchner, 2020; Zeraatkar et al., 2022). Among conference proceedings,
three conferences were the most attended by researchers applying HDC to biomedical
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sciences: EMBC, DATE, and BioCAS (Table 2). Regarding publishers, IEEE produced the
majority of the articles presented in this survey, publishing 63% of them (Fig. 5B).

To summarize, the review of these 62 articles clearly indicates that HDC can provide
advantages for analyzing biomedical data, especially on datasets of huge dimensions.
However, we have to report a general lack of information among these articles, that is
clearly a drawback of the current state of HDC: as we mentioned earlier, most of the
articles are not open access, do not contain links to software code repositories, and do not
even state which programming languages were employed for the computational analyses.
This lack of transparency makes it almost impossible to reproduce the results obtained by
most of these studies.

Considering the current situation where HDC packages are developed by researchers
independently, we advocate for a standardized software platform for this computational
field, similar to scikit-learn for machine learning in Python (Kramer, 2016), Bioconductor
for bioinformatics in R (Gentleman et al., 2004), Lux.jl for scientific machine learning in
Julia (Lux.jl, 2025), or Linfa for machine learning in Rust (rustdoc, 2025).

THE FUTURE OF HYPERDIMENSIONAL COMPUTING IN
BIOMEDICAL SCIENCES
Biomedical data, ranging from genomic sequences to imaging and electronic health
records, is inherently complex and heterogeneous. Traditional methods often struggle to
integrate and interpret such varied information effectively (Ziegler & Dittrich, 2007).
HDC’s data-agnostic encoding, which can seamlessly transform diverse data types into a
unified high-dimensional space, offers a compelling solution (Wilkinson et al., 2016). We
strongly believe that as biomedical research increasingly focuses on multi-modal data
integration, HDC will play a crucial role in developing more holistic models that can
capture the intricate interplay between different biological systems (Mehonic & Kenyon,
2022).

Additionally, once of the major challenges in biomedical applications is the prevalence
of noise and artifacts in data. The holographic and distributed nature of information
encoding in HDC provides an inherent robustness that can help mitigate the effects of such
noise. Moreover, the simplicity of the arithmetic operations in HDC that we presented in
the introductory section above, could lead to models that are more interpretable compared
for example to deep neural networks that rely on complex, multi-layered transformations
that are often difficult to dissect. On the other hand, HDC models operate on
high-dimensional representations through well-defined arithmetic operations such as
bundling, binding, and permutation, that maintain semantic relationships between
encoded features, making it possible to trace how different inputs contribute to the final
decision.

We see the rising adoption of this computing paradigm in biomedical sciences as an
opportunity for creating transparent, reliable computational tools that clinicians and
researchers can trust, especially in critical applications like diagnostics and personalized
medicine.
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The scalability of HDC is another aspect that excites us. Biomedical research is
generating data at an unprecedented rate, and the ability to process large-scale datasets
efficiently is paramount. HDC’s inherent parallelism and simple operations make it a
natural fit for real-time applications, like the continuous monitoring of patient health via
wearable devices and ad-hoc hardware. We strongly believe that, in the near future,
advances in hardware implementations of HDC will lead to energy-efficient systems
capable of real-time decision-making in clinical environments (Zou et al., 2021).

However, despite these promising advantages, several challenges must be addressed
before HDC can be fully realized as a mainstream tool in biomedical sciences. One key
limitation is the need for standardized methodologies for encoding and decoding
biological data. Unlike more mature computational paradigms such as deep learning,
which have well-established architectures and best practices, HDC lacks universally
accepted guidelines for optimal data representation and processing pipelines. This can lead
to inconsistencies in model performance across different biomedical applications (Vergés
et al., 2025).

Furthermore, while HDC excels in handling high-dimensional representations
efficiently, it may struggle with tasks that require complex hierarchical reasoning or
explicit feature extraction. Many biomedical applications, such as protein structure
prediction or modeling gene regulatory networks, rely on intricate spatial and temporal
relationships that may not be easily captured using current HDC approaches. For instance,
the survey by Kleyko et al. (2023) suggests that the current focus has been on simpler
classification tasks, indicating a gap in addressing more intricate biomedical challenges.
Expanding the expressiveness of HDC models to better accommodate these complexities
remains an open challenge.

Another potential drawback is the relative immaturity of HDC in terms of software and
hardware ecosystem support. Unlike deep learning, which benefits from extensive libraries
and frameworks optimized for large-scale computations (e.g., TensorFlow, PyTorch),
HDC is still in its early stages of widespread adoption. The lack of dedicated
general-purpose frameworks for vector-symbolic computing makes it difficult for
researchers and developers to experiment with and deploy HDC-based solutions
efficiently. However, recent efforts have emerged to bridge this gap by developing robust
frameworks that simplify the implementation of HDC models, making them more
accessible to a broader range of scientists and engineers (Kang et al., 2022; Simon et al.,
2022; Schlegel, Neubert & Protzel, 2021; Heddes et al., 2023; Cumbo, Weitschek &
Blankenberg, 2023).

In conclusion, we are convinced that HDC holds significant promise for revolutionizing
biomedical sciences. Its ability to manage complexity, maintain robustness, and scale
efficiently aligns well with the current and future demands of biomedical data analysis.
However, addressing challenges related to standardization, expressiveness, and ecosystem
support will be crucial for its widespread adoption. As the field progresses, we anticipate
that continued innovations in both theory and practical implementations of HDC will
pave the way for transformative advances in research and clinical practice, leading to a new
era of intelligent, efficient, and transparent biomedical computation.
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CONCLUSIONS
Our review of HDC applications in biomedical sciences reveals a concerning trend that
warrants immediate attention from the research community. While the field demonstrates
significant promise, its progress is hampered by a lack of adherence to fundamental
principles of scientific transparency and reproducibility.

Firstly, a significant portion of the research is published in conference proceedings
rather than peer-reviewed journals. While conferences provide a valuable platform for
disseminating early findings, this over-reliance on conference publications raises concerns
about the rigor and validation of the research. Conference proceedings often lack the
stringent peer-review processes characteristic of academic journals, potentially allowing
methodological shortcomings or unsubstantiated claims to go unchallenged. This
tendency towards conference publications may hinder the field’s long-term growth and
acceptance within the broader scientific community.

Secondly, and most alarmingly, our analysis reveals a pervasive lack of code sharing
among HDC researchers in this domain. Despite the growing movement towards open
science and the widely recognized FAIR principles (Wilkinson et al., 2016) for research
outputs, the vast majority of studies fail to provide public access to the code used in their
analyses. This lack of transparency is deeply troubling. Without access to the underlying
code, it becomes impossible to independently verify results, replicate experiments, or build
upon existing work. This practice represents a fundamental breach of scientific integrity,
undermining the credibility of individual studies and hindering the collective advancement
of the field.

To foster a robust and trustworthy research landscape for HDC in biomedical sciences,
the adoption of open science practices is paramount. The community must prioritize
publication in peer-reviewed journals and embrace a culture of code sharing. Funding
agencies and journals should incentivize these practices, while researchers must recognize
their ethical obligation to ensure transparency and reproducibility in their work. Failure to
address these critical issues will continue to plague the field, limiting its impact and
hindering the realization of HDC’s full potential in revolutionizing biomedical research.
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