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ABSTRACT

Medical image segmentation, a pivotal component in diagnostic workflows and
therapeutic decision-making, plays a critical role in clinical applications ranging from
pathological diagnosis to surgical navigation and treatment evaluation. To address
the persistent challenges of computational complexity and efficiency limitations in
existing methods, we propose RMIS-Net—an innovative lightweight segmentation
network with three core components: a convolutional layer for preliminary feature
extraction, a shift-based fully connected layer for parameter-efficient spatial
modeling, and a tokenized multilayer perceptron for global context capture. This
architecture achieves significant parameter reduction while enhancing local feature
representation through optimized shift operations. The network incorporates layer
normalization and dropout regularization to ensure training stability, complemented
by Gaussian error linear unit (GELU) activation functions for improved non-linear
modeling. To further refine segmentation precision, we integrate residual
connections for gradient flow optimization, a Dice loss function for class imbalance
mitigation, and bilinear interpolation for accurate mask reconstruction.
Comprehensive evaluations on two benchmark datasets (2018 Data Science Bowl for
cellular structure segmentation and ISIC-2018 for lesion boundary delineation)
demonstrate RMIS-Net’s superior performance, achieving state-of-the-art metrics
including an average F1-score of 0.91 and mean intersection-over-union of 0.82.
Remarkably, the proposed architecture requires only 0.03 s per image inference while
achieving 27x parameter compression, 10x acceleration in inference speed, and 53x
reduction in computational complexity compared to conventional approaches,
establishing new benchmarks for efficient yet accurate medical image analysis.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision
Keywords Medical image segmentation, Multilayer perceptron, Residual connections, Dice loss
function, GELU activation function

INTRODUCTION

Image segmentation is a major technology in image processing that involves identifying
pixels in an image in order to segment various objectives. The primary function of medical
image segmentation is to identify and segment various tissues and organs in medical
images, which is critical for disease diagnosis and treatment planning. It is widely used in
medical image analysis (Ma et al., 2021), pathological diagnosis, surgical planning,
treatment monitoring, and other fields. Through medical image segmentation technology,
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it can help doctors understand the scope and distribution of diseases more accurately,
thereby helping doctors to make correct diagnosis and treatment plans, improve treatment
effects and patients’ quality of life.

Compared with ordinary pictures, medical images have more complex imaging
methods, due to their noise, low contrast, irregular shape, size and other problems,
resulting in the difficulty of segmentation of medical images, and the accuracy and
efficiency of segmentation results are also affected. Therefore, how to improve the
accuracy, reliability and efficiency of medical image segmentation tasks is still a task with
certain challenges and practical application value.

Early medical image segmentation approaches depended heavily on hand-designed
features and typical machine learning algorithms, such as threshold segmentation (Jardim,
Antonio & Mora, 2023), regional growth (Prabin ¢ Veerappan, 2014), and boundary
segmentation (Mahmood et al., 2015). These traditional segmentation methods have
certain limitations, requiring a lot of manual labor and expertise, difficulty in adapting to
multiple data and scenarios, and not robust enough to problems such as noise and
irregular shapes, and cannot achieve the desired segmentation effect for complex medical
images.

In recent years, with the successful application of deep learning in many fields, relevant
researchers have also proposed many excellent medical image segmentation methods
based on deep learning. They can automatically learn features from data, and have strong
characterization ability and adaptability, showing better segmentation accuracy and
efficiency than traditional medical image segmentation methods. Among them, there is
U-Net proposed by Ronneberger, Fischer ¢ Brox (2015), which uses encoder-decoder
structure to extract features at different scales, and can effectively fuse high-resolution
shallow features and low-resolution deep features, becoming the baseline in the field of
medical image segmentation. Since U-Net was proposed, many key extensions have been
proposed on this basis, such as UNet++ (Zhou et al., 2018), UNet3+ (Ping ¢ Sheng, 2023),
ResUNet (Zhang, Liu ¢ Wang, 2018), 3D UNet (Pani & Chawla, 2024), V-Net (Milletari,
Navab ¢ Ahmadi, 2016), Y-Net (Mehta et al., 2018), and KiUNet (Valanarasu et al., 2020,
Valanarasu et al., 2021). In 2021, Chen et al. (2021) present a unique TransUNet that
combines the advantages of Transformers and U-Net as a powerful alternative to medical
imagine segmentation. On the one hand, the Transformer uses tokenized imagine blocks
from convolutional neural network (CNN) feature maps as input sequences to extract
global context. In contrast, the decoder upsamples the encoded features before combining
them with a high-resolution CNN feature map to obtain exact location. Many
transformer-based network extensions have now been widely used for medical imagine
segmentation, including MedT (Dosovitskiy et al., 2020), Swin Transformer (Cao et al,
2022), TransBTS (Wang et al., 2021), and UNet Transformer (UNETR) (Hatamizadeh
et al., 2022).

As can be seen from most of the literature above, almost all of the above work is focused
on improving network performance, but less concerned with computational complexity,
inference time, or number of parameters, which are also critical for many practical
applications. Recently, networks based on multilayer perceptrons (MLP) (Li et al., 2025;
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Touvron et al., 2022; Lian et al., 2021; Tolstikhin et al., 2021) have been found to be
competent for computer vision tasks. Particularly, MLP Mixer is a type of MLP-based
network with less computational complexity and higher performance. Based on these
previous works, this article proposes a fast medical image segmentation network based on
MLP, named RMIS-Net, aiming to improve the accuracy and efficiency of medical image
segmentation.

The main contributions of this article are as follows: (1) A fast medical image
segmentation network based on multilayer perceptron is proposed, which significantly
improves inference speed while maintaining accuracy and substantially reduces
computational complexity. (2) A shift-based fully connected layer is proposed, and a
tokenized multilayer perceptron is used in the latent space to extract local information
corresponding to different axial shifts; (3) Successfully improve the performance of
medical image segmentation problems with higher inference speed, fewer parameters and
lower computational complexity.

The organization of this article is as follows. “Related works” presents related work of
medical image segmentation network based on different networks. In “RMIS-Net
segmentation networks”, we introduces our model named as RMIS-Net, a fast medical
image segmentation network designed using multi-layer perceptron, experimental results
on the publicly available 2018 Data Science Bowl and ISIC-2018 Lesion Boundary
Segmentation datasets are presented in “Experiments”, and “Conclusion and Future
Works” summarizes the work of this article and looks forward to the future work.

RELATED WORKS

Medical image segmentation network based on machine learning
approaches

Traditional machine learning approaches for medical image segmentation typically involve
feature extraction followed by classification or clustering. These methods rely on
handcrafted features, such as texture, intensity, shape, and edge information, which are
then fed into machine learning models like support vector machines (SVMs) (Rahman,
Antani & Thoma, 2011), random forests, k-nearest neighbors (k-NN) (Ramteke ¢» Monali,
2012), and Gaussian mixture models (GMMs) (Greenspan ¢» Pinhas, 2007). These
approaches are often computationally efficient and provide interpretable results, making
them suitable for specific medical imaging tasks. SVMs have been applied to segment brain
tumors, liver lesions, and lung nodules by leveraging intensity and texture features
extracted from medical images. Random forests are ensemble learning methods that
combine multiple decision trees to improve segmentation accuracy. They are particularly
effective in handling noisy data and have been used for segmenting organs like the
prostate, heart, and kidneys. k-NN is a simple yet effective algorithm for segmentation
tasks, especially when the data distribution is non-parametric. It has been used for
segmenting structures like the hippocampus and breast lesions by comparing the similarity
of image patches based on feature vectors. GMM:s are probabilistic models that assume
data points are generated from a mixture of Gaussian distributions. They have been
applied to segment brain tissues, such as gray matter, white matter, and cerebrospinal fluid,
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Figure 1 Detailed overall structure of U-Net network. Full-size K&] DOT: 10.7717/peerj-cs.2882/fig-1

by modeling the intensity distributions of these tissues in MRI scans. Traditional machine
learning approaches are often compared to deep learning methods, which have gained
popularity due to their ability to automatically learn features from data. While deep
learning models have achieved state-of-the-art performance in many segmentation tasks,
traditional machine learning methods remain relevant in scenarios where interpretability,
computational efficiency, and small datasets are critical.

Medical image segmentation network based on U-Net

U-Net was originally proposed by Ronneberger, Fischer ¢~ Brox (2015) and has been widely
used in the field of medical image segmentation, such as lung, heart, breast, liver and other
medical image segmentation tasks. It is based on the fully convolutional network (FCN)
(Long, Shelhamer & Darrell, 2015) and uses an encoder-decoder structure. The left encoder
part is composed of multiple convolutional layers and pooling layers to extract the features
of the input image; The right decoder part consists of multiple deconvolution layers and
upsampling layers, which are used to restore the features extracted by the encoder to the
original image size and generate segmentation results of the target region; The left and
right structures are combined to form a U-shaped structure, which can effectively retain
the information in the image. Another feature of the U-Net network is the use of skip
connection, which crop the output of the downsampling layer and concatenate it with the
corresponding upsampling layer in the channel dimension, so that the high-level semantic
features are combined with the low-level spatial information to supplement the detailed
information, thereby improving the segmentation accuracy. The U-Net network
architecture is shown in Fig. 1. The input data are typically grayscale or color images. The
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encoder extracts features from the input image through operations like convolution and
pooling, while also reducing the size of the feature map. The decoder restores the size of the
feature map through upsampling and convolution, and generates the final segmentation
result.

Since the proposal of U-Net network, convolutional neural network based on U-Net has
made remarkable achievements in the field of medical image segmentation. Subsequent
researchers have made many improvements based on this, mainly including UNet++
(Zhou et al., 2018) that modifies the skipping connection, ResUNet (Zhang, Liu ¢ Wang,
2018) that introduces residual connection to U-Net, V-Net that introduces 3D
convolutional layers and void convolutional layers to adapt to 3D medical image data
(Milletari, Navab ¢» Ahmadi, 2016), and Y-Net that uses Y-shaped structure to branch
encoder and decoder separately and fuse them at the final level (Mehta et al., 2018). The
segmentation network based on U-Net can perform feature extraction at different scales
and has strong feature learning ability, but the extraction of information such as target
position and attitude is insufficient, and the local-global relationship cannot be well
modeled, and it still has limitations in processing medical image data with strong position
correlation.

Medical image segmentation network based on attention mechanism
The medical image segmentation network based on the attention mechanism is a kind of
deep convolutional neural network that uses the attention mechanism to improve the
accuracy of medical image segmentation. The main idea of this kind of network is to add
an attention mechanism to the network so that the network can focus more accurately on
the area of interest, thereby improving the quality of segmentation results. In medical
image segmentation, attention mechanisms are often used to guide networks to better
extract features in regions of interest and exclude interference from irrelevant regions. The
implementation of the medical image segmentation network based on the attention
mechanism includes: (1) adding an attention module to the encoder-decoder network. The
attention module is usually designed to consist of two parts: attention mechanism and
modulation factor. This method calculates different weights depending on the input data,
and the modulation factor can further adjust these weights to better suit specific task needs.
(2) Adopt the Attention Context Embedding approach. This method can add context
information to the network to help the network better understand the background and
semantic information of the input data, thereby further improving the segmentation
accuracy.

In recent years, relevant researchers have also proposed a series of good medical image
segmentation networks based on the attention mechanism. Oktay et al. (2018) proposed
Attention U-Net in 2018, and the attention module consists of two parts: channel attention
and spatial attention. Channel attention calculates the weight coefficient for each channel
in the feature map to weight different feature map channels. Channel attention adopts the
method of global average pooling, compressing the feature map into a vector containing
the weights of each channel, and then mapping the vectors to a set of channel weights
through a fully connected layer. Spatial attention calculates the weight coefficient for each
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Figure 2 Detailed internal structure of LeViT block.

Full-size K&] DOT: 10.7717/peerj-cs.2882/fig-2

pixel in the feature map to weight each pixel. Spatial attention consists of two
submodules: the spatial transformation network and the channel pooling layer. The spatial
transformation network adopts an encoder-decoder structure similar to that in U-Net to
downsample and upsample the feature map, and calculate the weight coefficient of each
pixel. The channel pooling layer reduces the channel dimension by pooling the feature
map globally. The output of the attention module is a feature map of intelligent summation
of elements, where the value of each pixel is the weighted sum of its attention weight
coefficients on channels and spaces. In 2021, Xu et al. (2023) proposed LeViT-UNet, which
combines the attention mechanism in ViT and the encoder-decoder structure in U-Net to
achieve efficient and accurate medical image segmentation. In each Trans-Block shown in
Fig. 2, the self-attention module is first used for feature extraction, then the multilayer
perceptron is used for feature mapping, and finally the cross-layer connection technology
is used to fuse the feature map of the layer with the feature maps of all previous layers. The
decoder adopts the structure of U-Net, in which each decoder layer is connected to the
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corresponding layer in the encoder. In addition, attention mechanisms and skip
connection techniques are used to help the network better capture local and global
information in images.

Medical image segmentation network based on transformer
Transformer-based medical image segmentation network is an emerging medical image
segmentation method, which is developed on the basis of the widely used Transformer
model in the field of natural language processing. This method utilizes the self-attention
mechanism of the Transformer to process spatial information in medical images, and
learns feature representations through the multi-head self-attention mechanism and
feed-forward network. The main idea of the method is to convert medical images into a
sequence and then input them into a Transformer model for processing. Specifically, the
Transformer-based medical image segmentation network includes an encoder and a
decoder. The encoder consists of multiple transformer blocks, each of which includes a
feed-forward network and a multi-head self-attention mechanism. The decoder also
consists of multiple transformer blocks, each of which includes a feed-forward network, a
multi-head self-attention mechanism and an attention mechanism. In each transformer
block, the information of the encoder and decoder is fused by the multi-head self-attention
mechanism and the attention mechanism to generate segmentation results. The
Transformer model has good spatial modeling capabilities, which can better process the
spatial information in medical images, and has fewer parameters and higher efficiency,
which can learn better feature representations in less time, thereby improving the
efficiency and accuracy of medical image segmentation.

At present, relevant researchers have also proposed some good medical image
segmentation networks based on Transformer. Cao et al. (2022) proposed Swin-Unet in
2021 as shown in Fig. 3, which uses a combination of Transformer module and Unet
structure to perform medical image segmentation tasks. The encoder part of Swin-Unet
adopts the basic structure of Swin Transformer, including Swin Block and Swin Layer,
which are used to extract the features of the input image. In the decoder section, Swin-Unet
uses a Unet-like structure for upsampling and feature fusion to produce the final
segmentation result. A large number of experiments on multi-organ and cardiac
segmentation datasets show that the proposed method has robust generalization ability
and better segmentation accuracy. Chen et al. (2021) proposed TransUNet in 2021, a
network that adaptively learns feature representations of images using a self-attention
mechanism. Its network structure is mainly divided into two parts: Encoder and Decoder.
The Encoder part uses the Transformer module instead of the traditional convolutional
neural network to divide the input image into multiple subregions, and then perform
self-attention calculations on each subregion to generate region-level feature
representations. The Decoder part uses a conventional convolutional neural network
structure to decode the features of the encoder output to generate the final segmentation
result. Detail experiments on multiple medical image segmentation datasets show that the
TransUNet network could obtain better segmentation effects than traditional
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convolutional neural network-based methods, while also having better interpretability and
fewer parameters.

Traditional machine learning methods typically rely on handcrafted features, which are
well-suited for small datasets, and offer high computational efficiency. However, they
depend heavily on the developer’s expertise for feature design, have limited generalization
capabilities, and often underperform on complex medical images compared to deep
learning methods. U-Net can automatically learn features, and its encoder-decoder
architecture combined with skip connections enables effective multi-scale information
capture and feature fusion. Nevertheless, U-Net requires a large amount of data and may
overfit when data is insufficient. Additionally, its ability to model long-range dependencies
is limited, as it primarily relies on local convolutional operations, making it difficult to
capture global contextual information in images. Attention mechanisms can capture
long-range dependencies in images, improving segmentation accuracy, and can be flexibly
integrated into existing networks (e.g., U-Net) to enhance the model’s focus on important
features. However, attention mechanisms increase computational overhead, especially for
high-resolution images, and are challenging to train while offering poor interpretability.
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Transformers, capable of naturally handling multi-modal data (e.g., CT, MRI, PET), are
well-suited for complex medical image analysis tasks. However, they require significant
computational resources and memory, resulting in high training and inference costs, as
well as a large demand for data and limited interpretability. The proposed fast medical
image segmentation network based on multi-layer perceptrons (MLPs) in this article aims
to address the issues of high complexity and low efficiency in medical image segmentation.
The model consists of convolutional layers and shift-based fully connected layers, and it
employs tokenized MLPs in the latent space to reduce the number of parameters and
computational complexity, our approach maximizes network performance while ensuring
model accuracy.

RMIS-NET SEGMENTATION NETWORKS

Overall architecture

This article designs the RMIS-Net network as a two-stage encoder-decoder architecture
that includes two stages: the convolution stage and the tokenized multilayer perceptron
stage. Figure 4 shows RMIS-Net, a network architecture for medical image segmentation
proposed in this article. In the encoder part, the first three layers of the network are
convolutional blocks, and the last two layers are tokenized multilayer perceptron blocks,
which reduce the resolution of the feature map by a factor of two. In the decoder part, the
first two layers of the network are tokenized multilayer perceptron blocks, and the last
three layers are convolutional blocks, which increase the resolution of the feature map by a
factor of two. A skip connection is used between the encoder and decoder, and the number
of channels is a hyperparameter expressed as C1 to C5. In the experiments in this article,
the number of channels per block in the RMIS-Net network architecture used is set to
Cl =32, C2 = 64, C3 =128, C4 = 160, C5 = 256 by default. This setting can be adjusted
based on actual needs and experimental results to achieve the best performance and
results.

RMIS-Net takes convolutional blocks with a smaller number of filters as the initial and
final blocks of the network, and uses a novel tokenized multilayer perceptron in the
bottleneck that is able to model good representations while maintaining less computation.
This article also introduces shift operations in multilayer perceptrons to extract local
information corresponding to different axial shifts. Due to the smaller size of tokenized
features and the smaller complexity of multilayer perceptrons than convolutional or
self-attention and transformers. As a result, we were able to significantly reduce the
number of parameters and computational complexity while maintaining good
performance. RMIS-Net also adopts techniques such as layer normalization and discarded
regularization to avoid overfitting to achieve more stability during training while having
better generalization performance during the testing stage. In order to accelerate the
convergence of the model and improve the segmentation accuracy of the model, this article
introduces residual connection to solve the gradient vanishing problem in deep networks,
and the Dice loss function to better deal with the category imbalance problem.
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Convolution stage

In the convolution stage, a series of effective techniques are used to achieve high-quality
image super-resolution reconstruction, and excellent performance and results are achieved
in experiments. The proposed method uses a convolutional block structure that contains
three main components: the convolutional layer, the batch normalization layer, and the
ReLU activation function. The kernel size of the convolutional layer is set to 3 x 3, the step
size is 1, and the fill is 1, which can effectively preserve the details and spatial information
of the image while reducing the impact on the size of the feature map. Batch normalization
is a common regularization method that can improve the training stability and
convergence speed of the model. The ReLU function enables the output of neurons to be
spars, thereby reducing the number of parameters and the complexity of calculations. In
the encoder part, a maximum pooling layer with a size of 2 x 2 is added for downsampling,
which can effectively reduce the size of the feature map and speed up the calculation speed
of the model, so as to improve the generalization performance of the model. In the decoder
section, bilinear interpolation is used for upsampling of feature maps. Bilinear
interpolation (calculated as in Eq. (1)) is a common interpolation method that can restore
the details and spatial information of the image by weighting the values of neighboring
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pixels by calculating the weight of each pixel on the input feature map, while also reducing
noise and discontinuities in the image. Compared with the traditional transposed
convolutional layer, this method can upsample low-resolution feature maps to high
resolution without introducing additional learnable parameters, thereby avoiding the
overfitting problem, while not only maintaining the smoothness and continuity of the
image, but also avoiding jagged artifacts. In addition to this, this article optimizes the
training and performance of the model by using residual connections. Residual connection
is a special connection method that models the difference between input and output and
adds it to the learning objective of the model, thereby reducing gradient vanishing and
gradient explosion problems, while also speeding up the training speed and convergence
speed of the model.

g, v) = (1 —u)(1 —v) X flx,y) +u(l =v) x f(x +1,)

+v(l—u) X f(x,y+1)+uv xf(x+1,y+1). (1)

Among them, f(x, ) is the pixel value before upsampling of the original image, g(u, v) is
the pixel value after upsampling, (u, v) is the pixel position after upsampling, (x, y) is the
original pixel position, u and v are the interpolation weights in the range of [0, 1], and
(x,9), (x+1,9), (x,y+ 1) and (x + 1,y + 1) are the pixel values of the nearest

four pixels.

Tokenized multilayer perceptron stage
The tokenized multilayer perceptron (tokenized MLP) stage of this article combines
multiple processing steps to extract and encode feature information from the image.

Shifted multilayer perceptron

In machine learning and deep learning, a multilayer perceptron is a common neural
network structure used to extract complex nonlinear relationships from input features. An
important component of the multilayer perceptron is the fully connected layer, where each
neuron is connected to all neurons in the previous layer. This fully connected structure
faces some problems when processing high-dimensional input data, such as requiring a
large number of parameters and calculations, and is also prone to overfitting. To address
these issues, this article uses shift operations to improve the performance of multilayer
perceptrons. Specifically, this article shifts features on the axis of the shift channel before
marking. This practice not only helps the multilayer perceptron to pay more attention to
the local area when processing features, but also helps the network better handle
high-dimensional data, thereby improving the performance of the model.

In this article, multiple multilayer perceptrons are used in the tokenized multilayer
perceptron block to process features. The specific method is to introduce multi-scale
feature information by shifting width up and height shift on different multilayer
perceptrons, so that the network can pay attention to features of different scales at the same
time. This method can help us create random windows and introduce location, so that the
network can make full use of the features of different locations. The approach in this article
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is similar to that in axial attention (Wang et al., 2020), but we use a different
implementation, as shown in Fig. 5. First, each marked feature is split into n different zones
and moved to the mth position according to the pre-specified axis line. For each partition,
we use a different shift offset in each multilayer perceptron to capture features at different
locations. This multi-scale processing method enables the network in this article to pay
attention to the features of different scales at the same time, so as to better capture the
spatial information of the image. Then, by shifting the features before marking, the
multilayer perceptron can pay more attention to the local area when processing the
features, so that the network can better capture the local feature information and improve
the location of the network, thereby improving the model performance.

Depthwise convolutional layer
Features processed by multilayer perceptrons are passed to the depthwise convolutional
layer (DWConv) (Xie et al., 2021) for convolution operations. DWConv is a depthwise
separable convolution that encodes the location information of multilayer perceptron
features, helping the network better understand the spatial structure in the image, which is
shown in Fig. 6. It uses a convolution kernel size of 3 x 3 to provide a local receptive field,
so that each convolution kernel can capture local feature information in the image. At the
same time, to convert the feature information into markers and prepare them for
subsequent processing, the number of channels is set to the embedding dimension E. In
convolutional layers, the 3 x 3 convolutional kernel only needs to multiply the input’s 3 x 3
neighborhood pixel values, so the required computation is relatively small. The embedding
dimension can be controlled by adjusting the number of channels, which can reduce
computational and memory consumption while ensuring model performance.
Compared with the traditional convolution operation, DWConv separates the two
processes of spatial convolution and channel convolution, which first performs spatial
convolution and then channel convolution. The spatial convolution operation in DWConv
uses a fixed convolution kernel, while the channel convolution operation uses matrix
multiplication to obtain better spatial structure features by convoluting the input channel
by channel. While maintaining a relatively small number of model parameters, DWConv
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Figure 6 Detailed process of depthwise separable convolution. Full-size K&] DOT: 10.7717/peerj-cs.2882/fig-6

can not only improve the computational efficiency of the model, but also improve the
expressiveness of the model.

Smooth activation function

Gaussian error linear unit (GELU) (Hendrycks ¢ Gimpel, 2016) has been widely used in
advanced image processing architectures, so GELU was chosen as the activation function
in this article. It is a smoother activation function that helps maintain the smoothness and
continuity of the network. Compared with the ReLU activation function, GELU has a
certain output value in the negative region, which can help the network better adapt to the
negative input and maintain a smoother activation output, so it is more stable in the
gradient calculation in backpropagation. In addition, the function not only helps to better
optimize network parameters, but also improves the performance of the model. The
definition of GELU is shown in Eq. (2):

GELU(x) = x X $(x) = x X <1 n erf<\/%>> % 0.5 2)

where erf (%) is the Gaussian error function and ¢(x) is the cumulative distribution
function.

Layer normalization

In the tokenized multilayer perceptron module, this article further transforms the features
through a shift operation and adds the original marks to the converted features through
residual connections. Next, layer normalization (LN) normalizes the output features.
Compared with batch normalization (BN), it has the advantage that it is not affected by
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batch size and is suitable for various scenarios. Layer normalization is normalization on
each feature of each sample, that is, normalization in the labeled dimension. It is calculated
similarly to batch normalization, but when calculating the mean and variance, it is
calculated separately for each feature of each sample, rather than for a feature of all samples
for the entire batch. It enables better handling of differences between different samples,
thereby improving the robustness of the model. Layer normalization can also speed up the
training process by mitigating the vanishing gradient problem in deep neural networks.
Compared to batch normalization, it can be more easily applied to larger models and
datasets because it does not need to account for batch size resulting in a smaller
computation amount. In the tokenized multilayer perceptron stage, there may be
differences between different labels, and normalization along the marker dimension can
better handle this difference. Therefore, in this stage, layer normalization is chosen as the
normalization method for this article and is used to pass the output features to the next
block. The calculation formula in the tokenized multilayer perceptron stage is as follows:

Xonie = Shiftw (X); Tw = Tokenize(Xonis) (3)
Y = f(DWConv(MLP(Ty))) (4)
Yoie = Shifty(Y); Ty = Tokenize(Yuz) (5)
Y = f(LN(T + MLP(GELU(Tw)))) (6)

where T represents markup, H represents height, W represents width, DWConv represents
depthwise convolution, and LN represents layer normalization. It should be noted that the
above calculations are performed on the hidden layer dimension H, which is strictly
smaller than the dimension £ x & of the feature map, and N is a multiple of 2. In this
design, the calculation and parameters of the Tokenized MLP block are mainly focused on
the embedding dimension, rather than the dimension of the entire feature map, which
reduces the computational complexity and the amount of parameters, improves the
computational efficiency, and balances the model performance and efficiency.

EXPERIMENTS

Datasets and data preprocessing

Datasets

In this article, the performance of the proposed RMIS-Net segmentation network on
different datasets and different disease types is comprehensively evaluated on two publicly
available medical image datasets, the 2018 Data Science Bowl dataset (https://www.kaggle.
com/c/data-science-bowl-2018/) and the ISIC-2018 Lesion Boundary Segmentation
dataset (https://challenge.isic-archive.com/landing/2018/45/).

The 2018 Data Science Bowl dataset is provided by the National Cancer Institute (NCI)
and the National Center for Computer and Applied Mathematics (NCCM). It contains
2,883 CT scan images of lung nodules with variable resolution. Figure 7 shows a CT scan
image of a lung nodule and an example of a segmentation mask, which were annotated by a
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(b)

Figure 7 The feature generation of target segmentation in the CT scan image. (A) The CT scan
images of pulmonary nodules; (B) shows the segmentation masks of pulmonary nodules.
Full-size K&l DOT: 10.7717/peerj-cs.2882/fig-7

professional physician and used to evaluate the performance of RMIS-Net on the task of
segmentation of lung nodules. Its purpose is to encourage data scientists and medical
professionals to collaborate to develop more accurate and efficient lung nodule
segmentation algorithms, thereby improving the rate of early diagnosis of lung cancer. The
emergence of this dataset is very valuable for the research and practice of medical image
analysis.

Input Images: Input images serve as the starting point of the entire processing workflow.
In this study, color images are used as inputs for subsequent analysis and recognition tasks.
These images are represented as matrices of pixels, where each pixel contains color
information comprising three channels: red, green, and blue.

Convolution kernel: A convolution kernel is a small matrix applied to the input image
with the purpose of performing convolution operations on the image to extract useful
features such as edges, textures, efc. The size and weights of the convolution kernel can be
pre-defined or learned through training. Different convolution kernels are capable of
capturing various types of image features.

Computing process: The computing process refers to sliding the convolution kernel
over the input image and performing dot product operations at every position followed by
summing these products. This process essentially involves mathematical operations
between the convolution kernel and local regions of the image, aiding in extracting
high-level features from the original image. By adjusting the position of the convolution
kernel, the entire image can be scanned to extract global information.

Feature values: After completing the aforementioned convolution operation, a series of
numerical values are obtained, which reflect the feature intensity of specific areas in the
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(@) (b)
Figure 8 Examples of dermoscopic images and segmentation masks. (A) Dermoscopic images. (B)
The segmentation masks of the image. Full-size K&l DOI: 10.7717/peerj-cs.2882/fig-8

image. These numerical values are known as feature values, describing the manifestation of
features at different positions within the input image. For instance, in edge detection,
feature values may indicate the presence and strength of an edge within a specific area.

Feature maps: Feature maps are new images generated after convolution operations,
showcasing the results of the original image processed by the convolution kernel. Each
feature map highlights different aspects or features of the input image, such as edges in
certain directions, corners, or other shape features. In deep learning networks, multiple
convolutional layers produce a series of feature maps. As the depth of the network
increases, these feature maps transition from low-level features (like edges) to high-level
features (such as parts or overall structures of objects).

The ISIC-2018 Lesion Boundary Segmentation dataset contains various types of skin
lesions such as melanoma, benign melanoma nevi, basal cell carcinoma and keratinoma,
with a total of 10,015 high-resolution dermoscopic images with different resolutions and
certain noise and distortion. Figure 8 shows an example of dermoscopy images and
segmentation masks, both labeled by a physician, that were used to evaluate the
performance of RMIS-Net on the task of segmentation of skin lesions.

The above two datasets have rich image quantity and reference standards labeled by
professional doctors, which can effectively evaluate the accuracy, robustness and
generalization ability of the methods, and objectively quantify and compare the research
results. Experimental evaluation on these challenging datasets not only helps to ensure the
reliability and reproducibility of experimental results, but also provides a better
understanding of the performance and application prospects of the proposed model in
practical medical applications.
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Figure 9 Three data enhancement operations: horizontal flipping, rotation, and cutting.
Full-size K&l DOT: 10.7717/peerj-cs.2882/fig-9

Data preprocessing

This article preprocesses the dataset as follows:

(1) In order to unify the processing and reduce the computational complexity, the image
size of the 2018 Data Science Bowl dataset and the ISIC 2018 dataset is adjusted to
256 x 256 and 512 x 512, respectively. This action not only helps maintain the
consistency of the input images, but also complies with the design and parameter
settings of the medical image segmentation network in this article. In addition, this
operation improves the reproducibility of experiments and comparability of results
while maintaining image information.

(2) Data augmentation. In order to solve the problem that the medical image segmentation
model may be limited by a limited number of available samples in the training stage,
which may lead to the overfitting phenomenon of the model, this article adopts the
data augmentation method to expand the diversity of the samples for the input
samples, so as to mitigate the negative impact of the overfitting phenomenon on the
model performance, and then improve the robustness and generalization ability of the
model. Figure 9 shows the three data augmentation operations of horizontal flipping,
rotation, and cutting randomly applied in this article, each of which is applied to the
training set of each dataset with a probability of 0.20. These operations can introduce
image variations for different angles, positions, and orientations, helping the model
better adapt to different image inputs.
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Table 1 Details of the medical segmentation dataset used in this article.

Dataset name Number of images Training set Validation set Test set
2018 Data Science Bowl 2,883 2,308 431 144
ISIC 2018 10,015 8,015 1,600 400

(3) Data splitting. For the study of medical image analysis, the splitting scheme of the
dataset is directly related to the generalization ability and performance of the model.
Therefore, data splitting requires special attention, taking into account factors such as
dataset size, sample distribution, labeling quality, and case diversity. Details of the two
medical image segmentation datasets used in this article are listed in Table 1, including
the number of images, the division of the training set, the validation set, and the test
set. This article adopts a common random splitting method to avoid specific biases and
structural differences in the dataset. At the same time, special consideration is given to
factors such as sample distribution and case diversity to ensure that the model can be
fully trained and tested on each subset, thereby improving the generalization ability of
the model.

Evaluation metrics

Where accuracy measures the overall correctness of the predictions. Precision measures
the proportion of true positive predictions among all positive predictions. Recall measures
the proportion of actual positives that are correctly identified. F1 provides a harmonic
mean of precision and recall, offering a single measure to evaluate model performance. IoU
measures the overlap between the predicted and ground truth regions, often used to assess
segmentation quality.

A TP + TN )
ccuracy =
MY = TP T IN ¥ FP 1+ EN
Precisi TP (8)
e n=——
ecisio TP + FP
TP
Recall = —— 9
= TP L EN ©)
2 X Precision X Recall
F, = — (10)
Precision + Recall
TP
oU=————. (11)
TP + FP + FN

In order to comprehensively compare the performance of RMIS-Net and other
popular models, this article uses the evaluation metrics model parameter number,
inference speed, GFLOPs (billion floating point operations), F1 score, and intersection
over union (IoU) (cross-union ratio) to evaluate. By calculating the mean and variance of
these metrics, we can comprehensively evaluate the performance of RMIS-Net and other
models in different aspects to better understand their performance differences on datasets
relevant for clinical diagnosis.
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Table 2 Software and hardware configuration used by RMIS-Net.

Hardware and software names Parameter
SSDs 1TB
Memory 128 GB
Nvidia GeForce RTX 3090 GPU 24 G

Intel CPU 128 G DDR4
Ubuntu 18.04.6
Python 3.7

Torch 1.10.1
CUDA 11.3

Experimental platform

RMIS-Net is to build the programming environment of the deep learning framework
Pytorch on the Ubuntu 18.04.06 system to conduct all relevant experiments, and the
software and hardware environment settings used are shown in Table 2.

Experiment setup

During training, the Adam optimizer with an initial learning rate of 0.0001 and a
momentum of 0.9 is used as the optimization algorithm of the model. The training is
carried out with a batch size of 8 and a training period of 500, and an early stop mechanism
is used in the process, and the training is stopped when the validation set loss value of 2
consecutive epochs no longer decreases. In addition, during the training process, this
article also uses the cosine annealing learning rate scheduler to calculate the current
learning rate, and then applies it to the weight parameter used to update the model in the
optimizer, and its calculation formula is shown in Eq. (12):

Ir = Irmin + 0.5 X (Irmax — Irmin) X (1 4 cos(epoch/Tmax X pi)) (12)
where Ir is the current learning rate, Ir,;, is the minimum learning rate, [ry,y is the
maximum learning rate, epoch is the number of current training cycles, Tp,y is the
maximum number of training cycles, and pi is ©. By adjusting Iriin, [rmax and Ty, the

speed and amplitude of the learning rate can be flexibly controlled, so as to optimize the
training process of the model.

Loss function

In this article, a combination of binary cross-entropy (BCE) and Dice loss is used to train
the proposed model RMIS-Net during training. The loss function definition for the entire
network model is shown in Eq. (13):

L = 0.5BCE(j, y) + Dice(3, y)
(2% S0, x ) +9) "
(25/1 +2 it 8)

= 0.5BCE(y,y) +
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Table 3 Performance comparison results under different channel count configurations.

Model name C1 C2 C3 C4 C5 Model parameters (M) Inference time (ms) GFLOPs F1 IoU

RMIS-Net 32 64 128 256 512 6.74 114 1.84 0.918 0.837
16 32 64 128 256 3.68 30 0.76 0911 0.830
8 16 32 64 128 1.42 23 0.24 0.892 0.803

where y; and y; represent the i pixel value of the predicted outcome and the target outcome,
respectively, ) represents the summation of all pixel values, and ¢ is a small normal
number to avoid a denominator of zero. BCE(y, y) stands for BCE loss and is used to
measure the difference between predicted result y and target result y in dichotomous tasks.
Dice(p, y) stands for Dice loss and is used to measure the similarity between the predicted
result y and the target label y. This article improves the performance of the model on
clinical diagnosis related datasets by combining a binary cross-entropy loss of 0.5x and
Dice loss. The weight of 0.5 can be adjusted according to actual needs to balance the
influence of the two in training.

Analysis of experimental results

Hyperparameter channel count analysis

RMIS-Net is a deep learning model for lesion boundary segmentation tasks in biomedical
image analysis, and its performance is affected by the number of hyperparameter channels.
In this article, the performance and computational overhead of the model are balanced by
adjusting the values of the five channels C1 to C5.

Table 3 shows the performance comparison results of RMIS-Net in different channel
configurations. It can be seen from the results that the higher the number of channels, the
stronger the expression ability of the model RMIS-Net, so that the feature information in
the image can be better learned. However, as the number of channels increases, the number
of parameters, inference time, and GFLOPs of the model increase accordingly, resulting in
increased computational overhead. Therefore, in practical applications, we need to
consider the limitations of computing resources and the balance between performance and
computing overhead. Although reducing the number of channels slightly reduces the
performance of the model, the reduction is not drastic. Therefore, in order to train the
network RMIS-Net more efficiently, all subsequent experiments in this article set the five
channel values respectively: C1 = 16, C2 = 32, C3 = 64, C4 = 128, and C5 = 256. In practice,
the appropriate channel count configuration can also be selected according to specific
needs and computing resource constraints.

Comparison of qualitative results of different network models

In order to more intuitively show that RMIS-Net can bring better segmentation results on
the 2018 Data Science Bowl dataset and ISIC 2018 dataset, this article visualizes the
segmentation results of RMIS-Net and other SOTA models. It can be seen from Fig. 10 that
the RMIS-Net network proposed in this article is closer to the region correctly labeled by
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Figure 10 Comparison of segmentation results of RMIS-Net and other SOTA models on two different datasets.

Full-size K&l DOI: 10.7717/peerj-cs.2882/fig-10

Table 4 Performance comparison of different network models on the 2018 Data Science Bowl dataset.

Model name Model parameters Inference time GFLOPs Accuracy Precision Recall F1- IoU
M) (ms) score
UNet (Ronneberger, Fischer & Brox, 30.25 210 53.44 93.54%  86.72%  91.01% 87.64% 79.65%
2015)
UNet++ (Zhou et al., 2018) 10.71 180 37.64 93.68%  86.42% 90.18% 87.56% 80.41%
ResUNet (Zhang, Liu & Wang, 2018) 64.54 343 96.73 93.36%  88.23% 89.83% 88.92% 81.37%
LeViT-UNet (Xu et al., 2023) 4.53 800 24.12 93.79%  87.62%  89.17% 87.34% 79.67%
TransUNet (Chen et al., 2021) 99.61 263 40.56 93.18%  89.74% 89.21% 89.96% 81.08%
RMIS-Net 3.68 30 0.76 93.90%  90.12% 90.37% 91.12% 82.93%

the segmentation mask than other SOTA models, which proves that the RMIS-Net model

proposed in this article has a better segmentation effect.

Comprehensive comparison of different network models

(1) 2018 Data Science Bowl dataset

In order to further verify that the RMIS-Net network model proposed in this article can

achieve better results than other SOTA models in the medical image segmentation task,

this article uses multiple evaluation metrics to perform comprehensive experimental

verification on the 2018 Data Science Bowl dataset. From the data in Table 4, it can be

concluded that the model parameters, inference time (ms), computational complexity
(GFLOPs), accuracy, precision, recall, F1-score and IoU of RMIS-Net reach 3.68 M, 30 ms,
0.76, 93.90%, 90.12%, 90.37%, 91.12% and 82.93%, respectively, indicating that RMIS-Net
has obvious advantages in computing efficiency and performance metrics. The results

show that RMIS-Net can perform better than other SOTA models in the nucleus
segmentation task with lower model parameters, shorter inference time and less

computational resources.
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Table 5 Performance comparison of different network models on ISIC-2018 datase.

Model name Model parameters Inference time GFLOPs Accuracy Precision Recall F1- IoU
(M) (ms) score
UNet (Ronneberger, Fischer & Brox, 2015)  31.75 233 56.34 93.63%  86.84%  91.37% 86.34% 82.12%
UNet++ (Zhou et al., 2018) 9.86 212 40.71 93.87% 86.63% 90.45% 87.93% 80.36%
ResUNet (Zhang, Liu & Wang, 2018) 67.34 354 97.63 93.57%  88.79%  89.63% 87.45% 81.37%
LeViT-UNet (Xu et al., 2023) 7.63 836 26.34 93.26% 87.12% 89.72% 87.37%  80.46%
TransUNet (Chen et al., 2021) 104.93 310 42.26 93.39% 89.37% 89.83% 82.76% 76.36%
RMIS-Net 5.47 35 1.25 93.97% 90.16% 90.39% 90.45% 83.81%
Table 6 Ablation experimental results of different components.

Model name Model parameters (M) Inference time (ms) GFLOPs F1 IoU
Original UNet (Ronneberger, Fischer ¢ Brox, 2015) 30.25 210 53.44 0.876 0.797
Reduced UNet 10.79 56 11.24 0.864 0.774
Conv Stage 1.26 12 0.54 0.813 0.711
Conv Stage + Tok-MLP w/o PE 3.65 23 0.76 0.886 0.801
Conv Stage + Tok-MLP + PE 3.68 24 0.76 0.891 0.816
Conv Stage + Shifted Tok-MLP (W) + PE 3.68 28 0.76 0.893 0.824
Conv Stage + Shifted Tok-MLP (H) + PE 3.68 28 0.76 0.892 0.821
Conv Stage + Shifted Tok-MLP (H+W) + PE 3.68 30 0.76 0911 0.830

(2) ISIC 2018 dataset

Similarly, the RMIS-Net network model and other SOTA network models are applied to
the ISIC 2018 dataset, and the experimental results are shown in Table 5. RMIS-Net has
lower model parameters, inference time, and computational complexity compared to other

models. In addition, RMIS-Net also showed high performance in accuracy, precision,
recall, F1-score and IoU metrics, reaching 93.97%, 90.16%, 90.39%, 90.45% and 83.81%,
respectively. The results show that RMIS-Net has high accuracy and reliability in lesion

boundary segmentation tasks.

Model component analysis
In this section, ablation experiments were performed on different components in the
RMIS-Net model on the 2018 Data Science Bowl dataset, and the results are shown in
Table 6. After comprehensive analysis of the ablation experimental results, the following

key conclusions are drawn:

(1) The number of model parameters and computational complexity have an important

impact on model performance. From the experimental results, it can be seen that
compared with the Original UNet model, the Reduced UNet model reduces the number of
model parameters and computational complexity by about 64% and 79%, respectively, but

only slightly decreases in F1 and IoU metrics. This result shows that the model can

maintain good segmentation performance while keeping computing resource

consumption low.
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(2) The introduction of Tok-MLP operation and position embedding has a positive
impact on model performance. It can be seen from the experimental results that the
Conv Stage + Tok-MLP + PE model improves F1 and IoU metrics by 2.6% and 5.1%,
respectively, compared with the Conv Stage model, which proves that Tok-MLP operation
and position embedding can improve the semantic modeling ability of the model and the
understanding of different position information.

(3) The introduction of Shifted Tok-MLP operations can further improve model
performance. It can be seen from the experimental results that the Conv Stage + Shifted
Tok-MLP (H+W) + PE model improves the F1 and IoU metrics by 1.9% and 1.4%,
respectively, compared with the Conv Stage + Tok-MLP + PE model, which shows that the
Shifted Tok-MLP operation can enhance the modeling ability of the model on
long-distance dependencies, thereby improving the performance of the model in the image
segmentation task.

CONCLUSION AND FUTURE WORKS

Based on the multilayer perceptron, this article proposes a fast medical image
segmentation network RMIS-Net, which aims to solve the problems of high complexity
and low efficiency in medical image segmentation, and provides an efficient and accurate
solution for medical image analysis. The network structure includes convolutional layer
and shift-based fully connected layer, and a tokenized multilayer perceptron is adopted in
the latent space to reduce the number of parameters and computational complexity of the
network, so that the network can capture the feature information in the image more
accurately, thereby improving the segmentation accuracy of the model. Experimental
results on the 2018 Data Science Bowl dataset and the ISIC 2018 Lesion Boundary
Segmentation dataset show that the RMIS-Net network model proposed in this article can
show better performance than other models in the medical segmentation task with lower
model parameters, shorter inference time and less computing resources. In the future, the
applicability of RMIS-Net on different types of medical image datasets will be further
explored to verify its robustness and versatility in diverse clinical scenarios.

Although our proposed model has already achieved significant improvements in
parameter count and computational complexity, its network architecture can still be
further optimized. In the future, techniques such as self-attention mechanisms could be
introduced to enhance the network’s feature extraction and information propagation
capabilities. Additionally, the model could be extended to multi-modal medical image
segmentation tasks, such as fusing MRI and CT images for tumor segmentation. It could
also be explored for real-time medical image segmentation tasks, such as real-time surgical
navigation and real-time tumor segmentation, providing clinicians with real-time image
analysis tools. Furthermore, the model could be applied to other medical image analysis
tasks, such as object detection, image generation, and image reconstruction. Further
optimization of the model’s generalization performance and network efficiency should also
be pursued.
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