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ABSTRACT
Twitter has emerged as one of the most widely used platforms for sharing
information and updates. As users freely express their thoughts and emotions, a vast
amount of data is generated, particularly in the aftermath of disasters, which can be
collected quickly and directly from individuals. Traditionally, earthquake impact
assessments have been conducted through field studies by non-governmental
organizations (NGOs), a process that is often time-consuming and costly. Sentiment
analysis (SA) on Twitter presents a valuable research area, enabling the extraction
and interpretation of real-time public perceptions. In recent years, attention-based
methods in deep learning networks have gained significant attention among
researchers. This study proposes a novel sentiment classification model, MConv-
BiLSTM-GAM, which leverages an attention mechanism to analyze public sentiment
following the 7.8 and 7.5 Mw earthquakes that struck Kahramanmaraş, Turkey. The
model employs the FastText word embedding technique to convert tweets into vector
representations. These vectorized inputs are then processed by a hybrid model
integrating convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) with a global attention mechanism. This ensures careful consideration of
semantic dependencies in sentiment classification. The proposed model operates in
three stages: (i) MConv—Local Contextual Feature Extraction, (ii) bidirectional long
short-term memory (BiLSTM)—sequence learning, and (iii) Global Attention
Mechanism (GAM)—Attention Mechanism. Experimental results demonstrate that
the model achieves an accuracy of 93.32%, surpassing traditional deep learning
models in the literature by approximately 3%. This research aims to provide objective
insights to policymakers and decision-makers, facilitating adequate support for
individuals and communities affected by disasters. Moreover, analyzing public
sentiment during earthquakes contributes to understanding societal responses and
emotional trends in disaster scenarios.
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INTRODUCTION
With the development of online technologies, a large amount of data is being produced by
Internet users, and this increases the demand for data processing and computer-aided
analysis (Wang et al., 2020; Shi et al., 2011). Thanks to the widespread use of the internet,
millions of users have access to the data produced every day, but converting this raw data
into meaningful information requires various analysis techniques (Aslan, 2023). Social
media data analysis is important in many areas, from marketing strategies to crisis
management. It is possible to determine trends and analyze user behavior by processing
text, images, and videos shared on platforms. While increasing social media use allows
individuals to share content that can impact society, the healthy analysis of this data
depends on using correct data collection methods and reliable analysis tools.

Twitter is one of the most popular social media platforms, and millions of users
worldwide express their feelings, thoughts, and reactions (Pak & Paroubek, 2010). The
presentation of shared large-scale data in a compact and casual language makes Twitter a
valuable resource for sentiment analysis (SA) in times of crisis. While artificial intelligence
significantly contributes to solving human and societal problems, natural language
processing (NLP) also helps computers understand human-generated texts (Acheampong,
Wenyu & Nunoo-Mensah, 2020). Examining data shared on platforms such as Twitter with
NLP-based SA provides important insights into evaluating public reactions, determining
individual attitudes, and detecting negative situations such as online bullying (Tam, Said &
Tanriöver, 2021; Bashir et al., 2021). SA, especially during natural disasters, contributes to
understanding the psychological states of affected individuals and helps crisis management
and intervention processes to be carried out more effectively. In addition, analyses
performed on Twitter data are considered an effective method for determining and
predicting public opinion trends.

Natural disasters, particularly earthquakes, have severe impacts on individuals and
societies, making effective crisis response and impact mitigation essential. Understanding
public reactions, identifying needs, and supporting decision-making processes are critical
for post-disaster management (Contreras et al., 2022). While qualitative methods such as
interviews, focus groups, and participatory mapping are commonly used to assess
non-physical recovery aspects (Schumann, 2018), these approaches are often costly and
limited in scope due to their dependence on fieldwork (Contreras, Wilkinson & James,
2021). With the rise of social media, information flow and disaster response have
significantly evolved. Platforms like Twitter now serve as vital tools for large-scale data
collection and damage assessment, as seen in the 2020 Zagreb and Aegean earthquakes
(Contreras et al., 2021; Aktas et al., 2021), enhancing public participation and access to
information in emergency management (Kropivnitskaya et al., 2017, 2018; Simon,
Goldberg & Adini, 2015). Analysis of post-earthquake social media data contributes to
faster and more effective coordination of relief and rescue efforts (Crooks et al., 2013),
while also allowing for the understanding of public reactions through emotional content
analysis (Wu & Cui, 2018). However, despite the 7.8 and 7.5 Mw earthquakes in and
around Kahramanmaraş, Turkey, on February 6, 2023 (Avcil et al., 2024) being described
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worldwide as the “Disaster of the Century,” research on public opinions is limited.
Thousands of tweets shared on Twitter immediately after the earthquake provided
information on the severity of the earthquake, the affected areas, and urgent needs. This
platform played a critical role in finding disaster victims, transmitting calls for help, and
coordinating rescue teams; it also allowed individuals to report that they were safe and to
submit requests for help. Thus, Twitter contributed to the organization of post-disaster
relief processes and was an important communication tool that strengthened social
solidarity.

It is essential to comprehend the overall state of affairs following the earthquake, mainly
how society reacts to tragedies, fulfills their requests, expedites decision-making, and offers
earthquake victims both material and moral support (Contreras et al., 2022; Tehseen,
Farooq & Abid, 2020). This study presents a novel sentiment classification model
(MConv-BiLSTM-GAM) to analyze the societal emotional impact of the two major
earthquakes that struck Kahramanmaraş, Turkey.

Motivation and contributions
The motivation and contributions of the proposed study are given below:

. Original dataset and advanced preprocessing: In this study, a large dataset of tweets
shared in the immediate aftermath of the February 6, 2023, Kahramanmaraş/Turkey
earthquake was collected from Twitter. The raw data underwent advanced preprocessing
to remove noise, apply lemmatization, and extract meaningful information. Deep
learning-based NLP techniques were then used to analyze the earthquake’s psychological
impact on a global scale.

. A novel hybrid model (MConv-BiLSTM-GAM): The proposed model combines
convolutional neural networks (CNN), bidirectional long short-term memory
(BiLSTM), and the Global Attention Mechanism (GAM) to harness their
complementary capabilities for enhanced sentiment classification. FastText embeddings
are utilized to convert tweets into vector representations, offering a semantic advantage
by operating at the character n-gram level. This allows for better handling of
misspellings, morphologically rich forms, and out-of-vocabulary (OOV) words—
common features in noisy social media content. The MConv stage applies multiple 1D
convolutional filters (kernel sizes 2 and 3) to extract local contextual features, while the
BiLSTM layer captures temporal and bidirectional dependencies. To address potential
limitations in focusing on key semantic elements, the GAM component assigns attention
weights across the sequence, enhancing the model’s ability to emphasize relevant tokens
and manage long-distance dependencies. This integrated design ensures a robust and
context-aware sentiment classification approach, well-suited for informal and
unstructured Twitter data.

. Contribution to post-disaster psychological impact analysis: This study presents an
NLP-based framework for analyzing societal emotions following a disaster, utilizing
social media data to assess large-scale sentiment trends. By capturing and interpreting
public reactions, the proposed model provides valuable insights for crisis management
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and psychological support planning. Its data-driven methodology enhances
decision-making processes, facilitating the development of targeted interventions to
support affected communities more effectively.

The following sections in the article are organized as follows: “Related Works” presents
a literature review of relevant work in the field. “The Proposed System” describes the
dataset collection process, the applied preprocessing steps, and the architecture of the
proposed model. “Discussions and Experimental Results” focuses on sentiment
visualization, data analysis, and a comparative evaluation of the experimental results.
Finally, the study is concluded in “Conclusions”.

RELATED WORKS
NLP, a core field of artificial intelligence, enables interaction between humans and
machines through the processing of textual or verbal data. With the exponential growth of
online communication, effective analysis of large-scale text has become essential (Shi et al.,
2011). Sentiment analysis (SA), a subfield of NLP, focuses on detecting individuals’
attitudes and emotions toward events or entities (Medhat, Hassan & Korashy, 2014), with
applications in areas such as product evaluation, market research, and audience sentiment
assessment (Li, Goh & Jin, 2020; Zheng, Wang & Gao, 2018). SA techniques are generally
categorized into deep learning-based, dictionary-based, and machine learning-based
approaches (Aslan, 2022). Among these, deep learning methods have demonstrated
superior performance due to their ability to automatically extract complex and relevant
features (Aslan, Kızıloluk & Sert, 2023).

SA, feature selection is vital for accurately detecting emotional expressions, directly
influencing model accuracy and generalization (Zheng, Wang & Gao, 2018; Zhang, Wang
& Liu, 2018). Traditional approaches, such as Zheng, Wang & Gao’s (2018) use of term
frequency–inverse document frequency (TF-IDF) with SVM and n-gram-based weighting,
have shown limitations due to dependence on manually defined features. Similarly, Go,
Bhayani & Huang (2009) applied naïve Bayes, MaxEnt, and SVM with various n-gram
models, reporting superior results with SVM. To overcome these limitations, recent studies
have focused on deep learning-based models integrating word embeddings. Abid et al.
(2019) proposed a GloVe-Bi-GRU-CNN model, while Yoon & Kim (2017) introduced a
CNN-BiLSTM using Word2Vec. Kamyab, Liu & Adjeisah (2021) combined GloVe
embeddings with TF-IDF for enhanced feature representation. Although word
embeddings improve semantic understanding, many approaches still underrepresent
emotional cues (Araque et al., 2017), highlighting the need for methods that balance
semantic and affective information in deep learning-based SA (Kamyab, Liu & Adjeisah,
2021).

Attention mechanisms are essential components in deep learning, allowing
models to selectively focus on the most relevant parts of input data rather than
processing all information equally (Vaswani et al., 2017). When integrated with RNNs,
attention mechanisms enhance performance across various applications (Bahdanau,
Cho & Bengio, 2014) and are typically categorized as global, self, or hierarchical attention.
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Basiri et al. (2021) introduced ABCDM, an attention-based model combining Bi-GRU and
BiLSTM to capture bidirectional temporal dependencies.Wen & Li (2018) proposed ARC,
a hybrid RNN-CNN-attention model for sentiment analysis of tweets, effectively capturing
both sequential and global features. Yang et al. (2016) developed a hierarchical attention
network (HAN) that applies attention at both sentence and word levels, while Liu & Guo
(2019) utilized attention in a BiLSTM-CNN model to emphasize critical hidden layer
information. Similarly, Ma et al. (2017) presented an interactive attention network to
enhance contextual representation. Collectively, these studies demonstrate that
attention-based models significantly improve the ability to extract and prioritize relevant
semantic information.

Twitter-based sentiment analysis (SA) in disaster contexts serves as a valuable tool for
understanding public emotions and improving crisis response. Ruz, Henríquez &
Mascareño (2020) utilized Bayesian networks on Spanish-language datasets from the 2010
Chile earthquake and the 2017 Catalan referendum, achieving competitive results
compared to SVM and random forests. Behl et al. (2021) trained supervised models on data
from the Nepal and Italy earthquakes, reaching 83.0% accuracy on COVID-19 test data
using an optimized MLP.Mendon et al. (2021) applied a hybrid framework combining ML
and lexicon-based methods, obtaining 81.84% performance on 243,746 Kerala-related
tweets. Yao & Wang (2020) proposed DSSA-H, combining RF and DANN classifiers for
hurricane-related tweets, achieving up to 82.61% accuracy. Song & Huang (2021)
introduced SentiBERT-BiLSTM-CNN, reaching a 92.75% F1-score. Despite promising
outcomes, a gap remains in deep learning-based SA applied from the onset of
disasters. Addressing this, Anthony, Hoi Ki Wong & Joyce (2024) used FastText-based long
short-term memory (LSTM) and CNN models to analyze post-earthquake sentiment,
achieving up to 86% accuracy. Henríquez (2024) reported 84.29% accuracy using the
edRVFL model on Chilean and Catalan tweets. Alharm & Naim (2024) employed a
BERT-LSTM model for the 2023 Turkey earthquake, attaining 85.43% accuracy. Blomeier,
Schmidt & Resch (2024) fine-tuned BERT for classifying semantic relevance in German
flood-related tweets, achieving 71.0% accuracy. These studies collectively highlight the
growing relevance and evolving sophistication of SA techniques in disaster management.

THE PROPOSED SYSTEM
This work proposes a multilayer deep learning model based on a global attention
mechanism to investigate the attention mechanism’s capability for sentiment classification
following FastText word embedding. Figure 1 displays the general flow diagram of the
proposed architecture.

Dataset and preprocessing
This study utilizes Twitter (Alam et al., 2021) as a data source to examine the societal
impact of the February 6, 2023 Kahramanmaraş/Turkey earthquake. A total of 215,446
publicly available English tweets were collected viaMAXQDA software (MAXQDA, 2020),
covering the period from February 6 to April 27, 2023. To ensure ethical compliance, no
personal or identifiable information was included. Relevant tweets were retrieved using
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common earthquake-related hashtags such as #earthquake, #turkeyearthquake, and
#turkeysyriaearthquake. After removing redundant elements (e.g., special characters, links,
emojis), preprocessing reduced the dataset to 81,797 clean tweets suitable for sentiment
analysis. VADER was used to determine sentiment polarities: 38.91% were negative
(31,824 tweets), 37.09% positive (30,336), and 24.01% neutral (19,637). This preprocessing
step enhanced both the accuracy and efficiency of the sentiment classification task.

The proposed model
This study proposes a novel sentiment classification approach based on the MConv-
BiLSTM-GAMmodel to improve performance on Twitter data. As illustrated in Fig. 2, the
architecture integrates FastText embeddings with a hybrid structure combining CNN,
BiLSTM, and GAM. The model consists of three main stages: MConv for local feature
extraction using multiple Conv1D layers with kernel sizes 2 and 3, followed by
MaxPooling, BiLSTM for capturing sequential dependencies, and GAM for focusing on
semantically relevant information across the sequence. GAM enables the model to attend
to distant yet important tokens by learning contextual relevance. Finally, the
attention-refined output is passed through two dense layers, concluding with a
softmax-based classification layer.

The proposed MConv-BiLSTM-GAM model architecture was optimized using a set of
carefully selected hyperparameters for each stage. In the feature extraction stage (MConv),
two 1D convolutional layers with 100 filters and kernel sizes of 2 and 3 were employed to
capture diverse n-gram features, followed by ReLU activation, a max-pooling layer with a
size of 2, and a dropout rate of 0.25 to prevent overfitting. In the sequence learning stage

Figure 1 The general flowchart of the suggested architecture.
Full-size DOI: 10.7717/peerj-cs.2881/fig-1
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(BiLSTM), a bidirectional LSTM layer with 128 nodes and ReLU activation was used, and a
dropout rate of 0.25 was used to maintain regularization. The attention mechanism
(GAM) was configured with an input size of 95 to compute attention weights across the
sequence. Finally, the classification stage consisted of two fully connected dense layers: the
first with five units and ReLU activation, and the second with three units and a softmax
activation function to output the sentiment class probabilities. These hyperparameter
choices were determined through empirical tuning to effectively balance model complexity
and performance.

Figure 2 The flowchart of the proposed model. Full-size DOI: 10.7717/peerj-cs.2881/fig-2
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DISCUSSIONS AND EXPERIMENTAL RESULTS
The Kahramanmaraş/Turkey earthquake dataset from February 6, 2023, was used in this
section’s practical experiments to evaluate the proposed model’s functionality, assess its
robustness, and compare its performance with other deep learning techniques to improve
SA accuracy. The experiments were conducted using the Python programming language
on the Google Collaborate Pro platform. The study utilized Python libraries, including
Pandas, Keras, Numpy, spaCy, and Sklearn. All experiments were tested on a computer
with an Intel Core i7 processor, Windows 10 operating system, and 16 GB RAM. The
results obtained were examined in this section.

Analyzing the sentiment distributions
To explore the psychological context of emotional tendencies, word cloud visualization
was used to highlight the most frequent and sentiment-relevant terms in tweets. Figure 3
displays the word clouds corresponding to positive, negative, and neutral tweet categories.
As shown in Fig. 3, non-emotive but high-frequency words such as “turkey,” “earthquake,”
and “people” were excluded to better emphasize emotionally significant keywords. The
word clouds for positive, negative, and neutral sentiment categories reveal distinct
linguistic patterns. Despite similar proportions, positive tweets predominantly include
expressions of support, solidarity, and reassurance, while negative tweets contain
fear-inducing and destructive language. Such negative discourse during disasters may
contribute to long-term psychological effects on affected communities. The findings
illustrated in Fig. 3 offer valuable insights for decision-makers to design timely and
targeted psychological, social, and financial interventions based on the collective
emotional state.

Performance evaluation of the sentiment classification model
This section presents a comparative performance analysis of sentiment classification
models on Twitter data related to the February 6, 2023 Kahramanmaraş earthquake. The
proposed MConv-BiLSTM-GAM model is evaluated against three baseline deep learning
architectures, using both FastText and GloVe embeddings to assess embedding
effectiveness. Performance is measured through accuracy, precision, recall, and F1-score
(Aslan & Kaya, 2018), while overfitting risk is monitored via training and testing
accuracy-loss curves (Reagen et al., 2018). Additionally, a confusion matrix is used to
examine misclassifications. Results demonstrate the proposed model’s superior
performance, particularly in handling emotionally charged disaster-related content.

The performance of the proposed MConv-BiLSTM-GAM model was thoroughly
evaluated using earthquake-related Twitter data, with detailed results provided in Table 1.
When utilizing FastText embeddings, the model achieved an average accuracy of 93.32%,
outperforming other deep learning models by approximately 3%. The F1-scores for
positive, negative, and neutral sentiment classes were 93.48%, 93.46%, and 92.86%,
respectively, demonstrating both high accuracy and classification consistency.
Comparative analyses show that the CNN model performed relatively poorly, especially in
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the negative sentiment class, with a precision of 89.72% and a recall of 92.84%. While
LSTM and BiLSTM models performed better due to their ability to capture sequential
dependencies, the proposed MConv-BiLSTM-GAM model achieved the highest
performance. This improvement stems from the synergy between CNN’s local feature
extraction, BiLSTM’s contextual learning, and the Global Attention Mechanism’s ability to
focus on semantically relevant information. In particular, the MConv layer enhances local
pattern recognition through multiple kernel sizes, while BiLSTM captures bidirectional
dependencies, and GAM further refines feature relevance, leading to more accurate
sentiment classification.

Given that social media data shared during disasters such as earthquakes contain high
emotional intensity and similar word patterns, using only CNN or BiLSTM is insufficient
for precise SA. Therefore, the extracted features are processed through the GAM
mechanism to prioritize the most meaningful information. Experimental results confirm
the proposed model’s superior performance in sentiment classification.

Figure 3 The word cloud representation of the positive, negative and neutral tweets. Full-size DOI: 10.7717/peerj-cs.2881/fig-3
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Another important factor in the success of the proposed model is the use of the FastText
word embedding method. To evaluate its effectiveness, the MConv-BiLSTM-GAM model
was tested using datasets vectorized with both FastText and GloVe embeddings, with the
results illustrated in Fig. 4. As shown, FastText led to higher performance, with validation
accuracy starting at 90% and reaching 93.43% by the end of training, compared to 84% to
87.08% with GloVe. The average accuracy achieved using FastText (93.32%) is
approximately 6.35% higher than that of GloVe (87.08%), indicating a notable
performance advantage. FastText’s ability to capture subword and character-level
information through character n-grams makes it particularly effective for handling the
morphologically rich and noisy language often found in social media posts during
disasters. This allows for more accurate representation of misspelled or informal words.
Furthermore, analysis of the accuracy-loss curves suggests that training progresses
smoothly without signs of overfitting. This is supported by the application of

Table 1 Comparison of the proposed model’s performance with baseline deep learning models.

Embedding model Classification model Normalized classes Performance evaluation metrics Average value

0 → Negative Precision (%) Recall (%) F1-Score (%) Accuracy (%)
1 → Neutral
2 → Positive

FastText MConv-BiLSTM-GAM 0 92.75 94.18 93.46 93.32

1 93.53 92.20 92.86

2 93.82 93.14 93.48

CNN 0 89.72 92.84 91.25 90.55

1 88.56 92.15 90.32

2 92.93 87.12 89.93

LSTM 0 89.56 93.12 91.30 90.92

1 91.83 89.39 90.59

2 91.88 89.59 90.72

BiLSTM 0 91.31 91.96 91.64 91.12

1 90.19 91.19 90.69

2 91.54 90.20 90.86

GloVe MConv-BiLSTM-GAM 0 89.45 90.90 90.17 89.26

1 88.48 88.07 88.27

2 89.57 88.30 88.93

CNN 0 87.06 88.31 87.68 85.67

1 78.51 88.79 83.34

2 89.76 80.92 85.11

LSTM 0 89.29 88.88 89.08 87.96

1 86.72 86.31 86.51

2 87.37 88.06 87.71

BiLSTM 0 87.54 91.23 89.35 88.06

1 88.64 84.43 86.48

2 88.29 87.04 87.66

Aslan and Yildirim (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2881 10/18

http://dx.doi.org/10.7717/peerj-cs.2881
https://peerj.com/computer-science/


regularization techniques and early stopping, which help improve the model’s
generalization performance.

Figure 5 presents the confusion matrices of the tested algorithms. The results indicate
that the proposed model achieves the highest accuracy when used with FastText. By
maintaining a more balanced and consistent performance across all sentiment classes, the
proposed model minimizes misclassifications. In contrast, the CNN model demonstrates a
higher error rate, particularly in the positive sentiment class, due to its limited ability to
model sequential dependencies. LSTM and BiLSTM models outperform CNN by better
capturing contextual relationships. However, models based on GloVe exhibit a higher
misclassification rate compared to FastText. This discrepancy arises from GloVe’s limited
ability to represent semantic relationships between words. Overall, the proposed model,
when combined with FastText, provides high accuracy and consistency, outperforming
other models in sentiment classification tasks.

To compare training durations, the training times of different word embedding and
classification models were examined over 15 epochs. The CNN model had the shortest
training time with both embeddings, completing in 14 min using FastText and just 2 min

Figure 4 Accuracy-Loss curves of MConv-BiLSTM-GAM model for FastText and GloVe word
embedding techniques. Full-size DOI: 10.7717/peerj-cs.2881/fig-4
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with GloVe. In contrast, the MConv-BiLSTM-GAM model required the longest training
time—249 min with FastText and 50 min with GloVe. The BiLSTM model also showed
relatively longer durations, taking 166 min with FastText and 40 min with GloVe. These
findings indicate that model complexity and the choice of word embedding method
significantly affect training time.

Figure 5 The performance comparison of the classification models based on confusion matrices.
Full-size DOI: 10.7717/peerj-cs.2881/fig-5

Aslan and Yildirim (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2881 12/18

http://dx.doi.org/10.7717/peerj-cs.2881/fig-5
http://dx.doi.org/10.7717/peerj-cs.2881
https://peerj.com/computer-science/


In Table 2, the classification accuracy of the proposed approach was systematically
compared with existing studies on SA of earthquake-related tweets in the literature. The
results indicate that the proposed model demonstrated superior classification
performance, achieving higher accuracy rates than other methodologies previously
introduced in this research domain. This finding suggests that integrating the MConv-
BiLSTM-GAM model effectively enhances sentiment classification accuracy.

Ablation studies were conducted to assess the individual contributions of MConv,
BiLSTM, and GAM within the proposed MConv-BiLSTM-GAM architecture. The full
model achieved the highest accuracy (93.32%) using FastText embeddings, confirming the
strength of the integrated design. Removing GAM reduced accuracy to 92.33%,
highlighting the importance of attention for semantic focus. Further removals of BiLSTM
and MConv led to accuracies of 91.48% and 91.18%, respectively, indicating the value of
sequential modeling and local feature extraction. Models using only LSTM or BiLSTM
underperformed, emphasizing the necessity of combining convolutional, recurrent, and
attention mechanisms. Overall, the results validate the effectiveness of the integrated
architecture for sentiment analysis in noisy social media data during disasters.

Table 2 The performance accuracy of alternative approaches for sentiment analysis on earthquakes.

Model Accuracy (%) Reported by

MConv-BiLSTM-GAM (FastText) 93.32

MConv-BiLSTM-GAM (GloVe) 89.26

MonkeyLearn 0.63 Contreras et al. (2022)

LR + TF 0.88 Behl et al. (2021)

MLP_W 0.85 Behl et al. (2021)

SVM 81.2 Ruz, Henríquez & Mascareño (2020)

Naïve Bayes 74.2 Ruz, Henríquez & Mascareño (2020)

MLP 83.0 Behl et al. (2021)

Random Forest-TF-IDF 76.73 Yao & Wang (2020)

Domain-adversial neural network (DANN) 82.61 Yao & Wang (2020)

SentiBERT-BiLSTM-CNN 92.75 Song & Huang (2021)

CNN + FastText 86.0 Anthony, Hoi Ki Wong & Joyce (2024)

BiLSTM + FastText 84.0 Anthony, Hoi Ki Wong & Joyce (2024)

LSTM + FastText 81.0 Anthony, Hoi Ki Wong & Joyce (2024)

Ensemble deep random vector functional links (edRVFL) 84.29 Henríquez (2024)

BERT-Feed forward neural network layers (BERT-FF) 82.0 Alharm & Naim (2024)

BERT-LSTM 85.43 Alharm & Naim (2024)

BERT 71.0 Blomeier, Schmidt & Resch (2024)

MNB + SMO 87.9 Vo & Collier (2013)

NB + SMOTE + GINI 81.30 Gata et al. (2019)

SVM + SMOTE + GINI 81.03 Gata et al. (2019)

SVM 89.00 Saddam, Dewantara & Solichin (2023)

XGBoost 75.00 Detera et al. (2021)
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CONCLUSIONS
This study presents an effective deep learning-based sentiment classification approach by
integrating a multi-convolution and bidirectional LSTM (MConv-BiLSTM) model with a
GAM. FastText embeddings were used to vectorize tweets, enabling semantic-rich input
representation. The architecture consists of three stages: MConv for extracting local
features via convolutional layers with varying kernel sizes (2 and 3), BiLSTM for capturing
temporal dependencies, and GAM to emphasize semantically significant information.
Given the emotionally intense nature of disaster-related data, similar vocabulary may
occur across sentiment classes. Therefore, the attention mechanism plays a critical role in
distinguishing key emotional indicators. Experimental results confirm the model’s high
performance.

The sentiment analysis, based on a tri-polar classification (positive, negative, neutral),
revealed that 37.08% of tweets were positive, 38.90% negative, and 24% neutral. Despite
similar proportions, the underlying vocabulary differed notably: positive tweets
emphasized support, solidarity, and reassurance, while negative tweets conveyed fear and
destruction. Such emotional expression in disaster contexts can have lasting societal
effects. The proposed model contributes to understanding collective emotional responses
and provides actionable insights for decision-makers to support affected communities
effectively.

Despite its promising outcomes, this study has several limitations. Relying solely on
Twitter data may introduce bias, as platform users may not represent the broader affected
population. Multilingual datasets also pose challenges due to language-specific sentiment
expressions and syntactic differences, potentially affecting generalizability. Moreover,
variations in user behavior and platform policies complicate cross-platform applicability.
The model’s exclusive focus on textual data limits its capacity to capture insights from
multimodal content such as images and videos, which are commonly shared during
disasters. Future research should consider integrating multimodal analysis, testing
cross-platform adaptability, and enhancing linguistic and cultural versatility to improve
the model’s robustness.
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