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ABSTRACT

Over the last 20 years, researchers have proposed regulatory-metabolic network
models to integrate gene regulatory networks (GRNs) and metabolic networks in in
silico metabolic engineering, aiming to enhance the production rate of desired
metabolites. However, the proposed models are unable to comprehensively include
the Boolean rules in the empirical gene regulatory networks (GRNs) and gene-
protein-reaction (GPR) interactions. Thus, the types of gene interactions, such as
inhibition and activation, are disregarded from the analysis. This may result in
sub-optimal model performance. Hence, this article presented a novel model using
reliability theory to include Boolean rules in empirical GRNs and GPR rules in the
integrating process. The proposed algorithm of this model is termed as a
reliability-based integrating (RBI) algorithm. The suggested algorithm had three
variants: RBI-T1, RBI-T2, and RBI-T3. The performance of the RBI algorithms was
assessed by comparing them with the existing algorithms, using empirical results and
validated transcription factors (TF) knockout schemes, and their complexity time
was identified. Also, the RBI method was implemented in the design of optimal
mutant strains of Escherichia coli and Saccharomyces cerevisiae. The simulation
results indicated that the effectiveness and efficiency of the RBI algorithms are
adequately strong and competitive relative to the existing algorithms. Furthermore,
the RBI algorithm effectively identified eight schemes capable of enhancing succinate
and ethanol production rates by maintaining the survival of microbial strains. Those
results demonstrated that the RBI algorithms are recommended for the construction
of optimum mutant strains in in silico metabolic engineering.

Subjects Computational Biology, Algorithms and Analysis of Algorithms, Artificial Intelligence,
Data Mining and Machine Learning, Optimization Theory and Computation

Keywords Flux balance analysis, Gene regulatory networks, In silico metabolic engineering,
Metabolic networks, Mutant strain, Reliability theory

INTRODUCTION

Cell factories of microbes naturally produce valuable chemicals, including ethanol,
succinate, and 2,3-butanediol (Singhania et al., 2022). However, the yield and productivity
of these metabolites frequently fall short of the theoretical maximum, thereby constraining
their industrial applicability. In order to overcome this problem, comprehensive research
has focused on genetically engineering microorganisms to improve their metabolic
networks, thereby enhancing the efficiency and production rate of desired metabolites.
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Here, the strains of Saccharomyces cerevisiae and Escherichia coli are frequently utilized to
be engineered due to the abundance of their genome information, non-pathogenic, and
ease of genetic manipulation (Sharma ¢ Saharan, 2018). The aim of this engineering is to
enable the creation of optimized mutant strains that can produce industrially significant
metabolites at economically feasible levels.

Experimental techniques in the wet lab have been extensively utilized to improve the
yield of target metabolites, illustrating their efficacy in overproduction. Nonetheless, these
techniques are frequently linked to high costs, labor-intensive, and increased error rates,
rendering them inefficient for large-scale applications. To address these limitations, in
silico metabolic engineering approaches have been developed, employing computational
modeling to inform and improve experimental workflows in the laboratory (Joshi ¢
Mishra, 2022; Madden et al., 2020). Among the computational techniques proposed, flux
balance analysis (FBA) has become a popular algorithm for predicting and optimizing
metabolic networks (Daud et al., 2023). FBA enables the estimation of steady-state growth
rates and production capacities of desired metabolites through an understanding of
metabolic networks, offering a systematic approach to designing the optimal mutant
strains.

The FBA algorithm is a computer modeling framework utilized for conducting in silico
experiments aimed at optimizing metabolite overproduction from mutant strains (Fell ¢
Small, 1986). This technique utilizes a linear programming method to identify optimal flux
reactions based on metabolic pathways present in genome-scale metabolic network models
(GSMMs). The predominant objective function utilized in FBA is biomass synthesis (Saa
et al., 2022). Besides biomass, FBA can also be used to predict the overproduction of
succinic acid, 2,3-butanediol, or ethanol (Daud et al., 2019; Sen, 2022; Ananda, Daud e
Zainudin, 2023). FBA has been effectively utilized in various domains, including drug
target identification (Arif & Malim, 2013; Mahayuddin & Saifuddin Saif, 2020; Mahiddin,
Ali Othman & Abdul Rahim, 2021; Marin-Hernandez & Saavedra, 2023) and elucidating
cellular responses to varying conditions (Nurjana ¢ Zainudin, 2018; Yasemi ¢ Jolicoeur,
2021; Shih & Morgan, 2020). Notwithstanding its benefits, FBA is unable to integrate gene
regulation into the metabolic network when determining the best flux response (Pereira ¢
Rocha, 2022). Gene regulation in gene regulatory networks (GRNs) encompasses
interactions among genes, including inhibition, repression, and activation, wherein the
expression of a gene is modulated by other genes, namely transcription factors (TFs). The
condition of the gene, as determined by gene-protein-reaction (GPR) rules, will influence
the state of the flux reactions, determining their activity or inactivity (Chung et al., 2021).
The shortcoming of FBA to incorporate gene regulation will undoubtedly yield inaccurate
predictive outcomes. To address this issue, researchers have already proposed
computational models that integrate gene regulatory networks and metabolic networks,
termed the regulatory-metabolic network model (Ananda, Daud & Zainudin, 2024). These
models offer extensive insights into the metabolic processes and regulatory mechanisms
operating within cells simultaneously. Figure S1 illustrates the primary stages of
regulatory-metabolic network models for deriving the optimal mutant strain via genetic
engineering explained by Malc: et al. (2023). Then, the optimal mutant strains obtained
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were utilized for wet lab experiments, which encompass screening, production on a shake
flask scale, and production on a bioreactor scale until the overproduction of the desired
compounds on an industrial scale is obtained.

The current regulatory-metabolic network models can be categorized into two types:
discrete models and continuous models. In discrete models, the states of genes and
reaction fluxes, controlled by regulatory constraints, are exclusively categorized as either
active or inactive. The algorithms in the discrete category include regulatory flux balance
analysis (rFBA) (Covert ¢» Palsson, 2002), steady-state regulated flux balance analysis (SR-
FBA) (Shlomi et al., 2007), integrated flux balance analysis (iFBA) (Covert et al., 2008), and
the toolbox for integrating genome-scale metabolism, expression, and regulation (TIGER)
(Jensen, Lutz & Papin, 2011). Although these algorithms have successfully integrated gene
regulatory networks with metabolic networks, the rigorous regulation of the
regulatory-metabolic networks model may result in erroneous predictions. This happens
because, in fact, several genes or transcription factors have just a partial effect on flux
processes rather than completely activating or inhibiting them (Raman, 2021). To
overcome it, Lee et al. (2007) modified the rFBA algorithm by involving weights. After that,
researchers proposed several algorithms for modeling regulatory-metabolic networks in
continuous model, including probabilistic regulation of metabolism (PROM)
(Chandrasekaran & Price, 2010; Ma et al., 2015), transcriptional regulated flux balance
analysis (TRFBA) (Motamedian et al., 2017), optimization of regulatory and metabolic
networks (OptRAM) (Shen et al., 2019), and transcription regulation integrated with
metabolic regulation (TRIMER) (Niu et al., 2021). These algorithms have accurately
simulated the partial impacts seen in genes or flux processes when the collection of
transcription factors is either activated or eliminated. The PROM and TRFBA algorithms
use empirical gene regulatory networks (GRNs) in integrating GRNs and metabolic
networks, while OptRAM and TRIMER use the inferred GRNs. The empirical GRNs that
represent gene regulation via Boolean equations are obtained from direct observations
using RNA-seq technologies (Van Der Sande, Frolich ¢» Van Heeringen, 2023). Meanwhile,
the deduced GRNs are constructed using gene expression data via data-driven
methodologies, including machine learning approaches (Zhao et al., 2021).

Although the continuous model has successfully built non-rigid regulatory constraints,
further modifications are necessary. The PROM method solely employs the relative impact
of each TF on the regulated gene. Meanwhile, although the TRFBA and OptRAM
algorithms effectively incorporate all TFs regulating a gene, they do not account for the
interactions, such as inhibition and activation, shown in Boolean rules at the empirical
GRNs. These models exclusively use a set of transcription factors that regulate a gene to
generate a particular equation by utilizing gene expression data. On the other hand,
TRIMER excels at modeling soft regulatory constraints compared to PROM,; specifically, it
may incorporate many metabolic genes concurrently to establish the limits for the flux
reaction in accordance with GPR rules. Nonetheless, similar to TRFBA and OptRAM,
TRIMER fails to model the interaction types within GRNs. Those limitations certainly
have the potential to produce inaccurate metabolic engineering results.
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Based on the statements mentioned above, this article proposes a novel
regulatory-metabolic network model known as the reliability-based integrating (RBI)
algorithm. The procedure of reliability theory is utilized in RBI to model all TFs and genes
influencing the flux reaction comprehensively and simultaneously, taking into account the
types of interactions, including inhibition and activation. The RBI algorithm uses the
empirical GRNs as they convey information regarding the interaction types between TFs
and genes. In addition, the empirical GRNs exhibit greater confidence compared to the
inferred GRNSs, as they are derived comprehensively from direct experimental data (Larsen
et al., 2019; Parise et al., 2021). By implementing reliability theory, the probabilities of gene
states and reaction fluxes can be modeled comprehensively by incorporating the
interaction types of TFs and genes involved in the catalysis of reaction fluxes.

Several validations are required to identify the performance of RBI in designing the
optimal mutant strains. This study assessed the accuracy of RBI prediction results in
specific mutant strains, grounded in empirical experiments and the previous literature,
demonstrating the capability to generate mutant strains that enhance the production rate
of desired metabolites. The performance was compared to existing algorithms for
continuous types, utilizing both the empirical GRNs and the inferred GRNs. Finally, the
time complexity of the RBI algorithm was determined.

The primary contributions of this study are enumerated below.

1. A novel algorithm, termed the RBI algorithm, was proposed for integrating GRNs and
metabolic networks. This algorithm was incorporated into the continuous model
utilizing the empirical GRNs.

2. The performance of the RBI algorithm was evaluated against state-of-the-art algorithms
using actual results and previous literature. In addition, the time complexity of the RBI
algorithm has been identified.

3. Lastly, the RBI algorithm was implemented in designing the optimal mutant strains of
E. coli and S. cerevisiae to enhance the production rate of the succinate and ethanol.

This article has several parts. The first section provides a brief introduction to reliability
theory. The second part details the materials and methods used in this study. Subsequently,
the results and discussion are presented in the third and fourth sections. The conclusion is
presented in the last section.

A BRIEF OF RELIABILITY THEORY

Reliability theory is a mathematical discipline that investigates the probability of a system’s
reliability in relation to its components (Ross, 2023). This theory has recently been applied
to address challenges in various domains, including waste management systems
(Khristodulo et al., 2020), safety applications (Xu ¢ Saleh, 2021), and manufacturing
systems (Singla, 2023). The implementations illustrate that reliability theory can effectively
address real-world problems.

In order to determine the reliability value of a system, it is necessary to obtain
information regarding the probability values of its components and their structural
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configurations. Let x = (x1, X2, ...,x,) represent the component vector that affects the
reliability of a system (¢, ). The probability value of the ith component, denoted as p;,
indicates the likelihood of this component being active. There are three types of
component structures: series, parallel, and hybrid, where their illustration have been
presented in Fig. S2. The formula used to calculate ry_in series and parallel structures is
presented in Eq. (1). The reliability value of a system with a hybrid structure can be
determined by integrating the series and parallel formulas.

n

Tseries = sz and TParallel = 1 — H (1 _Pz) (1)
i=1

i=1

This discussion provides a concise technical overview of reliability theory as it pertains
to assessing the reliability value of a system, with a comprehensive exposition available in
Ross (2023). This study will utilize reliability theory to analyze metabolic genes and
reactions as a system. Meanwhile, the regulatory genes or TFs are considered components
of systems.

MATERIALS AND METHODS

The implementation of reliability theory in metabolic engineering

The RBI algorithm operated reliability theory to determine the reliability value of
metabolic genes or reaction fluxes. To calculate the reliability value, the Boolean rules
outlined in the empirical GRNs and GPRs must be considered. The Boolean rules
governing the empirical GRNs consist of three operators: NOT, AND, and OR. The NOT
operator indicates that transcription factors (TFs) associated with this operator inhibit the
regulated genes. Suppose that the ith transcription factor and the jth metabolic gene are
denoted by TF; and MG;, respectively. Several rules must be considered when determining
the reliability value of MG; (rvg,) regulated by TF;, as outlined in the following numbering.

1. If MG; is only regulated by TF; involving the NOT operator, i.e., MG; = NOT TF;, then
the reliability value of MG,; is determined by Eq. (2).

™G = P, @
where pfy is the complement of prr,, which is the probability value of TF; being active.
If TF; is knocked out, then prg, = 0.

2. If MG; is regulated by TF, and TF; involving the AND operator, i.e., MG; = TF, AND
TF;, then based on the formula of series structure in reliability theory, the reliability
value of MG; is determined by Eq. (3).

™G; = PTF,-PTE,- (3)

The series structure is used in this case due to the same characteristic between the AND
operator and this structure.

3. If MG; is regulated by TF, and TF; involving the OR operator, i.e., MG; = TF;, OR TF;,
then based on the formula of parallel structure in reliability theory, the reliability value
of MG; is determined by Eq. (4).

g = 1 — (1 = prr, ) (1 — pr,). (4)
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The use of parallel structure in this case is also based on the same reasons as the previous
operator.

For instance, aspA, one of the metabolic genes of E. coli type strain iAF1260 is regulated
by two TFs, Crp and FnR, whose Boolean rules are shown in Eq. (5).
aspA = (Crp AND (NOT Fnr)) OR Far. (5)

There are three operators involved in regulating aspA, namely NOT, AND, and OR. The
reliability value of aspA (r,p4) can be determined using the three previously established
reliability calculation rules. The illustration of transcription factors regulating the aspA
gene in a series-parallel structure is in Fig. S3. The steps to get the r,,4 formula are
elaborated in Eq. (6).

taspa = (Crp AND (NOT Fnr)) OR Fnr
= (pCVP AND p%nr) OR Prur (6)
=1-(1 _PCrp~pzc~"nr)(1 — PFnr)-

The same procedure is utilized to determine the reliability value of flux reactions
catalyzed by metabolic genes outlined in the GPR rules on GSMMs. The ATP synthase
reaction, ATPS4r, is a flux reaction in strain iAF1260, catalyzed by three metabolic genes:
AtpF0, AtpF1, and Atpl, as indicated by the boolean rule in Eq. (7).

ATPS4r = (AtpFO AND AtpF1) OR (AtpFO AND AtpF1 AND AtpI). 7)

The illustration of the metabolic gene structure that catalyses the reaction flux ATPS4r
has been presented in the Fig. S4. The method for acquiring r47pss, is outlined in Eq. (8).
rarpsar = (AtpFO AND AtpF1) OR (AtpFO AND AtpF1 AND Atpl)

= (papro AND PAth1) OR (PAtho AND Pawpr1 AND pAth)
= (pawpro-Papr1) OR (pAthO'PAthl’pAth)
=1 — (1 = pawpro-Papr1)(1 — Papro-PApF1-PAspI)-

(8)

The calculations presented will be utilized for all genes regulated by TFs in GRNs to
determine their reliability values. Also, the reliability value of reaction flux based on the
GPR rules is calculated using the same procedure. Subsequently, those reliability values
obtained will be used to establish soft constraints for the regulatory-metabolic networks
model, aiming to identify optimal mutant strains.

The reliability-based integrating algorithm

This study presents a novel algorithm for constructing a regulatory-metabolic network
model. This approach aims to establish a comprehensive pipeline linking GRNs and
metabolic networks that incorporates the interaction types between various genes in GRNs
and GPRs, a gap not addressed by existing algorithms. The algorithm proposed is the
reliability-based integrating (RBI) algorithm. The reliability theory is applied in RBI to
address the Boolean rules found in the empirical GRNs and GPR rules.
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Figure 1 The relationship illustration of GRNs and the metabolic networks.
Full-size K&l DOT: 10.7717/peerj-cs.2880/fig-1

Figure 1 illustrates the relationship between gene regulatory networks and metabolic
networks. In the figure, the ith gene was denoted by G;, Vi € {1,2, 3,4}. The jth enzyme
was denoted by E;,Vj € {3,4}. The k metabolite was denoted by My, Vk € {1,2}.
Meanwhile, R; was the reliability value of the flux reaction catalyzed by G; and Gy. The
figure indicated that G; was regulated by G; and G,, which respectively inhibited and
activated Gs. The reliability value of G; can be determined from this interaction. The
reliability value of R; was subsequently calculated using the Boolean equation involving G3
and Gy. The reliability value of the flux reactions will be used to establish regulatory
constraints governing the flux reaction. In this case, the reliability theory is utilized to
compute rg, and ry,.

Three types of RBI algorithms have been proposed in this study, namely RBI-T1,
RBI-T2, and RBI-T3. The distinction is in establishing the initial probability value of TFs.
The RBI-T1 algorithm assumes that TFs that are not knocked out have the same
probability of being in active or inactive conditions. Consequently, the initial
probability value of TFs in this algorithm is set to 0.5. The initial probability values of
RBI-T2 and RBI-T3 are based on gene expression data. The RBI-T2 algorithm utilizes the
binarization process from the PROM algorithm to derive the probability of active
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transcription factors (TFs). The initial probability value of RBI-T3 is derived from the
average of the initial probability values of RBI-T1 and RBI-T2. The formula to get the
initial probability values of transcription factors for each type of RBI algorithm is
presented in Table S1.

Furthermore, the RBI algorithm considers three parameters: o, f3, and y. The o
parameter is derived from the binarization of gene expression data to establish the initial
values of transcription factors for RBI-T2 and RBI-T3. This parameter is used to acquire
information regarding the probability value of genes as transcription factors in an active
state, utilizing the abundance of gene expression data measured under diverse
environmental conditions and genetic perturbations (Chandrasekaran & Price, 2010).
Additionally, the  and y parameters are utilized by RBI-T1, RBI-T2, and RBI-T3 to model
the partial effects experienced by various reactions as a result of the influence of genes or
transcription factors (Raman, 2021; Simeonidis, Chandrasekaran ¢» Price, 2013). The block
diagram of the RBI procedure is available in Fig. S5. The technical steps of this algorithm
are outlined below.

1. Input data required, namely GSMMs, GRNs, and the gene expression data.
2. Choose the TFs to be knocked out.
3. Determine the initial probability value of TF;, Vi using Eq. (9).

o if the ith TF is knocked out
prr, = f(TF;) otherwise.

Determining the value of f(TF;) is based on the RBI type. For RBI-T1, f(TF;) = 0.5, Vi.
Furthermore, if RBI-T2 is used, the value of f(TF;) is obtained from Eq. (10).

(9)

F(TE,) = é x n(TF; = 1). (10)

where n(TF; = 1) refers to the number of ‘1’ values in the gene expression data that has
been transformed to binary form based on the parameter o and the binarization procedure
of the PROM algorithm (Chandrasekaran & Price, 2010; Ananda, Daud ¢ Zainudin,
2024); meanwhile, d is the dimension of the gene expression data used. Moreover, f(TF;)
of RBI-T3 is obtained from the average value of f(TF;) obtained by RBI-T1 and RBI-T2,
the formula is presented in Eq. (11).

F(TE) = % (o.s +§ « n(TF; = 1)). (11)

4. Calculate ryg;, Vj, namely the reliability value of the jth metabolic gene, using the
reliability theory formula.

5. Define the probability value of the metabolic genes obtained from their reliability values
when those genes are regulated by their respective TFs. However, if there is no
information that TFs regulate metabolic genes, their probability is one.

6. Calculate gy, , Vk, namely the reliability value of the kth reaction flux, using the
reliability theory formula.
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7. Determine the reference flux using flux variability analysts (FVA). We obtain [lb;,ub],
Vk which is the bounds of the kth reaction flux.

8. Generate regulatory constraints into the model by updating the bounds of reaction
fluxes (RF) that are not transport reactions or ‘ATPM’ reactions and whose reliability
values are less than or equal to 5. The formula used to update the bounds of the kth
reaction flux, Vk, is shown in Eq. (12).
uby = rrg, X uby + 7.

k RF: *k Y (12)
lbk = TRF, X lbk — 9.
where y refers to the soft constraint adopted from the PROM algorithm
(Chandrasekaran ¢ Price, 2010).

9. Determine the optimal reaction flux using the FBA algorithm.

10. The optimal flux distribution is obtained.

The dataset used

To validate the performance of the proposed RBI algorithms, a simulation of metabolic
engineering was performed using those algorithms on E. coli and S. cerevisiae. The results
were compared with empirical data and previous literature demonstrating the potential
mutant strains for the overproduction of desired metabolites. The computational
simulation conducted utilized genome-scale metabolic models (GSMMs), regulatory
networks (GRNSs), and gene expression data as datasets.

Genome-scale metabolic model

GSMMs represent comprehensive frameworks of metabolic networks, integrating
metabolic data, including flux reactions and their directionalities, associated catalyzing
enzymes, and GPR associations. This study utilized the GSMMs iAF1260 and Yeast 7.6,
representing strain models of E. coli and S. cerevisiae, respectively. The iAF1260 model was
utilized to estimate the biomass and indole production rates (Niu et al., 2021). Meanwhile,
the Yeast 7.6 model was used to forecast the flux range of succinate, 2,3-butanediol, and
ethanol (Shen et al., 2019; Man et al., 2021; Cruz et al., 2024; Shirai ¢ Kondo, 2022).
Additional details regarding those strains are provided in Table S2.

Gene regulatory networks

The datasets for gene regulatory networks utilized were iMC1010 and iMH805/837,
representing gene regulation models for the microorganisms E. coli and S. cerevisiae,
respectively. The data can be accessed at https://systemsbiology.ucsd.edu/. The data
consists of the empirical GRNs that encompass the interactions of TFs represented in
Boolean equations. The iMC1010 dataset comprises 104 TFs and 479 metabolic genes that
their TFs regulate. This data has been utilized to reconstruct the integration model of gene
regulation and metabolism in E. coli (Grimbs et al., 2019; Niu et al., 2022). GRNs iMH805/
837 comprise 55 transcription factors and 837 regulatory interactions derived from the
primary literature (Herrgdird et al., 2006).
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The gene expression data

Furthermore, the gene expression data from microbial E. coli, comprising 213 normalized
Affymetrix microarray profiles derived from various published studies conducted in the
Palsson Lab, as summarised by Lewis et al. (2009), was utilized in this study. The data can
be accessed at https://systemsbiology.ucsd.edu/. Meanwhile, the gene expression data for S.
cerevisiae were sourced from the Gene Expression Omnibus (GEO) repository. The data
were produced by Sardi et al. (2018) in their investigation of the response of S. cerevisiae to
1-butanol, isobutanol, or ethanol across various genetic backgrounds and tolerances under
both aerobic and anaerobic conditions.

The performance measurements

Performance measurements are essential for assessing the efficacy of the proposed RBI
algorithms. The simulations assessed both effectiveness and efficiency. The validation
applied to assess these two aspects is outlined in the subsequent discussion.

The validity measures

Validity measures denote the techniques employed to assess the performance of the
algorithm. The validity pertains to the precision of the prediction in relation to the actual
outcome. This study used several validity measures, including the root mean square error
(RMSE) (Arif, Fatimah Zawani Abdullah & Malim, 2014; Gongalves, Henriques & Costa,
2023), the Pearson correlation coefficient (PCC) (p) (Niu et al., 2021; Caivano et al., 2023),
R-squared (R?) (Yadav et al., 2023; Zhang et al., 2020), and the bias value (Lee ¢ Nam,
2022; Tsimenidis, Vrochidou & Papakostas, 2022; Odrzywolek et al., 2022). The formula for
these measurements is presented in Eqs. (13)-(16).

1 X
RMSE = ;Z (i — )" (13)
i=1

_ cov(y,y) (14)

OyOy .

SSE
RP=1-—"". 15
SST (15)

D ey ()A’i_Yi)

n

The Bias value = (16)

where y; € yand y; € y, Vi are the actual results and the predicted values, respectively. The
value of n refers to the number of observations. Additionally, ‘cov’ and ¢ are the covariance
and the standard deviation, respectively. Furthermore, SSE and SST are the unexplained
variation and the total variation, respectively.

The RMSE value indicates the accuracy of the algorithm used, where the lower the
RMSE, the higher the accuracy. Meanwhile, PCC (p) shows the value of a linear correlation
between the prediction and actual results. The PCC value close to 1 means that a high
positive correlation is obtained. Conversely, this value was close to —1, indicating a high
negative correlation. Meanwhile, PCC approximates to zeros, implying there is lacking
linear correlation. At the same time, R-square (R?) notifies how suitable the prediction
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results of particular algorithms are to the actual results in explaining its variance. Finally,
the bias value describes the systematic error within the prediction results. A positive bias
denotes the overestimated prediction obtained. Conversely, a negative bias points to the
underestimated prediction. The good performance of an algorithm based on the bias value
is obtained when its bias value is almost zero.

Time complexity

Time complexity was utilized to validate the efficiency of the RBI algorithm during i silico
experiments. Its time complexity was diagnosed based on big O analysis within each part
of RBI. This procedure was provided by Odhiambo Omuya, Onyango Okeyo & Waema
Kimwele (2021).

RESULTS

The optimal parameters of the RBI algorithm

The RBI algorithms necessitate three parameters (o, ff, and y), which emerge from
uncertainties in genes or reaction fluxes. Variability in gene expression significantly
impacts cellular function. It arises from various factors, including stress response,
pathogenesis, metabolism, development, cell cycle, circadian rhythms, and ageing (Raj ¢
Van Oudenaarden, 2008). RBI-T2 and RBI-T3 use the o parameter to model uncertainties
and derive initial quantity measures of regulatory gene expression or TFs from gene
expression data, utilizing the binarization procedure of the PROM algorithm
(Chandrasekaran ¢ Price, 2010). The values serve as initial probability values for
transcription factors in the RBI algorithm. Then, the f and y parameters are utilized due to
the reality that numerous genes/transcription factors may exert only a partial influence on
reaction fluxes (Raman, 2021). The parameter f quantifies the extent of enzyme
performance generated by metabolic genes in affecting the activation energy of a flux
reaction (Urry et al., 2017). Meanwhile, 7 serves as a partial effect for the bounds of flux
reactions.

To obtain the optimal parameters required by RBI, various metaheuristic optimization
techniques were operated, such as particle swarm optimization (PSO), genetic algorithm
(GA), simulated annealing (SA), differential search algorithm (DSA), bijective-DSA (B-
DSA), surjective-DSA (S-DSA), Elitist(1)-DSA (E1-DSA), Elitist(2)-DSA (E2-DSA), grey
wolf optimization (GWO), whale optimization algorithm (WOA), genetic algorithm based
on natural selection (GABONST), komodo mlipir algorithm (KMA), and Aquila optimizer
(AO). Those selected metaheuristic optimisations were either state-of-the-art
metaheuristic optimisation techniques or had been utilized in the design of the optimal
mutant strain (Hor et al., 2024; Tan et al., 2023; Dzulkalnine et al., 2023; Suyanto, Ariyanto
& Ariyanto, 2022; Abualigah et al., 2021; Lee et al., 2020; Albadr et al., 2020; Shen et al.,
2019; Mirjalili & Lewis, 2016; Mirjalili, Mirjalili & Lewis, 2014). The fitness value was
derived from the multiplicative inverses of the RMSE obtained.

Two microbial strains, E. coli and S. cerevisiae, have been used in simulations to
determine the optimal parameters for each type of RBI. The results and gene knockout
schemes for E. coli were presented by Covert et al. (2004), with biomass flux serving as the
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Figure 2 The convergence curve of the fitness value of each metaheuristic in determining the optimal parameters of the RBI algorithms. The
simulations of the E. coli strain were presented by (A)-(C). Meanwhile, the S. cerevisiae strain were given in (D)-(F).
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objective function. In S. cerevisiae, the production rates of succinate, 2, 3-butanediol, and
ethanol were predicted and compared with previous literature (Shen et al., 2019). Those
empirical results and validated TF knockout scheme were utilized to get the valid
parameters for RBI, where to get the valid parameters, the empirical data was required
Helbing (2010).

Figures 2A-2C demonstrated the simulation results of the E. coli strain each RBI type.
From Fig. 2A, it could be known that the global convergence of B-DSA, GWO, S-DSA,
DSA, WOA, and GABONST was similar enough. However, GWO precisely obtained the
highest global convergence with a small difference; namely, its fitness value was 11.562.
Then, in Fig. 2B, WOA received the highest global convergence of 11.269, demonstrating a
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small difference to SA, B-DSA, S-DSA, E1-DSA, KMA, GWO, GA, and GABONST.
Afterward, the parameters achieved by the DSA algorithm for RBI-T3 were chosen because
its algorithm provided the highest global convergence, namely 11.634. Accordingly, the
optimal parameters of RBI-T1, RBI-T2, and RBI-T3 were respectively obtained from
GWO, WOA, and DSA. Meanwhile, Figs. 2D-2F showed the simulation results of the

S. cerevisiae strain in determining the optimal parameters of each RBI type. Based on the
fitness value compared, it was concluded that the E1-DSA algorithm provided the best
optimal parameters, where its fitness value of 0.1815 was the highest value. Furthermore,
Figs. 2E and 2F showed that the B-DSA and KMA algorithms acquired the same and best
global convergence, namely 0.182. Hence, the best optimal parameters for RBI-T1, RBI-T2,
and RBI-T3 in the S. cerevisiae strain, respectively were obtained from E1-DSA, B-DSA,
and KMA. Furthermore, the optimal parameters used in this study for each RBI type are
presented in Table S3.

Performance of the RBI algorithm

The RBI algorithm was developed to integrate GRNs and metabolic networks by
incorporating comprehensive Boolean rules from both GRNs and GPRs, including their
interaction types. This algorithm enables researchers to assess the effectiveness of gene
engineering approaches and determine the most effective mutant strategy for optimizing
the desired metabolic flux. The designed mutant strains can be estimated in silico using
RBI. The estimation results can subsequently be validated through actual TF knock-out
and screening experiments conducted in the wet lab. The RBI algorithms were applied to
estimate the outcomes of its gene engineering based on the actual results and prior
literature, which were provided by Niu et al. (2021) and Shen et al. (2019).

The previous algorithms for the regulatory-metabolic network model were employed to
compare and assess the RBI performance, specifically continuous-type models utilizing the
empirical GRNs or the inferred GRNs. The advanced algorithms employed in the
empirical GRNs were PROM and TRFBA. Simultaneously, recent algorithms utilizing the
inferred GRNSs, including TRIMER, OptRAM, and OptFlux, were utilized.

Accuracy in production rate of biomass and indole

We conducted a comparison of the RBI algorithm’s prediction results for reaction fluxes
with those of other algorithms to demonstrate its predictive capability. We assessed the
accuracy of the biomass and indole flux predictions generated by those computational
algorithms against actual empirical results. The RBI algorithm was compared with PROM,
TRFBA, and TRIMER, with empirical results presented by Niu et al. (2021). In this
simulation, all types of RBI algorithms have been simulated. Meanwhile, other algorithms
have only utilized their optimal outcomes from previous work.

The first comparison was conducted based on the biomass prediction results using the
microorganism E. coli strain type iAF1260. Table S4 presented the biomass flux prediction
results influenced by perturbations from TF knockout mutants, specifically arcA, fnr,
appY, oxyR, and soxS, under aerobic and anaerobic conditions. In this context, we define
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WT (wild type) as a type that estimates strain biomass without the presence of the TF
knockout mutant. We utilized four validation measures: RMSE, PCC, R-squared, and bias
value. These measures provide insights into the accuracy, correlation, and systematic error
of each algorithm. Then, the values highlighted in bold indicate the optimal algorithm for
the specific validity measure.

The comparative results in Table 54 indicated that RBI-T1 demonstrated good
performance across all the used validity measures, achieving the lowest RMSE of 0.088, and
the PCC (0.871) and R-square (0.647) values of RBI-T1 were competitive, even if slightly
lower than those of TRFBA and TRIMER. Its bias value of 0.059 was relatively small,
indicating an overestimation. Based on those results, the predictive capability of RBI-T1
exhibited significant reliability and accuracy in this instance. Meanwhile, the prediction
results of RBI-T2 demonstrated sub-optimal quality according to all the validity measures,
with RMSE, PCC, R-squared, and bias values of 0.634, —0.737, 0.474, and 0.589,
respectively, as presented in Table S4. The results indicated that RBI-T2 showed low
accuracy and inconsistent prediction results. Conversely, RBI-T3 demonstrated preferable
validity measurement results relative to RBI-T2. However, it was inferior to PROM,
TRFBA, and TRIMER. The RMSE value of RBI-T3 was 0.247, indicating moderate
performance. The PCC value of 0.296 and R-squared of 0.473 suggested a sufficient
positive prediction correlation and adequate capacity to explain the variance in the
empirical data. The bias of RBI-T3, measured at 0.187, implied a slight overestimation in
the prediction results. RBI-T3 revealed a more satisfactory performance relative to RBI-T2.
Furthermore, RBI-T3 demonstrated potential as an alternative algorithm.

Likewise, we conducted a second comparison to evaluate the RBI algorithm’s ability to
predict the indole production rate. The perturbations employed were some TF knockout
mutants from Niu et al. (2021), for which their empirical GRNs were available, namely Fnr,
soxS, Crp, lysR, fucR, Mali, phoB, cpxR, tnaA, and tnaB. Similar to the first comparison,
the prediction results of the RBI algorithms were compared with the results of PROM,
TRFBA, and TRIMER, which used flux balance analysis (FBA) to predict the optimal flux
reactions. In this case, the type of TRIMER used was TRIMER-C because its prediction
results were best. The validity measures used were RMSE, PCC, R-squared, and bias value.
Results of the comparison have been presented in Table S5.

Based on the comparison results shown in Table S5, RBI-T1 got better RMSE (0.025)
and bias (0.025) values compared to TRFBA and better R-squared (0.500) values compared
to PROM and TRIMER. In addition, the PCC value (0.499) of RBI-T1 showed a positive
correlation between the prediction results and the actual empirical results and was
moderate. This indicated that RBI-T1 had a competitive performance compared to other
algorithms in this simulation. On the other hand, RBI-T2 performed better than RBI-T1 in
almost all the validity measures used. The accuracy of RBI-T2, as indicated by the RMSE
and bias values (0.023), was better than TRFBA, although lower than PROM and TRIMER.
The PCC value of RBI-T2, namely 0.808, outperformed the values of PROM, TREBA, and
TRIMER. The obtained PCC value showed a strong positive correlation between the
RBI-T2 prediction results and the actual empirical results, indicating a high goodness of fit
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in the prediction results. Likewise, in the R-squared value, RBI-T2 obtained a value of
0.500, which suggested the ability to explain empirical data variance better than PROM,
TRFBA, and TRIMER. Those descriptions showed the ability of the RBI-T2 algorithm to
predict the production rate of indole for E. coli was better than RBI-T1, PROM, TRFBA,
and TRIMER in the consistency of prediction results and the ability to explain empirical
data variance. Meanwhile, the performance of the RBI-T3 algorithm based on the table
showed a lower performance than RBI-T2 and RBI-T3 in this case. The RMSE and bias
values of RBI-T3 were relatively low but still above RBI-T1 and RBI-T2. Then, when
considered from the R-squared value, the RBI-T3 algorithm showed moderate

ability in explaining empirical data variance. However, its PCC of —0.753 showed
inconsistency between the prediction results and the actual empirical results, even though
the correlation was quite high. This indicates that RBI-T3 still needs improvement,
especially in the suitability of its prediction results with empirical data based on the PCC
value in this case.

The prediction results of indole production for each TF KO scheme, as shown in
Table S5, yielded a sufficiently similar value. This was also seen in the actual results. Based
on the identification of the relationship between genes in TF KO and the reactions
influenced, those results occurred because the knocked-out genes in each TF KO
impact several metabolite reactions with high similarity. For instance, the Fnr and Sox$S
impact the same metabolic reactions with a similarity of 0.94. This means that almost all
metabolic reactions influenced by Fnr are also influenced by SoxS. This also
happens among schemes in TF KO. Consequently, the predicted outcomes of indole
synthesis across each TF KO strategy exhibit little variation in the production rate of
indole. In fact, in the TRFBA algorithm, the same prediction results are obtained in each
TF KO scheme, indicating intuitively that this algorithm exhibits less sensitivity to the
TF KO used.

Accuracy in production rate of succinate, 2,3-butanediol, and ethanol

Also, the proposed algorithms were validated for their predictive capability regarding
several valuable compounds produced by yeast, especially succinate, 2,3-butanediol, and
ethanol. The prediction results were compared with previous literature, where these
compounds have been successfully experimentally enhanced in yeast guided by in silico
metabolic engineering. The succinate reference was derived from Otero et al. (2013), which
presented experimentally validated results from mutant yeast demonstrating enhanced
succinate production. Meanwhile, references for butanediol and ethanol were sourced
from Ng et al. (2012) and Lisha ¢ Sarkar (2014), respectively.

This activity involved a comparison of RBI algorithms with PROM, TRFBA,
OptFlux, and OptRAM to predict the lower and upper bounds of the production rate
of valuable compounds. The optimization algorithm employed to forecast the
production rate boundaries was flux variability analysis (FVA). The perturbation schemes
used were TF knockout, as derived from Shen et al. (2019) and detailed in Table S6. In
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addition, the validation measures utilized consist of RMSE, PCC, R-squared, and the
bias value.

The results provided in Table S7 presented that RBI-T1 got superior performance
relative to other RBI models. The model exhibited a low RMSE of 6.444, even though it was
slightly higher than OptFlux. Furthermore, it attained the highest PCC (0.819), indicating
a robust positive correlation between the predicted and observed values. The R-squared
value of 0.667 signified that 66.7% of the variability in the data was accounted for by the
model. RBI-T1 demonstrated the lowest bias (2.853), indicating minimal systematic
deviation in its predictions. Meanwhile, RBI-T2 displayed inferior performance compared
to RBI-T1 across all validity measures used. The RMSE of 14.365 was higher than RBI-T1,
RBI-T3, OptFlux, and OptRAM, indicating a greater prediction error in RBI-T2.
Nevertheless, its accuracy still outperformed PROM and TRFBA. The PCC of 0.305
indicated a moderate correlation between predictions and observations, outperforming
OptRAM. The R-squared value was 0.520, indicating that it accounted for 52% of the
variability in the data, which was higher than PROM, TREBA, OptFlux, and OptRAM.
RBI-T2 exhibited a higher bias of 6.417 than RBI-T1, signifying an increased systematic
error. On the other hand, RBI-T3 performed moderately, surpassing RBI-T2 but
underperforming RBI-T1. The RMSE was 6.784, exceeding that of RBI-T1 but lower than
RBI-T2, PROM, TRFBA, and OptRAM, showing moderate accuracy performance. The
PCC of 0.811 indicated a stronger correlation than RBI-T2, PROM, TRFBA, OptFlux, and
OptRAM, albeit weaker than RBI-T1. The R-squared value of 0.657 signified that RBI-T3
accounted for 65.7% of the variability in the data. The bias (3.254) is lower than that of
RBI-T2, PROM, TRFBA, and OptRAM but higher than RBI-T1 and OptFlux, suggesting a
moderate level of systematic error.

The time complexity

There are three types of the RBI algorithm, namely RBI-T1, RBI-T2, and RBI-T3. The
difference between them is only in determining the probability value of the regulatory
genes, f(RG;)Vi. In computation, this difference does not have a significant effect on their
processing time because the most complex type of RBI uses linear functions to determine
the probability values of RG;. The RBI algorithms utilize four pieces of information during
its process: metabolic genes, regulatory genes, metabolic reactions, and metabolites.
Suppose that the size of metabolic genes, regulatory genes, metabolic reactions, and
metabolites in the dataset are n;, np, n3 and ny, respectively. Subsequently, the time
complexity of this algorithm based on big-O notation can be identified based on these
sizes. The pseudocode of the RBI algorithm and its big-O notation in each step have been
provided in Table S8.

Based on the dataset provided in the Table S2, it was known that the number of
reactions, metabolites, and genes in the metabolic networks are not significantly
different (n, ~ n3 ~ n,). Meanwhile, the number of regulatory genes was quite below the
number of metabolic genes, n, < n; (Shlomi et al., 2007). Suppose that n is more or equal
to max{n,, n,, n3, ns }. Subsequently, the time complexity can be estimated by referring to
the size n, where the time complexity calculation procedure of the RBI algorithm could be
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conducted based on (Odhiambo Omuya, Onyango Okeyo ¢ Waema Kimwele, 2021).
Equation (17) showed the time complexity result of the RBI algorithm.
T(n) =20(n1) + 30(n3) 4+ 20(ny) + O(ny.n3)
& T(n) = 20(n) + 30(n) + 20(n) + O(n?)
& T(n) = 70(n) + O(n?)
& T(n) = O(n?). (17)

Based on the analysis conducted, the time complexity of the RBI algorithm is O(n?) or
quadratic, where the step causing the high time complexity is determining the reference
fluxes using FVA. This is reasonable enough because, in the FVA algorithm, the
optimization process involves all metabolites, which are carried out repeatedly to predict
the boundaries of all metabolic reactions.

Subsequently, simulations were conducted to assess the efficiency of the RBI algorithm
in large-scale metabolic networks by measuring its running time. This simulation
compared RBI-T1, RBI-T2, and RBI-T3 with PROM and TRFBA, which are the
regulatory-metabolic network models that used the empirical GRNs. Additionally, five
strains were employed: E. coli core, iAF1260, iJO1366, iMM904, iTO977, and Yeast7.6.
Those five strain models had varying sizes of genetic regulatory networks and metabolic
networks based on the number of metabolites, reactions, genes, and transcription factors
provided in Table S9. In this simulation, the objective function used was the production
rate of biomass.

Figure S6 showed a line graph depicting the running time of the RBI-T1, RBI-T2,
RBI-T3, PROM and TRFBA algorithms on a particular model. From the graph, it is known
that the RBI-T1, RBI-T2, RBI-T3, and PROM required relatively the same running time
for each strain model. In addition, the increase in running time required by those
algorithms is not significant. In contrast, the TRFBA algorithm requires a longer running
time with a significant increase along with the increasing size of the strain model. The high
running time of TRFBA might be due to the tuning process of the regulatory constraints
that had a high complexity and the optimization process that used the mixed integer linear
programming (MILP) model. Meanwhile, all types of RBI and PROM algorithms use FBA
optimization processes that utilize a linear programming approach and do not contain a
fairly complex tuning process for regulatory constraints. The average running time values
obtained by RBI-T1, RBI-T2, RBI-T3, PROM, and TRFBA were 1.680, 1.869, 2.553, 1.800,
and 37.258, respectively. Quantitatively, it indicated that RBI-T1 is the algorithm with the
highest level of efficiency in this case, followed by PROM, RBI-T2, RBI-T3, and TRFBA.

Designing the optimal mutant strains

A comparative analysis of the proposed algorithms (RBI-T1, RBI-T2, and RBI-T3) has
been performed using empirical data and validated potential TF Knockout schemes. This
comparison demonstrated accurate predictions and a good correlation between the
predicted outcomes and the used benchmark results. The findings indicated that the
proposed algorithms were both effective and efficient in the integration of GRNs with
metabolic networks for. Accordingly, in this section, the RBI-T1, RBI-T2, and RBI-T3
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algorithms were utilized to engineer optimum mutant strains in E. coli and S. cerevisiae
microorganisms. The design outcomes of these algorithms were compared with the PROM
and TRFBA algorithms due to both algorithms’ capacity to include the empirical GRNs.
The prediction results of the wild type were also provided to demonstrate the potential of
the acquired mutants.

The strain models used to develop optimum mutant strains, as seen in Table S9, include
E. coli and S. cerevisiae models. The E. coli model has been extensively used in metabolic
engineering to predict growth rates and the production rates of targeted metabolites, such
as succinate. The E. coli core and iAF1260 models have been used to assess succinate
production rates using flux balance analysis (FBA) combined with a metaheuristic
algorithm (Daud et al., 2019). Then, iJO1366 has been analyzed using the MoMA
algorithm to forecast succinate production rates (Mienda, Shamsir & Illias, 2016).
Likewise, the S. cerevisiae model has been extensively researched owing to the extensive
understanding of its metabolism (Pereira, Nielsen ¢» Rocha, 2016). Models of S. cerevisiae,
including iTO977, iMM904, and Yeast 7.0, have been used to forecast significant
compounds such as ethanol (Lopes & Rocha, 2017). Moreover, the yeast S. cerevisiae is the
most extensively researched yeast and is used in industrial applications, including ethanol
production.

Table S10 provided the predictive outcomes of the succinate production from each
algorithm under both aerobic and anaerobic conditions for each strain. The substrates
used for the simulation were glucose and oxygen, with the substrate uptake rate following
Niu et al. (2021) in predicting the growth rate of E. coli. The proposed algorithms
demonstrated excellent succinate production relative to PROM and TRFBA in almost all
strains used, except in E. coli core, where its performance was inferior to them. The E. coli
core model represents the most basic representation of the E. coli strain. Therefore, despite
the proposed algorithms obtained a lower prediction in E. coli core, they effectively
optimize the information in the advanced E. coli models, achieving a significantly higher
production rate in comparison to PROM and TRFBA. Hence, the proposed algorithm
generally outperformed PROM and TRFBA in succinate prediction. In addition, those
results indicated the potential overproduction of the succinate production due to more
than the prediction results of the wild type.

Meanwhile, in the results of designing the optimal mutant strain of S. cerevisiae for
predicting ethanol production, the suggested algorithms provided competitive results
compared to PROM and TRFBA, as seen in Table S11. The predictive outcomes of the
RBI-T1 algorithm were marginally worse than those of PROM and TRFBA for strains
iMM904 and Yeast7.6. Nonetheless, the predictive outcomes for strain iTO977 were
superior. Conversely, the RBI-T2 algorithm demonstrated superior predictive outcomes
compared to PROM and TRFBA for strains iTO977 and Yeast 7.6 under anaerobic
circumstances, with Yeast 7.6 exhibiting the maximum ethanol output. At the same time,
the RBI-T3 exhibited performance almost similar to that of the RBI-T1, which surpasses
the iTO977 strain, where the forecast of ethanol production from this strain is the highest.
On the other hand, based on the wild-type results, the proposed algorithm showed the
potential overproduction in the particular strains, including iTO977 and Yeast 7.6, but
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they are under wild-type in iMM904. Nonetheless, the difference in the prediction results
at iMM904 was not great, about 0.440 mmol/gDW/hr.

Subsequently, Table S12 presented the results of the optimal mutant strain schemes
derived from the proposed algorithm. The findings were chosen based on the maximum
metabolite production attained by the RBI algorithms, as seen in Table S10 and S11. Also,
the growth rate corresponding to the production rate of the predicted metabolite was
provided to identify the optimal design of the growth-coupled (GC) mutant strain capable
of surviving post-mutation. The methodology used to acquire the GC mutant strain
followed that of Daud et al. (2019), while the substrate uptake was based on the simulation
performed by Niu et al. (2021). The table presented a scheme of mutant strains that might
enhance succinate synthesis, compared to the wild-type, in the strains E. coli core (ANA),
iAF1260 (AER and ANA), and iJO1366 (AER and ANA). Concurrently, excessive ethanol
production was achieved in strains iTO977 (AER and ANA) and Yeast 7.6 (ANA). Here,
eight of the twelve mutant strain schemes obtained have been identified and predicted to
provide an overproduction of the desired metabolites, where the RBI-T2 and RBI-T3
algorithms yielded three and five optimal mutant strains, respectively.

DISCUSSION

This research showed new regulatory-metabolic network models that combined GRNs and
metabolic networks to design the optimal mutant strains. The proposed model was termed
the RBI algorithm, categorized into three types according to the initial values of its TFs,
namely RBI-T1, RBI-T2, and RBI-T3. This algorithm was the first continuous-type
integrating approach that comprehensively incorporated Boolean rules within the
empirical GRNs and GPR rules in the regulatory-metabolic network model. The reliability
theory that was applied in the RBI algorithms allowed for the visualization of the
relationship between transcription factors that regulated a gene, represented as a
combination of parallel and series structures. This relationship could be expressed as a
mathematical formula to quantify the reliability or activity of the regulated gene. Besides,
the types of interactions of TFs, inhibition or activation, were fully considered in this
model. Therefore, the RBI algorithms were more comprehensive than the earlier
algorithms in modelling biology systems, especially the integration model of gene
regulatory networks and metabolic networks. To identify the performance of the RBI
algorithms, simulations were conducted in predicting the production rate of biomass and
particular metabolites in strains of E. coli and S. cerevisiae. Subsequently, the prediction
results of RBI were compared to the previous algorithms.

The effectiveness of the RBI algorithms in predicting biomass fluxes and indole
production rates exhibited considerable variation among the three types: RBI-T1, RBI-T2,
and RBI-T3. RBI-T1 exhibited robust predictive capability for biomass fluxes, attaining the
lowest RMSE (0.088) compared to all algorithms, alongside competitive PCC (0.871) and
R-squared (0.647) values. The obtained validity results demonstrated reliable performance
with slight overestimation, as evidenced by a low bias of 0.059. In predicting indole
production rates, RBI-T1 exhibited competitive RMSE (0.025) and bias (0.025) values. In
addition, its PCC of 0.499 indicated a moderate positive correlation with empirical data,
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and the R-squared of 0.500 demonstrated a moderate ability to explain empirical data
variance. The results indicate that RBI-T1 has commendable predictive accuracy. Also, its
prediction could explain the variation of the empirical results. RBI-T2 exhibited
inadequate performance in biomass flux predictions, yielding sub-optimal results across all
metrics. The RMSE of 0.484, the PCC of —0.635, and the bias of 0.453 indicated low
accuracy and inconsistency. Nevertheless, RBI-T2 demonstrated superior performance in
predicting indole production rates, outperforming all other algorithms, including PROM,
TRFBA, and TRIMER, with a PCC of 0.808 and an R-squared value of 0.500. This
indicated a strong positive correlation and an enhanced capacity to account for variance in
empirical data. The RMSE (0.023) and bias (0.023) were superior to those of TRFBA but
marginally lower than PROM and TRIMER. RBI-T3 demonstrated moderate effectiveness
in biomass flux predictions, surpassing RBI-T2 but falling short of PROM, TRFBA, and
TRIMER. The RMSE of 0.247 indicated acceptable accuracy, while the PCC of 0.296 and
R-squared value of 0.473 suggested a moderate positive correlation and a reasonable ability
to explain variance, accompanied by a slight overestimation reflected in a bias of 0.187. In
predicting indole production rates, RBI-T3 demonstrated comparable performance to
other proposed algorithms. Its prediction accuracy, based on the RMSE, R-squared, and
biar values, was 0.029, 0.497, and 0.029, respectively, which were not much different from
RBI-T1 and RBI-T2. However, its PCC of —0.753 indicated an inconsistent correlation
with empirical data. The results underscored RBI-T3’s accuracy strengths while also
indicating areas for improvement in correlation regarding indole predictions. Generally,
RBI-T1 was the most accurate algorithm for predicting the production rate of biomass for
E. coli based on this simulation. For the prediction of indole production rate, RBI-T1 and
RBI-T2 were equally good algorithms, with RBI-T2 slightly more consistent with the
empirical results. In conclusion, RBI-T2 was the most adaptable and competitive
alternative in simulations of Indole production conducted.

The results in the mutant strain of S. cerevisiae conducted indicated that RBI-T1
dominantly outperformed other algorithms, exhibiting enhanced predictive accuracy and
reliability. The model demonstrated a low RMSE of 6.444, marginally exceeding that of
OptFlux, the highest PCC of 0.819, and an R-squared value of 0.667, which signified that it
explained 66.7% of the data variability. Additionally, it exhibited the lowest bias at 2.853,
reflecting minimal systematic error. RBI-T2 exhibited inferior performance across all
metrics relative to RBI-T1, recording a higher RMSE of 14.365, a moderate PCC of 0.305,
and an R-squared value of 0.520. Nonetheless, it outperformed baseline models such as
PROM and TREBA. The elevated bias of 6.417 indicated a rise in systematic errors. RBI-T3
exhibited moderate performance, achieving an RMSE of 6.784, a robust PCC of 0.811, and
an R-squared value of 0.657. This demonstrated an improvement over RBI-T2, although it
fell short compared to RBI-T1. The bias of 3.254 was lower than that of RBI-T2 but higher
than RBI-T1, indicating a moderate systematic error. RBI-T1 exhibited the best
performance, followed by RBI-T3, and finally RBI-T2.
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Based on the statements mentioned above, it was known that RBI-T1 outperformed
RBI-T2 and RBI-T3 in predicting biomass production rate for E. coli and the particular
metabolites in S. cerevisiae. Meanwhile, in the production rate of indole, the performance
of RBI-T1 was quite competitive with RBI-T2 and RBI-T3, as noticed from the dominant
validity results that are not much different from them. Meanwhile, RBI-T2 had a
significantly lower performance compared to RBI-T1 and RBI-T3 in predicting the
production rate of biomass and the particular metabolites in S. cerevisiae. However, in the
indole prediction results, RBI-T2 showed a good performance and slightly better than
RBI-T1. Finally, RBI-T3 showed good performance in biomass prediction and the mutant
strains of s. cerevisiae. In those cases, the RBI-T3 algorithm was better than RBI-T2,
although it was a slightly lower performance than RBI-T1. Nevertheless, the performance
of RBIT3 required improvement in the Indole production, especially in correlation with
the empirical results. In general, in the simulations that have been carried out, RBI-T1 had
the best performance, followed by RBI-T3, and finally RBI-T2.

Moreover, based on the time complexity, all types of RBI algorithms had identical time
complexity, namely O(n?), which was concluded as the quadratic time complexity Younes
et al. (2022). The process that caused the high time complexity in the RBI algorithms only
occurred once during the RBI process, namely in determining the reference fluxes using
the flux variability analysis. In addition, based on the simulations conducted to identify the
running time required by the RBI algorithm, it was concluded that increasing the strain
complexity did not significantly increase the running time requirements of this algorithm.
Therefore, the RBI algorithm has quite good efficiency capabilities. This work has also
utilized RBI algorithms to design optimum mutant strains of the microorganisms E. coli
and S. cerevisiae in in silico. The simulation results indicated that those proposed
algorithms suggested some TF knockout schemes capable of gaining the overproduction of
ethanol and succinate. Out of the twelve schemes obtained, eight optimal mutant strain
schemes outperformed the wild-type in producing the desired metabolite. In addition,
some mutants exhibited elevated metabolite production relative to PROM and TRFBA.
This implementation indicates that the suggested method is able to design the optimal
mutant strains.

The proposed RBI algorithms can be applied to model the integration of gene regulatory
networks and metabolic networks of microbes, plants, and even humans, which have huge
complexity. This algorithm is the first to integrate the empirical GRNs into metabolic
networks comprehensively. In addition, the empirical GRNs have a higher level of
confidence compared to the inferred GRNs (Larsen et al., 2019; Parise et al., 2021).
However, the availability of empirical GRNSs is not as high as that of the inferred GRNs
because the empirical GRNs resulted from direct observation, such as RNA-seq
technologies (Van Der Sande, Frolich & Van Heeringen, 2023). Meanwhile, the inferred
GRNs were deduced based on the gene expression data, which is abundantly available.
Therefore, when datasets of the empirical GRNSs are available, the regulatory-metabolic
network model of microbes, plants, and even humans for designing the optimal mutant
strains can be conducted using RBI algorithms.

Ananda et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2880 21/29


http://dx.doi.org/10.7717/peerj-cs.2880
https://peerj.com/computer-science/

PeerJ Computer Science

Finally, the proposed RBI algorithms (RBI-T1, RBI-T2, RBI-T3) still have
shortcomings. They do not involve the signaling networks in designing the mutant strains.
This is because the signaling networks have no comprehensive datasets. In addition, the
dynamic models constructed for signaling networks require parameters that are often not
available (Raman, 2021). Nevertheless, the signaling networks play a role in the responses
of microbes to environmental cues, stress conditions, and substrate availability (Ananda,
Daud & Zainudin, 2024). Additionally, dynamic models are important in the metabolic
process, as they can analyze the essential interactions and processes, such as the feedback
inhibition of an enzyme or the signaling cascade activated in response to glucose ingestion
(Nilsson et al., 2022). Therefore, attempting to incorporate signaling networks into the
regulatory-metabolic network models has the potential to improve the prediction results in
in silico metabolic engineering. Moreover, the omics dataset can be leveraged to obtain the
parameters required by the RBI algorithms, for instance, obtaining the parameter needed
from the gene expression data using biclusters approaches (Huang et al., 2012, 2019; Sun &
Huang, 2023). Accordingly, the future improvement of the RBI algorithm can be
conducted by including the signaling networks alongside GRNs and metabolic networks in
in silico metabolic engineering. By involving the signaling networks, the metabolic system
will be modeled more comprehensively. As a result, the prediction results obtained will be
more accurate and robust.

CONCLUSION

In this work, reliability-based integrating algorithms have been proposed for integrating
the gene regulatory network and metabolic networks. This integration aims to construct a
comprehensive model by involving the whole system of the GRNs and GPRs rules
constructed in the Boolean equations. In addition, this algorithm was proposed as an
attempt to overcome the limitations of the existing algorithms in handling Boolean
equations. There are three types of the RBI algorithm, namely RBI-T1, RBI-T2, and
RBI-T3, where the main difference among them is in determining the initial probability
value of the transcriptional factors. In order to identify its performance, the RBI algorithm
was validated based on accuracy and correlation to the actual results, as well as time
complexity. Also, the RBI algorithm was compared to the state-of-the-art algorithm in
predicting the production rate of biomass, indole, succinate, 2,3-butanediol, and ethanol.
Based on those activities, all types of the RBI algorithm generally performed well, where
RBI-T3 is the first-best algorithm, followed by RBI-T1 and RBI-T2. Accordingly, those
algorithms can be suggested for designing the optimal mutant strains in in silico metabolic
engineering. Based on the aforementioned statements, it could be concluded that the
proposed RBI algorithms succeed in modelling the empirical GRNs and metabolic
networks comprehensively for in silico metabolic engineering. Nevertheless, this algorithm
still has limitations. All types of RBI do not involve signalling networks when designing the
mutant strains. Therefore, this limitation can be used in future work to enhance the RBI
algorithms.
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