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ABSTRACT
The digital twin (DT) concept has recently gained widespread application for mapping
the state of physical entities, enabling real-time analysis, prediction, and optimization,
thereby enhancing the management and control of physical systems. However, when
sensitive information is extracted from physical entities, it faces potential leakage
risks, as DT service providers are typically honest yet curious. Federated learning
(FL) offers a new distributed learning paradigm that protects privacy by transmitting
model updates from edge servers to local devices, allowing training on local datasets.
Nevertheless, the training parameters communicated between local mobile devices
and edge servers may contain raw data that malicious adversaries could exploit.
Furthermore, variations in mapping bias across local devices and the presence of
malicious clients can degrade FL training accuracy. To address these security and
privacy threats, this paper proposes the FL-FedDT scheme—a privacy-preserving and
low-latency FL method that employs an enhanced Paillier homomorphic encryption
algorithm to safeguard the privacy of local device parameters without transmitting
data to the server. Our approach introduces an improved Paillier encryption method
with a new hyperparameter and pre-calculates multiple random intermediate values
during the key generation stage, significantly reducing encryption time and thereby
expediting model training. Additionally, we implement a trusted FL global aggregation
method that incorporates learning quality and interaction records to identify and
mitigate malicious updates, dynamically adjusting weights to counteract the threat of
malicious clients. To evaluate the efficiency of our proposed scheme, we conducted
extensive experiments, with results validating that our approach achieves training
accuracy and security on par with baseline methods, while substantially reducing FL
iteration time. This enhancement contributes to improved DT mapping and service
quality for physical entities. (The code for this study is publicly available on GitHub at:
https://github.com/fujianU/federated-learning. The URL address of the MNIST dataset
is: https://gitcode.com/Resource-Bundle-Collection/d47b0/overview?utm_source=pan_
gitcode&index=top&type=href&;.)
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INTRODUCTION
The ongoing deployment of 5th generation mobile communication technology (5G) and
the emergence of 6th generation mobile communication technology (6G) have garnered
considerable attention from both industry and academia, with digital twin (DT) technology
becoming a key area of focus (Wang et al., 2023b; Tang et al., 2024;Abd Wahab et al., 2024).
DT is utilized to create real-timemappings andmodels of physical entities in heterogeneous
environments, thereby enabling real-time analysis, learning, prediction, and interaction
with perception-driven data from the physical world (Singh et al., 2021). At its core, DT
bridges the physical and virtual realms by receiving data and replicating physical behaviors.
However, the distributed nature of data in real-world applications introduces significant
challenges concerning data security and privacy, which hinder the widespread adoption
of DT. This is primarily due to the transmission of plaintext data between servers and
local devices (LDs), making it vulnerable to interception by third parties once it leaves
the LD. While most servers providing DT synchronization services are generally trusted,
they may still be tempted to access sensitive information (Wang et al., 2023c). Additionally,
the frequent use of wireless communication for DT synchronization increases the risk of
malicious actors intercepting transmitted data via open channels. Even if only partial data
is obtained, complete information may be reconstructed through various attack strategies,
such as chosen-plaintext attacks (Alcaraz & Lopez, 2022).

Several studies (Stergiou, Bompoli & Psannis, 2023; Son et al., 2022; He et al., 2023)
have already addressed the security and privacy concerns of DT in heterogeneous
environments. In Stergiou, Bompoli & Psannis (2023), the authors proposed a secure
communication scheme for a sustainable cloud system supporting DT. This scheme
implements computational optimizations on traditional encryption algorithms, including
Advanced Encryption Standard (AES), RC5, and Rivest–Shamir–Adleman (RSA), thereby
enhancing system efficiency and security. In Son et al. (2022), the authors introduced a
systemmodel for securely sharingDT data. The proposedmodel leverages cloud computing
to facilitate efficient data sharing while integrating blockchain technology to ensure data
verifiability and integrity. In He et al. (2023), the authors investigated the security and
privacy aspects of vehicular DT. By analyzing the network architecture of vehicular DT,
they identified potential threats and open research challenges from a security and privacy
perspective. Additionally, the study proposed feasible authentication mechanisms to
enhance the security of vehicular DT systems. The primary approach involves collecting
data from terminal devices and then processing the aggregated data on edge servers.
However, in such a model, sensitive information stored on the device is beyond the control
of the end user, which increases the risk of unauthorized disclosure.Moreover, the advanced
capabilities of mobile devices, driven by 6G communication technologies, will facilitate
the upload of large volumes of locally generated data to remote servers. Consequently, the
frequent exchange of data between edge servers and devices results in significant energy
consumption and an increase in transmission delays. As a result, the processing of data
directly on LDs, rather than frequent transmission to centralized servers, has become a
promising area of research.
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To address the challenges in the context of DT, the distributed learning paradigm
of federated learning (FL) offers promising solutions for protecting user privacy and
ensuring data security in heterogeneous environments (Tang & Wang, 2023; Sun et al.,
2021; Rabbani et al., 2024; Su et al., 2023; Almalki, Alshahrani & Khan, 2024). FL is a
collaborative learning framework that allows participants to train a global model based on
their own local datasets. This is achieved by users transmitting updated model parameters
to edge servers for aggregation, which are subsequently broadcast to all participants for the
next round of local training. To realize high-fidelity DT in FL, a real-time twin pipeline is
essential to ensure data synchronization between the physical system and the digital twin
model, particularly in latency-sensitive applications such as industrial control, autonomous
driving, and remote healthcare. This pipeline leverages efficient edge computing to
minimize data transmission latency and incorporates advanced networking technologies,
including 5G/6G, time-sensitive networking, and software-defined networking, to optimize
communication efficiency and resource allocation. Importantly, although FL primarily
involves the transmission ofmodel parameters between aggregation nodes and participants,
there remains a potential risk of privacy leakage if attackers are able to infer original data
from these transmitted parameters (Ma et al., 2020; Zhang et al., 2024a). To mitigate
such risks, techniques such as secure multi-party computation (Zhang et al., 2022),
differential privacy (DP) (Ouadrhiri & Abdelhadi, 2022), and physical-layer third-party
interference (Wang et al., 2022) are commonly applied in FL schemes. In Zhang et al.
(2024b), the authors proposed a novel edge-based FL architecture, where blockchain is
utilized to manage multiple edge nodes for secure collaboration while preserving their
privacy. However, the consensus verification process in blockchain introduces significant
communication overhead.

The main goal of DP is to prevent inference attacks by introducing noise into sensitive
data, thereby masking the results of data queries and protecting individual privacy. While
the introduction of significant noise can enhance data privacy, it also significantly reduces
the accuracy of the training process for learning models. Additionally, the privacy budget
plays a pivotal role in regulating the level of privacy protection, with larger values indicating
amore relaxed privacy constraint. Selecting an appropriate privacy budget in heterogeneous
environments remains a challenging task (Ouadrhiri & Abdelhadi, 2022; Zhao et al., 2021).
The physical-layer third-party interference scheme employs friendly jammers to transmit
artificial noise, aiming to disrupt the eavesdropper’s ability to intercept communications.
However, this approach reduces the security throughput of edge servers, increases the
latency in collecting local updates, and incurs additional costs for interference services,
making it less cost-effective (Wang et al., 2022; Xie et al., 2023). In contrast, homomorphic
encryption enables securemulti-party computation by allowing operations to be performed
directly on ciphertext. The decryption of the result yields the same value as performing the
operation on the plaintext. By using homomorphic encryption in FL, the accuracy of model
training remains equivalent to that achieved with plaintext, as the underlying data is never
exposed. As a classical homomorphic encryption scheme, Paillier encryption offers superior
security and independence in privacy protection compared to DP. DP typically relies on a
trusted server to control the noise addition process, which introduces potential risks of noise
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manipulation, potentially leading to privacy breaches or model performance degradation.
In contrast, Paillier encryption operates independently of the server’s trustworthiness,
ensuring that even if the server acts as a potential adversary, it cannot directly access the
original gradient information of users. This effectively mitigates privacy risks associated
with noise manipulation. Furthermore, Paillier encryption enables secure aggregation
while preserving computational accuracy, enhancing the security and robustness of FL
in distributed environments (Tang & Wang, 2023). As such, homomorphic encryption is
better suited for FL applications inDT scenarios within heterogeneous environments, where
privacy and security are paramount (Fang & Qian, 2021; He et al., 2022). Furthermore,
achieving synchronization in DT systems depends on effectively mapping biases, as the
real-world environment is inherently complex. In the context of FL global aggregation, it
is crucial to account for mapping frequency and the historical behavior of LDs. This helps
to prevent malicious users from submitting erroneous or suboptimal updates to the server,
which could compromise the accuracy and reliability of the global model (Sun et al., 2021;
Qiao et al., 2024).

This article explores the application of homomorphic encryption for privacy protection
in FL, with a particular focus on its suitability for DT in heterogeneous environments.
The analysis evaluates both the accuracy and latency implications of this approach. In our
trust-based FL global aggregation scheme, in response to potential DT mapping biases,
different end users are assigned varying update weights, with more biased users receiving
higher weights. Additionally, learning quality and interaction records are used to track
malicious updates, thereby mitigating the threat posed by malicious end users. Since FL
global aggregation on the server involves averaging, which can be decomposed into addition
and multiplication, Paillier homomorphic encryption is employed to encrypt local training
parameters and aggregate the corresponding ciphertexts. However, the encryption stage
based on Paillier’s algorithm requires two extensive exponential modular multiplication
operations, which can be computationally expensive. To address this issue, we introduce
a new hyperparameter and precalculate multiple random intermediate values during the
key generation phase, simplifying the encryption stage to basic operations and improving
efficiency.

The remainder of this article is organized as follows. ‘System Model and Preliminaries’
presents the system model and and preliminaries. ‘Adaptive FL Scheme utilizing an
Enhanced Paillier Encryption for Privacy Protection’ introduces the adaptive FL scheme
utilizing an enhanced Paillier encryption for Privacy Protection. In ‘Performance Analysis’,
we perform a performance analysis of the proposed scheme, focusing on security and
privacy, training accuracy, and latency. ‘Experimental Evaluation’ provides experimental
evaluations of the proposed algorithms and scheme, followed by a discussion of the results.
Finally, ‘Conclusions’ summarizes the work presented and outlines potential avenues for
future research.

SYSTEM MODEL AND PRELIMINARIES
This section presents the system model and the preliminary work utilized in this paper.
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Figure 1 FL for DT in heterogeneous scenarios.
Full-size DOI: 10.7717/peerjcs.2877/fig-1

DT in FL
As illustrated in Fig. 1, this paper presents the application scenario of FL in DT contexts.
This scenario comprises various types of LDs, a management server, and DTs of the LDs.
LDs with limited resources communicate with the server via wireless communication
links. The physical states of the LDs are mapped into virtual digital space to generate DT,
which are updated in real-time (Aloqaily, Ridhawi & Kanhere, 2023). The DTs of LDs are
established by their associated servers, which present the historical and current behaviors
of the equipment in digital form by collecting and processing the existing critical physical
states of the device. At time t , the DT of training node i can be expressed as:

DTi(t )={F
(
w t
i
)
,fi(t ),Resourcei(t )}, (1)

where w t
i represents the training parameter of node i at time t , F

(
w t
i
)
denotes the training

state of node i at time t , while fi(t ) signifies the CPU frequency of node i at time t .
Additionally, Resourcei(t ) illustrates the resource state of node i at time t , encompassing
computing power, communication bandwidth, memory capacity, and power capacity.

In light of the possibility of a discrepancy between the mapped values of the DT and the
physical device capability characteristics at a specific point in time following mapping, we
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examine the deviation between the actual values and the mapped DT values. Accordingly,
the calibrated DT model can be expressed as follows:

D̃Ti(t )={F
(
w t
i
)
,fi(t )+ f̃i(t ),Resourcei(t )+ ˜Resourcei(t )}, (2)

where f̃i(t ) is the CPU frequency deviation, which represents the deviation between the
actual value of the device and its DT mapping value, and ˜Resourcei(t ) is the resource
deviation. It is noteworthy that DT is capable of receiving physical state data from
devices and performing self-calibration based on empirical deviation values. This enables
the maintenance of consistency with the devices, the provision of authentic feedback
information, and the achievement of dynamic optimization of the physical world (Alzubi
et al., 2023).

The operation of FL
In practical applications, LDs (such as smartphones, sensors, etc.) situated in disparate
geographical locations or even under the control of different application service providers
must collaborate based on FL to fulfil the requisite application services. As illustrated in
Fig. 1, a smartphone equipped with sensors acquires a substantial volume of user data in a
real-time monitoring setting. By engaging in collaborative learning and intelligent analysis
with clients, the system is able to make more informed decisions regarding quality control
and predictive maintenance, obviating the necessity to transmit substantial quantities of
real-time user data collected by sensors.

The initial stage of the FL process is the initialization of the task, whereby the manager
disseminates the task and the initialised global model, designated w0. Subsequently, upon
receipt of w0, the LD i utilizes its dataDi to update the local model parameters w t

e,i, thereby
identifying the optimal model parameters that minimize the loss function. Accordingly,
the local loss function of each LD i can be defined as follows:

F
(
w t
e,i
)
=

1
Di

∑
di∈Di

f
(
w t
e−1,i,di

)
, (3)

where t denotes the current local iteration index and e represents the current global iteration
index. The function f

(
w t
e−1,i,di

)
quantifies the discrepancy between the estimated value

and the true value of the running data instance Di. The variable di represents the samples
from the training data Di. Upon completion of the T -round local training phase, the
updated local model parameters are transmitted to the server at a predefined frequency.
The server then executes global model aggregation to obtain the parameters for the e-th
aggregation based on the specified aggregation strategy (for further details, please refer
to next section). The loss value after the e-th global aggregation is denoted by F (we).
Subsequently, the server disseminates the revised global model parameters to each node.
It is crucial to reiterate the processes of local model training and global model aggregation
until the global loss function converges or the model achieves the predetermined level of
accuracy.

Trust-based aggregation in FL
In practical applications, to enhance the learning efficacy of FL and its resilience to
malevolent attacks, the parameters uploaded by LDs with high reputation should be
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accorded greater weight in global aggregation. In contrast with traditional reputation
models, which solely take security threats into account, this model considers the influence
of DT bias, learning efficacy, and dataset quality on learning in a comprehensive manner.
It is important to note that during the mapping process, deviations in CPU frequency are
an inherent consequence of DT. Furthermore, the magnitude of these deviations varies
depending on the specific LD in question. It is recommended that LDs with minimal
mapping deviations be assigned a greater weight proportion. Moreover, in the context
of integrity attacks, malicious nodes may disseminate suboptimal local model updates
to the server, thereby compromising the accuracy of the global model. Consequently,
incorporating learning quality and interaction records into the calculation of malicious
updates can mitigate the impact of malicious clients on the accuracy of the global model.
In accordance with the subjective logic model, the belief of server j regarding node i in
time slot t can be expressed as follows:

Bti→j =
(
1−µt

i→j

)
f̃i(t )Qt

i→j

ati→j

ati→j+b
t
i→j
, (4)

where µt
i→j represents the probability of packet transmission failure, Qt

i→j represents the
learning quality based on the honesty of the majority of LDs, ati→j is the number of positive
interactions, and bti→j is the number of malicious behaviors (such as uploading false data).
In particular, the server employs the FoolsGold scheme (Yang et al., 2024), which identifies
unreliable clients based on the diversity of local model updates in non-IID FL (Zhu et al.,
2021), where each node’s training data exhibits a distinctive distribution.

Specifically, the FoolsGold scheme is employed to modify the learning rate of each
LD in each iteration. This is achieved by distinguishing between honest and dishonest
LDs through the use of gradient updates. It is recommended that a client learning rate
be maintained which provides unique gradient updates, and that the repetition of client
learning rates providing similar gradient updates be reduced. The reputation value of server
j corresponding to LD i is represented as follows:

Ri→j =

T∑
t=1

Bti→j+τµ
t
i→j, (5)

where i∈ [0,1] indicates the degree of uncertainty affecting reputation. In the context of
global aggregation, the server is responsible for retrieving updated reputation values and
aggregating the local model w t

e−1,i with the participation of LDs into a weighted global
model. This can be expressed as

we =

∑N
i=1
∑T

t=1R
t
i→jw

t
e−1,i∑N

i=1Ri→j
, (6)

where we represents the global parameters resulting from the e-th global aggregation, N
denotes the number of LDs. By incorporating a trust-based aggregation approach, the
inherent bias of DT is accounted for, effectively mitigating the security risks posed by
malicious participants while enhancing the framework’s resilience and accelerating the
learning convergence process (Wang et al., 2023a).
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Local model secure upload scheme
In our system model, we utilize the Paillier homomorphic encryption algorithm to ensure
the secure uploading of local models by LDs, thereby preventing the leakage of local models.
Homomorphic encryption represents a distinctive encryptionmethodology that enables the
processing of ciphertext, with the resulting decryption identical to that of the corresponding
plaintext. This guarantees that other users and any third parties who may attempt to gain
unauthorized access to the data will be unable to obtain the private information of the
data owner (Yi, Paulet & Bertino, 2014). Paillier homomorphic encryption is a public-key
additive homomorphic encryption scheme comprising the following computational steps
(Fazio et al., 2017).
(1) Key generation KeyGen

(
p,q
)
→
(
pk,sk

)
: Let p and q be two large prime numbers such

that their greatest common divisor gcd
(
pq,
(
p−1

)(
q−1

))
= 1. Then, we can conclude

that n= pq and λ= lcm
(
p−1,q−1

)
. Next, a random integer g ∈ Z∗n2 is selected, and

γ = (L(gλmod n2))mod n, where L(x)=
(
x− 1

n

)
. Therefore, the public key is represented

as pk=
(
n,g

)
, while the private key is represented as sk= (λ,γ ).

(2) Encryption Enc
(
ϕ,pk

)
→ c : ϕ ∈ Z is the plaintext and r < n is a random integer, the

ciphertext c can be calculated as c = gϕ · rnmod n2.
(3) Decryptio Dec (c,sk)→ ϕ: The plaintext can be decrypted by computing ϕ =
γ ·L

(
cλmod n2

)
mod n.

ADAPTIVE FL SCHEME UTILIZING AN ENHANCED PAILLIER
ENCRYPTION FOR PRIVACY PROTECTION
In this section, we propose an enhanced Paillier encryption algorithm and introduce our
FL-FedDT scheme, which provides privacy protection and latency reduction for FL in DT
applications within heterogeneous scenarios.

Enhanced paillier homomorphic encryption algorithm
The original Paillier algorithm necessitates the execution of a substantial exponential
modular multiplication operation on numerous occasions, which inevitably results in
the substantial consumption of computational resources at the LD level. Accordingly, we
propose an enhanced Paillier encryption algorithm to reduce the computational burden
and enhance efficiency while maintaining the integrity of the underlying cryptosystem. The
following steps are involved in the computation process:
(1) Key generation KeyGen

(
p,q
)
→
(
pk,sk

)
: Let p and q be two large prime numbers such

that their greatest common divisor gcd
(
pq,
(
p−1

)(
q−1

))
= 1. Therefore, we have n= q

and λ= lcm
(
p−1,q−1

)
. Next, several values r ∈Z∗n are randomly selected, and compute

f = rnmod n2 previously. Additionally, a secret parameter ξ = λ−1mod n is introduced.
Consequently, the public key is defined as pk = n, while the secret key is defined as
sk= (λ,ξ).
(2) Encryption Enc

(
ϕ,pk

)
→ c : ϕ ∈Zn is the plaintext and a randomly selected value of f

is used to compute the ciphertext, which is given by c = (1+ϕn) · f .
(3) Decryption Dec (c,sk)→ ϕ: The plaintext can be decrypted by computing ϕ =
ξ ·L

(
cλmod n2

)
mod n.
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In the enhanced Paillier encryption algorithm, the parameter g for public key pk is
disregarded, and a confidential parameter ξ is incorporated to substitute for γ in the initial
phase of key generation. This procedure is advantageous for the encryption phase. As a
consequence of the fact that multiple have already been computed, the encryption process
requires only basic mathematical operations, rather than the more complex exponential
and modular multiplication operations. This results in a significant reduction in the time
required for the calculation.

As demonstrated in the subsequent analysis, the enhanced Paillier encryption
algorithm continues to exhibit the homomorphic supplementary attribute characteristic
of homomorphic encryption. For plaintext α and β, we have

Enc (α)= (1+nα) · rn1 \mod n2, (7)

Enc (β)= (1+nβ) · rn2 \mod n2. (8)

Subsequently, we can obtain

Enc (α)
⊗

Enc (β)mod n2

=
[
(1+nα) · rn1

]⊗[
(1+nβ) · rn2

]
mod n2

= [1+n(α+β)] ·(r1r2)nmod n2

= Enc (α+β)mod n2.

(9)

Therefore, E (α)
⊗

E (β)= E (α+β) holds. Similarly, the decryption process can be
obtained using the same method, expressed as Dec

(
Enc (α)

⊗
Enc (β)

)
=α+β.

Privacy protection algorithm for FL
The operational workflow of the proposed FL framework and the details of homomorphic
encryption applied during local training are presented in Figs. 2 and 3. In particular, upon
completion of the local training phase, the LDs will then proceed to homomorphically
encrypt the uploaded local model. Subsequently, the server will collate all encrypted
weights and perform global aggregation in accordance with Eq. (6). The aggregated
encrypted weights can be represented as follows:

[[we]]=

[[∑N
i=1
∑T

t=1R
t
i→jw

t
e−1,i∑N

i=1Ri→j

]]
(10)

where [[·]] represents the data element designated homomorphic encryption and N
denotes the number of LDs. Considering the additional characteristics of homomorphic
encryption, the global weight of the encryption can be computed as follows:

[[we]]=

[[∑N
i=1
∑T

t=1R
t
i→jw

t
e−1,i∑N

i=1Ri→j

]]
=

∑N
i=1
∑T

t=1R
t
i→j
[[
w t
e−1,i

]]∑N
i=1Ri→j

. (11)

It is important to note that in order to ensure the integrity and security of data
communication, the use of the Transport Layer Security/Secure Sockets Layer protocol is
essential in the communication channel between the server and LDs.
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Figure 2 Systemmodel.
Full-size DOI: 10.7717/peerjcs.2877/fig-2

Figure 3 Homomorphic encryption process for FL.
Full-size DOI: 10.7717/peerjcs.2877/fig-3

In our enhanced Paillier homomorphic encryption algorithm, we have completed the
fundamental operations of selecting a random integer r for large exponentiation and
modular multiplication in each iteration of the original Paillier algorithm in advance,
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during the key generation stage. Consequently, the complete encryption process remains
unaltered, and both algorithms possess an equivalent level of security and semantic
security, as well as the capacity to withstand plaintext attacks. This renders our solution
resilient to attacks perpetrated by malevolent actors. Furthermore, the enhanced Paillier
algorithm prioritizes reducing computational latency. However, if key pairs are generated
with each iteration, the latency will be significantly increased. Accordingly, a suitable key
length is selected for the purposes of ensuring security and low latency in the context of
experimentation.

A privacy protection and low latency FL scheme for DT
Figure 2 illustrates the collaborative interaction process of our privacy protection algorithm
between the server and LDs. Algorithms 1 and 2 offer a synopsis of the adaptive FL scheme
that we have devised and which is based on the enhanced Paillier encryption.

The server’s primary function is to aggregate the updated encryption weight [[we]] on a
global scale and to execute the e-th FL iteration process. There areN LDs that participate in
this process. Subsequently, the LD will decrypt the aggregated weight [[we]], perform local
training, and encrypt the updated weight for the subsequent round of e+1 FL iteration.

Global aggregation
In the heterogeneous scenario of FL used for DT, we assume that all edge users are honest
but curious. This implies that theymay be curious about the information stored on LDs and
may attempt to infer privacy information through parameters. Concurrently, third-party
malevolent eavesdroppers may also obtain user privacy through reverse engineering
gradient attacks and other methods. Each edge server is equipped with information on all
user lists within its communication range.

In each round e of FL iteration, an adaptive FL scheme is employed in collaboration
with the privacy protection algorithm. In the initial phase of the learning process at FL
iteration round e= 0, the server first initializes a learning model F (we), encrypts the initial
global weight w0 with a public key, and transmits it to all N LDs. The initialisation of
the local models and reputation parameters that are to be trained for the LDs is required.
Moreover, each LD decrypts the global weight utilized for local training and returns the
updated weightw t

e−1,i after T rounds. Subsequently, the LD transmits the encrypted weight[[
w t
e−1,i

]]
, together with the public key, to the server. In the case where e > 0, the server

updates the aggregated global weight [[we]] through the application of Eq. (10) following
the receipt of all weight updates from the preceding FL iteration process. It should be noted
that this step reflects the additive homomorphic property of homomorphic encryption
algorithms as described in Eq. (9). In the course of successive rounds e and e+1, the
count time slot and the time threshold are designated as ε and 1, respectively. Upon
receipt of the parameters by the server and ε <1, the FL process resumes and advances to
the subsequent round. In the event that the aforementioned conditions are not met, the
algorithm will exit the current iteration and set the current encrypted global weight to the
final value. The final weight will be the result of the last global aggregation, occurring after
E (E > 1) global rounds without interruption. Ultimately, the final aggregated model must
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be transmitted to all N LDs, where it will be used to update the local model and conduct
an actual evaluation.

Local model updating
Upon receipt of the [[we]] from the server, the LDs undertake the decryption operation of
the enhanced Paillier algorithm. By employing the private key sk of each LD, the value we

can be obtained and assigned to w t
e−1,i. Subsequently, the model is updated using the small

batch gradient descent algorithm, encrypted with the public key pk to obtain
[[
w t
e,i
]]
, and

uploaded to the server.

PERFORMANCE ANALYSIS
In application scenarios such as healthcare and military systems, security is typically
prioritized over other performancemetrics, such as latency in heterogeneous environments.
These scenarios involve highly sensitive data, such as patient privacy and classified military
intelligence, making data security more critical than minimizing communication and
computation latency. However, in other domains like industrial IoT, the trade-off between
latency and security becomes particularly significant. For instance, in smart manufacturing
and remote medical monitoring, low latency is essential for real-time decision-making,
whereas stringent security measures may introduce additional computational and
communication overhead, potentially increasing system response time. Therefore,
achieving an optimal balance between security and real-time performance is crucial,
depending on the specific application requirements (Tang et al., 2024; Tang et al., 2025).
Although our proposed solution may incur higher communication and computational
costs, it demonstrates superior privacy protection compared to baseline methods while
ensuring that the final model maintains optimal training accuracy, thereby achieving a
well-balanced trade-off between data security and model performance.

Security and privacy performance analysis
In our proposed privacy protection scheme, we utilize the Paillier homomorphic encryption
algorithm to safeguard privacy information, circumvent plaintext selection attacks, and
guarantee semantic security. Specifically, the parameter communication and aggregation
are trained in ciphertext form, ensuring that no information from the plaintext is leaked.
The security of Paillier encryption is contingent upon the computational complexity of
integer factorization problems, particularly the Decisive Composite Residual Assumption
on the composite residual group. Even if an adversary gains access to the public key and
random parameters, it is challenging to derive any information about the plaintext from
the ciphertext, thereby ensuring the confidentiality of the data. To date, no polynomial-
time algorithm has been able to successfully break the encryption. Furthermore, Paillier
encryption incorporates random numbers into each encryption operation, ensuring that
identical plaintext will yield disparate ciphertext outputs. The introduction of random
numbers into the Paillier encryption process ensures semantic security, which means that
it is difficult to distinguish between different plaintexts when the ciphertext is known.
The incorporation of this random number also serves to effectively prevent replay attacks,
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Algorithm 1 The Global Aggregation of Our Proposed FL Scheme

Input: The weight
[[
w t
e−1,i

]]
of the encryption for each LD;

Local training roundsT ;
Time threshold1;
Global aggregation rounds E.

Output: Global weight[[we]] of encryption.
1: The global modelF (we) should is initialized with a global weight of w0.
2: Initialize all N LDs and set the reputation parameters.
3: while e< E do
4: if e= 0 then
5: The global weightw0 is to be encrypted using the public key in our enhanced
Pailler encryption algorithm, resulting in [[w0]].

6: e← 1.
7: else

8: for each LD do
9: In accordance with Algorithm 3, the server receipt of training update
weight

[[
w t
e−1,

]]
from each LD.

10: end for
11: end if

12: [[we]]←
∑N

i=1
∑T

t=1R
t
i→j

[[
w t
e−1,i

]]
∑N

i=1Ri→j
. //According to (10), utilizing the additive

property of homomorphic encryption for global aggregation.

13: Send [[we]] to all N LDs.
14: Update all reputation parameters according to (5).
15: Counting time slot ε.
16: if ε >1 then

17:Mark= Stop.//Interrupt signal.
18: SendMark to all N LDs.
19: Break.

20: end if
21: end while
22: Send [[we]] to all N LDs.

thereby ensuring that attackers are unable to analyze the data content by repeatedly
observing the ciphertext. The proposed enhanced Paillier encryption algorithm represents
an improvement on the original algorithm, offering the same level of security and sufficient
protection against attacks from malicious actors.

For servers that are both honest and curious, the updated parameters that are received
from LDs are in ciphertext form. Furthermore, the global aggregation algorithm is an
addition operation, which means that all operations are homomorphic and there is no
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Algorithm 2 The Local Training of Our Proposed FL Scheme
1: for all N LDs do
2: ReceiveMark and encrypted global weight [[we]] from the server.
3: ifMark= Stop then
4: Break.
5: else
6: The LDs utilize their private key sk to decrypt the global weight and obtain
we .

7: we is assigned to w t
e−1,i and using the foolsGold scheme to get w t

e,i after T
local training rounds.

8: Each LDs utilize its public key pk to encrypt w t
e,i.

9: Upload
[[
w t
e,i

]]
to the server via communication protocol.

10: end if
11: end for

decryption process in the server at this stage. Consequently, all data stored on the server
is encrypted. Consequently, even in the event of interaction between the server and
third-party entities, the absence of a private key renders the acquisition of any available
information impossible. Furthermore, the LD possesses its own private key, which it utilizes
in conjunction with the public key to execute the enhanced Paillier encryption algorithm.
This results in the transmission of encrypted local updates to the server. Following each
round of global aggregation on the server, the updated global weights are obtained.
However, the result remains in an encrypted format. Subsequently, the data must be
decrypted using the private key of the LD. To enhance the security of the system, it is
possible to set a larger key length or generate key pairs for each round. Throughout the
entirety of the learning process, LDs are unable to access data from other devices.

Furthermore, our global aggregation is founded upon the principle of trust. Parameters
uploaded by LDs with a high reputation are accorded greater weight in the global
aggregation, thereby preventing malicious LDs from providing erroneous or inferior
updates to the server in the event of a Byzantine attack. This ultimately serves to diminish
the precision of the global model.

Training accuracy performance analysis
In our proposed solution, we utilize an enhanced Paillier algorithm to achieve global
aggregation based on homomorphic encryption, with the objective of enhancing privacy
and security. In the FL process based on homomorphic encryption, the data is only
encrypted without any distortion operation, thereby ensuring that the training accuracy
remains almost unchanged. As indicated in Section ‘Experimental Evaluation’, the results
of the performance evaluation demonstrate that the accuracy remains at a high level.
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Latency performance analysis
In our FL system employing trust-based global aggregation, the latency in the e-th round
consists of three primary components: T Server

e , the computation time for aggregating global
weights on the server; T LD

e , the time required for local training on each device using its
dataset; and TCom

e =T up
e +T down

e , the communication time between the server and LDs,
where T up

e and T down
e represent the upload and download times, respectively.

For the purposes of more rigorous analysis, it is assumed that the T LD
e and TCom

e times
of each LD are identical. In practice, data that is unevenly distributed across LDs will result
in differing computation times T LD

e and communication times TCom
e depending on the

distance between the server and the LD. In consequence, the overall waiting time for FL in
each round e is given by

T FL
e =T Server

e +T LD
e +T

Com
e . (12)

Nevertheless, the use of enhanced Paillier homomorphic encryption in FL serves
to enhance privacy and security in heterogeneous environments. It is evident that the
additional encryption and decryption operations will result in an increase in computation
time. In particular, LDs encrypt local training parameters and transmit them to the
server. They also decrypt global weights for the subsequent training round after receiving
aggregated weight from the server. In consequence, the time required for local training on
LDs can be expressed as follows:

T LD,Pai
e =T LD

e +T
Enc
e +T

Dec
e , (13)

where T Enc
e denotes the encryption computation time using a public key, and TDec

e denotes
the decryption computation time with a private key. Since key generation occurs only
once at e= 0, the computation time for key pair generation is excluded from the scheme’s
overall time analysis.

Furthermore, T Server
e and T LD

e can be regarded as analogous to the baseline scheme
based on trusted global aggregation FL, given that the data utilized for computation and
transmission is ciphertext rather than plaintext. In consequence, the overall latency of our
FL system with homomorphic encryption at each round e can be expressed as follows:

T FL,pai
e =T Server,pai

e +T LD,pai
e +TCom,pai

e =T Server
e +T LD

e +T
Com
e +T Enc

e +T
Dec
e . (14)

It is evident that the encryption and decryption processes, which require a longer latency,
result in a greater latency when using encryption schemes compared to non-encryption
schemes, i.e., T FL

e <T FL,Pai
e .

In order to guarantee the security of the system, the enhanced Paillier encryption
algorithm has been applied to FL-FedDT. This ensures that the updated weights are not
tampered with during communication and reduces the time consumed by encryption,
thereby improving the efficiency of the FL system. The original Paillier encryption and the
enhanced Paillier encryption are, in essence, homomorphic encryption. Accordingly,
the latency performance difference is designated as between the two algorithms is
T LD,Pai
e in Eq. (14), and we can represent their latency performance as T LD,Pai,Orig

e and
T LD,Pai,Enh
e , respectively. The original Paillier encryption process is characterized by
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Table 1 Simulator settings and parameter configuration.

Simulation parameter Numerical value

Number of LDs N 100
Local training rounds T 5
Training model CNN
Data set MINIST
Gradient update method FoolsGold
Size of simulation area 1,000 m× 1,000 m

extensive exponential andmodularmultiplication operations, which contribute to a notable
latency. In contrast, the enhanced Paillier encryption process necessitates only fundamental
operations, thereby reducing the associated latency. In regard to the decryption process,
the two algorithms engage in comparable operations, and thus, a comparison of their
decryption computation latency can be ignored. The results of the latency performance
evaluation in the fifth section corroborate our hypothesis, i,e., T LD,Pai,Orig

e >T LD,Pai,Enh
e .

EXPERIMENTAL EVALUATION
In this section, we conducted a series of comprehensive simulation experiments to assess
the efficacy of our proposed FL-FedDT scheme and homomorphic encryption process in
heterogeneous environments. Table 1 provides a summary of the parameter configuration
and simulation settings. All the results are obtained with a PC of Intel(R) Xeon(R) CPU
E5-2670v2 @2.50 GHz.

In order to safeguard the confidentiality of data from LDs utilized for DT mapping in
heterogeneous environments, we have incorporated homomorphic encryption into FL.
Nevertheless, this will result in an increased computational burden and a concomitant
increase in system latency. Accordingly, to reduce the overall processing time, we propose
an enhanced Paillier encryption scheme. The Paillier process is implemented using the
PyCryptodome library in Python, as this library provides high-level large integer operations
suitable for the implementation of custom Paillier algorithms.

Time for encryption and decryption
In this subsection, encryption tests are conducted using a sample with varying key lengths.
As shown in Fig. 4, the encryption time of the original Paillier algorithm is longer than
that of the enhanced Paillier algorithm. Moreover, the time difference between the two
algorithms increases as the key length increases from128 to 2,048 bits. This can be attributed
to the fact that the original Paillier algorithm requires two extensive exponential modular
multiplication operations and one modular multiplication operation for encryption, while
the enhanced Paillier algorithm only involves two basic operations. The time difference
between the two algorithms is approximately 1.432 ms for a 768-bit key and 4.416 ms
for a 1,024-bit key. In terms of decryption, both algorithms exhibit similar performance.
Notably, the enhanced Paillier algorithm requires more time for key generation compared
to the original, due to the use of multiple random numbers r in the key generation process.
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A

B

Figure 4 Time for encryption and decryption. (A) Time for encryption. (B) Time for decryption.
Full-size DOI: 10.7717/peerjcs.2877/fig-4

However, the time required for key pair generation is measured in milliseconds. The results
indicate that the enhanced Paillier algorithm offers better performance in handling large
datasets compared to the original Paillier algorithm.
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Figure 5 Time for conducting a round of local training.
Full-size DOI: 10.7717/peerjcs.2877/fig-5

Time for conducting A round of local training
In order to assess the efficacy of the algorithm in processing multiple samples, we extracted
the time required for a single iteration of LD training, with the objective of displaying the
results of the convolutional neural network (CNN) model and the MNIST dataset (Alzubi
et al., 2023). As illustrated in Fig. 5, for key lengths within the range of 128 to 1024 bits,
the enhanced Paillier algorithm exhibits a reduced execution time in comparison to the
original Paillier algorithm. In particular, the time difference for a 512-bit key length is
20.387 s, while for a 1,024-bit key length, it is 119.387 s. Figure 4 illustrates that the time
difference increases with the increase of key length in a single round. It is important to
note that in practice, there are N LDs performing E rounds of global aggregation, with T
rounds of local training conducted on each device. The time cost for each LD in each round
is approximately consistent, which will result in a significant delay in achieving optimal
security performance. At the same time, compared with the FPPFL-Paillier method in
Tang & Wang (2023), we achieved shorter key generation time by simplifying the modulo
operation. It can thus be concluded that the enhanced Paillier encryption algorithm has
the potential to reduce latency and improve system efficiency.
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Table 2 Key randomness test results.

Test items Original paillier Enhanced paillier

Approximate entropy 1.00, Pass 1.00, Pass
Serial 0.518631, Pass 0.511002, Pass
Universal 0.367181, Pass 0.369127, Pass
Runs 0.264885, Pass 0.257981, Pass
Cumulative sums 0.225366, Pass 0.234321, Pass
Blook frequency 0.212557, Pass 0.202374, Pass
Frequency 0.337311, Pass 0.329324, Pass
Linear complexity 0.178035, Pass 0.167439, Pass
Longest run 0.297934, Pass 0.287161, Pass
Non-overlapping template 0.198821, Pass 0.184822, Pass
Random excursions 0.209381, Pass 0.201319, Pass
Random excursions variant 0.034465, Pass 0.033157, Pass

Key randomness analysis
The field of randomness testing pertains to the examination of the randomness of sequences
generated by a random number generator or encryption algorithm, employing probability
and statistical methodologies. The ‘‘Special Publication 800-22’’ test package, provided
by the National Institute of Standards and Technology (NIST) in the United States, is
referred to as NIST randomness testing (Pareschi, Rovatti & Setti, 2007). These tests can
verify the randomness of any long binary sequence generated by hardware and software,
and can be employed as a secret random number generator or a pseudo-random number
generator. The principal objective of the testing process is to ascertain the presence of any
non-random elements within the sequence. The test suite comprises a number of tests, each
of which returns a p-value. When p is within the range of 0.01 to 1, the binary sequence
is deemed to have passed the corresponding test. A higher p-value indicates a greater
degree of randomness in the sequence. Given that both encryption algorithms generate
private keys in a similar manner, it is only necessary to conduct randomness tests on the
generated public keys. To ascertain the average value, 100 tests were conducted to simulate
the generation of public keys of varying lengths. The results are presented in Table 2. The
results demonstrate that the randomness of the binary sequences generated by the two
algorithms is essentially identical, thereby indicating that these two algorithms possess an
equivalent level of security.

Accuracy and loss
In our FL-FedDT scheme, a homomorphic encryption algorithm is employed to process
model parameters, ensuring the security of the data communication process. Leveraging
the additive property of homomorphic encryption, the plaintext remains intact after
decryption, thereby preserving the accuracy of the model. As shown in Fig. 5, the accuracy
of FL-FedDT-Paillier and FL-FedDT-Paillier-Enhanced is nearly identical to that of the
trust-based global aggregation FL scheme. In Fig. 6, FL-FedDT-Paillier represents the
trust-based global aggregation FL scheme combined with the original Paillier algorithm,
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A

B

Figure 6 Testing accuracy and loss comparison with non-IID data. (A) Testing accuracy. (B) Testing
loss.

Full-size DOI: 10.7717/peerjcs.2877/fig-6

while FL-FedDT-Paillier-Enhanced represents the trust-based global aggregation FL
scheme combined with the improved Paillier algorithm proposed in this work. For ease
of calculation, the key length is set to 256 bits, and the global aggregation frequency is
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Figure 7 The communication overhead accumulated by FL in different communication rounds.
Full-size DOI: 10.7717/peerjcs.2877/fig-7

set to E = 100 iterations. Using the default settings in Table 1 and training with non-IID
data (Zhu et al., 2021), the model achieves an accuracy of approximately 95.38%, with a
loss rate reduced to 0.156. Additionally, to highlight the advantages of our approach, we
compare it with FL schemes based on differential privacy (Hu et al., 2020) and artificial
collaborative interference (Wang et al., 2022). The differential privacy method protects
privacy by adding noise to locally updated weights, with the privacy level determined by
the privacy budget. However, it requires more time to converge to the desired accuracy.
On the other hand, artificial collaborative interference enhances the security throughput of
local devices by enabling cooperation among devices to send jamming signals that disrupt
eavesdroppers’ wireless links. Nevertheless, this method consumes energy resources
intended for local training and communication, thereby reducing training accuracy and
increasing communication time. In Fig. 7, we present the communication overhead of
parameter transmission between local devices and servers, which shows that our proposed
enhanced Paillier encryption scheme has advantages over traditional Paillier encryption
schemes.

In addition, Fig. 8 shows the comparative results of training with IID data. The test
results show that the training accuracy of the four systems converges, with an accuracy
rate close to 98.723%, which is slightly higher than the training with non-IID data, and the
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B

Figure 8 Testing accuracy and loss comparison with IID data. (A) Testing accuracy. (B) Testing loss.
Full-size DOI: 10.7717/peerjcs.2877/fig-8
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Figure 9 Comparison of DT deviation and without DT.
Full-size DOI: 10.7717/peerjcs.2877/fig-9

curve trends are similar. This is because the IID data are independently extracted from the
same distribution for each local device data, so the data from different local devices have
the same statistical characteristics. Table 3 presents the convergence time for achieving
accuracy in the three FL approaches.

The comparison of joint learning accuracy under the presence of DT bias and after
DT bias calibration is shown in Fig. 9. The DT bias calibration FL based on the trust-
weighted aggregation strategy achieves better learning performance than the FL with
DT bias calibration. Even before convergence, federated learning with bias calibration
demonstrates superior performance. Moreover, it is observed that the Deep Q Network
(DQN) with DT bias does not converge.

Figure 10 compares the accuracy of joint learning based on DQN with that of fixed-
frequency joint learning. As DQN gradually converges, the accuracy of DQN-based
federated learning exceeds that of the fixed-frequency federated learning. This is because
the global aggregation gain for federated learning accuracy is nonlinear, and the fixed-
frequency scheme can avoid aggregation in certain rounds, resulting in lower energy
consumption and better learning performance.
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Figure 10 Comparison of the accuracy achieved of federated learning between adaptive frequency and
fixed frequency.

Full-size DOI: 10.7717/peerjcs.2877/fig-10

CONCLUSIONS
This article proposes FL-FedDT, a privacy-preserving and low-latency FL scheme for DT
applications, employing enhanced Paillier encryption in heterogeneous environments. To
address implicit bias and the risk of malicious nodes uploading low-quality updates during
DT synchronization, we propose a trusted global aggregation FL framework. This approach
adjusts the aggregation weights of uploaded parameters based on DT mapping bias and
interaction records from local devices. Additionally, Paillier homomorphic encryption is
employed to safeguard local training parameters against data leakage. Given the extended
encryption times and the need for E global iterations inherent in the original Paillier
encryption algorithm, this paper introduces an enhancement: a novel hyperparameter
ξ and the precalculation of f = rnmodn2 during the key generation phase. This reduces
the complex exponential modular multiplication to simpler operations at the encryption
stage. By generating a single key pair and encrypting parameters only once, the time
required for model training is significantly decreased. Our analysis and experimental
results indicate that the enhanced Paillier encryption algorithm in this scheme provides
robust privacy protection. Furthermore, it maintains FL training accuracy comparable to

Li and Wang (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2877 24/28

https://peerj.com
https://doi.org/10.7717/peerjcs.2877/fig-10
http://dx.doi.org/10.7717/peerj-cs.2877


Table 3 Time comparison for training one round with varying epochs on LDs.

Time (s) T = 1 T = 2 T = 3

FL-FedDT 29.27 41.97 85.66
FL-FedDT-Paillier 147.13 158.39 198.62
FL-FedDT-Paillier-Enhanced 99.41 114.39 206.13

that of the original algorithm ensemble while reducing latency. Nevertheless, there remain
several challenges that need to be addressed in the context of larger-scale networks and
heterogeneous environments. Resource-constrained edge devices may be unable to support
the computational overhead of encryption tasks, such as temperature sensors in healthcare
scenarios or operational tracks in industrial settings, which are typically limited to basic
data collection and communication functions. As a result, it becomes essential to consider
secure communication mechanisms at the physical layer to provide data sources for FL.
In the future, exploring collaborative interference models between different devices could
optimize FL efficiency while ensuring secure data transmission.
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