Submitted 4 December 2024
Accepted 14 April 2025
Published 30 April 2025

Corresponding author
Chunyu Dong,
20230037 @xijing.edu.cn

Academic editor
Arun Somani

Additional Information and
Declarations can be found on
page 24

DOl 10.7717/peerj-cs.2876

() Copyright
2025 Dong et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

DMSA-Net: a deformable multiscale
adaptive classroom behavior recognition
network

Chunyu Dong’, Jing Liu' and Shenglong Xie”

' School of Computing, Xijing University, Xi’an, Shaanxi, China
2 School of Computer Science Technology, Xidian University, Xi’an, Shaanxi, China

ABSTRACT

In the intelligent transformation of education, accurate recognition of students’
classroom behavior has become one of the key technologies for enhancing the quality
of instruction and the efficacy of learning. However, in the recognition of target
behavior in real classroom scenarios, due to the use of wide-angle or panoramic
images for image acquisition, students in the back row are far away from monitoring
devices, and their subtle body movements such as the small opening and closing of
the mouth (to determine whether they are speaking), fine finger operations (to
distinguish between reading books or operating mobile phones) are difficult to
recognize. Moreover, there are occlusions and scale differences in the front and back
rankings, which can easily cause confusion and interference with target features in
the detection process, greatly limiting the accurate recognition ability of existing
visual algorithms for classroom behavior. This article proposes a deformable
multiscale adaptive classroom behavior recognition network. To improve the
network’s capacity to model minute behavioral phenomena, the backbone section
introduces a deformable self-attention dattention module, dynamically modifying
the receptive field’s geometry to enhance the model’s concentration on the region of
interest. To improve the network’s capacity for feature extraction and integration of
behavior occlusion and classroom behavior at different scales, a proposal has been
put forward the Multiscale Attention Feature Pyramid Structure (MSAFPS), to
achieve multi-level feature aggregation after multiscale feature fusion, reducing the
impact of mutual occlusion and scale differences in classroom behavior between
front and back rows. In the detect section, we adopt the Wise Intersection Over
Union (Wise-IoU) loss as our loss criterion, augmenting the evaluation framework
with richer contextual cues to broaden its scope and elevate the network’s detection
prowess. Extensive experimentation reveals that our proposed method outperforms
rival algorithms on two widely adopted benchmark datasets: SCB-Dataset3-S (the
Student Classroom Behavior Dataset-https://github.com/Whiffe/SCB-dataset) and
we created object detection dataset DataMountainSCB (https://github.com/Chunyu-
Dong/DataFountainSCB1) containing six types of behaviors.
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INTRODUCTION

The incorporation of classroom teaching videos in recent times has unveiled vast
opportunities for impacting student conduct (Gao et al., 2023). Classroom behavior
patterns of students serve as crucial indicators of their learning progress, making the
analysis and assessment of these behaviors instrumental in advancing teaching practices
(Yusuf, Noor & Bello, 2024). However, with the accelerated advancement of educational
informatization, how to accurately and quickly identify students’ key behaviors in the
ever-changing classroom environment constitutes a formidable technical challenge in the
domain of education, which urgently calls for a solution. The analysis of classroom
behavior endeavors to uncover the underlying relationship between teacher instruction
and student academic growth, facilitating self-reflection for both educators and learners
and enhancing the overall quality of classroom instruction. Conventional approaches to
analyzing classroom teaching behaviors rely heavily on subjective self-evaluations, direct
oversight, and manual coding procedures (Ak¢apinar ¢ Hasnine, 2022). These
methodologies, however, are plagued by drawbacks including high subjectivity in coding
practices, limited sample sizes, and significant time and labor investments, ultimately
hindering their interpretability and scalability. Intelligent technology is harnessed for data
acquisition and analytical endeavors, classroom behavior can be identified more timely
and comprehensively, and the teaching and learning status of teachers and students can be
understood, providing strong support for improving teaching quality. The adoption of
deep learning, renowned for its robust feature extraction and autonomous learning
process, has markedly enhanced the precision and speed of recognizing behaviors within
classroom settings (Andrade, Delandshere ¢ Danish, 2016).

The prevailing object detection frameworks are categorized into two fundamental
groups: single-stage and two-stage detectors. The two-stage approach initially extracts
regions of interest regions of interest (ROIs), followed by leveraging detection heads to
categorize ROI features into target classes and refine their spatial locations. Representative
two-stage detectors include Faster region-based convolutional neural network (RCNN)
(Ren et al., 2017), Mask RCNN (Sudhanan, Rahuman ¢ Roomi, 2025), and Cascade
RCNN (Cai & Vasconcelos, 2018), among others. Conversely, single-stage detectors forgo
the foreground screening step, directly classifying and regressing the feature maps
extracted by the backbone network. Examples of popular single-stage detectors encompass
single shot multibox detector (SSD) (Liu et al., 2016), RetinaNet (Lin et al., 2017), and the
You Only Look Once (YOLO) series (Redmon et al., 2016; Zhang et al., 2023; Redmon ¢
Farhadi, 2018; Bochkovskiy, Wang & Liao, 2020; Wang, Bochkovskiy & Liao, 2023; Wang,
Yeh & Mark Liao, 2024; Van Etten, 2018). Generally, two-stage detectors exhibit superior
accuracy at the expense of speed, whereas single-stage detectors, though typically inferior
in accuracy, offer faster processing rates (Liu et al., 2024). Notably, numerous object
detection methodologies are rooted in these two detector frameworks. Lately, visual
techniques such as TransFormer (Tarasiou, Chavez ¢» Zafeiriou, 2023), DETR (Zhao et al.,
2024), and Mamba (Gu ¢» Dao, 2023) have set new benchmarks in diverse domains, further
advancing the state-of-the-art in object detection.
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In actual classroom teaching environments, wide-angle or panoramic imaging is often
used for image acquisition. The students seated in the rear rows are positioned at a
considerable distance from the surveillance equipment, and their subtle body movements,
such as the small opening and closing of their mouths (to determine whether they are
speaking) and the fine operation of their fingers (to distinguish between flipping through
books or operating mobile phones), are difficult to effectively extract features with
sufficient discrimination. This leads to confusion of target features in the detection process,
the remote positioning of students in the back row negatively impacts the efficacy of key
processes such as feature extraction, fusion, regression, and classification, ultimately
diminishing the precision and credibility of recognition outcomes. Consequently, there is
an elevated risk of encountering missed detections and false positives. In addition, there
are significant differences in the expression form, detail richness, and semantic level of the
occlusion of front and back row action behaviors, as well as the characteristics of classroom
behaviors at different scales. Using feature stacking or concatenation fusion methods will
ignore the uniqueness and mutual promotion between features at different scales, resulting
in insufficient information utilization.

Therefore, this article has designed a multiscale adaptive classroom behavior
recognition network for rear micro-actions and occlusion sensitivity, this network
architecture comprises three integral components: the backbone, which serves as the
foundational layer; the neck, facilitating feature integration and enhancement; and the
head, responsible for finalizing predictions through classification or regression. Through
different strategies, we successfully overcame the challenges posed by small behavior
targets about crucial tasks, including feature extraction, fusion, regression, and
classification, thereby enhancing the overall efficiency and accuracy of the system,
occlusion, and scale differences between behavior targets in actual classroom behavior
recognition images during the detection process. In the backbone section, initially, we
establish a comprehensive multiscale feature pyramid to efficiently extract multi-level
features, enabling us to capture the intricacies associated with small behavior targets, and a
deformable attention mechanism DAttention (Li et al, 2021) is introduced in the sixth
layer of the pyramid, which can dynamically adjust the sampling position and attention
weight. To enhance the model’s ability to attend to small behavioral targets, we incorporate
a methodology that facilitates the extraction of more precise and accurate feature
representations. To alleviate the influence of large-scale differences in the target ranking,
neck further extracts and integrates features from multiple scales, proposing the Multiscale
Attention Feature Pyramid Structure (MSAFPS), which fuses features from different scales
to augment the model’s capacity and effectiveness to capture information at different scales
in the image, effectively fuse features at different levels, and reduce the impact of mutual
occlusion and scale differences in classroom behavior between front and back rankings.
The head section of the network serves as the culmination point, where the extracted
features are transformed and mapped onto the final output space, ultimately yielding the
network’s prediction result. We employ a refined approach to quantify the degree of
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congruence between the predicted bounding box and the actual bounding box, thereby
enhancing the accuracy of the network’s predictions, this article uses Wise-IoU to
introduce richer contextual information to enhance the comprehensiveness of the
evaluation. Introducing weights and considering surrounding area information, reduces
the low quality of captured images and improves the robustness of the network. Our
proposed DMSA net has the following advantages:

(1) The integration of the DAttention module, leveraging both deformable convolution
and self-attention mechanisms, dynamically adjusts sampling positions and
attention weights, enabling the model to prioritize smaller behavioral targets within
classroom scenes. This enhanced focus facilitates the extraction of more precise feature
representations, ultimately boosting the model’s ability to accurately model targets.

(2) Propose a novel MSAFPS, combined with expected maximization deformable
attention and weighted feature pyramid network, to improve feature quality and
reliability while achieving effective transfer and fusion between features at different
levels. Realize noise reduction, purification, and effective fusion of features to obtain
more robust feature expressions, reducing the impact of mutual occlusion and scale
differences in front and back row classroom behavior.

(3) Introducing the Wise Intersection over Union (Wise-IoU) loss function, augmented
with a dynamic non-monotonic focusing mechanism for bounding box localization,
which enhances the model’s ability to precisely localize targets in complex scenes,
Wise-IoU solves the problem of traditional IoU ignoring surrounding information and
being sensitive to data quality. Introducing weights and considering surrounding area
information, reduces the impact of low-quality target samples on the model’s
generalization ability and improves the model’s detection ability for low-quality target
samples.

The subsequent sections of this article are structured as follows: “Related Work” offers a
comprehensive review of pertinent literature in classroom behavior recognition. In
“Methods”, we delve into the specifics of our model and its constituent modules.
Subsequently, “Results” presents ablation studies and comparative experiments to validate
our model design, complemented by a visual analysis of detection performance. Lastly,
“Conclusions” concludes our findings and outlines avenues for future research.

RELATED WORK

Classroom behavior recognition in deep learning

In recent times, the research landscape within the domain of computer vision has
undergone profound transformations, transitioning progressively away from traditional
approaches that hinged on manually crafted feature extraction and classifier training,
towards an “end-to-end” learning paradigm that seamlessly integrates advanced machine
learning and deep learning methodologies. Krizhevsky, Sutskever ¢ Hinton (2017)
introduced the groundbreaking deep learning model, AlexNet, achieving a notable
milestone in the ImageNet Large Scale Visual Recognition Challenge. Subsequently,
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Girshick et al. (2014) devised the R-CNN detection framework, pioneering a two-stage
approach: first, candidate regions are generated, followed by regression and training on
these regions to yield bounding boxes accompanied by confidence scores. This approach
was further refined through the introduction of Fast R-CNN (Girshick, 2015) and Faster
R-CNN (Ren et al., 2017), both aimed at enhancing training speed and accuracy. In
parallel, Liu et al. (2016) introduced the single shot multibox detector (SSD) algorithm,
which, akin to the YOLO series, achieves the concurrent prediction of object categories and
bounding boxes in a single pass.

Behavior recognition, as a pivotal area of investigation within the realm of computer
vision, aims to automatically extract information about human actions or activities from
video or image data, achieving efficient and accurate behavior classification and
recognition. Gowda (2017) devised a method for classifying human behavior,
incorporating deep belief networks. Their approach encompasses two networks: one
employs an enhanced weber descriptor to capture features from target motion, while the
other extracts image-based features, encoding spatiotemporal action information from
frames and feeding these into a CNN for classification, thereby demonstrating exceptional
classification results. In parallel, Carreira ¢ Zisserman (2017) introduced a dual-stream
inflatable 3D CNN, leveraging 2D network weights as pre-training for the 3D network.
Moreover, the landscape of video action recognition continues to evolve, with
advancements in methods leveraging long short term memory (LSTM) and generative
adversarial neural networks (GAN) frameworks (Gu et al., 2021).

Given its robust capability in extracting intricate features (Krizhevsky, Sutskever ¢
Hinton, 2017), deep learning technology has emerged as a formidable tool, that provides
strong technical support for classroom behavior recognition. At present, research on
classroom behavior mainly focuses on student facial expression recognition, class head-up
rate, and recognition of abnormal classroom behavior. Wenchao et al. (2022) integrated the
feature pyramid module into the SSD model, enhancing classroom behavior recognition
efficiency. Tang et al. (2022) reframed action detection as a fine-grained classification task
for action images, leveraging a weighted bidirectional feature pyramid network (BiFPN)
alongside a feature pyramid structure to boost accuracy. Guo (2020) introduced a novel
approach to identifying students’ head-up rates in classrooms, developing a method to
extract salient facial features. Through a multi-task CNN, they demonstrated the
effectiveness of detecting students’ head-up rates. Jisi ¢» Yin (2021) combined spatial affine
transformation networks with CNNs to extract richer features, fusing spatiotemporal
features via a weighted sum method and employing an enhanced softmax classifier for
classification and recognition. Abdallah, Elleuch ¢ Guermazi (2021) presented a deep
transfer learning-based method, initially pretraining the model on a facial expression
dataset before utilizing the transfer model for classifying student behavior.

YOLO application in classroom behavior recognition

The YOLO detection algorithm constitutes a one-stage, deep learning-grounded approach,
which continuously adjusts the position and category of bounding-box in the output layer
through regression. After a picture is input into YOLO, the backbone feature extraction
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network will continuously perform convolution operations on the image, repeatedly
stacking and extracting features through the bottom three feature layers, and then using
the obtained features for prediction. Finally, the final prediction box is calculated and
output based on the three prediction results.

YOLO has emerged as a preeminent target detector, renowned for its optimal balance of
speed and accuracy (Wang, Yeh ¢ Mark Liao, 2024), and has garnered widespread
adoption in educational research. Liu, Ao ¢ Hong (2021) advanced YOLO-v3 by
integrating cascaded, refined RFB modules, bolstering feature extraction, and harnessing
shallow information for heightened small target recognition. To mitigate character
occlusion in crowded classrooms, they substituted the SE-Res2Net module for
Darknet-53’s ResN module, enabling multi-layer feature reuse. Zhang et al. (2020)
enhanced YOLO-v3 with an attention mechanism, facilitating targeted training of student
behavior characteristics, and achieved accurate recognition using the SICAU classroom
dataset. Ren ¢ Yang (2021) presented YOLOV4 Bi, a refinement of YOLOV4, further
elevating its feature extraction prowess. Meanwhile, Hu et al. (2022) leveraged power IoU
loss in YOLOVS5, refining classroom behavior detection accuracy.

Liu et al. (2024) proposed an improved algorithm based on YOLOv8n to address the
challenges of occlusion and small object detection in classroom behavior recognition. By
introducing a BRA module to enhance the capture of fine-grained, global, and contextual
information, the algorithm solves the occlusion problem. At the same time, the addition of
a TODL module optimizes the ability to detect small objects, especially the behavior
recognition of students in the back row, which improves the recognition performance in
complex classroom scenarios.

Chen, Zhou & Jiang (2023) introduced an optimized YOLOvV8 model tailored for
classroom detection. They devised a novel C2f_Res2block module, blending elements from
Res2Net and YOLOVS, which was subsequently integrated into the YOLOVS8 framework
alongside MHSA and efficient multiscale attention (EMA). Evaluations revealed superior
detection performance on classroom datasets, outperforming the baseline YOLOVS.

Although the YOLO network has achieved some results in classroom behavior
recognition, there are still some issues that may reduce the accuracy and reliability of
recognition due to the small classroom behavior goals of students in the back row (such as
their speaking behavior, phone usage behavior, efc.), as well as the occlusion and scale
differences between students in the front and back rows. This article proposes a multiscale
adaptive classroom behavior recognition network for detecting small behaviors and
occlusion in the back row, which has been validated on multiple datasets and achieved
good results.

METHODS

Overall architecture

The latest iteration of the YOLO series, YOLO v10 (Wang et al., 2024), originates from the
innovative efforts of Tsinghua University, marking a significant advancement in the series.
YOLO v10 pioneers as the inaugural real-time, end-to-end object detection model within
the YOLO series, and its network structure inherits from YOLOV8 (Gallagher, 2024). It
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addresses for the first time the issue of end-to-end deployment of YOLO hindered by
post-processing dependencies with non-maximum suppression and proposes a consistent
dual allocation strategy for training YOLO without NMS. The specific approach is to
introduce two parallel output heads, which are used for one-to-one and one-to-many label
allocation, respectively. The one-to-many branch in the training stage provides rich
supervision signals, which helps the model learn. In the inference stage, only one to one
branch is used for prediction, avoiding the computational overhead of NMS. To ensure
that the supervision signals of the two branches are as consistent as possible during the
training process, YOLOvV10 adopts the consistent matching metric (CMM) standard,
which helps reduce the supervision gap between the two branches and improve the overall
performance of the model. In addition, YOLOV10 proposes an overall efficiency
accuracy-driven model design strategy, which comprehensively optimizes various
components of YOLO, mainly including: (1) Simplifying the architecture of the
classification head and reducing computational complexity. (2) Decoupling space
reduction and channel addition operations to improve the efficiency of downsampling.
(3) Sort the stages based on their intrinsic rank to reduce redundancy and improve
efficiency. (4) Use large convolutional kernels and partial self-attention modules to
enhance the global representation capability of the model while maintaining low cost.

We proposed the DMSA Net network based on YOLOvV10, which also consists of three
parts: backbone, neck, and head. As shown in Fig. 1, backbone constructs a six-layer
feature pyramid using a CNN network (Pishchulin et al., 2016) to extract information with
different scales and features. Layers 1-3 are composed of Conv modules and C2f modules,
while layers 4 and 5 are composed of SCDond modules and C2f modules. The sixth layer
incorporates the DAttention module, facilitating precise modeling of long-range
dependencies and occlusion scenarios in classroom behavior analysis within intricate
environments. Subsequently, at the neck layer, the feature maps undergo advanced
extraction and fusion, leveraging the MSAFPS module for multilevel feature integration
post-multiscal feature blending. The head layer then processes neck derived features to
execute object detection, entailing the prediction of target locations and categories. In
regression tasks, the Wise-IoU loss function enhances precision in characterizing target
position and form, ultimately delivering refined network outputs comprising bounding
box coordinates and category probabilities.

Backbone

The backbone serves as the core component of the network, tasked with extracting
essential features from input imagery for subsequent elaborate processing and in-depth
analysis. It has multiple layers and parameters, which can extract advanced feature
representations of images.

Backbone overall structure

Feature extraction plays a crucial role in classroom behavior recognition scenarios.
However, in real classroom environments, image capture is mostly done with wide-angle
and panoramic lenses, and the behavior in the back row of the classroom (such as speech
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Regression |
Wise----WIoULoss+DFL :

Figure 1 An illustrative overview of the DMSA net architecture highlights the integration of the
DAttention mechanism within the backbone, facilitating the establishment of a six-tiered feature
pyramid for comprehensive multiscale feature extraction. Neck designed the MSAFPS module to
further achieve feature extraction and integration. The incorporation of the Wise-IoU loss function in the
Head component enhances the precision with which target positions and shapes are characterized during
localization and classification tasks. Full-size K&l DOT: 10.7717/peerj-cs.2876/fig-1

judged by mouth shape, whether using a phone, efc.) has smaller targets, which poses great
challenges for feature extraction. To overcome these challenges, DAttention was
introduced in its backbone phase and a feature pyramid was constructed, as shown in
Fig. 2. The initial layer, Layer 1, performs convolutional operations on the input image to
extract foundational, low-level feature information, while Layer 2-3 consists of Conv and
C2f modules. Layers 4-5 are composed of the SCDown module and the C2f module. Layer
6 consists of the SPPF module and the DAttention module.

Deformable attention mechanism

The core of backbone is the introduction of deformable attention machines. The
DAttention mechanism dynamically adapts both the sampling position and attention
weight, enabling a more flexible and contextually aware focus on salient features, enabling
the model to more accurately focus on small target behaviors at long distances, enhancing
the modeling ability of behavioral features in real classroom environments. By introducing
this strategy, the backbone layer in this article can effectively extract robust features that
can express objects of different scales from classroom behavior images, providing strong
support for subsequent object detection tasks. DAttention represents a streamlined and
effective deformable self-attention module, offering a lightweight yet powerful approach to
modeling contextual relationships, which can also be seen as a spatial adaptation
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Figure 2 Backbone structure. Layer 1 consists of Conv modules, Layers 2-3 consist of Conv and C2f
modules, and Layers 4-5 consist of SCDond and C2f modules. Layer 6 is composed of SPPF and
DAttention modules. Full-size K&l DOT: 10.7717/peerj-cs.2876/fig-2

mechanism that allows models to dynamically adjust their attention focus while processing
data. The traditional attention mechanism usually focuses intensively on the information
of all grids during sampling, Meanwhile, the deformable self-attention mechanism
enhances the model’s ability to precisely pinpoint and capture the salient features of
objects within the data. While paying more attention to the classroom behavior target area,
extracting more refined and accurate feature representations, and improving the modeling
ability and feature expression ability for distant targets.

RH*W*C “the purpose is to ascertain the displacement of each

Input feature map x €
designated reference point, linearly project the feature map onto the query marker,
expressed as Bg = XW,, the reference points on the road are obtained by downsampling
with proportional coefficients and generating grids. Given the input query, the offset
network generates Ap, which is then represented as Ap = Jper(q). Subsequently, Ap is

added to the reference points to derive the offset position information. This information is
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then utilized to sample the deformed reference points through bilinear interpolation,
yielding x, k, and v values:

x = ¢(x;p+Ap) (1)
k= ka (2)
v=xW, (3)

Adding relative position encoding to calculate multi-head attention:

2" = 5<q(m)k(m)t/\/g + ¢(B; R)) ym., (4)

The deformable attention module exhibits an improved capability in capturing the
intricate relationships between feature points across varying scales, enhancing its ability to
represent multiscale features. By predicting an offset, the attention distribution is no longer
fixed, but can adaptively change according to the characteristics of the data. This
methodology allows the network model to prioritize and attend to critical feature
information within classroom behavior imagery, particularly emphasizing the often
overlooked small target behaviors in the rear. While minimizing redundant computations
beyond simply broadening the receptive field. Deformable self-attention uses multiple sets
of deformable sampling points to determine the important regions of the feature map and
models the relationships between different features of classroom behavior based on these
important regions. Reduce the influence of irrelevant background, non-classroom
behavior, and occlusion between behaviors to improve the expressive ability of features.

Neck

The neck, as an intermediary layer bridging the backbone and head, fulfills a pivotal role
in resizing or modulating the dimensionality of backbone derived features to seamlessly
align with task-specific needs. Additionally, it oversees the fusion of multiscale feature
maps, subsequently relaying these enriched features to the prediction layer for further
processing.

Multiscale attention feature pyramid structure MSAFPS

In classroom behavior recognition tasks, given the spatial distribution of student objects
within the classroom environment, there is a significant difference in classroom behavior
between the front and back rows. Previous feature fusion methods have difficulty
accurately distinguishing the significance of features spanning various scales, and some
scales of features may be more important than others, resulting in a greater impact on the
results and an uneven contribution of these features to the outcome. To tackle the
aforementioned obstacle, this article proposes a multiscale attention feature pyramid
structure called MSAFPS, as shown in Fig. 3, which enables efficient fusion of high and
low-level features between different stages, thereby achieving simultaneous fusion of deep,
shallow, and multiscale features. This mechanism can achieve denoising, purification, and
effective fusion of features, thereby obtaining more robust feature expressions. The
MSAFPS structure enables effective transfer and fusion between features at different levels.
Specifically, BiFPN (Girshick et al., 2014) adjusts the importance of features on different
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Figure 3 Multiscale attention feature pyramid structure MSAFPS structure.
Full-size Kal DOI: 10.7717/peerj-cs.2876/fig-3

paths through dynamic feature weighting, selectively fuses features, and achieves
bidirectional feature propagation through multiple output connections to reduce
information loss and propagation delay, thereby achieving efficient fusion between
features at different levels. By utilizing EMA (Krizhevsky, Sutskever ¢~ Hinton, 2017) to
maximize the expected value of attention weights, the model can emphasize pivotal
information within the features while evening out the weight distribution, mitigating the
impact of disruptive noisy features, and ultimately refining the output features.

BiFPN, a feature fusion network tailored for object detection, enhances both accuracy
and efficiency via multilevel feature integration and dynamic weight assignment. It
employs a bidirectional pyramid architecture, adeptly addressing information bottlenecks
and feature distortions in conventional feature pyramids through adaptive fusion and
selection mechanisms. Additionally, BiFPN incorporates cross-level connections and
multiscale fusion, further bolstering the performance of object detection tasks.

This article is based on the BiFPN structure and combines the feature input and
detection head in this article to modify the BiFPN structure. The detection heads in this
article only have three, so we further modified the five output detection heads of a normal
BiFPN to support the detection of the three heads in this article. The detailed structure is
shown in Figs. 4, 5.

The EMA module strategically balances information preservation across channels while
minimizing computational burden. It innovatively reorganizes channels into batch
dimensions and partitions channel dimensions into sub-features, fostering a balanced
distribution of spatial semantic features within each group. Notably, EMA not only
encodes global information into parallel branches to refine channel weights but also fosters
cross-dimensional interaction between the outputs of these branches, capturing intricate
pixel-level relationships. Employing a parallel subnet architecture, EMA leverages three
parallel paths to derive attention-weighted descriptors for grouped feature maps,
emphasizing both multiscale features for holistic and detailed target understanding, and
cross-spatial information aggregation across varying dimensions to grasp complex
positional relationships among four target types. This intricate interplay results in richer
aggregated features. The module integrates 1 x 1 and 3 x 3 branch outputs, harnesses
two-dimensional global average pooling, and applies softmax-based linear
transformations. By multiplying matrix dot products, the first spatial attention map
emerges. Subsequently, the global spatial information from the 3 x 3 branch is encoded
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Figure 4 BiFPN structure.

Full-size K&l DOT: 10.7717/peerj-cs.2876/fig-4

EMA
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Figure 5 MSAFPS structure.

Full-size K&l DOT: 10.7717/peerj-cs.2876/fig-5

and synergistically fused with the 1 x 1 branch, yielding the second spatial attention map.

The union of these two spatial attention weights captures the global context, and the final

output dimensionally mirrors the input feature map. The detailed structure is shown in

Fig. 6.

EMA provides channel and cross-spatial information exchange, which can adjust the

focus on feature maps according to the scale requirements of each detection head. The
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Figure 6 Illustrates the EMA structure, where C denotes the channel count within the feature map, H
signifies its height, and W represents its width. The following grouping, X represents the resulting
feature map, while X Avg Pool and Y Avg Pool indicate the application of one-dimensional horizontal
Full-size 4] DOT: 10.7717/peerj-cs.2876/fig-6

and vertical global pooling respectively.

BiFPN network efficiently integrates multi-level features, thereby enhancing the precision

and swiftness of object detection. Our novel MSAFPS approach harmoniously fuses

expected maximum attention with a weighted feature pyramid network, fostering

improved feature quality and reliability, while facilitating seamless transfer and fusion

across various feature levels.
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Wise-loU loss

The definition of the loss function for bounding box regression (BBR) holds paramount
importance in object detection, as its optimization can lead to substantial enhancements in
model performance. Within the realm of object detection, scale differences and mutual
occlusion between objects pose significant obstacles to improving the performance of
regression models. Specifically, for small-scale targets, due to their small image area, the
effective feature information extracted is relatively scarce, which greatly increases the
difficulty of the regression model in accurately predicting their bounding boxes, resulting
in a marked decline in prediction accuracy. On the contrary, for large-scale targets,
although they contain rich feature information, due to their wide coverage of image areas,
localization algorithms are more susceptible to adverse factors such as background noise,
lighting changes, and interference from neighboring objects during processing, thereby
weakening the accuracy of localization.

Scholars have introduced the CIoU loss function for boundary box regression, which
incorporates three pivotal geometric aspects: overlap area between Ethe ground truth and
predicted boxes, center point distance, and aspect ratio. This approach aims to align the
predicted box more closely with the actual box, thereby refining regression accuracy. The
calculation formula for the CIoU loss function is shown in Egs. (5)-(7),

P2
LCIDU =1- IOU+<IZ—;bgT)+ av (5)
b be|
IoU = - 6
Y T huwe (6)
4
ai(l—IoU)—f—v @
— 2 Jarctan ™ tan - 8
V—E arc anﬁ —arc anz. (8)

The formula incorporates, b, the centroid of the predicted box; P, the Euclidean
distance between their centers; C, the diagonal distance within the smallest enclosing
rectangle of both boxes, serving as a weighting factor; V, quantifying aspect ratio
consistency; IoU, the area intersection ratio between the actual and predicted boxes; the
dimensions (width & height) of the actual box, W & H, respectively, the width and height
of the predicted box.

While the CIoU loss function incorporates the aspect ratio of predicted and actual
boxes, it neglects the challenge posed by low-quality samples within the training dataset. In
real classroom environments, the diversity of student positions, changes in scale, and
occlusion are major challenges. Low-quality examples are inevitably included in the
training data, which can lead to regression errors and cause imbalanced training samples.
These low-quality samples dominate the gradient and cause severe oscillations in the loss
function, this, in turn, diminishes the model’s capacity for generalization. To solve such
problems, reduce the impact of low-quality samples on gradients, and improve the
learning ability of difficult samples such as occluded targets and rear-row student targets,
this article uses Wise-IoU V3 instead of CloU. Inevitably, the training dataset comprises
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low-quality samples. The established parameters of anchor boxes (such as distance and
aspect ratio) may inadvertently heighten the network’s focus on these suboptimal samples,
compromising generalization performance. To mitigate this, Wise-IoU V3 softens the
penalties associated with these metrics and minimizes pre-training interference when
anchor and target boxes exhibit high overlap, thereby enhancing the network’s
generalization capabilities. The mathematical formulation of Wise-IoU V3 is detailed in
Egs. (9) through (12):

LIoU =1—-10U (9)
(x — xgt)2 +(y —}’gt)z
Rwiu = exp I (10)
(wg + h3)
Lwroun = RwiouLiou (11)
L

B==2Yc0,+00) (12)
ToU
B

V=55 (13)

Lwiowvs = YLwiouw1- (14)

Herein, x and y denote the horizontal and vertical coordinates of the prediction box’s
center, respectively, while w and h represent the width and height of the prediction box,
respectively, Xgr, Yor, Wyt and hgt representing the spatial coordinates at the intersection of
the median lines of the genuine box’s boundaries, as well as the width and height of the real
box, w, and hg. The width and height of the minimum closed box formed by the predicted
box and the real box area. f is the outlier, the larger its value, the worse the quality of the
sample. The focus coefficient r is calculated from f, and the values of « and J are 1.8 and 3.
As the loss value escalates, the parameter r undergoes non-monotonic fluctuations. By
adaptively modulating the gradient’s sensitivity to these subpar samples via r, we can
expedite the network’s convergence process and bolster the model’s precision in
localizing targets.

LIoU is dynamic, and as the model is trained, the threshold is automatically adjusted,
and the criteria for discerning anchor box quality are rendered dynamic, underpinning a
prudent strategy for gradient gain allocation. By tempering the dominance of superior
anchor boxes and mitigating the detrimental gradients emanating from inferior samples,
Wise-IoU achieves a nuanced, non-monotonic focus on intermediate samples. This
adaptive approach fortifies the model’s capacity for generalization and elevates its overall
performance metrics.

RESULTS

Data set

We assessed the efficacy of our novel DMSA net architecture on two benchmark datasets:
SCB-Dataset3-S (https://github.com/Whiffe/SCB-dataset) (Yang, Wang & Wang, 2023)
and DataFountainSCB (Yang ¢~ Wang, 2023), thereby validating its performance across
diverse data landscapes. The SCB-Dataset3-S dataset is an open dataset focused on the
design of classroom behavior recognition tasks. This dataset was released in December
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Table 1 Units for magnetic properties.

Target classes Target numbers
Hand-raising 11,207

Reading 10,841

Writing 3,762

2024 and includes 5,015 images and 25,810 tags, with a focus on three behaviors: raising
hands, reading, and writing. At least one target exists in each image, and most images
contain more than one target. The detailed information is shown in Table 1.

The other dataset named DataMountainSCB (https://github.com/Chunyu-Dong/
DataFountainSCB1) was created by ourselves. Table 2 lists the detailed information of the
dataset.This dataset mainly focuses on six common behaviors of students in the classroom,
including raising hands, reading, writing, playing with mobile phones, lowering heads, and
lying on tables. Based on this, an image dataset was established, and nearly 2000 data
points were successfully collected. The aforementioned dataset was partitioned into
training, validation, and testing subsets, adhering to a 7:2:1 ratio, ensuring a balanced
representation for model development, refinement, and evaluation, respectively.

Evaluation indicators and experimental environment

Evaluation indicators

To authenticate the proficiency of our proposed network in recognizing classroom
behaviors, we conducted a comprehensive evaluation of its performance metrics,
encompassing precision (P), recall (R), and mean average precision (mAP). The
underlying mathematical formulations for calculating these indicators—accuracy, recall,
and mAP—are outlined subsequently:

.. TP (15)
recision = ————
p TP 1 FP
TP
l=———. 16
reca TP+ N (16)

Specifically, TP signifies the count of accurately identified classroom behavior instances,
FP denotes the instances misclassified as classroom behavior, and FN reflects the number
of actual classroom behavior goals that were overlooked by the model.

Zg:l APy
N

mAP = (17)

where in, n signifies the cumulative count of distinct categories, k denotes the number of
detections performed, an AP serves as a metric to quantify the average precision achieved
across each category.

The metric mAP50 captures the average precision at an IoU threshold of 0.5, while
mAP50-95 encompasses a range of IoU thresholds from 0.5 to 0.95, averaging their
respective AP values. This comprehensive approach transcends the constraints of
single-category evaluations, offering a holistic view of the model’s performance across
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Table 2 Detailed introduction to the DataFountainSCB dataset.

Target classes Target numbers
Hand-raising 8,942

Reading 7,406

Writing 3,320
UsingPhone 172
BowingHead 964
LeaningTable 1,100

multiple classes. By comprehensively assessing detection results, mAP not only measures
the effectiveness of object detection algorithms but also evaluates their stability and
robustness in tackling multi-class scenarios. Its intuitive nature facilitates easy
understanding and direct comparison, making it a prevalent evaluation metric in the field
of object detection.

Experimental environment

The training regimen for our model entailed a comprehensive setup, with 500 epochs, a
batch size of 4, 8 parallel processes, and an input image resolution of 640 x 640. For
optimization, we opted for the SGD optimizer, complemented by a weight decay factor of
5e-x to counteract overfitting. Momentum was set at 0.937 to accelerate convergence.
Additionally, we implemented Early Stopping, a mechanism that automatically halts
training upon validation loss stabilization, ensuring our model achieved fundamental
convergence.

Our model’s experimentation was conducted within an Ubuntu 20.04 environment,
leveraging PyTorch 2.0.1, Python 3.9.19, and CUDA 12.2.79. The hardware setup featured
an Intel (R) Core (TM) i7-9700KF CPU clocked at 3.60 GHz, complemented by an
NVIDIA GeForce GTX 1050 Ti GPU. Processing 640 x 640 pixel images with three color
channels, our approach comprises 385 layers, entailing 2.71 million parameters, achieving
8.4 GFLOPs of computational efficiency. The training protocol involved 500 epochs,
resulting in a model size of 5.51 MB, optimized for the given task.

Ablation experiment

Algorithm overall experiment

To solidify the efficacy of individual components within our proposed approach, we
embarked on ablation studies, leveraging the SCB-Dataset3-S and DataFountainSCB
datasets as benchmarks. These experiments were anchored against YOLOV10 as a
foundational comparison, with the outcomes about the SCB-Dataset3-S detailed in
Table 3, offering insights into the contribution of each module.

The baseline, featuring a robust architecture with numerous convolutional and pooling
layers within its backbone, attained a mAP50 score of 73.1%. This performance can be
attributed to its efficient utilization of C2f structuring in convolutional layers, which not
only enriched feature representations through additional skip connections and split
operations but also mitigated computational overhead. While maintaining lightweight,
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Table 3 SCB-Dataset3-S dataset ablation experiment.

DAttention MSAFPS Wise-IoU mAP50(%)
X X X 73.1
v X X 73.5
X v X 73.8
X X v 73.7
v v X 74.2
X v v 74.1
Vv Vv Vv 74.5

they can obtain richer gradient flow information. These operations can achieve good
results in natural scenes, but for classroom behavior recognition scenes, the background is
complex, there are many small targets, and some objects are severely occluded, which still
have certain limitations.

Therefore, we introduced the DAttention module on the baseline, which improved
mAP50 by 0.4%. The fusion of CNN’s localized sensitivity with ViT’s global
comprehension within the DAttention module allows the model to pinpoint salient areas
with greater precision, thereby adeptly capturing spatial nuances within images and
fortifying its capability to decipher intricate student behavior patterns even amidst lengthy
distances or obstructions. After adding the MSAFPS structure, mAP50 increased by 0.7%,
indicating that the combination of MSAFPS with expected maximum attention and
weighted feature pyramid network improves feature quality and reliability while achieving
effective transfer and fusion between features at different levels and scales. The
incorporation of the Wise-IoU loss function led to a notable 0.6% elevation in mAP50,
signifying its proficiency in accurately quantifying the overlap between predicted and
ground truth bounding boxes, thereby minimizing the detrimental effects posed by
suboptimal samples.

Incorporating both the DAttention module and the MSAFPS module into our approach
led to a notable 1.1% boost in mAP50 over the baseline, demonstrating a synergistic
enhancement that surpassed the incremental gains achieved by integrating each module
individually, indicating that the two modules have good independence and can play a good
role in different stages of detection. After adding the DAttention, MSAFPS, and Wise-IoU
modules, the best results were achieved, with a 1.4% increase compared to the baseline,
indicating that these modules may have a synergistic effect. They can better adapt to object
detection tasks in complex scenes by coordinating and optimizing various aspects of the
network, jointly improving the performance of classroom behavior image object detection
tasks.

Consistent enhancements were observed in the DataFountainSCB dataset as well, as
depicted in Table 4. Networks featuring overlapping blocks surpassed their single-module
counterparts in performance. By incorporating three distinct modules, the model
demonstrated adeptness in capturing spatial cues, comprehending multidimensional
features, and dynamically fusing them, thereby mitigating the disruptive effects of intricate
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Table 4 Ablation experiment on the DataFountainSCB dataset.

DAttention MSAFPS Wise-IoU mAP50 (%)
X X X 93.3
v X X 93.8
X v X 94.0
X X v 94.1
v v X 94.4
X v v 94.6
Vv Vv Vv 94.8

backgrounds. This holistic approach, devoid of any inter-module conflicts, culminated in
an optimal model performance of 94.8%, underscoring the synergistic benefits of the
proposed techniques.

DAttention module ablation experiment

To assess the efficacy of the DAttention module in various contexts, we performed ablation
studies targeting distinct locations within the backbone network’s architecture. Given that
layers 1 through 4 of this six-layered structure primarily facilitate the extraction of
high-resolution image features, they were deemed less conducive for integrating attention
mechanisms. Consequently, our focus shifted to experimenting with the 5th and 6th layers.
The ablation outcomes, as reflected in Table 5 for both the SCB-Dataset3-S and
DataFountainSCB datasets, offer valuable insights into the module’s performance.

Upon examination of the table, it is evident that omitting the DAttention module in our
initial setup results in a baseline performance. Introducing the DAttention module
exclusively in the sixth layer led to the most notable enhancement in detection accuracy.
Conversely, appending it to the fifth layer individually or simultaneously with the sixth
layer produced either modest gains or a decrease in performance, respectively. This
observation aligns with the fact that deeper layers in the network architecture transition
from encoding low-level details to higher-level semantic representations. As such,
positioning the DAttention module in deeper layers, like the sixth, optimizes its capability
to process complex semantic information. The expanded receptive field of the sixth layer,
capable of encompassing richer contextual cues, further underpins this strategy’s
effectiveness. DAttention dynamically adapts the receptive field’s dimensions to enhance
feature extraction within the target region, thus refining target localization and recognition
accuracy. While the fifth layer’s receptive field, albeit smaller than the sixth’s, suffices for
the present dataset, integrating DAttention therein yields performance gains, albeit less
pronounced than in the sixth layer. Simultaneous deployment across both layers risks
extracting redundant features, potentially hindering detection performance by introducing
noise. Additionally, this dual-layer approach significantly amplifies network complexity,
augmenting computational demands and complicating training optimization, potentially
leading to diminished overall performance and detection accuracy. Consequently, this
study prioritizes integrating DAttention exclusively at the sixth layer.
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Table 5 DAttention module ablation experiment.

Model layer SCB-Dataset3-S DataFountainSCB

mAP50 mAP50-95 mAP50 mAP50-95
Ours (No DAttention) 0.731 0.543 0.933 0.735
Layer5 0.733 0.555 0.936 0.758
Layer6 0.735 0.558 0.938 0.769
Layer5 + Layer6 0.732 0.551 0.932 0.732

Table 6 ToU module ablation experiment.

Model Precision Recall mAP50 mAP50-95
CloU 0.724 0.824 0.933 0.752
Wise-IoU V1 0.824 0.859 0.935 0.76
Wise-IoU V2 0.839 0.862 0.936 0.762
Wise-IoU V3 0.846 0.874 0.941 0.769

Wise-loU module ablation experiment
Based on the loss function, we conducted different comparative experiments on CloU
(Krizhevsky, Sutskever ¢ Hinton, 2017), Wise-IoU V1 (Wenchao et al., 2022), Wise-IoU
V2, and Wise-IoU V3. For the DataFountainSCB dataset, the results are shown in Table 6:
The aforementioned results highlight Wise-IoU V3’s superior performance on the
DataFountainSCB dataset in this study. This advantage stems from Wise-IoU unique
approach of multiplying the IoU of the target box by a region weight, which dynamically
adjusts based on the target’s position and scale. Employing Wise-IoU as an evaluation
metric enhances the precision of target bounding box measurements and consequently
boosts the overall detection algorithm’s performance. Notably, Wise-IoU V3 excels in
handling classroom behavior images with low-quality samples due to this adaptive
weighting mechanism. Conversely, Wise-IoU V1 attempted to address low-quality
training examples through an attention-based bounding box loss, but geometric metrics
like distance and aspect ratio inadvertently imposed harsher penalties on such samples,
ultimately hindering the model’s generalization capabilities. An optimal loss function
ought to mitigate the influence of geometric metrics’ penalties when anchor boxes align
well with target boxes, while judicious intervention during training can bolster the model’s
generalization prowess. Building upon distance metrics, distance attention underpins
Wise-IoU V1’s two-tiered attention framework. Advancing further, Wise-IoU V2
introduces a monotonic focusing mechanism tailored for cross-entropy, strategically
diminishing the loss contribution from straightforward examples. This strategy directs the
model’s attention towards challenging instances, thereby enhancing classification
performance. Extending this concept, Wise-IoU V3 establishes a dynamic quality partition
criterion for anchor boxes, enabling it to devise the most fitting gradient gain allocation
strategy in real time, tailored to the prevailing circumstances.
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Figure 7 Experimental performance results of IoU module ablation comparison. Full-size K&l DOI: 10.7717/peerj-cs.2876/fig-7
Table 7 Comparative experiments based on SCB-Dataset3-S.
Models P (%) R (%) mAP50 (%) mAP50:95 (%) Params (M) GFLOPs FPS
Faster-RCNN 51.3 54.8 65.4 39.7 15.84 13.56 19.93
RetinaNet 54.5 56.7 68.7 40.5 10.98 12.74 12.49
YOLOv5n (Thuan, 2021) 68.1 67.5 71.1 48.3 3.46 8.4 23.47
YOLOvVS8n 67.9 67.7 72.4 55.0 3.01 8.1 28.32
YOLOv10n 68.8 68.1 73.1 55.4 2.8 7.9 31.6
rtdetr-1 (Zhao et al., 2024) 55.7 57.4 68.9 50.8 31.99 103.4 12.75
CSB-YOLO (Zhu & Yang, 2024) 67.35 65.48 70.3 51.6 1.86 6.2 36.41
Ours 69.6 68.8 74.5 56.6 2.61 7.4 35.12

Figure 7 presents comparative curves for Precision, Recall, mAP50, and mAP50-95,
revealing Wise-IoU V3’s consistently high performance throughout the training phase.
Notably, after a certain iteration threshold, Wise-IoU V3’s performance gradually
stabilized, ultimately achieving the peak values among the evaluated metrics.

Comparative experiment

SCB-dataset3-S result

To substantiate the efficacy of our proposed approach, we conducted comparative
experiments on the SCB-Dataset3-S dataset, juxtaposing it against other prevalent classical
methodologies, the results are shown in Table 7. For the entire classroom behavior object
detection, the mAP50 method proposed in this article improves by 3.4% compared to
YOLOV5, 2.1% compared to YOLOVS, and 1.45% compared to YOLOv10. The model
demonstrates robust performance even in scenarios where the overlap between predicted
and actual bounding boxes is minimal, underscoring its resilience. Additionally,
MAP50:95 registers a 1.2% enhancement over YOLOV10, affirming the model’s
consistently high performance across varying low overlap union (LOU) thresholds.
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Table 8 Comparative experiments of different models in DataFountainSCB.

Models P (%) R (%) mAP50 (%) mAP50-95 (%) Params (M) GFLOPs FPS

Faster-RCNN 69.5 68.4 84.9 64.7 15.83 13.54 19.92
RetinaNet 72.4 71.5 87.2 66.2 10.96 12.76 12.48
YOLOV5n (Thuan, 2021) 84.6 84.2 91.5 72.1 3.48 8.5 23.50
YOLOvV8n 87.8 85.0 92.4 73.7 3.03 8.2 28.31
YOLOv10n 91.1 87.8 93.3 73.6 2.84 7.8 31.59
rtdetr-1 73.5 72.4 87.4 67.5 31.97 103.1 12.77
CSB-YOLO 90.7 85.8 91.4 75.7 1.84 6.1 36.52
Ours 92.1 88.3 94.8 79.1 2.6 7.3 35.67

Table 7 showcases the detection prowess of the method presented herein,
demonstrating its proficiency in identifying diverse classroom behavior targets, regardless
of type, size, or orientation. Notably, it excels in intricate scenes and exhibits remarkable
resilience to varying lighting conditions, occlusions, and background distractions.
Compared with the CSB-YOLO network, mAP50 increased by 4.2%, but Params and
GFLOPs were larger.

The introduction of the DAttention module into our backbone network significantly
contributes to improved detection accuracy. This module leverages deformation sampling
points to adaptively reshape and resize the receptive field, thereby refining the feature
extraction of target regions and bolstering the model’s modeling prowess for classroom
behavior images. Additionally, the MSAFPS network facilitates seamless feature transfer
and fusion across diverse levels and scales in the feature integration and extraction stages.
Furthermore, the Wise-IoU loss function, employing a dynamic non-monotonic FM-
based gradient gain allocation strategy, further enhances the overall performance. By
introducing weights and considering surrounding information, it balances the punishment
of detecting anchor boxes and enhances the model’s generalization performance. Through
this innovative approach, our model has achieved significant performance improvements
in regression and localization, especially when dealing with targets with scale differences,
demonstrating stronger robustness and accuracy.

DataFountainSCB

Table 8 presents a comparative analysis of our proposed method against leading advanced
techniques on the DataFountainSCB dataset. Notably, our approach demonstrates
improvement on this benchmark as well.

The aforementioned scenarios pose significant challenges to object detection due to
factors like dense arrangements, varied orientations, occlusions, and small targets, amidst
complex backgrounds, diverse environments, and extensive variations in scale and overlap.
Our proposed method adeptly addresses these challenges by dynamically adjusting the
receptive field’s size and shape, efficiently fusing and disseminating contextual and salient
features across multiple scales, and resolving issues such as bounding box overlap via
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tailored loss functions. Consequently, it enhances the capability to accurately recognize
behaviors within classroom settings.

The performance of distinct neural network algorithms varies notably when confronted
with intricate scenes, images featuring minuscule target proportions, and densely
populated sample distributions. Among them, the method proposed in this article has
demonstrated good detection ability in multiple scenarios, especially when dealing with
complex backgrounds, occluded objects, small targets of students in the back row, and
some samples with low quality. However, no algorithm can achieve perfect detection
performance in all scenarios, and each algorithm has its advantages and limitations.
Hence, for practical deployment, selecting algorithms tailored to specific scenarios and
requirements is crucial, often necessitating tailored optimizations and enhancements to

meet performance targets.

CONCLUSIONS

To accurately recognize the subtle movements and behaviors of students in the back row in
real classrooms, such as the small opening and closing of the mouth (to determine whether
they are speaking) and the fine manipulation of fingers (to distinguish between flipping
through books or operating mobile phones), this article proposes an DMSA Net, which
includes three parts: backbone, neck, and head. Constructing a multiscale feature pyramid
within the backbone stage and incorporating a DAttention module serves to preserve both
comprehensive background details and prominent feature information, enhancing overall
detection capabilities. But also dynamically adjusts sampling positions and attention
weights, this approach enables the model to prioritize smaller behavioral targets within the
image, facilitating the extraction of finer, more precise feature representations, thereby
improving detection accuracy. To enhance feature extraction and fusion across multiple
scales, and tackle the challenge of behavioral occlusion, we implement a strategy that
leverages the strengths of multiscale analysis and effective occlusion handling, neck
proposed the MSAFPS, which combines expected maximum attention and weighted
feature pyramid network to improve feature quality and reliability while achieving effective
transfer and fusion between features of different levels and scales. By incorporating
Wise-IoU loss in the head section, DMSA Net gains the ability to more precisely gauge the
similarity between predicted and actual bounding boxes. This advancement not only
boosts detection accuracy but also enhances the model’s resilience in complex scenes and
variable datasets, addressing issues of missed and erroneous detections in classroom
learning behavior recognition. Experimental evaluations reveal that our proposed method
outperforms current mainstream one-stage and two-stage techniques in terms of accuracy.
Additionally, ablation studies delve into the effectiveness of individual modules, laying a
foundation for future enhancements.

In our future work, firstly, we will aim to reduce network parameters while ensuring
detection accuracy, with the hope of creating a lightweight network that boasts high
detection precision. This will cater to the real-time and lightweight requirements of
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classroom behavior recognition. Secondly, we intend to apply DMSA Net in various
scenarios, such as lectures and meetings, to verify its effectiveness and generalization
capabilities. Lastly, we will develop a system based on DMSA Net for recognizing and
analyzing learning behaviors in natural classroom settings.
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