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ABSTRACT
Detecting emerging topics is crucial for understanding research trends, technological
advancements, and shifts in public discourse. While unsupervised topic modeling
techniques such as Latent Dirichlet allocation (LDA), BERTopic, and CoWords
clustering are widely used for topic extraction, their ability to retrospectively detect
emerging topics without relying on ground truth labels has not been systematically
compared. This gap largely stems from the lack of a dedicated evaluation metric for
measuring emergence detection. In this study, we introduce a quantitative evaluation
metric to assess the effectiveness of topic models in detecting emerging topics. We
evaluate three topic modeling approaches using both qualitative analysis and our
proposed emergence detection metric. Our results indicate that, qualitatively,
CoWords identifies emerging topics earlier than LDA and BERTopics. Quantitatively,
our evaluation metric demonstrates that LDA achieves an average F1 score of 80.6% in
emergence detection, outperforming BERTopic by 24.0%. These findings highlight the
strengths and limitations of different topic models for emergence detection, while our
proposed metric provides a robust framework for future benchmarking in this area.

Subjects Artificial Intelligence, DataMining andMachine Learning, Natural Language and Speech,
Text Mining
Keywords Static topic modeling, Topic emergence detection, Unsupervised topic modeling

INTRODUCTION
Topic extraction, also known as topic modeling, is the process of automatically identifying
and extracting meaningful latent concepts or topics from a collection of documents or texts
(Blei, 2012). It is a fundamental technique in natural language processing. Unsupervised
topic extraction is commonly used because it does not rely on predefined categories or
labeled data.

Topic emergence refers to the appearance of new groups of words representing a topic
within textual data. New topics frequently emerge as fields and communities change and it
is useful to be able to detect these new topics. For example, science progresses on the
principle that new and emerging topics overshadow the older ones (Kuhn, 1962). In a
social context, organizations are keen to be updated with the new trends that could affect
their operations, internally through email (Wang & McCallum, 2006) and externally using
social media platforms (Chen et al., 2013). Therefore, understanding which topic model is
capable of better detecting topic emergence is beneficial for many applications in
academia, entrepreneurship, and government.
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Recent advances in topic modeling have focused on developing models that extract
topics that are more coherent, diverse, and interpretable (Abdelrazek et al., 2022; de Melo &
Merialdo, 2024). However, there is limited research comparing the ability of these models
to detect emerging topics. In other words, when extracting topics and analyzing their
evolution over time, we aim to select a model that can identify emerging topics earlier than
others. Specifically, we focus on an unsupervised setting where the ground truth of the
topics is unknown.

While previous studies have explored forecasting topic emergence during the “embryo”
stage using revolutionary networks and citation-based models (Salatino, Osborne &Motta,
2018), others have analyzed retrospective trend detection by identifying shifts in topic
proportions or leveraging change-point detection techniques (Boutaleb, Picault &
Grosjean, 2024; Rahimi et al., 2023). However, these models they primarily introduce
specific models for topic emergence detection without systematically comparing how well
different unsupervised static topic models, such as Latent Dirichlet allocation (LDA),
BERTopic, and CoWords, detect topic emergence. To address this gap, we evaluate the
ability of multiple topic models to detect emerging topics in a unsupervised setting
systematically. We propose a generic framework that can be applied to any topic models,
and an independent evaluation metric to assess their effectiveness.

Comparing topic models presents several challenges. Ideally, if different topic models
were to extract the same topics, we could compare the trends produced by each model and
determine which model captures the emergence of a topic earlier by having human
evaluators evaluate the associated trends. While this approach can be effective, there are
still limitations:

(1) Different topic models possess different assumptions and initialization procedures,
which may lead to different levels of granularity in the learned topics. As a result, there
might not be a one-to-one correspondence between topics across different models.

(2) The lack of ground truth makes it difficult to apply a systematic comparison approach.

To address these limitations, we propose two evaluation methods. The first involves
human evaluation of top-matched topics across models, which provides a qualitative
analysis of the generated topics and when they emerge. The second is a quantitative,
independent measure of a model’s ability to detect emerging topics without ground truth.
This measure leverages the generative nature of each model and uses the predictions of
emerging topics from a global model as a silver standard for comparison. The measure uses
the global model as a benchmark that captures the overall representations of topics,
allowing us to assess whether local models accurately reflect the emergence of topics when
trained on a subset of data.

To this end, our pipeline consists of four main steps: topic extraction, topic matching,
qualitative analysis, and independent emergence performance measure. In the topic
extraction step, we input a set of time stamped documents and a static topic model,
producing a list of topics with their evolution over time and a trained model as outputs. For
topic matching, we use two methods to indicate the prevalence between any pair of topics:

Li et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2875 2/28

http://dx.doi.org/10.7717/peerj-cs.2875
https://peerj.com/computer-science/


Top Words Overlap Rate, based on extracted top words, and the Kullback-Leibler (KL)
divergence, based on topic-document probability distribution. In the qualitative analysis,
we inspect the extracted top words. Lastly, we develop an emergence performance measure
that can be applied independently across static topic models. This measure uses a global
model trained on the entire dataset as a silver standard and compares its predictions with
those from local models trained on time-based snapshots of the data. While each
generative model can produce topics and assess whether they are emerging, aligning topics
from different models is challenging. To overcome this bottleneck, we use documents as a
proxy and calculate the agreement between the global and local models on whether a
document is emerging.

In this work, we analyze three classic static topic models, which are widely adopted in
real-world applications: CoWords clustering (Callon, Courtial & Laville, 1991; Callon
et al., 1983), Latent Dirichlet Allocation (LDA) (Blei, Ng & Jordan, 2003) and BERTopic
(Grootendorst, 2022). They also represent three prominent categories of topic models:
algebraic, probabilistic, and neural (Abdelrazek et al., 2022). CoWords clustering utilizes
word co-occurrence patterns, LDA leverages probabilistic modeling, and BERTopic
employs neural embeddings to capture rich topic representations. We compare extracted
topics across different models. We also exhibit and compare different matching strategies
across different models and present topic emergence among different methods.

To perform these comparisons, we conduct comprehensive experiments on three
datasets: Web of Science bio-medical publications, ACL anthology publications (Rohatgi,
2022), and the Enron email dataset (Klimt & Yang, 2004). These datasets cover diverse
domains and contain varying degrees of topics. Examining models on these datasets allows
us to compare their effectiveness and generalizability across contexts with varying levels of
topic institutionalization.

The development of measuring and comparing the topic model’s ability to topic
emergence in the natural language processing (NLP) community can be of help to different
communities, including firms (company-wide emails), governments and scientists
(scientific abstracts) (Kwon et al., 2019), in choosing the model for detecting changing
topics. Additionally, this framework can be applied to patent analysis and other types of
text analysis (Mckinnon & Rubino, 2022). Another application area is innovation policy,
where the identification of emerging/changing scientific topics is of great interest to
governmental policymakers, which can be used to foster national-level scientific
competitiveness (Schot & Steinmueller, 2023).

Summarizing, the main contributions of our work are as follows:

. A systematic framework for topic emergence detection. We introduce a comprehensive
pipeline that extracts topic, match topics across different models and track them for their
emergence. Unlike previous studies that focus on a single topic modeling, our framework
enables direct comparison of multiple models in an unsupervised setting.

. The first comparative study for static topic models for detecting emerging topics. We
perform a qualitative analysis comparing how three widely used topic models capture
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emerging topics. This is the first study that systematically benchmarks different static
topic modeling approaches for emergence detection.

. A novel evaluation metric for topic emergence detection. We propose an unsupervised
metric that assesses a model’s ability to detect emerging topics without the need for
manual assessment. This metric enables scalable evaluation across diverse textual
domains.

RELATED WORK
With respect to topic extraction, prior work has typically relied on CoWords clustering
(Bai, Li & Liu, 2021; Zhang et al., 2022; Choudhury & Uddin, 2016) and probabilistic topic
models like LDA (Li, Chen &Wang, 2021; Chen et al., 2017; Qi et al., 2018; Blei & Lafferty,
2006) to extract topics from textual data (e.g., scientific publications, emails) and track
their evolution through time. Recent advances, particularly the development of pre-trained
large language models like BERT (Devlin et al., 2018; Grootendorst, 2022; Dieng, Ruiz &
Blei, 2020), have paved the way for new and promising applications in topic extraction.

Evaluating topic models presents a multifaceted challenge that hinges on both the
accuracy and the relevance of the topics generated. Traditional metrics such as perplexity
and coherence scores have been foundational, providing quantitative benchmarks that
assess the internal consistency and semantic similarity within topics (Röder, Both &
Hinneburg, 2015; Newman et al., 2010). However, these metrics often fall short in
capturing the practical utility of the topics in real-world applications. More recent
approaches emphasize user-centric evaluations, where the interpretability and applicability
of topics to specific tasks are assessed through user studies or expert validations (Chang
et al., 2009; Lau, Newman & Baldwin, 2014). Such methodologies aim to bridge the gap
between statistical performance and practical significance, ensuring that the topics are not
only coherent but also meaningful and actionable in specific contexts. Despite these
advances, there is very limited development in evaluating topic model’s ability to detect
topic emergence.

Within the literature on topic modeling, there is a line of work that focuses on dynamic
topic modeling (DTM) (Blei & Lafferty, 2006), which explicitly incorporates the time
associated with the documents in the modeling process. The topic representation at
timestamp t depends on the representation at t � 1. DTM focuses on how topic
representations evolve over time, offering different representations given time slices.
Although DTM is capable of modeling how the concept of a topic shifts, it does not assist
in detecting topic emergence. The downstream applications of such models often focus on
tracking the dynamics or development of topics (Leskovec, Backstrom & Kleinberg, 2009;
Greene & Cross, 2017) instead of detecting emergence. In contrast to our work, we use a
retrospective approach focused on emergence that can learn a global representation of the
topic and compare it with local representations, using a document-level proxy for
emergence detection.

Recent work on emerging topic detection has explored both forecasting-based and
retrospective approaches. Forecasting-based methods aim to predict the rise of emerging
topics before they become widely recognized, leveraging historical trends and external
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signals. Augur (Salatino, Osborne &Motta, 2018) introduced a forecasting-based approach
leveraging evolutionary networks to predict topic emergence before their recognition.
Other forecasting methods utilize incremental topic modeling (Gerasimenko et al., 2023)
and anomaly detection in topic distributions (Redyuk, 2018) to detect early signals of
emerging research trends. These approaches typically rely on time-series modeling,
citation networks, or machine learning-based trend extrapolation to anticipate future
developments.

On the other hand, retrospective approaches focus on identifying when topics have
already emerged in historical data. Methods such as BERTrend (Boutaleb, Picault &
Grosjean, 2024) and ATEM (Rahimi et al., 2023) apply neural topic modeling and
graph-based embeddings to detect topic shifts in past corpora. Additional studies explore
word embedding trajectory monitoring (Christophe et al., 2021) and structural
changepoint analysis (Bose & Mukherjee, 2021; Wang & Goutte, 2018) to identify when
new topics emerge based on shifts in semantic space or statistical deviations in topic
prevalence.

However, these methods typically introduce a single model without benchmarking
multiple topic modeling techniques, making it difficult to compare the relative
effectiveness of different approaches. Furthermore, other works on topic model evaluation
primarily focus on coherence and perplexity (Kherwa & Bansal, 2021) or even topic
coverage (Korencic et al., 2020), yet these metrics fail to capture a model’s ability to detect
emerging topics. In contrast, our work systematically compares three widely used static
topic models (LDA, BERTopic, and CoWords) for emergence detection across multiple
domains and introduces an independent evaluation metric that does not rely on external
metadata or predefined ground truth labels.

Similar to our work, novelty detection also uses documents as a proxy for change.
Novelty detection aims to find text with new information compared to what has been seen
or known before (Ghosal et al., 2022). Prior studies frame novelty detection as a
document-level binary classification problem, where documents are classified as “novel” or
“not novel” based on a set of existing documents (Ghosal et al., 2021; Saikh et al., 2017;
Nandi & Basak, 2020). Our work is different in that we first identify emerging topics using
a trained model subsequently, we determine if a document is emerging if it is associated
with an emerging topic. This approach differs from assessing if topics are evolving based
on a single model (Uban, Caragea & Dinu, 2021).

TOPIC EXTRACTION PIPELINE
To study method performance on emergence detection, we develop a pipeline that takes a
dataset with time as input and then outputs matching topics and their change over time.
Our general framework is shown in Fig. 1. The pipeline consists of these steps: data
preprocessing, topic modeling, topic and trends extraction, topic matching, and finally,
matched topics emergence analysis.

The goal of the pipeline is to generate and compare topics with their trends using
varying static topic models in an unsupervised manner. The final output will be topics with
their associated trends that are generated and matched using different topic models. Once
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the matched topics and their trends are generated, we can then apply qualitative analysis
and quantitative analysis on which model is better at emergence detection.

Overview of the pipeline
The input of the pipeline is a set of documents with a time stamp for each document. First,
we apply the preprocessing procedure for each dataset following natural language
processing practices. We then train each model on the processed texts to generate topics.
For each topic model, we fix the number of topics for each dataset to 100. Any semantic
space can be divided into an unlimited number of latent spaces. A topic can also be divided
into different latent concepts. We fix the number of topics to attempt to ensure the
statistical and semantic meaningfulness of the topics and a balanced trade-off between
topic variation and interpretability. We use the number 100 because it is aligned with
previous study (Uban, Caragea & Dinu, 2021).

After the models are trained with 100 topics, we subsequently extract 20 top words for
each topic as the representation of that topic. The top words are selected based on
frequency to ensure they are diverse and representative. We then apply a hierarchical
topic-matching strategy based on two metrics: top words overlap rate and KL divergence
over the matched trends. After the topics are matched, we plot the trends and then apply
both qualitative evaluation and quantitative evaluation on topic emergence detection
ability. The code and data used in this article are available at: https://zenodo.org/records/
14503316. We now explain each of the steps in details in the following sections.

Figure 1 Pipeline for extracting and matching topics with three models.
Full-size DOI: 10.7717/peerj-cs.2875/fig-1
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Data preprocessing
To reduce the noise coming from uninformative words, the raw text of the merged titles
and abstracts has been pre-processed. Pre-processing can drastically impact extraction
quality. Hence, we describe our entire preprocessing process in the following seven steps
with detailed parameter specifications.

Step 1. The date/year of the document, the title of the document and abstracts/email
bodies of the document are needed for further analysis. Therefore, we remove entries
where any of these fields are empty. Additionally, for computational reasons, we remove
documents where the length is more than 700 tokens for the Enron dataset.

Step 2. Each document is tokenized and converted into a list of lowercase tokens.
Tokens shorter than two characters and longer than 15 are discarded in the tokenization
process. Accents and punctuation are removed.

Step 3. Documents are further de-noised by removing English stopwords, i.e.,
frequently used words that do not provide significant distributional information.

Step 4. The vocabulary is enriched with bigrams, i.e., pairs of consecutive tokens that
often appear together (e.g., “amino acid”, “frontal cortex”, etc.). We use pointwise mutual
information (PMI) as a score function and a threshold of 100, and the minimum collective
frequency for a valid bigram is 20.

Step 5. We perform lemmatization to group the inflected forms of a word in a single
token.

Step 6. After performing part-of-speech tagging, we keep only nouns, adjectives and
verbs.

Step 7. We removed from the remaining tokens all the words that occur in more than
25% of the documents or in less than 0.01% of the documents.

Topic modeling
We select three models for comparison: (1) CoWords clustering, (2) LDA, and
(3) BERTopic. We follow the categorizations from Abdelrazek et al. (2022), selecting
the most widely used topic model from the three prominent categories: algebraic,
probabilistic, and neural. Comparing these three models provides us a intuition on how the
three types of topic models perform on topic emergence detection.

CoWords clustering
The idea behind CoWords clustering is that the co-occurrence of words describes the
contents of the texts (Callon, Courtial & Laville, 1991). Based on this notion, methods have
clustered words in the keywords lists, titles and abstracts, or other publication data fields,
using multivariate statistical techniques, such as factor analysis, principal component
analysis, and hierarchical clustering to obtain topics (Wang et al., 2012). In this work, we
utilize hierarchical clustering for topic modeling.

LDA
As a probabilistic topic model, the basic assumption of LDA is that the words are generated
according to a mixture model where the mixture proportions are random, and the mixture
components or topics are shared by all documents (Blei & Lafferty, 2006). It is based on the
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idea that documents contain multiple topics, intended as distributions over a fixed
vocabulary (Blei, 2012, p. 78). However, one limitation of LDA is that it models natural
language as bag-of-words, discarding the word orders in the document.

BERTopic
As one of the most widely used neural topic models, BERTopic is popular for its
adaptability. It utilizes the recent development in NLP, modeling sentences with word
orders using sentence embedding models such as sentence-BERT. The semantic space
created by sentence-BERT can be seen as a continuous space of sub-topics. We can
discretize this space by detecting high-density areas and associating them with a topic. To
do so, we use dimensionality reduction such as Uniform Manifold Approximation and
Projection (UMAP) and clustering techniques such as Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN). UMAP is a manifold learning
technique that is good at preserving both global structure and local structures. HDBSCAN
(Campello, Moulavi & Sander, 2013) is a density-based, hierarchical clustering method that
is noise-aware (i.e., potentially outliers are not forced to belong to a cluster and could be
labeled as noise) and based on soft assignment (i.e., each point is associated to its cluster
with a confidence score). Moreover, HDBSCAN relaxes the need to set the number of
clusters as a hyperparameter, requiring specifying only the minimum number of clusters
desired. Once the clusters have been identified, we can retrieve topic embeddings by
calculating the mean of all the documents belonging to the same cluster, i.e., the centroids.
Since we learn word embeddings and document embeddings jointly in the same semantic
space, we can look at the K words closer to the centroid to get a set of representative terms
for that topic. This process is called fine-tuning the topic representation. Specifically, in our
work, we use the Maximal Marginal Relevance algorithm to reduce the redundancy of the
extracted keywords in each topic.

After extracting topics with each method, we observed that some topics have few
documents associated with and some topics have only digits as top words. We filter out
these outliers.

Topic and trends extraction
Once the model is trained, topics can be extracted using different representations. In this
work, we represent each topic by its top words, providing an interpretable summary of the
topic’s content. Additionally, we track the evolution of each topic over time by quantifying
the number of documents associated with it at different time points. This allows us to
analyze topic trends, identifying patterns of emergence and decline across the dataset.
However, the absolute number of documents associated with a topic may not be a reliable
indicator of its popularity, as the total number of documents per year varies. To address
this, we use prevalence as a normalized measure of topic popularity. Prevalence quantifies
topic prominence by dividing the number of documents assigned to a topic by the total
number of documents in that year, ensuring a fair comparison across different time
periods. This normalization allows us to accurately compare topic trends over time,
independent of fluctuations in document volume.
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Topic matching
Once the topics and their associated trends are extracted, comparing topics across different
models requires a robust matching strategy. Since topic models may learn different
representations of the same underlying concepts, we need to align topics from different
models to conduct a fair evaluation of their ability to detect emerging topics.

We employ two matching strategies in this work:

. Top Words Overlap Rate (TWOR): for matching topics based on their most
representative words.

. Kullback–Leibler (KL) divergence: for matching topics based on their temporal trends.

The intuition behind TWOR is that topics are primarily characterized by their most
representative words, making an exact match based on word overlap a straightforward way
to determine topic similarity. Meanwhile, KL divergence quantifies the similarity of topic
prevalence distributions over time, under the assumption that similar topics exhibit similar
temporal trends.

Top words overlap rate
The first matching strategy is based on comparing the top words of each topic. For each
extracted topic, we retrieve the top n words that are most representative of that topic.
These words are selected based on Term Frequency-Inverse Document Frequency (TF-
IDF) scores, which measure a word’s relevance in the corpus.

In BERTopic, a cluster-level TF-IDF variant (c-TF-IDF) is used, calculating the weights
as term importance at a cluster level:

ctfidfðt; cÞ ¼ tfðt; cÞ � log 1þ A
fc

� �
; (1)

in which t is the term, c is the cluster, tf ðt; cÞ is the term frequency of term t within cluster
c, indicating how often term t appears within that cluster. A is the average number of
words per cluster.

After obtaining the n top words for each topic T, we calculate the overlap rate between
any two topics:

TWORði; jÞ ¼ Ti \ Tj

N
; (2)

where N is the number of words for each topic.

KL divergence
The second score function is Kullback–Leibler divergence for topic trends. This function is
selected under the assumption that similar topics will have similar trends over time. We
calculate topic prevalence based on the number of documents associated with the topic
given any timestamp:

Prevalenceðti; yjÞ ¼
Nij

Nj
; (3)
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in which N is the number of documents given topic i and year j. We then apply KL
divergence between two distributions:

DKLðPjjQÞ ¼
X
i

PðiÞlog PðiÞ
QðiÞ (4)

Hierarchical topic matching strategy
Because topic models differ in how they define topics, there is no direct one-to-one
correspondence between topics across models. Instead, each topic from one model can
have partial overlap with multiple topics from another model, creating an N-to-Nmapping
problem. To address this, we use a hierarchical topic matching approach:

. First we match BERTopic topics (Tbertopic) to LDA topics (Tlda) using one of the above
matching methods (TWOR or KL divergence).

. Next, we match CoWords topics (Tcw) to the already aligned BERTopic-LDA topics
(Tlda bertopic), instead of directly matching all three models at once.

. To resolve conflicts in the N-to-N mapping, we prioritize matches by selecting topics
that maximize the sum of matching scores, ensuring that the most representative topics
are aligned across models:

max
X

ðSlda cw; Slda bertopicÞ: (5)

Through this hierarchical strategy, we reduce complexity and maintain coherence in
topic alignment, making it possible to systematically compare the models’ ability to detect
emerging topics.

Matched topics emergence analysis
We employ two analysis for evaluating models’ emergence detection ability: qualitative
approach and quantitative approach.

Qualitative comparison
Although all these methods have achieved outstanding performance on a variety of
datasets, comparing them directly on the matched topics is still challenging. When the
one-to-one mapping of topics exists across models, then we can directly compare their
evolutions and derive the ability for early emergence detection. However, different topic
models exhibit different assumptions and initializations, often resulting in the extraction of
topics with different levels of granularity. For example, in the NLP context, one topic
extraction model might extract topics with top words such as [‘dependency’, ‘output’, ‘tree’,
…] and [‘parse’, ‘syntactic’, ‘class’, ‘contextual’, ‘syntax’, …] which corresponds to two
different NLP tasks “dependency parsing” and “syntactic parsing”, a different model might
extract only one topic with top words [‘structure’, ‘parse’, ‘syntactic’, ‘dependency’, …],
which represents the parsing task in general. Therefore, we perform a topic matching with
two distinct score functions, Top Words Overlap Rate and KL-divergence, and then
evaluate the top-matched topics qualitatively.
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Quantitative evaluation metric
In this section, we describe our proposed approach for measuring a model’s ability to
detect emerging topics without relying on ground truth labels. Unlike traditional topic
modeling evaluations that focus on coherence scores or perplexity, our approach quantifies
how well a model captures topic emergence over time by assessing the agreement between
local and global models. This method is summarized in Fig. 2.

Detecting emerging topics is challenging due to the lack of predefined ground truth
labels that indicate when a topic becomes significant. Existing evaluation metrics such as
topic coherence measure the semantic quality of topics based on word co-occurrence
patterns, while perplexity evaluates how well a model predicts unseen text. However, these
metrics do not assess whether a model effectively identifies when a topic is emerging. Our
approach addresses this limitation by introducing a framework that compares local and
global topic models to infer a model’s emergence detection ability.

To evaluate a model’s ability to detect emerging topics, we train a global model on the
full dataset and local models on segmented time slices and then compare their predictions.
The global model serves as a silver standard, enabling us to assess how well each local
model captures emerging topics within its respective time period. As illustrated in Fig. 2,
the orange lines represent test data from a given time span, the green lines indicate

Figure 2 Independent quantitative measure between global and local model.
Full-size DOI: 10.7717/peerj-cs.2875/fig-2
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emerging documents classified by the global model, and the blue lines indicate emerging
documents classified by the local models.

We begin by segmenting the dataset based on timestamps and splitting each segment
into training (80%) and test (20%) data. We then train a global topic model on the entire
dataset to provide a comprehensive reference for topic emergence. Simultaneously, we
train local topic models on each time segment’s training data and evaluate them on test
data from all other segments. We compute precision, recall, and F1 scores to measure the
agreement between local and global models, providing a quantitative assessment of how
well each model detects topic emergence.

Since there is no predefined ground truth for emerging topics, we introduce the concept
of emerging documents. Rather than directly tracking topic-level trends, we classify a
document as emerging when its dominant topics are identified as emerging by the global
model. This enables a systematic evaluation of how well local models align with the global
model in identifying emerging topics at a document level.

A higher F1 score between local and global models indicates greater agreement,
meaning that the local model successfully captures emerging topics in a manner similar to
the global model. Higher F1 scores also suggest that the model is more sensitive to topic
changes and better at tracking emerging topics within shorter time spans. In contrast,
lower F1 scores indicate that the local model struggles to capture emerging trends visible in
the full dataset, implying that it is less responsive to short-term topic evolution. Models
with lower F1 scores may be better suited for capturing long-term topic distributions
rather than detecting short-term emergence.

Using document-level agreement instead of topic-level comparisons allows us to
capture real-world knowledge shifts, making it a meaningful proxy for topic emergence.
Since topic models assign probability distributions to documents, tracking the emergence
of topics through documents provides a granular assessment of how topics gain
prominence over time. Additionally, this method avoids the limitations of direct
topic-level comparisons, where different models may produce topics at varying levels of
granularity.

While this approach provides a robust framework for retrospective emergence
detection, it has some limitations. The effectiveness of the metric depends on the
granularity of learned topics—if topics are too broad, emerging documents may be harder
to identify. Additionally, the global model’s predictions may introduce bias, as it could
overfit dominant research trends and fail to recognize smaller, emerging topics. Another
limitation is the lack of external validation; while we use the global model as a silver
standard, future work could incorporate expert annotations or alternative reference points,
such as external event timelines.

Overall, our quantitative evaluation metric provides an objective and scalable method
for assessing topic emergence detection. By leveraging document-level agreement between
local and global models, we introduce a ground-truth free approach that is applicable
across different datasets and topic models.
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Finding emerging topics
Given a topic trend, determining if a topic is emerging in a certain time period
fundamentally relies on if the trend shows an upward trajectory. By definition, a topic
emerges when it gains prominence over time, in which the most direct way to quantify it is
by computing the growth rate. This aligns with other retrospective methods of identifying
emerging topics (Gerasimenko et al., 2023). While other forecasting-based methods utilizes
external information such as citation graphs, their emerging detection methods are not
directly applicable in our setting.

In this work, we calculate the growth rate between any given timestamp ti and tj; if the
growth rate is positive, the topic is emerging; otherwise, it is not emerging. For topic k, we
determine if k is emerging in the time period of i and j, we use:

gkðti; tjÞ ¼
Cik � Cjk

Cik
; (6)

in which Cik is the number of documents associated with topic k at time ti, reflecting how
frequently the topic appears in that period. Topic k is emerging is gkðti; tjÞ > 0, k is not
emerging otherwise.

Specifically, for each given time period, we first find the emerging topics. Then, we
associate each document with topics based on the predicted probability of the model. If a
document is associated with topics that are determined to be emerging by the model, it is
an emerging document. We calculate the F1 score based on the agreements between the
global and local models on the same set of documents.

EXPERIMENTAL SETUP
We detail our experimental settings here. We apply our pipeline to three datasets from
different domains, using three topic models from different categories. We then match
topics and evolutions extracted from three models, and subsequently analysis their topic
emergence detection.

Datasets
We used three datasets to validate our experiments: Biomedical publications on theWeb of
Science (WoS), anthology publications of ACL (ACL), and the Enron email dataset. These
three datasets cover the biomedical, natural language processing, and corporate
communication domains. Both WoS and ACL are scientific publications, presenting more
structured language usages, while Enron dataset represent more fuzzy language usage.
Additionally, WoS and ACL datasets represent different domains, showing how domains
could potentially affect topic extraction. For each dataset, we preprocess the raw text
following the steps in Figure, and the statistics of each dataset after pre-processing are
shown in Table 1.

Web of science
The WoS dataset contains 171,499 publications from the Life Sciences and Biomedicine
field between 1990 and 2020. Wos has been widely adapted to management studies (Li,
Rollins & Yan, 2018; Li, Chen &Wang, 2021). In our work, we crawl the web and create the
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dataset till 2020, making sure the corpus is relatively up-to-date. We use abstracts together
with the title as our corpus.

ACL
The ACL anthology dataset (Rohatgi, 2022) contains publications in the domain of NLP
and Computational Linguistics. The publications are conference articles, journal articles
and workshop articles spanning from 1980 to 2022. The dataset contains 80,013
documents originally and 63,199 documents after pre-processing. Similarly, we use
abstracts and the title of each document.

Enron
The Enron email dataset contains email conversations within the energy company Enron
Corporation from 1998 to 2001. The content of the dataset covers topics from business
practices to organizational communication. Unlike scientific publications, we use email
bodies and email subjects as our corpus. Note that some documents might contain more
than thousands of tokens. As mentioned in Figure, we remove documents that are longer
than 700 tokens for computational reasons, especially for BERTopic.

The two academic publication datasets, WoS and ACL tend to be more formal and have
greater structure due to the peer-reviewed publication processes. However, the Enron
email dataset contains more casual-style texts, including misspellings, informal language
usage, etc. Additionally, the length of abstracts is often between 150–250 words, while the
length of documents in emails can vary drastically.

We adopt different pre-trained sentence-bert models due to varying domains. We apply
biomedical sentence-bert for the WoS dataset and the distilled-sentence-roberta model for
the ACL and Enron datasets.

To sum up, in our experiments, we apply CoWords, LDA, and BERTopic to each
dataset and extract topics over time. We then perform topic matching between models
using top-word overlap (TWOR) and KL divergence to align equivalent topics across
different methods. Once topics are matched, we analyze their prevalence trends to assess

Table 1 Number of documents per time period after pre-processing for three datasets.

Periods WoS Periods ACL Periods Enron

1990–1994 6,391 1980–1984 551 1998-01–1998-11 68

1995–1999 12,094 1985–1989 919 1998-12–1999-04 461

2000–2004 19,020 1990–1994 1,903 1999-05–1999-09 4,259

2005–2009 29,347 1995–1999 2,458 1999-10–2000-02 18,401

2010–2014 40,910 2000–2004 3,947 2000-03–2000-07 50,797

2015–2019 50,791 2005–2009 7,410 2000-08–2000-12 115,777

2020–2020 12,946 2010–2014 11,977 2001-01–2001-05 136,026

2015–2019 18,822 2001-06–2001-10 77,927

2020–2022 15,212 2001-11–2001-12 36,103

Total 171,499 Total 63,199 Total 439,819
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how each model detects topic emergence. Finally, we evaluate the models using both
qualitative trend analysis and a quantitative emergence detection metric, which measures
the agreement between local models trained on time-segmented data and a global model
trained on the full dataset. This setup allows us to systematically compare the ability of
different topic models to detect emerging topics across domains. We present the results of
these experiments and discuss them in the following sections.

RESULTS
This section presents the results of applying all three topic models (CoWords, LDA, and
BERTopic) to each dataset. We first compare the TWOR matching and KL divergence
qualitatively by examining the top-matched topics manually. We then present a
quantitative evaluation using our proposed metric to measure the models’ ability to detect
emerging topics.

Qualitative analysis
To compare TWOR and KL divergence, we examine their top-matched topics across
models and datasets. Table 2 presents the topics with the highest matching scores for using
each topic model, applying two matching strategies.

Our analysis shows that TWOR consistently retrieves semantically coherent topics,
whereas KL divergence often prioritizes temporal trends over direct topic alignment. For

Table 2 Extracted topics with the highest score using two matching strategies.

WoS—Overlap WoS—KL divergence

CoWords Liver, glucose, lipid, insulin, fat, diabetic, hepatic, obesity,
fatty_acid, cholesterol

Absorption, mobile, bioelectromagnetic, guideline, electromagnetic,
wileyliss, mobile_phone, antenna, phone, mhz

LDA Evaluate, assess, estimate, glucose, consistent, plasma, obesity,
estimation, differential, trial

Model, spatial, article, focus, derive, finally, account, mathematical,
temporal, input

BERTopic Diabetic, insulin, glucose, rat, diabetes, mouse, insulin_resistance,
adipocyte, islet, hepatic

Cardiac, muscle, cardiomyocyte, heart, calcium, mouse, myocardial,
cell, channel, skeletal_muscle

ACL—Overlap ACL—KL divergence

CoWords Error, correct, grammatical, correction, spelling, spell, gec,
error_correction, spelling_correction, misspell

Approach, base, set, compare, technique, accuracy, perform, apply,
label, combine

LDA Detection, error, detect, translate, correct, correction, check,
sensitive, spelling, loglinear

Method, approach, propose, evaluate, score, focus, exist, baseline,
outperform, metric

BERTopic Error, grammatical, correction, gec, learner, error_correction,
spelling_correction, spelling, detect, chinese

Dialogue, speech, dialog, speak, conversation, response,
conversational, agent, recognition, speaker

Enron—Overlap Enron—KL divergence

CoWords Time, deal, gas, market, power, service, price, day, energy,
company

Ect, subject, message, forward, original, fax, hou, tomorrow, lon,
confirmation

LDA Price, offer, risk, lock, sfodenver, rls_tariff, vjw, faithbase,
obliterate, farreache

Message, original, delete, civil_libertie, scarff, clintonappointe, groyer,
faithbase, obliterate, bridget_maronge

BERTopic Ect, email, subject, message, service, market, receive, gas,
business, contact

Subject, ect, message, forward, email, agreement, attach, meeting,
market, issue
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example, in the WoS dataset, TWOR matches a topic centered on Diabetes (e.g., “insulin,”
“glucose,” “obesity”), while KL divergence instead retrieves bioelectromagnetic topics,
likely due to similar growth patterns rather than shared semantics. A similar pattern
emerges in the ACL dataset, where TWOR retrieves Grammatical Error Correction, while
KL divergence retrieves broader methodological terms (e.g., “baseline,” “metric”). These
results highlight that TWOR is better suited for direct topic alignment, while KL
divergence may be more useful for finding temporally related but semantically distinct
topics.

Figure 3 Selected match for WoS. The top 10 words for each method are as follows. CoWords:
{infection, mortality, transmission, virus, spread, infect, vector, incidence, viral, epidemic}, LDA: {mouse,
infection, antioxidant, virus, observed, stimulation, respond, protection, viral, infect}, BERTopic: {epi-
demic, infection, virus, viral, vaccination, model, transmission, vaccine, infectious, infect}.

Full-size DOI: 10.7717/peerj-cs.2875/fig-3

Figure 4 Selected match for ACL. The top 10 words for each method are as follows. CoWords: {seg-
mentation, tag, Chinese, character, segment, boundary, tagging, tagger, wordlevel, partofspeech_tagged},
LDA: {accuracy, segmentation, character, segment, rich, morphology, morpheme, unsupervise, con-
vention, lefttoright}, BERTopic: {segmentation, chinese, word, character, model, tagging, partof-
speech_tagged, ngram, language, accuracy}. Full-size DOI: 10.7717/peerj-cs.2875/fig-4
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Case study: topic evolution across domains
In this section, we present a case study to analyze how different models track emerging
topics over time across the three datasets. We analyze the topics based on their extracted
top words and their corresponding revolution.

Case 1: Biomedical Research (WoS)—The Rise of Epidemiology The WoS dataset
captures the emergence of epidemiology-related topics, as shown in Fig. 3. TWOR-aligned
topics (e.g., “insulin,” “glucose,” “obesity”) reflect a clear trend in diabetes research, with
increasing prevalence over time. This aligns with global public health concerns and
real-world epidemics like Ebola and SARS, which drove research interest in epidemiology.
In contrast, KL divergence retrieves a bioelectromagnetics-related topic, demonstrating its
tendency to group topics with similar temporal patterns rather than semantic alignment.

Case 2: Computational Linguistics (ACL)—Advances in Word Segmentation The
ACL dataset provides insight into the development of Natural Language Processing (NLP)
over time (Fig. 4). The matched topic reflects Grammatical Error Correction and Word
Segmentation, showing a surge in research interest in the late 1990s and early 2000s,
aligning with the rise of statistical NLP approaches. This suggests that topic models
effectively track research trends, reinforcing the usefulness of retrospective analysis in
scientific trend forecasting.

Case 3: Corporate Communication (Enron)—Variability in Business Agreements
The Enron dataset presents a unique challenge due to its unstructured, informal text
(Fig. 5). The matched topic centers around business agreements, but topic volatility differs
across models. LDA and CoWords extract broader business-related terms, whereas
BERTopic produces more volatile topic representations, possibly due to its reliance on
sentence embeddings, which capture finer-grained variations in contract-related
discussions.

Figure 5 Selected match for Enron. The top 10 words for each method are as follows. CoWords: {email,
agreement, question, receive, meeting, schedule, request, contact, file, list}, LDA: {agreement, contract,
review, document, draft, bind, title, attorney, signature, wrong}, BERTopic: {abb_transformer, abb,
existence, agreement, override, transformer, signature, initial, word, option}.

Full-size DOI: 10.7717/peerj-cs.2875/fig-5
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Case 4: A Emerging topic case—Bias and Fairness in NLP researchWe present a case
study where our models detect an emerging topic related to Bias and Fairness in NLP
research. This topic matched across models, demonstrates how different topic modeling
approaches capture the emergence of new research directions over time. Figure 6 presents
its smoothed prevalence trends. We observe that BERTopic detects weak signals first
(before 2000) but does not show sustained growth until post-2010, suggesting early
semantic awareness but delayed recognition of topic prevalence. CoWords and LDA
capture sustained emergence earlier, with CoWords showing a gradual increase from the
early 2000s, while LDA detects a structured rise between 1995 and 2005. CoWords excels
in tracking early co-occurrence shifts, LDA tends to stabilize and capture steady trends,
and BERTopic is more sensitive to semantic shifts once the topic is widely established. The
detected trends pattern aligns with real-world topic adoption trends. Early discussions on
NLP bias existed before 2000, but they were scattered and lacked formal structure, similar
to how BERTopic detects weak signals first. Between 2000 and 2010, fairness in NLP
gained academic traction, reflected in LDA’s structured rise. Finally, post-2010, NLP bias
became a mainstream issue, driven by ethical AI debates and policy discussions, aligning
with BERTopic’s stronger detection at this stage.

From the qualitative analysis we observe the potential characteristics of each topic
model for topic emergence ability. However, they lack systematic comparisons and
quantified measure for evaluating their performance for the task. We then perform the
quantitative analysis using our proposed metric.

Quantitative analysis
Next, we evaluate the models’ ability to detect emerging topics using our proposed
evaluation metric. Since CoWords model does not generate document-topic probability
distribution, the evaluation metric is not applicable. Figure 7 presents the average F1 scores

Figure 6 Smoothed trends for the topic: Bias and Fairness in NLP research. CoWords: {bias, gender,
mitigate, age, demographic, biased, debiase, fairness, female, male}, LDA: {gender, mitigate, transe,
people, production, rapidly, expectation, game, progress, produce}, BERTopic: {gender, pronoun, bias,
pronoun_resolution, stereotype, female, debiase, language, gendere, stereotypical}.

Full-size DOI: 10.7717/peerj-cs.2875/fig-6
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between local models trained on different time segments and a global model trained on the
full dataset. Results indicate that LDA achieves a higher average F1 score (80.1%)
compared to BERTopic (56.6%), suggesting that LDA more consistently detects emerging

Figure 7 Average F1 score for LDA and BERTopic given different segment sizes of the ACL dataset.
The overall average F1 score for LDA is 80.1%, and for BERTopic is 56.6%.

Full-size DOI: 10.7717/peerj-cs.2875/fig-7

Figure 8 Heatmap of F1 scores for LDA on segment size of 2. For each cell, the model is trained on the
training data from the row time periods (2-year span) and tested on the test data from the column time
periods (2-year span). Full-size DOI: 10.7717/peerj-cs.2875/fig-8
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topics over time. Furthermore, results also show that F1 scores increase as segment size
grows, suggesting that models trained on longer time spans capture more stable topic
representations.

To further analyze how local models align with the global model, we visualize F1 score
heatmaps in Figs. 8 and 9. We have a few key observations from the heatmaps. First, LDA
achieves more stable F1 scores across time compared to BERTopic. Second, Periods of
lower F1 scores (e.g., 1980s, post-2015) indicate time spans where emerging topics were

Figure 9 Heatmaps of F1 scores for LDA (top) and BERTopic (bottom), with the segment size of 3,
meaning local models are trained on training data from a 3-year span and tested on test data from a
3-year span. Full-size DOI: 10.7717/peerj-cs.2875/fig-9
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harder to detect. Third, BERTopic’s lower consistency suggests it is more sensitive to novel
topics, while LDA generalizes better even with limited training data.

DISCUSSION
Our findings reveal several key insights regarding matching strategies, dataset differences,
model performance, and topic emergence detection effectiveness.

Comparison of topic matching strategies
Our results show that TWOR consistently retrieves more semantically coherent topics
across datasets, while KL divergence prioritizes topics with similar temporal trends rather
than direct word overlap. This is evident in the WoS dataset, where TWOR identifies a
topic closely associated with Diabetes, whereas KL divergence retrieves
bioelectromagnetic-related terms. A similar pattern is observed in the ACL dataset, where
TWOR effectively retrieves topics on Grammatical Error Correction, while KL divergence
results in more general methodological terms.

These findings suggest that TWOR is more reliable for direct topic alignment, especially
for structured datasets like WoS and ACL, where well-defined topics are expected.
However, KL divergence can still be useful for detecting “related but distinct” topics,
reflecting indirect relationships in topic evolution (Uban, Caragea & Dinu, 2021). In
datasets like Enron, where topics are less structured, KL divergence may capture latent
associations between business-related discussions.

Dataset difference in topic extraction
Among the datasets we evaluated, we observed that topic quality varies depending on the
level of structure in the text. WoS and ACL datasets yield clearer, more interpretable topics,
likely due to the structured nature of research articles, which focus on well-defined
subjects. The Enron dataset produces broader, more ambiguous topics, reflecting the
informal and unstructured nature of email communications, where multiple themes may
coexist in a single document.

These findings highlight the importance of dataset structure when applying topic
modeling methods. While structured texts allow for more precise topic modeling,
unstructured datasets may require additional preprocessing or more advanced modeling
techniques to improve topic coherence.

Comparison of topic extraction across models
Our analysis also highlights differences in how CoWords, LDA, and BERTopic extract
topics. First, CoWords and BERTopic tend to extract topics with more overlapping words,
likely due to their clustering-based approach. Second, LDA generates broader topics, with
more diverse top words, whereas BERTopic and CoWords extract more specific topics
(e.g., “spelling” and “spell” appearing in the same topic). Third, BERTopic’s topics appear
more volatile, possibly due to its reliance on contextualized sentence embeddings, which
may lead to greater variability in topic representations over time.

These findings suggest that LDA provides a more generalizable representation of topics,
while BERTopic and CoWords tend to extract more granular topics with repeated terms.
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This may explain why LDA aligns more closely with global trends, whereas BERTopic
exhibits more sensitivity to transient or highly specific topics.

Model performance on topic emergence detection
Given our qualitative analysis, we observe that CoWords performs better at detecting topic
emergence than LDA and BERTopic. However, due to its inherent limitation on
generating document-topic distribution, the quantitative metric is not directly applicable.
Therefore the limitation of this conclusion is that it is based on limited qualitative results,
and might be limited to generalize to a larger scale. On the other hand, evaluated by our
proposed quantitative metric, we have a few observations. First, LDA detects emerging
topics earlier and more consistently than BERTopic, supporting prior findings that
probabilistic topic models perform well even with smaller datasets. Second, BERTopic’s
performance improves with larger time spans, likely due to its reliance on sentence
embeddings, which require more data to generalize effectively.

While CoWords appears to detect emerging topics earlier, its limitations must be
considered. Unlike LDA and BERTopic, CoWords does not produce document-topic
distributions, which prevents its evaluation using quantitative metrics. Another limitation
is that CoWords relies purely on word co-occurrence, lacking the semantic depth of LDA’s
probabilistic modeling or BERTopic’s transformer-based embeddings. As a result, topics
extracted by CoWords may be more fragmented or overlap significantly, particularly in
datasets with subtle conceptual distinctions. In contrast, LDA and BERTopic provide more
structured and interpretable topic representations, albeit at the cost of slower emergence
detection.

Impact of disruptive periods on emerging topics detection
Notably, the lower F1 scores in the 1980s and post-2015 suggest that emerging topics were
harder to detect in these periods. This aligns with historical trends: early NLP research was
sparse before the 1990s, while post-2015 saw rapid shifts in deep learning techniques. Our
heatmap analysis further indicates that local models struggle to detect emerging topics
when disruptive changes occur, a finding consistent with prior work on language model
generalization across time.

Lack of comparative evaluation in prior work
Evaluating topic models is inherently challenging, as traditional metrics like coherence and
perplexity measure topic quality but fail to capture a model’s ability to detect emerging
topics. Prior work on emergence detection, such as BERTrend (Boutaleb, Picault &
Grosjean, 2024) and ATEM (Rahimi et al., 2023), introduces novel methods for emerging
trends detection. However, these studies focus on single-model evaluations rather than
comparative benchmarking. Most studies assume that a single model is sufficient,
overlooking the differences in how various models detect emergence over time. Our study
highlights that CoWords detects emergence earliest, LDA provides stable trends, and
BERTopic captures nuanced contextual shifts but exhibits higher volatility. These
comparative insights are crucial because existing methods often rely on external metadata
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(e.g., citations or manually labeled emerging topics) rather than evaluating topic models
independently. By proposing a self-contained evaluation metric, we provide a more robust
framework for assessing when and how different models detect topic emergence,
contributing towards more reliable evaluation strategies.

CONCLUSIONS
In this study, we systematically evaluated three topic modeling approaches, CoWords,
LDA, and BERTopic, for their ability to detect emerging topics across structured (WoS,
ACL) and unstructured (Enron) datasets. Our analysis focused on topic matching
strategies, differences in topic extraction quality, and an independent evaluation metric for
assessing topic emergence detection.

Comparing two topic matching strategies, our findings indicate that TWOR
consistently produces more semantically coherent topic matches than KL divergence,
particularly in structured datasets such as WoS and ACL, where well-defined topics
facilitate more precise alignment. KL divergence, on the other hand, tends to retrieve topics
with similar temporal trends rather than direct word overlap, making it useful for
identifying related but distinct topics. These results highlight the importance of choosing
an appropriate matching strategy depending on the dataset structure and the intended
analysis goal.

When evaluating on different datasets, we also observed notable differences in topic
extraction quality across datasets. WoS and ACL datasets produced more interpretable
topics, while the Enron dataset resulted in broader and more ambiguous topic clusters.
This difference suggests that the effectiveness of topic models is influenced by the structure
of the underlying corpus, with more formal and domain-specific texts yielding clearer topic
representations.

When evaluating model performance in detecting emerging topics, our proposed metric
showed that LDA consistently outperformed BERTopic in terms of agreement between
local and global models. LDA achieved a higher average F1 score across all segment sizes,
indicating its robustness in detecting emerging topics using limited data from specific time
periods. BERTopic exhibited greater sensitivity to novel topics but showed lower overall
consistency, which may be attributed to its reliance on sentence embeddings that require
larger datasets to generalize effectively.

Limitation and future work
Despite these insights, our study has some limitations. First, we evaluated topic emergence
in a retrospective setting, meaning that our approach does not predict future topics but
rather identifies when topics gain prominence over time. Second, while we examined three
widely used topic models, future work could explore additional topic models to determine
whether they provide advantages in emergence detection. Finally, our analysis focused on
specific domain datasets (scientific articles, emails), and extending the study to other
domains, such as news articles or social media data, could provide further validation of our
findings.
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In future work, we aim to expand our study to incorporate additional topic modeling
approaches from the three categories, such as algebraic topic model non-negative matrix
factorization (NMF) (da Kuang, Choo & Park, 2015) instead of CoWords, probabilistic
topic model hierarchical Dirichlet process (HDP) (Teh et al., 2004) instead of LDA, as well
as neural topic model Embedded Topic Model (ETM) (Dieng, Ruiz & Blei, 2019) instead of
BERTopic. These models could provide deeper insights into semantic topic shifts and
representation learning for emergence detection.

Additionally, we plan to extend our analysis to datasets from diverse domains, including
finance, where emerging topics can influence market trends, and news or online
communication, which often exhibit rapid topic evolution and linguistic variability.
Exploring different textual styles, such as formal reports vs social media discussions, will
help assess the adaptability of topic models across different communication formats.
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