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ABSTRACT

The analysis of high-dimensional microarray gene expression data presents critical
challenges, including excessive dimensionality, increased computational burden, and
sensitivity to random initialization. Traditional optimization algorithms often
produce inconsistent and suboptimal results, while failing to preserve local data
structures limiting both predictive accuracy and biological interpretability. To
address these limitations, this study proposes an adaptive neighborhood-preserving
multi-objective particle swarm optimization (ANPMOPSO) framework for gene
selection. ANPMOPSO introduces four key innovations: (1) a weighted
neighborhood-preserving ensemble embedding (WNPEE) technique for
dimensionality reduction that retains local structure; (2) Sobol sequence (SS)
initialization to enhance population diversity and convergence stability; (3) a
differential evolution (DE)-based adaptive velocity update to dynamically balance
exploration and exploitation; and (4) a novel ranking strategy that combines Pareto
dominance with neighborhood preservation quality to prioritize biologically
meaningful gene subsets. Experimental evaluations on six benchmark microarray
datasets and eleven multi-modal test functions (MMFs) demonstrate that
ANPMOPSO consistently outperforms state-of-the-art methods. For example, it
achieves 100% classification accuracy on Leukemia and Small-Round-Blue-Cell
Tumor (SRBCT) using only 3-5 genes, improving accuracy by 5-15% over
competitors while reducing gene subsets by 40-60%. Additionally, on MMFs,
ANPMOPSO attains superior hypervolume values (e.g., 1.0617 + 0.2225 on MMF1,
approximately 10-20% higher than competitors), confirming its robustness in
balancing convergence and diversity. Although the method incurs higher training
time due to its structural and adaptive components, it achieves a strong trade-off
between computational cost and biological relevance, making it a promising tool for
high-dimensional gene selection in bioinformatics.
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INTRODUCTION

Microarray technology enables the high-throughput measurement of gene expression
levels across thousands of genes simultaneously. This technology has had a transformative
impact on multiple domains, ranging from early disease detection and personalized
treatments (DeGroat et al., 2024) to drug safety and development (Afshari, Nuwaysir ¢
Barrett, 1999), guiding dietary and nutritional recommendations (Warburton et al., 2018),
assessing environmental health impacts (Espin-Pérez et al., 2018), and enabling genetic
counselling for informed family planning (Sahoo et al., 2017). Microarray data is
structured as a matrix, where rows represent genes, columns represent samples, and each
cell denotes the expression level of a specific gene in a given sample. However, the high
dimensionality, high noise levels, and small sample sizes inherent to microarray datasets
pose significant challenges in applications such as medical diagnosis and prognosis, where
distinguishing between normal and abnormal tissues is of paramount importance (Han
et al., 2015). Consequently, identifying the most discriminatory genes remains a critical
challenge in microarray data analysis.

Gene selection is a key process in addressing these challenges. By identifying a subset of
genes most relevant to specific phenotypes or clinical outcomes, gene selection enhances
the interpretability, computational efficiency, and predictive performance of microarray
analysis (Wu et al., 2019; Fustero-Torre et al., 2021; Mehta et al., 2025). Recent
advancements in machine learning and optimization techniques have played a pivotal role
in extracting biologically meaningful insights from microarray data, driving substantial
progress in the field (Wu et al., 2023; Zhang et al., 2023). In parallel, the growing field of
deep learning and data fusion has further underscored the need for robust feature selection
methods. For example, Zhao et al. (2024) review deep learning-based cancer data fusion
techniques that integrate heterogeneous sources to improve diagnostic accuracy, while
Wang, Li ¢ Ma (2025) introduced the Multi-Scale Three-Path Network (MSTP-Net) for
retinal vessel segmentation, demonstrating the potential of multi-scale feature extraction
to capture both local details and global structures.

Among various gene selection methods, evolutionary algorithms have emerged as a
powerful approach for handling the computational complexity of high-dimensional data
while achieving superior predictive performance. In particular, swarm-based techniques, a
subset of bio-inspired meta-heuristics, have gained widespread attention. Swarm
intelligence (SI), a subset of artificial intelligence inspired by collective behaviors in
distributed and self-organized systems, has been instrumental in this context. Several
SI-based approaches, such as particle swarm optimization (PSO) (Han et al., 2019), genetic
algorithm (GA) (Li, Wu ¢ Tan, 2008), simulated annealing (Filippone, Masulli & Rovetta,
2011), and biogeography-based optimization (BBO) (Li ¢ Yin, 2013), have been applied to
gene selection tasks. Among these, PSO has demonstrated particular effectiveness in
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addressing the challenges of high-dimensional microarray data. PSO is a bio-inspired,
nonlinear optimization algorithm that models the social behaviors observed in bird flocks
(Kennedy & Eberhart, 1995). In PSO, each particle represents a potential solution, and the
algorithm iteratively searches for the global optimum. However, traditional PSO-based
gene selection methods typically employ a single-objective function, focusing on guiding
the population toward a specific gene set.

Gene selection inherently involves two conflicting objectives: maximizing the relevance
of selected genes to the target class and minimizing redundancy among the selected genes
(Wang et al., 2020). Balancing these objectives requires careful trade-offs, making
multi-objective optimization approaches essential for robust and biologically meaningful
outcomes. To address the limitations of single-objective optimization, researchers have
developed multi-objective particle swarm optimization (MOPSO)-based methods, which
optimize multiple conflicting objectives using Pareto-based optimization (Rahimi et al.,
2023; Han et al., 2024). For instance, a hybrid MOPSO algorithm was proposed in Han
et al. (2021) for gene selection in microarray cancer classification, demonstrating improved
performance over traditional single-objective techniques by providing a more
comprehensive optimization framework. Similarly, Xue, Zhang ¢» Browne (2012)
introduced the Crowding, Mutation, and Dominance-based Particle Swarm Optimization
for Feature Selection (CMDPSOOEFS) algorithm, which incorporated crowding distance,
dominance mechanisms, and mutation techniques to enhance convergence and diversity.

Despite significant progress, existing MOPSO-based methods still suffer from notable
limitations that hinder their effectiveness. For example, the CMDPSOFS algorithm
prioritizes diversity through crowding distance and mutation mechanisms but lacks
effective local search strategies, limiting its ability to generate optimal feature subsets.
Furthermore, the performance of MOPSO-based methods is highly influenced by the
quality of the initial population. Randomly generated initial populations, commonly used
in PSO, can lead to challenges such as prolonged convergence times, suboptimal gene set
selection, or premature convergence to local optima (Gao et al., 2024; Tijjani, Ab Wahab ¢
Noor, 2024; Yang et al., 2024). A well-structured initial population enhances diversity in
solution space exploration, facilitating faster convergence and improved solution quality.
Conversely, poorly designed initial populations may undermine algorithm performance
and efficiency.

Another major limitation of existing MOPSO-based methods is their inability to
effectively preserve local structures within the gene space, which is essential for
maintaining diversity and capturing biologically meaningful relationships. For instance, a
MOPSO-based feature selection approach introduced in Xu et al. (2024) neglects local
structural information, reducing its sensitivity to localized effects and increasing
redundancy among selected features. Other methods, such as Many-objective Particle
Swarm Optimization for Graph-based Gene Selection in Medical Diagnosis Problems
(MaPSOGS) (Azadifar & Ahmadi, 2021), which integrates a graph-based framework
for gene selection, focus on increasing diversity through clustering and repair
operators without explicitly maintaining local relationships. Similarly, approaches like
Cooperative Coevolutionary Multi-guide Particle Swarm Optimization (CCMGPSO)
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(Madani, Engelbrecht ¢ Ombuki-Berman, 2023) and Multi-objective Particle Swarm
Optimization with Node Centrality-based Feature Selection (MPSONC) (Rostami et al.,
2020) emphasize global optimization while oversimplifying gene relationships by
converting them into graph representations, potentially losing critical neighborhood
information.

Moreover, most MOPSO algorithms aim to explore all Pareto-optimal solutions under
the assumption that all non-dominated solutions are equally desirable (Konak, Coit ¢
Smith, 2006; Ishibuchi, Tsukamoto ¢ Nojima, 2008). However, in gene selection, the
primary objective is to enhance classification performance, prioritizing regions with higher
predictive accuracy rather than merely minimizing the number of selected genes on the
Pareto front. Consequently, existing methods often waste computational resources by
searching for less relevant solutions (Deb & Sundar, 2006; Thiele et al., 2009), limiting their
ability to fully capture complex gene interdependencies and explore the solution space
effectively. In addition, recent approaches such as Multi-objective Feature Selection using
Real-valued Encoding and a Preference Leadership Strategy (MOFS-REPLS) (Fu et al,
2024), rough hypervolume-driven methods (Zhou et al., 2025), and adaptive deep learning
techniques (Li et al., 2020) have advanced feature selection, they do not fully address local
structure preservation or adaptive initialization within a MOPSO context. Therefore,
current MOPSO-based gene selection methods suffer from sensitivity to random
initialization, neglect of local structural preservation, and imbalanced exploration-
exploitation dynamics, limiting their biological relevance and optimization efficacy.

As summarized in Table 1, these limitations persist across state-of-the-art
MOPSO-based methods. To overcome these challenges, we propose an adaptive
neighborhood-preserving multi-objective particle swarm optimization (ANPMOPSO)
framework for gene selection in microarray analysis. This approach addresses the
limitations of existing MOPSO-based methods by incorporating adaptive mechanisms to
preserve local structures, improving population initialization, and aligning optimization
objectives with the practical goals of gene selection. The primary contributions of
ANPMOPSO are as follows:

o ANPMOPSO employs weighted neighborhood-preserving ensemble embedding
(WNPEE) technique to reduce the dimensionality of microarray data while retaining
essential local structural information. The use of Sobol sequence (SS) for population
initialization enhances diversity and ensures an efficient exploration of the solution
space from the outset.

e Unlike previous methods that primarily focus on gene relevance and redundancy,
ANPMOPSO simultaneously optimizes classification accuracy, gene count, and
neighborhood preservation quality, providing a holistic evaluation of gene subsets.

o ANPMOPSO integrates a differential evolution (DE)-based adaptive velocity update
mechanism to dynamically balance exploration and exploitation. This mechanism
maintains diversity in both the decision space and objective space, promoting
convergence toward high-quality solutions.
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Table 1 Comparative analysis of MOPSO-based gene selection methods.

Method Initialization Local structure  Adaptive mechanism Novel ranking strategy
preservation
CMDPSOFS (Xue, Zhang ¢~ Browne, Random X x (Crowding distance) x (Dominance-only)
2012)
MOPSO-ASFS (Han et al., 2021) Random X x (Fixed parameters) x (Adaptive dominance)
MaPSOGS (Azadifar & Ahmadi, Random v (Graph-based X x (Clustering-guided)
2021) clustering)
MPSONC (Rostami et al., 2020) Random X X v (Node centrality)
CCMGPSO (Madani, Engelbrecht ¢» Random X X x (Cooperative
Ombuki-Berman, 2023) coevolution)
MOEFS-REPLS (Fu et al., 2024) ReliefF-guided with X v (Real-valued encoding + v (Preference
roulette wheel sampling preference leadership strategy) leadership)
RHV-ES (Zhou et al., 2025) Random v (Rough set v (Groupwise intelligent sampling) v (Hypervolume-guided
theory) selection)
ANPMOPSO (Proposed) v (Sobol Sequence) v (WNPEE) v (DE Mutation) v (Pareto +
Neighborhood
preservation)

» ANPMOPSO introduces a novel selection strategy that combines Pareto dominance
with neighborhood preservation quality, prioritizing solutions that not only achieve
superior performance across multiple objectives but also retain biologically meaningful
local structures.

By addressing these challenges, ANPMOPSO facilitates the discovery of biologically
significant gene subsets, enhances classification performance, and reduces computational
overhead, providing a robust and efficient framework for microarray data analysis.

The remainder of this article is structured as follows: Preliminaries provide the
necessary background for understanding the proposed approach. Proposed Method details
the ANPMOPSO framework, highlighting its methodology and key innovations. Results
and Discussions present experimental findings, demonstrating the effectiveness of
ANPMOPSO on multimodal multi-objective test functions (MMFs) and microarray
datasets. Finally, Conclusions summarize the key findings and discuss potential future
research directions.

PRELIMINARIES

Multi-objective optimization problems

Several biomedical enhancement obstacles require synchronized optimization of distinct
multiple objectives, known as multi-objective problems (MOPs) (Kong et al., 2023; Peng ¢
Guo, 2023). MOPs have two main goals: the diversity and convergence of Pareto optimal
solutions (POSs). The aim of diversity is to optimize a set of POSs as distinct as possible
and convergence is to optimize a set of optimal solutions as close as possible to the Pareto
front (Yang et al., 2020). Generally, the minimization problem for MOP is articulated as:
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Minimize Y = f(x) = fi(x), fo(x),....,fu(x) (1)
Subject to x €

where (2 is the decision space and Y is objective space. y = (y1,¥2,...,Vm) € Y isa
m-dimension objective vector and x = (x1,x,,...,xp) € € is an D-dimension decision
variable vector. Several definitions associated with multi-objective optimization are given
as follows:

Definition 1 (Pareto optimal): A decision vector x* € X is said to be Pareto optimal if
there is no other x € X, such that x < x*.

Definition 2 (Pareto optimal set): For a given MOPs, the Pareto optimal set is defined as:

POS={xeX|Aze X,z <x} (2)
Definition 3 (Pareto front): For a given MOPs, the Pareto front set is defined as:

PF = {F(X) | x € PS} (3)

Further in multi-modal multi-objective (MMO) problems, a “global POS” is a group of
solutions where none of them is outperformed by any other solutions in the entire possible
range. On the other hand, a “local POS” is a group of solutions where none of them are
dominated by their close neighbors. For a multi-objective optimization problem to be
considered a MMO problem, it needs to meet one of following two conditions: either
possess at least one local POS or have more than one global POS.

It can be realized from aforementioned that a global POS is distinct from a local.
Consequently, if a problem includes a local POS, it necessarily includes at least one global
POS. In rare situations, the local POS might consist of only one solution.

Particle swarm optimization
PSO is a single-objective computational procedure; encouraged by collective actions of the
birdies that can be defined as a repeatedly budding system (Kumar, Pandey ¢» Ahirwal,
2023; Li et al., 2023). It is a community-based speculative procedure that aims to optimize
the ideal solution to a specified optimization problem. PSO has been used in various
biomedical studies such as gene selection and cancer classification due to its efficacy of fast
convergence and simplicity of employment (Chen et al., 2014; Jain, Jain ¢ Jain, 2018).
PSO operates through two primary components: the exploration aspect, signified by the
inertia weight (w) and the cognitive coefficient (¢;), dictating an individual’s peak position
influence; and the exploitation facet, denoted by the social coefficient (c,), governing the
effect of the swarm’s peak position. PSO implementation mainly includes: initialization of
each individual, main loop that contains iterations for updating velocities of these
individuals according to peak positions as well as global positions and determine the fitness
function, and finally termination. Let x; and v; is the current position and current velocity
of the particle and r; and r, are arbitrary numbers in the range [0, 1]. Then, particles travel
conforming to the following equations throughout the exploration process.

Vi = wyy, + an (p" e“k,- - xi) + an (gp eukx - x,-) @
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xi=xi+v; 1<i<n. (5)

By iteratively updating the individual positions based on their velocities, PSO aims to
converge towards the optimal solution by balancing exploration and exploitation. The
algorithm’s success depends on carefully selecting the values for the parameters (w, ¢, c;)
and the appropriate termination criterion for the specific problem at hand. Also, it can be
noted that the PSO algorithm is versatile and can be adapted to different optimization
problems by customizing the fitness evaluation function and problem-specific constraints.

Sobol sequence
Sobol sequence (SS) is a type of quasi-random sequence used in numerical computations,
particularly in Monte Carlo simulations and optimization algorithms (Atanassov &
Ivanovska, 2022). Unlike pseudo-random sequences generated by traditional methods,
such as the linear congruential generator, SS offers superior properties in terms of low
discrepancy and high-dimensional uniformity. Developed by the Russian mathematician
Ilya M. Sobol, this sequence is designed to cover the entire domain space more evenly,
leading to improved convergence rates and accuracy in numerical integration and
optimization tasks (Hu et al., 2024; Zhang et al., 2024). Sobol Sequence finds applications
in various fields, including finance, engineering, and computer graphics, where
high-quality random number generation is crucial for achieving reliable and efficient
results.

Firstly, the number of dimensions d and the number of points to generate n are chosen.
Then, direction numbers are computed and stored for each dimension j, denoted as

{Vjﬁi}zl' For each dimension j, it generates the SS {Sj,i};‘; using the following formula:

=W g80FD o gglitm—1) (6)
it 2j 2j+1 2j+m—1

where g(j) is the integer representation of the Gray code of j, @ represents the bitwise
exclusive OR operation, m is the number of bits required to represent i in binary. The
generated Sobol points {Slli}?:l are typically transformed to the unit interval [0, 1] to
represent points in the search space. Finally, the Sobol points in the unit interval can be
transformed to the actual search space based on the bounds and constraints of the
optimization problem. This process ensures that the points in the SS are distributed evenly
across the unit hypercube, leading to improved coverage and convergence properties

compared to pseudo-random sequences.

PROPOSED METHOD

We propose an ANPMOPSO framework to address the challenges of microarray gene
selection, including high dimensionality, sensitivity to initial population generation, and
inadequate consideration of local structural information in conventional methods. The
framework integrates several novel components to ensure the selection of biologically
significant gene subsets while enhancing computational efficiency and classification
performance. Key innovations include WNPEE for dimensionality reduction (Mehta,
Zhan & Shen, 2019), SS-based initialization for diverse and efficient population generation,
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Figure 1 The flowchart of the proposed ANPMOPSO gene selection method.
Full-size K&l DOT: 10.7717/peerj-cs.2872/fig-1

and an adaptive velocity update mechanism incorporating DE mutation to balance
exploration and exploitation.

ANPMOPSO performs multi-objective optimization by simultaneously optimizing
classification accuracy, the number of selected genes, and neighborhood preservation
quality, ensuring a comprehensive evaluation of candidate gene subsets. A novel ranking
mechanism is introduced, integrating Pareto dominance with neighborhood preservation
quality, prioritizing solutions that retain meaningful local structures within the data. These
advancements collectively overcome key limitations of existing methods, such as random
initialization and limited optimization scope, providing a more robust and interpretable
framework for microarray analysis. Figure 1 illustrates the overall workflow of the
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proposed ANPMOPSO framework. The proposed framework begins with dimensionality
reduction, which is described in detail below.

Dimensionality reduction using WNPEE

To address the challenges of high-dimensional microarray data, we employ WNPEE as a
robust dimensionality reduction technique. Unlike traditional methods that rely on a
single graph to capture data relationships (Mehta, Zhan ¢ Shen, 2019; Qin et al., 2024),
WNPEE constructs an ensemble of L adjacent graphs Gy, G,, ..., Gy, each representing
the local structure of the data with varying neighborhood sizes k. This ensemble approach
enhances neighborhood preservation and improves robustness to parameter sensitivity.
The graphs are constructed using the K-nearest neighbors (KNN) method, where a
directed edge is created between nodes if one node lies within the neighborhood of the
other. For each graph, edge weights are computed by minimizing:

min E X — g Zakavifo'
i k

j
where Wy is N x N weight matrix for each adjacent graph, with Wy ;; representing the

sty Wig=1,j=12,...,N (7)
j

weight of the edge from node i to j, and 0 if no edge exists. The reduced representation Y is
obtained by solving the eigenvalue problem:
XMX"a=iXX"a (8)

where M = (I — 3" aWi)"(I = 3" 0 Wi). The transformation matrix

A = [ag,ay,...,a4_1) maps the high-dimensional data X into a reduced-dimensional
space Y = ATX, preserving local structures. The graph weights oy are iteratively optimized
to minimize reconstruction loss, ensuring that the ensemble accurately represents the
data’s locality, as

_ "/ l/tr(Ek)
Z]'L=1 "\ l/tr(zj)

where r > 1 is a control parameter for balancing multiple graphs. This iterative process

O

(9)

continues until the loss function converges. The detailed pseudocode of WNPEE is
presented in Algorithm 1. By incorporating WNPEE, the proposed method ensures that
the optimization process operates on a compact and biologically meaningful
representation of the data, improving classification performance and reducing
computational overhead.

Initialization

Following pre-processing, the population of gene subsets is initialized using an SS as
outlined in previous section. This approach provides a more efficient and structured
initialization strategy compared to conventional random methods. Each individual in the
population, denoted as Yj, is generated as follows:

Xi = Xmin + Sji X (Xmax - Xmin) (10)
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Algorithm 1 WNPEE algorithm.
Input: High dimensional data X
Output: projection vector a
Parameter: oy
Initialize:
- Construct an ensemble of adjacent graphs using KNN with oy weights
while loss not converged do
1. Computing the weights on edges with fix oy acc. to Eq. (7)
2. Obtain projection vector a acc. to Eq. (8)
3. Fix a and update oy acc.to Eq. (9)
4. Compute current loss

End while

Original High-Dimensional Data Dimensionality Reduction (WNPEE) MOPSO Initialization (Sobol Sequence)

Dim 3

-10 )
10

PC2 510 PC1 Dim 2 -0 -15 Dim 1 Dim 2 0 0 Dim 1

Figure 2 Initialization in ANPMOPSO. Full-size K&l DOT: 10.7717/peerj-cs.2872/fig-2

where X,,..x and X,,,;, are the upper and lower bounds, respectively. The parameter s;;
represents the ith random number generated by the SS as calculated using Eq. (6) within
the interval [0, 1]. From the generated initial population, the current optimal gene subset is
selected by evaluating fitness values, ensuring that only high-quality solutions proceed. SS
enhances the systematic exploration of the solution space, leading to faster convergence
and improved overall performance of the MOPSO optimization algorithm. An overview of
the initialization scheme in the proposed ANPMOPSO is shown in Fig. 2.

Fitness evaluation

Once the population is initialized, each particle’s solution is evaluated based on multiple
objectives, including classification accuracy, gene count, and neighborhood preservation
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quality. These objectives provide a comprehensive assessment of gene subsets, ensuring
that selected genes maintain predictive performance while capturing relevant biological
insights. In ANPMOPSO, we calculate the classification accuracy CA(X;) as the ratio of
correctly classified instances to the total number of instances in the validation set.

CA(X)) = Number of correctly classif ied instances

% 100. 11
Total number of instances (1)

The number of selected genes NF(X;), in a gene subset can be simply measured by
counting the number of genes with a value of 1 in the binary representation of the subset.
Let’s denote X; as a binary vector of length L, where L is the total number of genes in the
dataset. Each element x;; of X; represents whether gene j is selected or not. x;; = 1 if gene j
is selected in subset X;, and x;; = 0 otherwise. The number of selected genes NF(X;) in
subset X; can be calculated as:

L
NF(X:) = x;. (12)
=1

Let NP(X;) represent the neighborhood preservation quality of solution X; and we
compute it as the average preservation score across all data points:

i=

1 N1
NP(XI'):NZEZHxij_)/zjn (13)
1 5=1

where N is the total number of data points, k is the number of nearest neighbors
considered, x;; and y;; are the j nearest neighbor of data point i in the original and
embedded spaces, respectively, and || - || denotes Euclidean distance (ED), measuring the
difference between corresponding neighbors. Therefore, this metric quantifies how well the
local neighborhood structure is preserved. A lower value of NP(X;) indicates better
preservation quality, meaning that the local structure is more faithfully retained in the
embedded space. The overall fitness of each particle is computed based on the three
defined objectives, with equal weights, as:

Fitness X; = {CA(X;), NF(X;), NP(X;)}. (14)

Optimization

The optimization loop of ANPMOPSO employs MOPSO with DE-mutation to iteratively
refining gene subsets. Each particle in the population maintains a set of solutions
representing the Pareto front, which is a set of non-dominated solutions in the objective
space. During each iteration, particles dynamically adjust their velocity using DE-mutation
inspired mechanisms, facilitating diversity and exploration of the solution space. Particle
positions are then updated based on their personal best and the global best found by the
entire swarm. The fitness of each particle is evaluated based on multiple objectives,
including classification accuracy, gene count, and neighborhood preservation quality. By
concurrently optimizing these competing objectives, ANPMOPSO aims to identify diverse,
high-quality gene subsets, offering meaningful trade-offs between predictive performance,
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subset compactness, and local structure preservation. The update of particle velocities in
ANPMOPSO is governed as:

Via(t+1) =wviq(t) +an (pbestiyd - xi,d(t)) + &1y (gbestd - x,-7d(t)) + DE_vi4 (15)

where v; 4(t) represents the velocity of particle i in dimension d at time ¢, w is the inertia
weight controlling the impact of the previous velocity, ¢; and ¢, are acceleration
coefficients representing the cognitive and social components, respectively, r; and r, are
random values sampled from a uniform distribution in the range [0, 1]. pbest; ; is the
personal best position of particle i in dimension d, gbest; is the global best position found
by the swarm in dimension d, and DE,, , represents the velocity update obtained from the
DE-mutation based adaptive mechanism.

The DE-mutation based adaptive velocity update is computed by randomly selecting
three other particles X;1, X;,, and X,; from the population for each particle X;. A mutant
vector V,,,; is generated by perturbing the quartet using DE-mutation strategy (DE/rand/
1) as:

Viur = X1 + F X (XrZ - X ) (16)

This mutant vector is then used to update the particle’s velocity adaptively:
DE, , = K X (Vyur — xi4(t)). (17)

Here, F is the differential weight factor, K is an adaptive scaling factor determined based
on the fitness of the quartet, and x; 4(t) is the current position of particle i in dimension d
at time ¢. This adaptive adjustment ensures exploration in regions with potentially better
solutions, preventing premature convergence and enhancing diversity. Once the adaptive
velocity is obtained, the particle’s position is updated as:

xig(t+1) =xa(t) +via(t+1). (18)

Additionally, we ensure that position components are within minimum and maximum
bounds min,,s and max,s, respectively. Further, we evaluate each particle’s fitness based
on the defined objectives, maximizing classification accuracy, minimizing the number of
selected genes, and maximizing neighborhood preservation in the embedded space. This
approach allows for the capture of a diverse set of trade-off solutions representing various
combinations of classification accuracy, gene count, and neighborhood preservation
quality.

A novel selection strategy
After updating the particles’” velocity and position, the newly and previous generated
particles are gathered into an external archive. However, given the limited archive size and
the necessity to uphold particle quality, it is crucial to implement a suitable selection
strategy for archive updates. This selection strategy, employed within the archive, directs
the particles search towards the genuine Pareto front, guaranteeing that only the most
promising solutions are preserved for further exploration.

Therefore, we propose a novel selection approach that considers both the proximity to
the Pareto front and the quality of neighborhood preservation, contrasting with traditional
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MOPSO methods that focus solely on proximity. This approach evaluates each solution
based on its harmonic mean distance (HMD) to the Pareto front, as opposed to ED used in
existing techniques, and its neighborhood preservation quality. By integrating this
selection criterion, our method ensures to prioritize solutions that not only achieve good
trade-offs among multiple objectives but also preserve meaningful local structures within
the microarray data. Therefore, to define a novel selection strategy, we aim to balance two
aspects:

e Proximity to the Pareto front: In contrast to ED in traditional MOPSOs, which considers
only the geometric distance between points in the objective space, the HMD accounts for
both the distance to the Pareto front and the diversity of solutions across multiple
objectives. By incorporating HMD, our approach effectively diversifies the selection
process, ensuring that a broader set of trade-off solutions is explored. Let HMD(X;)
represent the average HMD of solution X; to the Pareto front, it can be calculated as:

n

HMD(X;) = (19)

—T
n

2 d(X;, X))

e Neighborhood preservation quality: Solutions with better neighborhood preservation in
the embedded space are preferred. We compute the neighborhood preservation quality
NP(X;) for solution X; as the average preservation score across all data points using

Eq. (15).

Finally, we define a combined score S(X;) for each solution X; as a weighted sum of its
HMD to the Pareto front and its neighborhood preservation quality:

S(X;) = B x HMD(X;) + (1 — ) x NP(X) (20)

where f controls the relative importance of HMD(X;) and NP(X;) in the optimization
process, higher value of f§ prioritizes HMD(X;), while a lower value prioritizes NP(X;).
Solutions with lower S(X;) values are preferred, as they provide a better balance between
proximity to the Pareto front and local structure preservation. By integrating this novel
selection strategy, our method can effectively identify high-quality solutions that achieve a
balance between the multiple objectives of the gene selection while capturing relevant
biological insights encoded in the microarray data. Algorithm 2 presents the detailed
pseudocode for proposed ANPMOPSO.

RESULTS AND DISCUSSIONS

Dataset

To evaluate the performance of the proposed ANPMOPSO framework, we conducted
experiments on six publicly available microarray datasets: Brain Cancer, Colon, Leukemia,
Lung, Lymphoma, and Small-Round-Blue-Cell Tumor (SRBCT). These datasets were
obtained from two primary sources: http://csse.szu.edu.cn/staff/zhuzx/Datasets.Html, and
https://github.com/Pengeace/MGRFE-GaRFE. A detailed description of these datasets is
presented in Table 2.
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Algorithm 2 ANPMOPSO algorithm.

Input: Microarray data, Parameters: Population size (N), Maximum number of iterations (#axi.,), Number of objectives (numopjectives )>
Neighborhood Size (k), PSO parameters: inertia weight (w), cognitive coefficient (c;), social coefficient (c,), Weighting factor: (o)

Output: Selected genes set

1. Embed microarray data into a lower-dimensional space using WNPEE using Eq. (8)

2. Initialize population P of N gene subsets using SS Eq. (10)

3. for iter = 1 to max;,, do

4. for each particle in population P do

5. Update particle velocity via DE mutation (DE,,,) using Eq. (17)

6. Update particle position using (18)

7. Evaluate fitness of particle using objectives: (CA, NG, NP) using Eqs. (11), (12), (13)

8. Update personal best and global best if necessary

10.  end for

11.  Sort the solutions based on a combined score S(X;) for each solution X; using Eq. (20)

12.  Solutions with lower values of S(X;) are considered more favourable and prioritized for selection.
13. end for

14. Return selected genes set based on the best solution found

Table 2 Microarray data description.

Data Samples For training For testing No. of classes Genes
Brain cancer 50 30 20 4 10367
Colon 62 40 22 2 2000
Leukemia 72 38 34 2 7129
Lung Cancer 203 103 100 5 3312
Lymphoma 58 29 29 2 7129
SRBCT 83 63 20 4 2308

These datasets are commonly used for gene selection and classification tasks due to their
high dimensionality and biological relevance. All datasets were preprocessed to remove
missing values and normalized using min-max scaling to ensure consistency across

experiments.

Hyperparameters

In our experiments, we set the key hyperparameters as:

o Swarm size: 200 particles (optimized for diversity and computational efficiency).

e Iterations: 50 generations (evaluated 30-100 generations; 50 iterations ensured
convergence where error rate stabilization 1% beyond 50).

* Sobol sequence initialization: Dimensions matched the gene count of each dataset, with
quasi-random numbers generated in the range [0, 1].

o DE mutation rate (F): 0.5 (selected via grid search).
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» Neighborhood size (k): 10 and parameter o: 0.5 (optimized for local structure
preservation in WNPEE).

o Inertia weight (w): 0.7298 (standard PSO configuration).
* Acceleration coefficients (cy, c;): 1.49445 (empirically validated for balance).
o Parameter (f3): 0.5 (via optimally balances HMD and NP for the lowest 1/PSP values).

Other parameters were configured according to corresponding references (Rostami
et al., 2020; Shukla, Singh & Vardhan, 2020; Azadifar & Ahmadi, 2021; Madani,
Engelbrecht & Ombuki-Berman, 2023). To ensure fair comparison and reliable evaluation,
these experimental settings were applied consistently across all datasets.

The effectiveness of ANPMOPSO was benchmarked against state-of-the-art
metaheuristic algorithms, including MaPSOGS (Azadifar & Ahmadi, 2021), Teaching-
Learning-Based Optimization and Gravitational Search Algorithm for Feature Selection
(TLBOGSA) (Shukla, Singh ¢ Vardhan, 2020), CCMGPSO (Madani, Engelbrecht ¢
Ombuki-Berman, 2023), and MPSONC (Rostami et al., 2020). All experiments were
conducted on a desktop system equipped with an Intel Core i7 processor (2.4 GHz) and 16
GB RAM, utilizing MATLAB 2018a (The MathWorks, Natick, MA, USA) as the
development environment.

Performance metrics

To comprehensively evaluate the performance of the proposed ANPMOPSO framework,
the following metrics were used:

e 1/Hypervolume (1/HV): This metric is used to evaluate the convergence and diversity of
the Pareto front generated by ANPMOPSO. The hypervolume (HV) is calculated as:

HV = vol(Uxepr|x, 1]) (21)

where PF is the set of non-dominated Pareto solutions and r is the reference point in
objective space. The inverse is used for minimization. Lower values of 1/HV indicate
better convergence and spread of the Pareto front.

e Classification accuracy (ACC): Classification accuracy is used to quantify the predictive
performance of the selected gene subsets, defined in Eq. (11).

e Error rate: The error rate is the complement of accuracy and is used to monitor the
algorithm’s convergence during optimization:

Error rate = 1 — Acc (22)

e Neighborhood preservation score (NP): NP evaluates the proportion of nearest neighbors
in the original space that remain neighbors in the reduced space same as Eq. (13). A
higher NP score indicates better local structure retention.

o 1/PSP (Pareto Sets Proximity): Pareto Sets Proximity (PSP) quantifies the proximity of
obtained Pareto solutions to the true or ideal Pareto front. The PSP is calculated as:

1
PSP = — min ||x — y|? (23)
|P| ;yePF* Yl
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where P is the set of obtained Pareto solutions, and PF* is the true Pareto front or its
approximation. The lower the PSP, the closer the solutions are to the optimal front. We
use 1/PSP to maintain consistency with our minimization objective.

* Average neighborhood overlap (ANO): ANO measures how well the local neighborhood
of each point is retained after dimensionality reduction.
1 W |NE (i) N NE (i) |
ANO=—=-» —————— 24
N ; p (24)
where: N (i) and N}:(i) are sets of k-nearest neighbors of point i in the high-dimensional
space and in the low-dimensional space, and |N{!(i) N Nf(i)| is the number of
overlapping neighbors between the original and reduced feature space. A higher ANO
score suggests better neighborhood overlap, implying that dimensionality reduction
minimally distorts the original local structure.

o Spearman’s rank correlation (SRC): SRC evaluates whether the relative ordering of
pairwise distances between data points is preserved after dimensionality reduction. It is
calculated as:

N
63 i1 d;

SRC=1-—
N(N2 —1)

(25)

where d; is difference in rank for point i before and after dimensionality reduction and N
is the total number of data points. A higher SRC (close to 1.0) suggests that the relative
ranking of distances between points is well-preserved in the reduced space.

These metrics collectively assess not only classification performance but also solution
quality, biological relevance, and structural preservation.

Comparative analysis of hypervolume values
Table 3 presents the mean + standard deviation of 1/hypervolume (1/HV) values obtained
by five multi-objective optimization algorithms: ANPMOPSO, Multi-objective Particle
Swarm Optimization with Adaptive Strategies for Feature Selection (MOPSO-ASEFS) (Han
et al., 2021), Omni-optimizer (Deb ¢ Tiwari, 2005), Decision Space Niching-based
Non-dominated Sorting Genetic Algorithm II (DN-NSGAII) (Li, Wu ¢ Tan, 2023), and
Multi-objective Particle Swarm Optimization with Ring Topology for Solving Multimodal
Multi-objective Problems (MO_Ring PSO_SCD) (Yue, Qu ¢ Liang, 2017), across eleven
benchmark test functions. These test problems are derived from Yue, Qu ¢ Liang (2017),
and all algorithms are evaluated under identical experimental conditions. Each experiment
is repeated 15 times for robustness, and the performance is assessed using the 1/HV
performance indicator, where a lower value indicates superior performance. The
population size is determined as 100 x N,,,, and the maximum fitness evaluations are set
at 4,000 X N,,. In the ANPMOPSO algorithm, the F parameter in Eq. (16) is set to 0.5,
and the crossover rate is also 0.5.

The results from Table 3 demonstrate that ANPMOPSO consistently outperforms other
optimization algorithms across most benchmark functions, with the exception of MMF7
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Table 3 Mean + Std 1/Hv values obtained by all compared algorithms on eleven MMFs test functions.

DN-NSGAII

MO_Ring PSO_SCD

ANPMOPSO MOPSO-ASFS Omni-optimizer
MMF1 1.0617 + 0.22258 1.1445 + 0.1114 1.1437 + 0.1117
MMEF2 1.0991 + 0.42594 1.1645 + 0.1147 1.1547 + 0.1216
MMF4 1.7235 + 0.61687 1.7462 + 0.1118 1.7489 + 0.1115
MMF5 1.1419 + 0.42283 1.1436 + 0.1113 1.1444 + 0.1118
MMF6 1.1451 + 0.1125 1.1512 + 0.1115 1.1487 + 0.1123
MMEF7 1.1413 + 8.31198 1.1412 + 0.9383 1.1425 £ 0.1115
MMF8 2.3660 + 0.05931 2.3854 + 0.0933 2.3790 + 0.0374

SYM-PART simple
SYM-PART rotated

Omni-test (n = 3)

0.75 + 5.25e-04
0.74 + 1.09e-02

0.0161 + 3.95¢-04

0.75 * 8.66e-05
0.75 + 9.68e-04
0.0161 + 5.07e-03

0.75 + 9.21e-04
0.74 + 2.55e-04
0.0162 + 2.46e-04

1.1445 + 0.1113
1.1670 + 0.1164
1.7466 + 0.1168
1.1438 + 0.1117
1.1475 + 0.1116
1.1423 + 0.1113
2.3832 + 0.0242
0.75 + 1.94e-04
0.75 + 4.49¢-04
0.0161 + 4.09¢-02

1.1466 + 0.1115
1.1548 + 0.1148
1.7550 = 0.1122
1.1466 + 0.1114
1.1532 + 0.1145
1.1435 £ 0.1114
2.3727 £ 0.0613
0.75 + 1.65e—-03
0.74 + 3.55e-03
0.0162 * 4.14e-01

Note:

The bold values indicate the best (lowest) mean 1/Hv performance for each test function.

and SYM-PART simple. In particular, ANPMOPSO achieves the lowest 1/HV values for
MMF1, MMF2, MMF4, MMF5, MMF6, and MMEF8, highlighting its capability in solving
complex multi-objective problems efficiently. Notably, on MMEFS, it significantly
outperforms other methods (2.3660 + 0.05931), reinforcing its effectiveness in handling
challenging problem landscapes. This consistent superiority suggests that ANPMOPSO is
well-suited for diverse optimization scenarios, particularly those requiring robust
exploration and exploitation strategies.

However, ANPMOPSO falls slightly behind on MMF7 and SYM-PART simple
functions, where MOPSO-ASES performs slightly better on MMF7 (1.1412 + 0.9383), and
MO_Ring_PSO_SCD marginally outperforms others on SYM-PART simple (0.75 +
1.65e—03). The close results in SYM-PART functions indicate that these problems do not
strongly differentiate algorithm performance. Nonetheless, ANPMOPSO’s dominance in
most other functions demonstrates its ability to generate high-quality Pareto-optimal
solutions and effectively handle multimodal and rotationally symmetric optimization
problems. This underscores its robustness and adaptability in solving diverse
multi-objective optimization challenges.

Comparison of true and obtained Pareto-optimal solutions

The true and obtained Pareto-optimal solutions (POSs) for the proposed ANPMOPSO
algorithm across all eleven MMFs are shown in Figs. 3A-3K. The results illustrate how well
the ANPMOPSO algorithm approximates the true Pareto fronts. In most cases, the
obtained POSs (red circles) closely follow the true POSs (blue diamonds), indicating that
ANPMOPSO effectively converges toward optimal solutions. This is particularly evident in
MMF4, MMF5, and MMF6, where the alignment is nearly perfect, demonstrating the
algorithm’s capability in solving multimodal and rotationally symmetric functions.
However, some variations are observed in MMF1, MMF7, and MMF9, where minor
deviations suggest challenges in fully capturing highly complex or oscillatory POSs.
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Figure 3 Pareto-optimal solutions obtained by ANPMOPSO (using non-dominated sorting and neighborhood preservation scores) on eleven
multi-modal multi-objective test functions (MMF1-MMF8, SYM-PART simple, SYM-PART rotated, and Omni-test (n = 3)). Red hollow circles
denote ANPMOPSO’s solutions; blue solid circles indicate the true Pareto front. Full-size K&l DOT: 10.7717/peerj-cs.2872/fig-3

Despite these minor discrepancies, the overall strong agreement between the true and
obtained POSs confirms ANPMOPSO’s effectiveness in handling diverse multi-objective
problems. The observed differences in certain MMFs suggest that additional refinements
in exploration strategies or diversity maintenance could further enhance performance.
Nonetheless, these results validate the robustness of ANPMOPSO in maintaining
convergence and solution accuracy, making it a competitive approach for solving
multi-objective optimization problems.

Comprehensive gene selection comparison

To evaluate the predictive performance of the selected gene subsets, the extreme learning
machine (ELM) classifier was used across six microarray datasets. Each experiment was
repeated 50 times, and the mean classification accuracies were recorded to ensure the
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Table 4 Classification accuracies (Mean% * Std) of ANPMOPSO using ELM classifier.

Dataset Test Acc 5-FOLD CV Acc LOOCYV Acc Genes selected
Brain cancer 81.27 + 2.25 90.13 + 1.85 91.10 + 0.58 6561, 4927, 5921, 4423
81.47 + 2.69 90.07 + 1.99 90.13 + 1.16 3682, 3041, 978, 3051, 4786
85.41 + 3.38 90.67 £ 2.53 89.98 + 2.10 4433, 7139, 798, 4628, 7045
89.77 + 3.31 90.88 + 2.23 92.17 + 1.44 4891, 3051, 1977, 7139, 2891, 885, 2945
Colon 93.14 + 241 96.18 + 1.32 97.83 + 1.37 655, 1989, 1957, 1229, 1080, 1345, 1980, 1872, 1937, 16, 197, 221
94.67 + 3.39 9533 + 1.52 96.17 + 1.15 775, 367, 1760, 16, 197, 271, 165, 59, 1283, 201, 782, 1986, 1120
9492 + 3.74 95.18 + 1.59 96.06 £ 1.11 1986, 1121, 1999, 1199, 16, 1599, 102, 108, 782, 1433, 1926, 175
95.12 £ 3.86 96.06 £ 1.64 97.74 + 1.12 1999, 782, 1534, 16, 1986, 1121, 48, 59, 1283, 775, 175, 1770, 271
Leukemia 100 £ 0.00 100 £ 0.00 100 £+ 0.00 2111, 2632, 4060
100 £+ 0.00 100 £+ 0.00 100 £+ 0.00 1892, 2632, 4060
100 £ 0.00 100 £+ 0.00 100 £ 0.00 3268, 4060, 2642
94.32 + 1.32 99.08 + 0.66 99.90 + 0.51 1883, 2632, 4233, 4060
Lung 92.20 + 1.11 98.19 + 0.72 99.25 + 0.50 2871, 1795, 1640, 2789, 2055, 2713, 2867, 545, 1494, 3181
91.37 + 1.99 97.12 + 0.46 98.55 + 0.40 609, 866, 369, 3289, 2713, 782, 545, 1494, 570, 2168, 1227
91.65 £ 1.26 97.33 £ 0.78 98.44 + 0.63 2998, 2055, 834, 782, 570, 857, 1795, 881, 2713, 975, 3289
91.18 + 0.90 97.15 + 0.50 98.71 + 0.38 975, 2055, 834, 1795, 1484, 2573, 857, 928, 545, 2871, 2713
Lymphoma 82.62 + 1.70 87.15 + 2.44 89.14 + 1.32 1875, 5873, 2660, 162, 2357, 5689, 458
80.52 + 2.40 86.60 + 2.75 88.17 £ 1.81 162, 2537, 1875, 550, 1109, 2838, 816
81.38 + 3.10 89.07 + 2.44 90.03 £ 1.11 5289, 4950, 5459, 1865, 4529, 4697, 1143
81.79 + 1.24 89.95 + 2.33 90.29 + 2.03 2838, 2518, 2457, 4839, 6451, 162, 816
SRBCT 100 £ 0.00 100 £ 0.00 100 £ 0.00 1964, 1013, 440, 2060, 772, 133
100 £ 0.00 100 £+ 0.00 100 £ 0.00 1975, 565, 265, 1454, 519, 991
100 £ 0.00 100 £+ 0.00 100 £ 0.00 1921, 2060, 565, 133, 193, 1013, 1499
100 £+ 0.00 100 £+ 0.00 100 £+ 0.00 1499, 2055, 2060, 565, 2134, 1964, 133

statistical robustness of the results. As shown in Table 4, ANPMOPSO consistently
achieved high classification accuracy, with notable performance in Leukemia and SRBCT
datasets, where it attained 100% accuracy across all evaluation metrics. This demonstrates
the algorithm’s capability in identifying the most discriminative genes, leading to highly
accurate predictions with a minimal subset of features.

For other datasets such as Brain Cancer, Colon, Lung, and Lymphoma, the proposed
method maintained competitive classification performance, with test accuracies frequently
exceeding 90%. The five-fold cross validation (CV) and Leave-One-Out Cross-Validation
(LOOCV) accuracies further confirm the generalization ability of ANPMOPSO, as they
closely align with test accuracy values, minimizing concerns about overfitting. The
variation in selected gene subsets across datasets highlights the adaptability of the
algorithm in capturing dataset-specific patterns. While minor fluctuations in accuracy
were observed in some cases, the overall performance indicates that ANPMOPSO is
capable of effectively handling high-dimensional biological data while maintaining robust
predictive accuracy. These findings validate the effectiveness of ANPMOPSO as a gene
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Table 5 The Top 10 repeatedly selected genes by ANPMOPSO using ELM classifier.

Dataset Gene no. Gene name Description
Brain cancer 18 AB000895 Dachsous 1 (Drosophila)
4413 U39817 Bloom syndrome
4502 H78537 ADAM metallopeptidase domain 12 (meltrin alpha)
3041 M64934 Kell blood group
7129 797074 Rab9 effector protein with kelch motifs
2881 M57506 Chemokine (C-C motif) ligand 1
2234 W04668 ATPase family, AAA domain containing 2
6732 Y00317 UDP glucuronosyltransferase 2 family, polypeptide B4
5081 N70358 Growth hormone receptor
4657 U51095 Caudal type homeo box transcription factor 1
Colon 14 H20709 Myosin light chain alkali, smooth-muscle isoform (Human) R
237 T50334 14-3-3-like protein GF14 omega (Arabidopsis thaliana)
1482 T64012 Acetylcholine receptor protein, delta chain precursor (Xenopuslaevis)
1635 M36634 Human vasoactive intestinal peptide (VIP) mRNA, complete cds
698 T51261 Glia Derived Nexin Precursor (Musmuscu-lus)
141 D21261 Sm22-alpha homolog (Human)
792 R88740 Atp synthase coupling factor 6, mitochondrial precursor (Human) =
3 R39465 Eukaryotic initiation factor 4A (Oryctolagus cuniculus)
251 U37012 Human cleavage and polyadenylation specificity factor mRNA, complete cds
23 R22197 60S ribosomal protein L32 (Human) R
Leukemia 4050 X03934 GB DEF = T-cell antigen receptor gene T3-delta
4847 X95735 Zyxin
2671 N03128 Spectrin, beta, non-erythrocytic 1
6567 T67821 Acidic (leucine-rich) nuclear phosphoprotein 32 family, member
1882 M27891 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)
2642 U05259 MB-1 gene
2121 M63138 CTSD Cathepsin D (lysosomal aspartyl protease)
1294 L13852 Ubiquitin-activating enzyme E1-like
5315 D16471 MRNA, Xq terminal portion
5191 769881 Adenosine triphosphatase, calcium
Lung 3178 38799 Cluster Incl AF068706:Homo sapiens gamma2-adaptin (G2AD) mRNA, complete cds=(763,3018)
1784 35874 Lymphoid-restricted membrane protein
235 41770 Cluster Incl AA420624:nc61c12.rl Homo sapiens cDNA
2750 38484 Synaptosomal-associated protein, 25 kD
1520 3934_s_at NQO1 NAD(P)H dehydrogenase, quinone 1
4027 34012_at Keratin, hair, acidic, 4
7951 37899 _at Thymidylate synthetase
1243 39012_g Endosulfine alpha
475 1439_s_at Mitogen-activated protein kinase-activated protein kinase 2
1302 31314 _at Bone morphogenetic protein 3 (osteogenic)
Lymphoma 5660 X14046 CD37 antigen
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Table 5 (continued)

Dataset Gene no. Gene name Description
6813 D28151 Potassium ion transport
3048 M31572 Mitotic G1 DNA damage checkpoint signaling
5357 U90543 Butyrophilin, subfamily 2, member Al
806 D86969 P HD finger protein 16
2828 M37763_at Neurotrophin 3
4269 U32324 Interleukin 11 receptor, alpha
307 N80914 Cyclin-dependent protein kinase holoenzyme complex
4940 U66559_at Anaplastic lymphoma kinase (Ki-1)
6105 X67098 Enolase superfamily member 1

SRBCT 1003 796258 Sarcoglycan, alpha (50kD dystrophinassociated glycoprotein)
1955 784224 Fibroblast growth factor receptor 4
246 377461 Caveolin 1, caveolae protein, 22kD
64 M90391 Interleukin 16 (lymphocyte chemoattractant factor)
803 754046 DNA segment on chromosome X (unique) 9879 expressed sequence
270 U18300 Damage-specific DNA binding protein 2, 48 kDa
255 325182 Cadherin 2, N-cadherin (neuronal)
1055 1409509 Troponin T1, skeletal, slow
1776 768246 Glucose-6-phosphate dehydrogenase
944 M68520 Cyclin-dependent kinase 2

Note:

The bold genes indicate those uniquely selected by ANPMOPSO across multiple runs of the algorithm.

selection approach, demonstrating its ability to reduce dimensionality while preserving

high classification performance.

Comprehensive biotic attributes analysis of selected genes set

The experiment was conducted 20 times, and the top 10 genes that were consistently
selected across six microarray datasets are summarized in Table 5. Notably, the
ANPMOPSO approach consistently identified several genes that are in line with
methodologies proposed in previous studies (Han, Sun ¢ Ling, 2014; Han et al., 2015,
2019; Xiong et al., 2019; Shah et al., 2020; Shukla, Singh & Vardhan, 2020; Lai ¢ Huang,
2021; Aziz, 2022). Many of these genes were commonly selected by the existing gene
selection methods, but there were specific genes, highlighted in bold, exclusively identified
by ANPMOPSO, distinguishing it from traditional gene selection methods. These genes
include N70358, N03128, 113852, D16471, 34012_at, 37899_at, 31314_at, X14046,
D28151, M31572, N80914, U66559_at, X67098, and M90391, suggesting that
ANPMOPSO can uncover novel biomarkers that may not be easily detected by other
selection techniques.

For instance, in Leukemia data, an important gene, D16471, associated with MRNA, Xq
terminal portion, has implications for various disease diagnosis. Another notable gene,
N70358 is found that is associated with the growth hormone receptor (GHR). GHR plays a
crucial role in regulating various physiological processes. Deregulation of GHR signalling
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Figure 4 The heat-maps depicting expression levels derived from the top 10 repeatedly chosen genes.
Full-size K&l DOT: 10.7717/peerj-cs.2872/fig-4

has been linked to a range of diseases and chronic conditions, including acromegaly,
cancer, aging, metabolic disorders, fibroses, inflammation, and autoimmunity. Also,
37899_at, thymidylate synthetase (TS) is an essential enzyme involved in DNA synthesis;
serve as biomarkers for predicting the response to certain chemotherapy regimens.
Additionally, TS polymorphisms have been studied for their potential role in modulating
drug response and toxicity. Another significant discovery is the potential of anaplastic
lymphoma kinase (Ki — 1) as a therapeutic target in cancer treatment. In cancers where
Ki — 1 is aberrantly activated or overexpressed, targeted therapies such as Ki — 1 inhibitors
have demonstrated efficacy in preventing tumour growth and enhancing patient outcomes.
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Table 6 The accuracy results of different gene selection methods using ELM classifier.

MaPSOGS

TLBOGSA

CCMGPSO

MPSONC

ANPMOPSO

Leukemia
Brain cancer
Colon
SRBCT
Lung
Lymphoma

99.99 + 0.0014 (10)
82.70 + 0.0319 (11)
92.02 + 0.0275 (12)
99.34 + 0.0100 (6)
96.65 + 0.058 (15)
82.41 + 0.034 (8)

100.00 + 0.00 (8)
88.63 + 0.0216 (8)

97.61 + 0.0137 (11)

100.00 + 0.00 (7)
97.10 + 0.063 (13)
86.97 + 0.024 (9)

99.99 + 0.0014 (6)
84.05 + 0.0301 (9)
90.69 + 0.0226 (11)
99.24 + 0.0119 (5)
98.63 + 0.054 (13)
91.54 + 0.032 (7)

100.00 + 0.00 (5)
89.88 + 0.0223 (5)

97.82 + 0.0132 (13)

100.00 + 0.00 (6)
96.28 + 0.072 (13)
84.50 + 0.023 (6)

100.00 + 0.00 (3)
92.17 + 1.44 (6)
97.23 + 1.37 (11)
100.00 + 0.00 (5)
99.25 + 0.50 (12)
90.29 + 2.03 (7)

Note:

The bold entries highlight the highest accuracy achieved by gene selection methods for each respective dataset.

These findings highlight the potential of ANPMOPSO in identifying novel genes that can
be valuable for prospective investigations in these microarray datasets.

Further, to assess the efficacy of our proposed method in gene selection, we showcase
heat-maps illustrating the top ten frequently chosen genes across six datasets, as depicted
in Fig. 4. The color intensity represents gene expression levels, where darker shades
indicate lower expression, and lighter shades signify higher expression. Clear differences
are observed between NORMAL vs. TUMOR (Colon), CURED vs. FATAL (Lymphoma),
and AML vs. ALL (Leukemia), demonstrating the biological relevance of the selected genes.
Distinct expression patterns across subtypes, such as EWS, BL, NB, and RMS in Brain
Cancer and ADE, NOR, SQ, and PC in Lung Cancer, confirm that ANPMOPSO effectively
identifies genes capable of distinguishing cancer subtypes. These findings highlight the
robustness of the proposed method in selecting informative biomarkers for classification
and potential therapeutic targets.

Gene selection results analysis

To assess the effectiveness of ANPMOPSO, we compared it with existing state-of-the-art
gene selection techniques, including MaPSOGS (Azadifar & Ahmadi, 2021), TLBOGSA
(Shukla, Singh & Vardhan, 2020), CCMGPSO (Madani, Engelbrecht ¢ Ombuki-Berman,
2023), and MPSONC (Rostami et al., 2020), using the ELM classifier on six microarray
datasets. As shown in Table 6, the evaluation was based on average testing accuracy,
standard deviation, and the number of selected genes over 20 runs. ANPMOPSO
consistently outperformed competing methods in five out of six datasets, achieving 100%
accuracy on Leukemia and SRBCT with only three and five genes selected, respectively.
This highlights ANPMOPSQO’s efficiency in selecting minimal yet highly discriminative
gene subsets for classification. While MPSONC achieved slightly higher accuracy (97.82%)
on the Colon dataset, it required a larger gene subset, demonstrating a trade-off between
accuracy and feature selection efficiency.

The results validate ANPMOPSO’s superior performance in gene selection, effectively
balancing high classification accuracy with minimal gene usage. The ability to maintain
competitive accuracy across diverse datasets while reducing dimensionality enhances its
utility for biomedical applications, biomarker discovery, and precision medicine. By
consistently identifying the most relevant genes, ANPMOPSO offers a computationally
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Figure 5 The error rates of each method on six microarray data.

Full-size Kal DOL: 10.7717/peerj-cs.2872/fig-5

efficient and interpretable approach for high-dimensional cancer classification, further
reinforcing its potential in personalized healthcare and clinical decision-making.

To further assess the effectiveness of ANPMOPSO, we analyzed the error rates of
different gene selection methods over multiple iterations on six microarray datasets, as
shown in Fig. 5. The results indicate that ANPMOPSO consistently achieves the lowest
error rates for Leukemia, SRBCT, Lung, Lymphoma, and Brain Cancer datasets,
demonstrating its ability to efficiently identify optimal gene subsets with minimal
classification errors. Its fast convergence in early iterations highlights its capability to
quickly select highly informative genes while avoiding redundancy. Although MPSONC
performed best on the Colon dataset, ANPMOPSO exhibited superior performance in
most cases, reinforcing its robust generalization capability across different datasets. The
lower error rates and stable convergence suggest that ANPMOPSO effectively balances
exploration and exploitation, ensuring compact yet highly discriminative gene selection.
These findings validate its effectiveness in high-dimensional gene expression analysis,
positioning it as a promising tool for cancer classification and biomarker discovery.

Local structure preservation analysis

To assess the effectiveness of WNPEE in ANPMOPSO for preserving local structures
during dimensionality reduction (DR), we compared its performance with three
commonly used DR techniques: neighborhood preserving embedding (NPE), principal
component analysis (PCA), and locally linear embedding (LLE). The evaluation was
conducted using the six microarray datasets previously used for gene selection and results
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Table 7 Comparison of local structure preservation metrics for different DR methods in ANPMOPSO.

ANO NP SRC

WNPEE NPE PCA LLE WNPEE NPE PCA LLE WNPEE NPE PCA LLE
Leukemia 0.887 0.756 0.775 0.665 0.855 0.791 0.661 0.557 0.925 0.84 0.758 0.671
SRBCT 0.945 0.837 0.682 0.644 0.894 0.726 0.62 0.732 0.888 0.872 0.741 0.77
Brain Cancer 0.923 0.81 0.677 0.692 0.824 0.71 0.737 0.602 0.967 0.789 0.824 0.661
Colon 0.91 0.821 0.678 0.621 0.862 0.842 0.688 0.683 0.948 0.8 0.754 0.798
Lung 0.866 0.752 0.696 0.644 0.871 0.845 0.624 0.612 0.964 0.785 0.742 0.766
Lymphoma 0.866 0.847 0.729 0.655 0.806 0.821 0.699 0.654 0.959 0.813 0.781 0.68

are recorded in Table 7. We employed three key metrics: ANO (Eq. (23)), NP (Eq. (22))
and SRC (Eq. (24)) to quantify local structure preservation.

The results in Table 7 demonstrate that WNPEE consistently outperforms NPE, PCA,
and LLE across all three-evaluation metrics ANO, NP Score, and SRC for all six microarray
datasets. The higher ANO values obtained by WNPEE, such as 0.945 for SRBCT, 0.923 for
Brain Cancer, and 0.91 for Colon, indicate that WNPEE retains local neighborhood
structures more effectively than the competing methods. Similarly, higher NP values, such
as 0.894 for SRBCT and 0.862 for Colon, further confirm its ability to minimize structural
distortion during dimensionality reduction. Additionally, the higher SRC values, including
0.959 for Lymphoma and 0.948 for Colon, verify that WNPEE preserves pairwise distance
rankings, maintaining meaningful biological relationships in the reduced feature space.

Among the competing methods, NPE performs relatively well but consistently lags
behind WNPEE, with slightly lower scores across all metrics. For example, in Leukemia,
NPE achieves 0.756 (ANO), 0.791 (NP), and 0.84 (SRC), while WNPEE achieves 0.887,
0.855, and 0.925, respectively, demonstrating WNPEE’s superior local structure retention.
In contrast, PCA and LLE exhibit the lowest scores, which aligns with their known
limitations; PCA focuses on global variance rather than local structure, while LLE struggles
with high-dimensional data, leading to inconsistent neighborhood preservation. The most
significant improvements with WNPEE are observed in Leukemia, SRBCT, and Brain
Cancer datasets, where local structures are well-defined and effectively preserved. These
findings establish WNPEE as the most effective dimensionality reduction technique,
ensuring that key biological structures are maintained while significantly reducing
computational complexity and enhancing classification performance.

Neighborhood size analysis

The ANPMOPSO algorithm employs the DE/rand/1 strategy, which relies on three key
individuals for the velocity update. Unlike traditional methods that select these individuals
from the entire population, ANPMOPSO selects them from a subset of the neighborhood,
providing a more localized search mechanism. To determine the optimal neighborhood
size, we evaluate neighborhood sizes ranging from eight to 18 in increments of two,
ensuring a sufficiently diverse pool of neighbors for selecting the three individuals as
shown in Fig. 6.
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Two test functions: SYM-PART-rotated and MMF5 (Yue, Qu ¢ Liang, 2017), which are
known to be sensitive to neighborhood size, are used for the analysis. The performance
metric Pareto sets proximity (PSP) is employed to evaluate the overlap ratio and distance
between the true and obtained Pareto sets. The metric 1/PSP is utilized, where smaller
values indicate better performance in the solution space. Figure 6 depicts the relationship
between 1/PSP and neighborhood size for both test functions. Based on the results, the
recommended neighborhood size is determined to be 10, which balances performance and
neighborhood diversity effectively. This value is consistent with the settings used in the
proposed study.

Analysis of the influence of parameter §

The parameter f3 plays a crucial role in balancing the relative importance of HMD(X;) and
NP(X;) in the optimization process of ANPMOPSO. A higher f§ value places greater
emphasis on HMD(X;), while a lower value prioritizes NP(X;). To evaluate its effect on
performance, we tested f§ values ranging from 0.1 to 1.0 in increments of 0.1, using the
MMFS5 test function.

The results, presented in Fig. 7, demonstrate that ANPMOPSO achieves optimal
performance at f = 0.5 and f§ = 0.7, with the lowest 1/PSP values observed at 5 = 0.5.
This indicates that f = 0.5 provides the best trade-off between HMD and NP, ensuring
superior performance and stability. Based on these findings, we recommend setting
p = 0.5 in our study to achieve optimal 1/PSP values with high consistency.

Ablation study: analysis of the effectiveness of key operations in
ANPMOPSO

To evaluate the impact of three key operations in the proposed ANPMOPSO algorithm,
comparative experiments were conducted using different algorithm variants, each omitting
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one of these operations. The operations assessed include (1) WNPEE pre-processing with
initial population generation using SS, (2) adaptive DE-based velocity update, and (3) a
novel selection strategy. The experiment was performed using the MMF3 test function
(Yue, Qu & Liang, 2017), and the results from 15 independent runs were analyzed. The
obtained POSs were evaluated using the median 1/PSP metric, visualized in Fig. 8, while
the mean 1/PSP values over 50 generations for each algorithm variant are presented in
Fig. 9. Specifically, the original ANPMOPSO integrates all three operations, whereas the
modified versions were tested as follows: ANPMOPSO1 excludes WNPEE and SS-based
population initialization, ANPMOPSO2 omits the adaptive DE-based velocity update, and
ANPMOPSO3 lacks the novel selection strategy.

The analysis of Figs. 8 and 9 reveals that ANPMOPSO exhibits degraded performance
when any of these key operations are omitted. ANPMOPSO1 shows convergence but
underperforms compared to ANPMOPSO, indicating that WNPEE and SS contribute to
improved search space exploration. ANPMOPSO2 demonstrates divergence, as it neglects
NP(X;), preventing individuals from dynamically adjusting their positions, resulting in
incomplete Pareto sets, as observed in Fig. 8B. ANPMOPSO3 struggles to identify the
optimal solutions for gene selection, causing deviations from the true POSs, as shown in
Fig. 8C. Overall, ANPMOPSO consistently outperforms all three variants, confirming that
the inclusion of all three key operations is essential for achieving optimal Pareto solutions
and maintaining high classification performance.
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Table 8 p-value obtained using statistical testing (one-tailed t-test) for each algorithm.

Dataset MaPSOGS TLBOGSA CCMGPSO MPSONC ANPMOPSO
Leukemia 2.45E-08 1.76E-02 3.13E-04 2.45E-09 3.08E-11
Brain cancer 2.12E-05 2.09E-02 3.09E-06 3.22E-10 3.99E-12
Colon 2.45E-03 2.08E-05 2.54E-07 3.98E-10 4.91E-09
SRBCT 3.21E-07 3.76E-06 3.88E-10 2.76E-09 3.69E-08
Lung 2.35E-04 3.78E-04 2.98E-06 2.87E-09 3.81E-12
Lymphoma 3.35E-04 3.78E-04 2.98E-06 3.87E-09 4.81E-12
Note:

The bold entries denote the smallest p-value for each dataset, indicating the algorithm with the strongest statistical
significance in outperforming the baseline.

Table 9 95% confidence interval analysis for classification accuracy.

Dataset ANPMOPSO mean accuracy (%) 95% Confidence interval (%)
SRBCT 99.8 [99.5-100]

Leukemia 100 [100-100]

Colon 96.5 [95.9-97.1]

Lung 94.7 [93.9-95.5]

Lymphoma 90.8 [90.1-91.5]

Brain cancer 94.2 [93.3-95.1]

Statistical analysis

Table 8 presents the p-values obtained from a one-tailed t-test, assessing the statistical
significance of performance differences among the five comparative algorithms across six
microarray datasets. A lower p-value indicates a more significant performance difference,
suggesting that the corresponding algorithm demonstrates a distinct advantage over
others. The results reveal that ANPMOPSO consistently achieves the lowest p-values
across all datasets, with values as low as 3.08E—11 in Leukemia, 3.99E—12 in Brain Cancer,
and 4.81E-12 in Lymphoma, confirming its statistical superiority in gene selection
effectiveness.

Among the competing methods, MPSONC also exhibits strong performance,
particularly in Brain Cancer (3.99E-10) and Colon (3.98E-10), where it achieves relatively
low p-values, indicating a significant performance advantage over the other three
algorithms. However, TLBOGSA presents the highest p-values, particularly in Leukemia
(1.76E-02) and Brain Cancer (2.09E-02), suggesting that its performance is less
statistically significant compared to other methods.

To further validate the robustness and reliability of ANPMOPSO’s classification
performance, we computed the 95% confidence intervals (CI) for classification accuracy
across all datasets, recorded in Table 9. The narrow confidence intervals, such as [99.5-
100%] for SRBCT and [95.9-97.1%] for Colon, confirm the precision and stability of
ANPMOPSO’s results. These intervals indicate a minimal variance in the accuracy, further
highlighting the consistent effectiveness of ANPMOPSO compared to benchmark
algorithms.
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Table 10 Average training time (in minutes) per run for all comparative methods across six
microarray datasets.

Dataset MaPSOGS TLBOGSA CCMGPSO MPSONC ANPMOPSO
Brain cancer 4.8 3.9 44 5 6.2
Colon 2.7 2.1 2.5 2.9 35
Leukemia 52 43 49 54 6.5
Lung 59 4.8 5.4 6.2 7.4
Lymphoma 5.4 45 5.1 5.7 6.9
SRBCT 2.9 2.3 2.7 32 3.8

The integration of confidence intervals as well as p-values reinforces ANPMOPSO as
the most statistically robust algorithm, demonstrating a clear and consistent advantage
across all datasets, while MPSONC remains competitive in certain cases, and TLBOGSA
emerges as the least effective method based on statistical significance.

Computational complexity analysis

The computational complexity of ANPMOPSO arises from four main components:
initialization, fitness evaluation, velocity and position updates, and the selection strategy.
During initialization, WNPEE reduces data dimensionality with a complexity of

O(N? + L?), and Sobol Sequence-based population initialization adds O(P - L), where N is
the number of genes, L is the reduced dimension, and P is the swarm size. The fitness
evaluation, which includes classification accuracy, gene subset size, and neighborhood
preservation quality, is the most computationally intensive component, with a complexity
of O(P.(N?.L + k.L?), mainly due to distance computations. Velocity and position updates
add O(P - L), while the selection strategy, incorporating HMD calculations, contributes
O(P?.n), where n is the number of Pareto front solutions. Thus, the total complexity is
approximately O(P.N2.L) + O(P2.n). Regarding inference time, ANPMOPSO functions
as an offline gene selection algorithm. Once the optimal gene subset is selected,
downstream classification tasks operate on a substantially reduced feature space, enabling
fast and efficient inference.

Furthermore, we performed a runtime experiment to record the average training time
over 20 runs for ANPMOPSO and four comparative algorithms across six benchmark
microarray datasets. The results, summarized in Table 10, reveal that ANPMOPSO
consistently requires the highest training time among all methods, ranging from 3.5 min
on the Colon dataset to 7.4 min on the Lung dataset. This increase is expected due to the
integration of WNPEE, Sobol initialization, and DE-mutation-driven velocity updates,
which collectively enhance search efficiency and accuracy but introduce additional
computational overhead. In contrast, TLBOGSA demonstrates the lowest runtime across
all datasets, reflecting its simpler structure and lack of neighborhood-aware components.
Although MPSONC achieves lower execution times than ANPMOPSO, it falls short in
classification performance and gene subset compactness. These results confirm that
ANPMOPSO’s higher computational cost is a worthwhile trade-off for improved
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classification accuracy and biological relevance, making it suitable for large-scale gene
selection despite limitations in time-sensitive or ultra-high-dimensional settings.

Discussions and limitations

The ANPMOPSO framework demonstrates significant advancements in gene selection by
harmonizing multi-objective optimization with local structural preservation. Experimental
results validate its superiority, achieving 100% classification accuracy on Leukemia and
SRBCT datasets using only 3-5 genes (Table 6), outperforming state-of-the-art methods by
5-15%. This success stems from its novel components: WNPEE preserved neighborhood
structures with 94.5% ANO on SRBCT (Table 7), ensuring biologically interpretable
dimensionality reduction; Sobol initialization enhanced population diversity, accelerating
convergence; and the DE-based adaptive velocity update balanced exploration-exploitation
dynamics, yielding superior hypervolume values (e.g., 1.0617 + 0.2225 on MMF1, Table 3).
The Pareto-neighborhood ranking strategy further prioritized solutions with clinical
relevance, identifying biomarkers like D16471 and 37899 _at (Fig. 4), which align with
known disease pathways. These innovations address longstanding gaps in MOPSO
methods, such as neglect of local structures and reliance on random initialization,
positioning ANPMOPSO as a robust tool for high-dimensional biomedical data.

Despite its strengths, ANPMOPSQO’s computational complexity driven by WNPEE’s
O(N?) cost and fitness evaluations results in 1.5-2-time longer runtimes than simpler
methods (e.g., 7.4 min for Lung data vs. 4.8 min for TLBOGSA, Table 10). This limits
real-time applicability in ultra-high-dimensional contexts (e.g., single-cell RNA-seq).
Additionally, fixed hyperparameters (f = 0.5, F = 0.5, k = 10) may not generalize to
noisy datasets, and Sobol Sequences’ deterministic nature risks suboptimal exploration in
irregular spaces. Future work should integrate GPU acceleration for WNPEE to optimize
inference speed, meta-learning for dynamic parameter tuning, and stochastic
perturbations to enhance robustness. Exploring applications to medical imaging (e.g.,
MRI/CT feature selection) and scaling to multi-omics data, alongside experimental
validation of prioritized genes (e.g., CRISPR assays), will further bridge computational
innovation with clinical utility, solidifying ANPMOPSO’s role in precision oncology.

CONCLUSIONS

In this article, we proposed the ANPMOPSO framework for gene selection in microarray
analysis, integrating WNPEE pre-processing, SS initialization, DE-mutation-based velocity
updates and a novel selection strategy. These components collectively improve
optimization efficiency, convergence stability, and classification performance, while the
novel selection strategy balances Pareto dominance with neighborhood preservation to
ensure biologically relevant gene subset selection. Experimental results on eleven
benchmark test functions and six microarray datasets confirm that ANPMOPSO
significantly outperforms existing MOPSO-based methods in terms of classification
accuracy, subset compactness, and structural preservation, demonstrating its potential for
high-dimensional gene selection tasks.
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However, the added complexity from structure-preserving and adaptive components
leads to higher computational costs, limiting real-time and ultra-high-dimensional
applications. Fixed hyperparameters also require tuning for optimal performance. In
future work, we aim to enhance inference speed via GPU parallelization, incorporate
dynamic parameter adaptation, and explore applications in multi-omics data and medical
imaging domains, broadening the framework’s biomedical utility.
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