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ABSTRACT

The proliferation of Internet of Things (IoT) devices in smart cities has
revolutionized urban infrastructure while escalating the risk of botnet attacks that
threaten essential services and public safety. This research addresses the critical need
for intrusion detection and mitigation systems by introducing a novel hybrid deep
learning model, Stacked Autoencoder-Gated Recurrent Unit (SAE-GRU),
specifically designed for IoT networks in smart cities. The study targets the dual
challenges of processing high-dimensional data and recognizing temporal patterns to
identify and mitigate botnet activities in real time. The methodology integrates
Stacked Autoencoders for reducing dimensionality and gated recurrent units for
analyzing sequential data to ensure both accuracy and efficiency. An emulated smart
city environment with diverse IoT devices and communication protocols provided a
realistic testbed for evaluating the model. Results demonstrate significant
improvements in detection performance with an average accuracy of 98.65 percent
and consistently high precision and recall values. These findings enhance the
understanding of IoT security by offering a scalable and resource-efficient solution
for botnet detection. The functional investigation establishes a foundation for future
research into adaptive security mechanisms that address emerging threats and
highlights the practical potential of advanced deep learning techniques in
safeguarding next-generation smart city ecosystems.

Subjects Artificial Intelligence, Computer Networks and Communications, Data Mining and
Machine Learning, Security and Privacy, Internet of Things

Keywords Botnet detection, IoT security, Smart city networks, Deep learning models, Temporal
pattern recognition

INTRODUCTION

The growth of Internet of Things (IoT) devices in urban environments has significantly
enabled advancements in urban management and an improved quality of life for residents.
Yet, it has also introduced substantial challenges in ensuring security and privacy (Hazman
et al., 2024). As smart cities evolve, the centrality of IoT devices necessitates robust systems
capable of managing and safeguarding interconnected technologies. With IoT applications
extending across traffic control, public safety, and environmental monitoring, the security
of these devices becomes vital for the effective operation of modern urban systems
(Bhardwaj et al., 2024).
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The increasing integration of IoT devices has been accompanied by a parallel rise in
security threats, particularly from IoT botnets that exploit vulnerabilities to carry out
malicious activities (Krishnan ¢ Shrinath, 2024). Recent high-profile incidents highlight
the need for urgent enhancements to security measures. Botnets are capable of taking over
large numbers of IoT devices, turning them into networks of remotely controlled bots that
can initiate large-scale attacks, disrupting city operations and compromising sensitive data.

These escalating threats have made the need for effective intrusion detection systems
(IDS) apparent (Indra et al., 2024). IDS are critical in detecting and neutralizing threats
originating from IoT botnets, thereby preserving the integrity and reliability of smart city
infrastructures. Without such robust IDS, smart city initiatives face potential disruptions
that can undermine public trust and jeopardize essential services.

Traditional IDS, despite their importance, show significant limitations (i.e., includes but
not limited to: high false positive rates; poor scalability; incompatibility; limited real-time
analysis, inflexibility; lack of contextual awareness; protocol incompatibility, reliance on
signature-based detection, efc.,) when used in IoT environments. The heterogeneous and
dynamic nature of interconnected sensing devices, coupled with scalability and resource
limitations, presents challenges that conventional IDS solutions cannot adequately address
(Li et al., 2023). Thus, techniques that once sufficed for simpler networks are no longer
effective in tackling the diverse security requirements (such as: Real-time threat detection;
Scalability for large-scale networks; low latency response; adaptability to diverse protocols;
data integrity assurance; efc.,) presented by complex networks.

To address these limitations, deep learning (DL) technologies offer a promising solution
to the challenges present in IoT security (Zakariyya, Kalutarage ¢ Al-Kadri, 2023). These
advanced methods can detect complex, subtle patterns that traditional approaches often
miss which makes them well-suited for the intricacies of smart city networks. Deep
learning models have demonstrated their capacity to enhance detection capabilities and
adapt more effectively to evolving threats. Nonetheless, integrating these models into IoT
intrusion detection poses its own challenges. The need for real-time processing and the
diverse data types found in networks demand highly efficient and flexible models that
operate effectively even with the typical limitations of devices, such as restricted processing
power and limited energy resources.

Even with the progress made with DL-based IDS, significant gaps remain (Shahin et al.,
2024). Many current systems fail to meet real-time processing needs or adequately manage
the range of node-specific threats. These deficiencies underscore the necessity for more
advanced models capable of addressing the unique challenges of IoT security. Motivated by
these limitations, this research aims to develop and assess a novel deep learning-powered
IDS specifically designed for IoT environments in smart cities. This study advances beyond
the existing state of the art by addressing these nuanced needs through a new architectural
approach.

Significant contributions
The primary objective of this research is to push the boundaries of IoT security through the
introduction of a novel deep learning architecture. The proposed Stacked Autoencoder-
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This (SAE-GRU) hybrid model employs
stacked autoencoders to extract mean-
ingful features by reducing redundant
information before passing the refined
data to gated recurrent units that capture
sequential dependencies essential for
intrusion detection in IoT networks.

Stacked autoencoders performed
dimensionality reduction by learning
compressed representations of input data
through an unsupervised learning pro-
cess. This approach retained significant
features while eliminating irrelevant
variations which enhances the efficiency
of subsequent classification tasks.

Gated Recurrent Unit (SAE-GRU') model aims to enhance both the accuracy and
efficiency of intrusion detection within networks. This article details the design,
implementation, and deployment of the proposed model in a smart city context to furnish
a comprehensive evaluation of its performance across several metrics to validate its
effectiveness. Hereby, the main contributions of proposed research are listed below:

a. Introduced a hybrid deep learning model, SAE-GRU, that combines Stacked
Autoencoders for dimensionality reduction” and gated recurrent units for temporal
pattern recognition to detect botnet activities in smart city IoT networks.

b. Implemented model pruning and weight quantization techniques to reduce
computational complexity and improve the efficiency of the intrusion detection system
without compromising accuracy.

c. Developed an emulation environment replicating a smart city network using diverse IoT
devices and communication protocols, which enabled comprehensive testing of the
proposed system.

d. Integrated sparse matrix multiplication and batch processing to optimize the inference
process to minimize computational overhead and guarantee real-time detection
capabilities.

e. Applied truncated backpropagation through time in the GRU to manage sequential data
processing effectively to effectively reduce latency in real-time applications.

t. Conducted rigorous performance evaluations using k-fold cross-validation and various
datasets to demonstrate superior accuracy, precision, recall, and AUC values compared
to traditional models.

g. Employed feature importance analysis techniques, including SHAP values to identify
key features like packet size and traffic volume to contribute significantly to detection
accuracy.

h. Demonstrated the model’s scalability and robustness in handling high data volumes and
diverse network conditions to make it suitable for large-scale smart city
implementations.

i. Highlighted the model’s resilience against zero-day attacks and its ability to adapt to
evolving botnet strategies through advanced deep learning techniques.

j. Provided practical insights for future research by suggesting methods to enhance
computational efficiency and extend the system’s capability to handle more complex IoT
network environments.

The remainder of this article is organized to provide a detailed exploration of each
component of the proposed IDS. Following this introduction, the article presents a review
of related works to set the context for this study, followed by an explanation of
fundamental concepts essential for understanding IoT botnet detection. The subsequent
sections describe the proposed methodology, emulation setup, results, and an in-depth
analysis of the key features identified during the study. The article concludes with a
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summary of findings and discusses their implications for future research and practical
applications.

RELATED WORKS

An IoT botnet within smart city network represents a conglomeration of compromised
IoT devices integrated into urban infrastructures, orchestrated by malicious actors to
conduct synchronized cyber-attacks that jeopardize the confidentiality, integrity, and
availability of critical municipal services (Alshahrani, 2023). These botnets capitalize on
intrinsic vulnerabilities such as insecure firmware, inadequate authentication protocols,
and unencrypted communication channels like Message Queuing Telemetry Transport
(MQTT) & Constrained Application Protocol (CoAP) which infiltrates in devices from
environmental sensors to satellite communication modules. Novel and ultra-advanced
botnet attacks employ sophisticated methodologies, including decentralized peer-to-peer
command and control architectures, polymorphic malware that adapts its code to evade
detection, and the use of machine learning algorithms to tailor attack vectors dynamically
(Kornyo et al., 2023). Attack strategies may encompass cross-layer exploits targeting
physical, network, and application layers simultaneously or manipulate satellite
communication pathways to disseminate malicious payloads across a vast array of IoT
devices, thereby amplifying the attack’s scale and complexity. The availability of extensive
botnet datasets (Kalakoti, Bahsi ¢» Nomm, 2024), such as MedBloT and IoT-23, delivers
researchers with critical empirical data to analyze network traffic anomalies, model
malware behavior, and develop advanced intrusion detection systems using machine
learning techniques, ultimately enhancing the defensive posture against evolving botnet
threats.

Hazman et al. (2024) proposed an IDS that combines deep learning with feature
engineering to improve threat detection in IoT-based smart cities. The core of the
framework is a long short-term memory (LSTM) model enhanced by autoencoders (AEs),
genetic algorithms (GAs), and information gain (IG) for dimensionality reduction and
input optimization. This integration improved classification efficiency in handling high-
dimensional, imbalanced IoT data. The IDS was validated on datasets such as BoT-IoT,
Edge-IIoT, and NSL-KDD, which demonstrated high accuracy, precision, and recall with
notably low false positive and false negative rates. A key strength of this research was the
use of Tensor Processing Units (TPUs), which significantly reduced training and
classification time in real-time deployment. Furthermore, the feature engineering pipeline
enhanced data quality and detection performance, especially against complex threats like
Distributed Denial of Service (DDoS) and reconnaissance attacks. The limitations of model
included potential overfitting due to reliance on labeled data and reduced generalizability
across varied IoT infrastructures. Despite these, the study marked a meaningful step
toward improving IDS performance in smart city environments.

Almasri & Alajlan (2023) introduced a two-phase deep learning model for detecting and
isolating cyber-attacks in IoT-based smart city systems. The first phase utilized a cascaded
adaptive neuro-fuzzy inference system (CANFIS) to identify malicious traffic, detect
compromised devices, and isolate them. In the second phase, modified deep reinforcement
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learning (MDRL) blocked communication channels of the infected devices to prevent
further threats. The model achieved 98.7% detection accuracy by outperforming LSTM,
support vector machines (SVM), and standard deep reinforcement learning (DRL) models
across precision, recall, and F1-score. Its ability to significantly reduce detection time
supported real-time threat mitigation. Validation on IoT network intrusion and ISCX 2012
datasets confirmed its generalizability. CANFIS’s sequential feature selection improved
precision detection, while MDRL contributed to adaptive response strategies. A key
limitation was computational demand which made its deployment on resource-
constrained edge devices challenging. Despite this, the model’s high accuracy and low false
positive rate make it a strong candidate for smart city security, with further potential in
industrial and healthcare IoT through efficiency optimization.

Taher et al. (2023) proposed a machine learning framework to improve botnet detection
in Industrial IoT systems. The approach integrates a hybrid feature selection method,
FGOA-kNN, which combines Fisher-score, Grasshopper Optimization algorithm, and
k-nearest neighbor to identify relevant features and eliminate redundancy with a focus to
improve accuracy and computational efficiency. The model also incorporated an
optimized neural network, IHHO-NN that was fine-tuned using an enhanced Harris
Hawks Optimization algorithm to classify multiclass botnet attacks with high precision.
Validated on the N-BaloT dataset, the model outperformed traditional classifiers in
accuracy, recall, and precision for both known and novel attacks. Its combination of
unsupervised clustering with supervised learning strengthened robustness in handling
high-dimensional, complex IIoT data. Improvements in convergence via chaotic maps and
Random Opposition-Based Learning allowed real-time use in constrained settings. During
our investigation, we experienced a few limitations, such as dependence on the N-BaloT
dataset, which raised concerns about generalizability across varied IoT systems and
evolving threats.

Manickam et al. (2023) presented a novel integration of Billiard Based Optimization
(BBO) and deep learning for anomaly detection in IoT-enabled smart cities while focusing/
emphasizing on sustainable applications. The model employed Binary Pigeon
Optimization (BPEO) for feature selection, Elman recurrent neural network (ERNN) for
anomaly detection, and BBO for hyperparameter tuning to achieve high accuracy in
anomaly classification. The main contribution lies in its ability to handle IoT data’s
complexity and identify patterns in resource-constrained environments with an aim to
enhance both detection accuracy and computational efficiency. The model achieved
outstanding performance with an accuracy rate exceeding 99% on benchmark datasets.
This result highlights its ability to capture temporal and spatial patterns while reducing
false positives. Nonetheless, the reliance on centralized data processing presented a
limitation, as it may lead to latency and increased vulnerability to network congestion in
large-scale IoT systems. Furthermore, the model’s dependence on specific datasets raised
concerns about its capacity to generalize effectively across diverse and evolving IoT
environments.

Hazman et al. (2023) demonstrated significant advancements in IDS by adopting an
ensemble learning approach that combined AdaBoost with Boruta feature selection. They
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implemented dimensionality reduction techniques such as PCA to address the challenges
of IoT-based smart environments. This approach aimed to improve detection performance
through optimized feature selection and reduced data redundancy. The model achieved
high accuracy and low false alarm rates on benchmark datasets like NSL-KDD and BoT-
IoT. By removing outliers and identifying the most relevant features, the model enhanced
computational efficiency and reduced both training and prediction durations. The
integration of CatBoost improved the model’s ability to detect anomalies in highly
imbalanced datasets which made it suitable for real-time applications in IoT networks.
Despite its strengths, the research faced challenges in generalizing results across diverse
IoT environments due to the limited representation of threats in the datasets used.

The research by Ahmed, Beyioku & Yousefi (2024) has examined the integration of
honeypot data with machine learning to enhance cyber-attack detection in smart city IoT
environments. Using high-interaction honeypots deployed over extended periods, the
study captured authentic real-world attack data with an ambition to improve relevance and
reliability. Several algorithms—naive Bayes, decision tree, K-nearest neighbor (KNN),
sequential neural network (SNN), and LSTM—were evaluated against IoT-specific attacks.
The key contributions of this framework included a comprehensive assessment of feature
selection techniques, particularly Information Gain and One Rule (OneR), which
improved model efficiency. Decision tree and LSTM models achieved high accuracy, with
LSTM excelling in identifying temporal patterns critical for intrusion detection. In context
of limitations of this research, the challenges included inconsistent performance from
naive Bayes and missing data requiring preprocessing. Although feature selection
enhanced performance, our assessment revealed that maintaining efficiency with larger
datasets remained difficult. Moreover, the study emphasized thoroughly the limited
availability of diverse public datasets and the complexity of scaling detection systems
across heterogeneous IoT architectures. This phenomenon has highlighted the intense
need for future work in honeypot-driven machine learning approaches for IoT security.

Shareef et al. (2024) introduced an IDS that combined the Zebra Optimization
algorithm (ZOA) for feature selection with a dual-channel graph attention network
(DGAN) for classification. This system addressed the structural and semantic challenges of
IoT communications by incorporating node and semantic attention networks to identify
intricate patterns in device interactions. Hyperparameter optimization using the Sooty
Tern Optimization algorithm (STOA) further enhanced detection accuracy, achieving
99.87 percent and surpassing traditional models. The research demonstrated the ability to
process large and noisy datasets while improving feature extraction efficiency. Temporal
and relational patterns in real-time traffic were also effectively captured by this system. The
author emphasized high classification precision and adaptability to evolving botnet
behaviors that was achieved through the tailored use of deep learning architectures for IoT
traffic. Nonetheless, the reliance on computationally intensive architecture posed
scalability issues in resource-constrained IoT environments. Therefore, this study stressed
the need for future research to optimize the balance between detection accuracy and
system efficiency. Hereby, the “Table 1” presents a comparative analysis of recent intrusion
detection models designed for smart city infrastructure, focusing on scalability, real-time
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Table 2 Feature comparison of IoT datasets.

Dataset Year Attack types Features Devices Real/ Labelled Related
Sim works
reference
MedBIoT (Hao et al., 2020 IoT botnets (Mirai, Bashlite, Torii-causing 115 (Network Mixed IoT (83 Real Yes Ahmed,
2024) DDoS, C&C traffic) flow stats) devices) Beyioku &
Yousefi
(2024)
10T-23 (Sharma & 2020 Various IoT malware (20 captures incl. 20+ (Zeek flow Various IoT Real Yes Ahmed,
Babbar, 2024) Mirai variants, C&C traffic, DDoS) fields) (Raspberry Pi + Beyioku &
real IoT devices) Yousefi
(2024)
BoT-IoT (Alosaimi ¢ 2018 DDoS, DoS, scanning (Reconnaissance), 47 (Extracted Smart home Sim  Yes Hazman et al.
Almutairi, 2023) keylogging & data exfiltration (Theft) flow (2024, 2023)
features)
Edge-II0T (Nuaimi et al, 2022 14 IoT/IIoT attacks in five categories (DoS/ 84 (Selected Industrial Sim  Yes Hazman et al.
2023) DDoS, information gathering, injection, features from (2024)
MITM, malware) 1,176)
NSL-KDD (Zakariah 2009 Classic attacks (DoS, R2L, U2R, Probe) 41 General network  Sim  Yes Hazman et al.
et al., 2023) (Connection (2024, 2023)
features)
10T network intrusion 2019 Various (e.g., host scan, botnet malware, 115 (46 Smart home Real Yes Almasri e
(Smart Home) (Kaur MITM, DDoS) (Traffic Alajlan
et al., 2023) features)) (2023)
ISCX 2012 (Shiravi et al, 2012 Multi-stage attacks (SSH brute force, HTTP 20 (flow General network  Real Yes Almasri e
2012) DoS/DDoS, infiltration) metrics) Alajlan
(2023)
N-BaloT (Naveed, 2020) 2018 IoT botnet malware (Mirai, BASHLITE- 115 Smart home Real Yes Taher et al.
multiple attack vectors) (2023)
CIC-I0oT 2023 (Canadian 2023 33 large-scale IoT attacks in seven classes ~ ~80 (Network- Diverse IoT (105 Real Yes -
Institute for (DDoS, DoS, Recon, Web, Brute Force, flow features, devices)
Cybersecurity, 2023) Spoofing, Mirai) CSV)
ACI-IoT 2023 (Army 2023 Scanning (Reconnaissance), flooding (DoS), NetFlow Smart home IoT  Real Yes -
Cyber Institute, 2023) password cracking (Brute Force), ARP records (e.g.,  (lab setup)
spoofing 15 fields)

processing, and efficiency in handling IoT threats. Each model is evaluated based on its

core techniques, optimization strategies, dataset sources, and performance metrics to

highlight advancements and practical applicability in securing IoT-based environments.

To further strength the argument, we have also compiled Table 2, which provides a

detailed comparison of key IoT datasets, outlining their characteristics and differences to

aid in identifying features suited to the proposed methodology.

PRELIMINARIES
Vulnerability context for smart city networks

Smart city infrastructures are attractive targets for cyberattacks due to the convergence of

critical services and interconnected devices that make it crucial to understand the potential

attack vectors, targets, and impacts. Prominent attack vectors include DDoS which
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overwhelms systems with excessive traffic, Command and Control (C&C) exploits that
manipulate devices for malicious activities, and Advanced Persistent Threats (APTs)
which involve prolonged infiltration to compromise network security and disrupt essential
services. These attacks often target critical infrastructure such as power grids and
emergency services, aiming to cause significant disruptions and compromise public safety.
Botnets, a key component in many attacks, are networks of compromised devices
controlled by attackers. They can be structured in centralized, decentralized, or hybrid
architectures, each influencing their resilience and control mechanisms. Malware
employed in these attacks includes polymorphic malware that changes its code to evade
detection, and techniques like cross-layer exploits that target multiple layers of a system.
Infection vectors, such as vulnerability exploitation, supply chain compromise, and social
engineering, are used to infiltrate devices. Attackers also utilize defense evasion techniques
to conceal their malicious activities.

Challenges in loT botnet detection

Our investigation revealed several limitations and challenges, one of the major challenges
in IoT botnet detection is the extreme heterogeneity of IoT devices, which introduces a
wide variety of communication protocols, processing capabilities, and security
vulnerabilities across networks. Each IoT device can behave differently depending on its
configuration which proves its’ eligibility in creating a highly diverse attack surface that
complicates the modeling of normal and malicious behavior. Another significant challenge
arises from the resource constraints inherent in IoT devices, such as limited computational
power, memory, and energy. These limitations obstruct the deployment of advanced
security measures such as encryption and real-time anomaly detection. As a result, IDS
must depend on lightweight solutions that maintain a balance between detection accuracy
and computational efficiency. IoT devices generate a substantial volume of network traffic
due to their continuous operation. This results in massive data streams that must be
processed and analyzed in real time. It was evident that high data throughput demands
real-time detection capabilities, which places a significant computational load on detection
systems. These systems must operate efficiently to handle the traffic without causing
latency. A further challenge lies in obtaining labeled datasets necessary for training
machine learning models. IoT botnets often exhibit subtle behavioral changes that are
difficult to distinguish from legitimate traffic. Herewith, the absence of comprehensive
labeled datasets limits the effectiveness of supervised learning methods in detecting
emerging threats. Likewise, modern IoT botnets add to this complexity by frequently
adapting their attack strategies to evade detection mechanisms. Techniques such as
encryption, polymorphism, and traffic obfuscation make IDS ineffective when relying
solely on signature-based or traditional anomaly detection methods.

Traditional IDS limitations

Traditional IDS face several limitations (Hajiheidari et al., 2019; Khraisat ¢» Alazab, 2021,
Najafli, Haghighat ¢ Karasfi, 2024) when applied to modern IoT environments. For
instance:
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a. It lacks the capability to manage the evolving and diverse nature of IoT devices and
protocols. This results in significant gaps in detecting targeted and complex attacks.

b. High false positive rates are a common issue due to rigid rule-based detection methods
that fail to adapt to varying traffic patterns.

c. These systems often exhibit poor scalability in large-scale IoT environments. This leads
to performance degradation and delays in threat detection.

d. Limited real-time analysis capabilities arise because majority of traditional IDS rely on
batch processing methods, which are unsuited for the continuous flow of IoT data.

e. Resource-constrained IoT devices are incompatible with traditional IDS due to the high
computational demands of these systems.

f. Signature-based detection methods in traditional IDS cannot identify novel or previously
unknown threats effectively.

g. Contextual awareness is insufficient in traditional IDS. They fail to recognize the holistic
behavior of IoT devices within their operational settings, resulting in incomplete
assessments of threats.

h. Integration challenges occur with IoT-specific communication protocols and
encryption mechanisms, leading to undetected vulnerabilities in traffic analysis.

Features of ideal DL architectures for intrusion detection

Our investigation revealed the following advantages of optimum DL for intrusion
detection (Najafli, Haghighat ¢» Karasfi, 2024; Muneer et al., 2024), which includes, but not
limited to:

a. Ability to extract features from raw network traffic directly from data without requiring
manual feature engineering. This ensures suitability for high-dimensional IoT datasets.

b. The capability to identify and interpret intricate patterns within data that enable
detection of sophisticated and evolving attack strategies is often undetected by
traditional methods.

c. High adaptability to diverse IoT devices and communication protocols. This ensures
robustness across heterogeneous network environments.

d. Scalability that allows effective handling of large data volumes. This makes these
methods ideal for real-time intrusion detection in smart city networks.

e. Potential to significantly reduce false positives by identifying subtle traffic deviations.
This improves alerting precision and operational effectiveness.

f. Resilience against adversarial tactics through advanced modeling of non-linear
relationships and the integration of diverse data sources.

g. Ability to perform well even with limited labeled data by employing semi-supervised or
unsupervised approaches. This addresses challenges in scenarios where labeled datasets

are scarce.
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Applied preprocessing and optimization techniques

To ensure the integrity, efficiency, and effectiveness of the proposed intrusion detection
framework, a combination of data preprocessing and model optimization techniques was
employed throughout the design and training phases. Each technique was selected to
address specific challenges associated with high-dimensionality, data sparsity,
computational efficiency, and model generalization in considered network environment.
The following definitions provide concise explanations of the methods utilized within this
study to support feature representation, model training, and real-time inference:

— Min-max normalization: A scaling technique that transforms numerical features into
a fixed range, typically [0, 1], to ensure uniform contribution to the model’s learning
process.

— Mutual information and variance thresholding techniques: Feature selection
methods used to retain informative attributes and eliminate low-variance or weakly
relevant features which usually leads to reducing redundancy in high-dimensional IoT
traffic data.

— Imputation techniques: Methods applied to handle missing data by substituting null
values with statistical estimates, such as mean for numerical and mode for categorical
features, to maintain dataset consistency.

— Feature scale normalization: A transformation approach that adjusts the magnitude
of numerical features to a common scale, preventing dominant attributes from skewing
model training.

— One-hot encoding: A categorical encoding scheme that converts non-numeric
variables into binary vectors which allow the models to process protocol types and device
states without assuming ordinal relationships.

— Weight decay: A regularization technique that penalizes large weight values during
training to prevent overfitting and promote model generalization in noisy IoT
environments.

— L2 regularization: A specific form of weight decay that adds the squared magnitude of
weights to the loss function to discourage complexity and improve robustness.

— Dropout and early stopping: Regularization strategies where dropout randomly
disables neurons during training and early stopping halts training once validation
performance ceases to improve and reduce overfitting.

— Pruning optimization: A technique that removes non-contributing or weakly active
neural connections to reduce model size and improve inference speed without
compromising detection accuracy.

— Weight quantization: The process of converting model weights from high-precision to
lower-precision formats (e.g., 32-bit to 8-bit) to decrease memory footprint and accelerate
computations.

— Sparse matrix multiplication: An inference-time optimization that leverages
zero-valued weight sparsity to skip unnecessary computations to enhance real-time
performance on edge devices.
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PROPOSED METHODOLOGY

It is evident that the presence of botnets in IoT-equipped smart city networks can lead to
disastrous consequences, undermining the functionality and security of critical
infrastructure systems. These networks, designed to manage everything from traffic lights
and public transportation to utilities and public safety systems, are particularly vulnerable
to botnet attacks, which can harness compromised IoT devices to launch coordinated
disruptions. Such attacks can cripple urban operations, cause widespread service outages,
and expose sensitive public and personal data.

Data collection and preprocessing

Raw network traffic data were collected from a diverse set of IoT devices operating within
the smart city infrastructure, including but not limited to smart meters, environmental
sensors, traffic monitoring systems, and surveillance cameras. These devices were selected
due to their heterogeneous communication protocols (i.e., includes but not limited to:
Zigbee, Wi-Fi, LoORaWAN, RTSP (Real-Time Streaming Protocol), etc.,) and varying data
generation rates, representing the complexity of an interconnected smart city ecosystem.
The collection process spanned over a period of 4 weeks to ensure temporal diversity and
capture data variations in network behavior. Data capture was conducted using network
monitoring tools (i.e., Wireshark & TCPDUMP) capable of passive traffic analysis, which
allowed for continuous recording without interfering with device operations. Packet
sniffers (i.e., as illustrated in Fig. 1) were deployed at multiple network access points across
the emulated smart city setup to capture all inbound and outbound traffic to ensure that
the dataset reflected both normal and anomalous behavior from different sectors of the
emulated city. This approach allowed for the monitoring of device-level communications,
network congestion patterns, and potential cyber threats such as DDoS attempts, while
maintaining data integrity. To ensure comprehensive representation, network traffic from
high-traffic nodes such as public Wi-Fi hotspots was included alongside traffic from
low-traffic IoT devices such as smart parking meters. This approach captured a broad
spectrum of traffic patterns and device interactions. The collection framework
incorporated various IoT protocols including MQTT, CoAP, and HTTP, which are
integral to smart city infrastructure. Random sampling was applied across different time
slots and network segments to avoid overrepresentation of any specific device type or
network traffic pattern. In this context, we observed that data bias may arise from unequal
representation of certain patterns or features within the dataset that can potentially lead to
skewed or inaccurate model outcomes. Also, overrepresentation of traffic from high-traffic
IoT devices like public Wi-Fi hotspots could hinder the detection of attacks targeting fewer
common devices. Similarly, an imbalance in protocol representation, such as focusing on
MQTT over HTTP was observed with the ability to reduce the model’s capacity to detect
threats in underrepresented communication types.

In our investigation, data preprocessing was essential for maintaining the quality and
usability of collected IoT network traffic data for intrusion detection. We realized the
importance of preserving the integrity and statistical reliability of the dataset, and for this
reason, the mean imputation was used for numerical features by replacing null entries with
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Figure 1 SAE-GRU based intrusion detection system for IoT botnets.
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the arithmetic average of observed values, which preserved the statistical distribution and
prevented distortion in features such as packet size, byte counts, and flow duration—
attributes critical for distinguishing volumetric and behavioral anomalies in botnet
detection.

To further strengthen the data preprocessing, we also applied Mode imputation to
categorical features such as protocol type or device state, where the most frequent class was
substituted to retain consistency in discrete attribute distribution. These strategies
prevented information loss while maintaining model input uniformity. It is worth
highlighting that for in botnet detection, numerical values are especially important as they
capture subtle deviations in traffic volume, session timing, and data transfer behavior that
often precede or accompany coordinated botnet activity, thus allowing the model to learn
and identify patterns that are otherwise undetectable through categorical inspection alone.
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Table 3 List of smart city equipped IoT devices employed to generate the dataset.

IoT device Vendor Purpose Specifications Communication Vulnerabilities
name protocols
Smart meter Siemens Monitor and report Communication: ZigBee, Protocol: IEC ZigBee, Data tampering,
(INHEM1216) energy usage 62056, Power: Low Power (Battery) LoRaWAN Unauthorized access
Traffic Bosch Track traffic flow and  Resolution: 1080p, Connectivity: 4G/5G, 4G/5G, Wi-Fi Eavesdropping, DDoS
monitoring (MIC inteox violations Power: Wired
camera 7100i)
Environmental Honeywell Monitor air quality and Sensor Type: Temp./Hum. /CO,/TVOC/ LPWAN, MQTT Spoofing, Data
sensor (C7355A1050) environmental PM, Connectivity: LPWAN, Power: tampering
conditions Solar/Battery
Smart GE Lighting Control and manage  Connectivity: LoORaWAN, Power: Solar, LoRaWAN Unauthorized access,
streetlight (ERLI1-ERLH- street lighting Control: Remote Dimming Remote exploitation
ERL2)
Public Wi-Fi ~ Cisco Provide public wireless  Standard: IEEE 802.11ac, Range: 90 m, Wi-Fi, IEEE Man-in-the-Middle
hotspot (240AC, internet access Power: Power over Ethernet (PoE) 802.11ac (MITM), Data
Catalyst Interception
IW9165E)
Smart parking Presto Monitor parking spaces Communication: NB-IoT, Payment: NB-IoT, LTE Spoofing, Data
meter (Presto 1000), and payment systems  Contactless, Power: Battery exfiltration
ParkingBOXX
Surveillance DJI Provide aerial Range: 10 km, Camera: 4K, Power: 4G/5G, Wi-Fi GPS Spoofing, Signal
drone (Mavic Pro surveillance Rechargeable Battery jamming
Platinum)
Smart waste Bigbelly Manage waste levels in ~ Sensor: Ultrasonic, Communication: LoRa, LoRaWAN Denial of service,
management  (Smart) urban areas Power: Solar Sensor spoofing
Bin
Smart water Xylem Monitor water levels Sensor Type: pH, Turbidity, Connectivity: LTE-M Data exfiltration,
monitoring (DIQ/S 281- and quality LTE-M, Power: Battery Device hijacking
system WTW, pH 298-
WTW)

In accordance, the feature selection improved model efficiency by eliminating irrelevant

attributes while preserving essential patterns in network behavior.

We also applied mutual information along with a fixed variance thresholding technique

set at 0.01 to eliminate features exhibiting low variability across observations, as such

features contribute minimal discriminative power and can introduce noise into the

learning process. This dual-step approach enabled the selection of highly informative

attributes that not only improve classification accuracy by focusing the model on relevant
patterns but also reduce computational complexity by removing redundant or static input
dimensions. The applied dataset covered various intrusion types, including DDoS attacks,
Command and Control activities, traffic injection attempts, data exfiltration, spoofing
events, malware propagation, credential harvesting, brute force attacks, firmware
exploitation, and eavesdropping on communication channels.

The heterogeneous nature of IoT devices, as presented in Table 3, introduced variations
in data formats, requiring specific methods to handle missing values. In this context,
imputation techniques were applied to maintain dataset integrity, where mean imputation
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was used for numerical features and mode imputation for categorical attributes to address
data sparsity. Whereas the feature scale normalization was applied to account for
differences in magnitude, including packet sizes and traffic volumes. Min-max
normalization adjusted feature values within a unified scale, typically between 0 and 1,
which guaranteed consistency across the dataset and improving the effectiveness of model
training.
Xnorm = 7 Tomin . (1)
max — Xmin

As per Eq. (1), the Xy, is normalized value, x is the original feature value, X & Xpax
are the minimum and maximum values of the feature, respectively. This normalization is
crucial in preventing features with larger ranges from dominating the training process.

To convert categorical variables, such as protocol types, into numerical formats, one-hot
encoding (Rezvan et al., 2024) was employed. This method transformed each categorical
feature into a binary vector, where each category was represented as a distinct dimension
that has allowed the model to interpret the categorical information without imposing
artificial ordinality. The choice of one-hot encoding was particularly relevant given the
non-hierarchical nature of many categorical features in IoT traffic, where no intrinsic
ranking exists between different protocols or device types.

We selected preprocessing algorithms such as the Pandas and Scikit-learn libraries due
to their proven efficiency and scalability. These qualities were critical for handling the
extensive volume and high dimensionality of IoT data. The preprocessing steps (such as:
Missing value imputation; Normalization of feature scales; One-hot encoding for
categorical variables; Data cleaning; Standardization; Feature extraction; and Feature
dimensionality reduction) standardized the dataset while eliminating inconsistencies. This
process ensured a robust foundation for feature extraction and effective model training,

Rationale for employing stacked autoencoder

The adoption of SAEs in this research stems from their capacity to process high-
dimensional data effectively while maintaining essential features. The emulated IoT
environment generated extensive network traffic with a mix of significant and redundant
information. Hereby, the SAE proved effective in this context due to its ability to uncover
latent patterns such as recurring traffic bursts, synchronized connection attempts, and
consistent session durations by encoding these into compact, information-rich
representations (e.g., protocol activity footprint; connection uniformity pattern, etc.).
Through dimensionality reduction, the autoencoder transformed correlated features: like
‘packet size, flow duration, and byte count’ into a unified latent variable capturing their
combined variance. This abstraction enabled the model to detect subtle yet coordinated
anomalies in communication behavior that are often obscured in the original
high-dimensional feature space especially for those which are indicative of botnet activity.
This compression process minimized noise and preserved critical characteristics without
compromising analytical depth (i.e., feature importance analysis; performance metrics
evaluation; temporal pattern recognition; model generalization assessment; real-time
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detection capability; false positive and false negative analysis; cross-validation; and dataset
diversity evaluation). In our resource-constrained IoT system, this dimensionality
reduction demonstrated its value by enabling computational efficiency and facilitating
real-time analysis. The compressed data produced by SAEs reduced the computational
demands of subsequent tasks, thereby it improved the overall performance of implemented
intrusion detection model.

In the proposed emulated settings, SAE, the encoder function transforms the
high-dimensional input data x € R" into a lower-dimensional hidden representation
h € R™. This procedure (i.e., as exhibited in Eq. (2)) was important to reduce redundancy
and emphasize essential feature interactions which enabled the model to focus on patterns
that are most relevant for distinguishing between normal and malicious traffic behavior.

h = f(Wox + b,) )

where W, € R™*" is the weight matrix, b, € R™ is the bias term, and f(-) is the activation
function, typically ReLU (Rectified Linear Unit). The hidden representation h encapsulates
the essential features in a compressed form. The decoder then attempts to reconstruct the
input x from h using the Eq. (3):

x' = f(Wah+ bg) (3)

where W; € R™ and b; € R" are the decoder’s weight matrix and bias term, respectively.
The objective of training the SAE is to minimize the reconstruction error, which measures
the difference between the original input x and its reconstruction x’. The reconstruction
error is often expressed as the mean squared error (MSE) and is minimized as follows (i.e.,
expressed in Eq. (4)):

n

L(x,x') = %Z (xi —x))° (4)
i=1

where L(x,x’) is the loss function, and x and x’ represent the original and reconstructed
values of the input data, respectively. It is worth noting that minimizing the MSE during
the training of the SAE ensured that the reconstructed output closely matches the original
input for preserving critical traffic patterns. Lower MSE indicates that the encoder has
captured the most informative features needed to differentiate normal from botnet-
induced anomalies. Thus, an encoder compresses input data into a lower-dimensional
space and a decoder reconstructs the original input. The objective is to retain the most
relevant features while discarding noise which facilitates efficient pattern recognition in
high-dimensional datasets.

The SAE was trained in an unsupervised manner by optimizing the loss function using
the gradient-based optimization algorithm ‘Adam’ (Reyad, Sarhan & Arafa, 2023). This
algorithm was selected for training the SAE because it combined the benefits of both
‘AdaGrad and RMSProp (i.e., are the optimization algorithms used to update model
parameters during training)’ by adaptively adjusting learning rates for each parameter
using first and second moment estimates of gradients. This made it well-suited for
handling sparse features and non-stationary objectives common in high-dimensional IoT
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traffic data. Regularization technique, weight decay or L2 regularization, was applied to the
weight matrices during training to mitigate overfitting. Our investigation revealed that this
approach is particularly critical when handling large and noisy datasets that are common
in IoT networks. Weight decay introduced a penalty to the loss function based on the
magnitude of the weights. This penalty helped prevent the model from becoming overly
complex and improved its ability to generalize to unseen data. The applied loss function
with L2 regularization is expressed in Eq. (5) as:

Lygg(x,x) = L(x,x) + 2 [|W]3 (5)

where 4 is the regularization parameter and ||W||3 is the squared L2 norm of the weight
matrices.

After training the SAE, the encoder component processed high-dimensional input data
to generate lower-dimensional feature representations. These compact feature vectors
retained the most critical information for subsequent analysis while minimizing
computational complexity in later stages of intrusion detection. This reduction in
dimensionality enhanced computational efficiency and concentrated on the most crucial
patterns which eventually led to improved accuracy in identifying malicious activities.

Underlying principle for exercising gated recurrent unit network

The GRU network was implemented to detect temporal patterns (e.g., repeated connection
intervals, synchronized packet bursts, periodic data uploads, uniform session durations,
cyclic protocol switching, timed beacon signals, consistent idle-to-active transitions,
recurring port access sequences, repetitive handshake patterns, scheduled command
transmissions) in IoT network traffic data. Herewith, the structured gated recurrent units
handled sequential data (i.e., time-stamped network flows, session-wise traffic logs, packet
arrival sequences, protocol exchange orders, connection attempt histories, authentication
sequences, port scanning timelines, device communication intervals, traffic burst timings,
malware propagation traces) efficiently by maintaining long-term dependencies while
reducing computational demands. Temporal patterns and sequential data were important
because they captured the timing and order of network activities, which are critical for
identifying behaviors characteristic of botnet operations. Such patterns revealed
coordinated actions, delayed triggers, and repetitive access sequences that static feature
analysis could not detect.

Our comprehensive evaluation showed that GRUs address vanishing gradient
challenges that frequently affect traditional recurrent neural networks. This property
strengthens their effectiveness in real-time intrusion detection for IoT environments.
Cross-validation confirmed the capability of GRUs to capture sequential dependencies
with greater stability, whereas conventional recurrent networks struggled to retain
long-range information. Thus, this implementation enabled the emulated system to learn
patterns efficiently and identify both normal and malicious activities within the traffic.
Normal activities include regular data transmission intervals, periodic updates, scheduled
maintenance tasks, consistent communication behaviors, synchronized sensor readings,
uniform packet sizes, and steady bandwidth utilization. Whereas, the malicious activities
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encompassed sudden surges in traffic volume, irregular packet timings, anomalous data
flows, unscheduled device interactions, inconsistent protocol behaviors, rapid data bursts,
significant packet size deviations, coordinated surges across multiple devices, repeated
connection attempts to external servers, frequent contact with command-and-control
servers, brute force login attempts, high-frequency port scans, periodic data exfiltration
bursts, prolonged DDoS attacks, unexpected increases in device-to-device communication,
synchronized anomalies from geographically dispersed devices, abnormal encryption
patterns, frequent traffic destination changes, and suspicious outbound connections to
unverified domains. We have also observed that the GRUs require fewer parameters than
LSTMs, demonstrated reduced computational overhead, which was vital in environments
with limited resources. This efficiency and robust ability to process sequential
dependencies established GRUs as an ideal solution for intrusion detection within the
proposed architecture.

In our emulated settings, the functionality of a GRU (i.e., as evident from Fig. 1) is
controlled by two primary gates: the update gate and the reset gate, which govern how
much past information is passed to the future. Herewith, the ‘update gate’ determines how
much of the previously observed network behavior (e.g., normal or suspicious traffic
patterns) is carried forward for further analysis in the detection process. For botnet
detection, this helped track long-term anomalies, such as coordinated attacks that evolve
over time. Whereas the ‘reset gate’ decides how much of the past information should be
ignored, enabling the model to focus on immediate and relevant traffic patterns. In our
applied detection, this allowed the GRU to disregard irrelevant or benign variations, such
as normal fluctuations in traffic, while concentrating on identifying emerging botnet
behavior.

Accordingly, the update gate, denoted as z;, determines the extent to which the hidden
state from the previous time step h;_; should be carried forward. This phenomenon is
represented in Eq. (6):

ze =0(Wyx, + Uhy_y + by) (6)

where W, and U, are the weight matrices for the input x; and the previous hidden state
hi_y, respectively, and b, is the bias term. The sigmoid function ¢ ensures that the values of
z; remain between 0 and 1, effectively controlling the weight of the previous hidden state in
the current computation.

The reset gate, denoted as 7y, is responsible for deciding how much of the previous
hidden state should be forgotten. As stated earlier, this gate plays a critical role in allowing
the GRU to selectively reset portions of its memory when modeling sequential
dependencies, as exhibited in Eq. (7):

re = o(Woxy + Ushy—y + b,). (7)
Here, W, and U, are the weight matrices, and b, is the bias associated with the reset gate.
By modulating the reset gate, the GRU can ignore irrelevant parts of the past sequence
when they are not useful for future predictions. With this, as exhibited in Eq. (8), the
candidate activation, denoted as h;, represents the new memory content to be added to the
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* Temporal dependencies refer to the
relationship between events occurring
over time, where the current state of a
system is influenced by past observa-
tions. In projected context of intrusion
detection, temporal dependencies were
essential for identifying patterns that
evolve over multiple time steps to allow
the model to distinguish between normal
network behavior and malicious activity
based on historical trends.

hidden state. This candidate is computed based on both the current input and the reset
hidden state, which allows the GRU to conditionally forget or remember parts of the
sequence:

hi = tanh(Wx; + U(r: © he_y) + by, (8)

Herewith, the W}, Uy, and by, are the corresponding weights and biases for the candidate
activation, and © represents element-wise multiplication. The reset gate r, ensures that
only relevant historical information influences the new candidate activation. Ultimately,
the hidden state at time step ¢ is updated as a linear interpolation between the previous
hidden state and the candidate activation, controlled by the update gate:

hh=01—-2z)0h 1+20h. ©9)

Equation (9) determines the final output of the GRU unit at each time step by balancing
the influence of the new candidate activation f; with the previous hidden state h,_;,
depending on the value of the update gate z;. This interpretation allowed GRUs to
adaptively retain relevant information over long time sequences which no doubt proved to
be a critical feature for identifying patterns of malicious activity within sequential IoT
network traffic.

Herewith, the Table 4 provides an algorithmic and structured breakdown of the SAE-
GRU-based intrusion detection workflow by detailing each step from data preprocessing to
real-time threat classification. This formal representation enhances the clarity of the
proposed methodology.

Temporal pattern recognition in loT network traffic

The compressed feature vectors generated by the SAE were passed as input into the GRU
network to model temporal dependencies’. These lower-dimensional feature vectors,
which represented condensed and denoised versions of the original high-dimensional
network traffic, encapsulated critical information relevant to identifying both normal and
malicious activities. The GRU network processed these sequential inputs by maintaining a
hidden state that captured information from previous time steps. This mechanism allowed
it to learn long-term dependencies and temporal correlations within the data. Each feature
vector in the input sequence passed through the update and reset gates to enable the GRU
to determine how much past information should be retained or discarded at each time
step. Through this modulation, the GRU dynamically adjusted its memory of past events,
which was essential for distinguishing between normal traffic patterns and anomalies
indicative of botnet activity. As the GRU iterated through the sequence of feature vectors, it
identified patterns that signaled malicious behaviors such as coordinated spikes in traffic
or abnormal data flows while filtering out routine variations in the network. The ability of
the GRU to maintain context over extended periods enabled it to detect botnet activities
that unfold over long time frames. This temporal modeling was crucial for differentiating
between benign and malicious behaviors, as it accounted for both short-term fluctuations
and long-term trends in order to ensure high accuracy in threat identification.
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Table 4 Algorithmic representation of the SAE-GRU based intrusion detection model.

Step

Algorithmic pseudocode

1. Data collection and preprocessing

2. Feature extraction using stacked autoencoder (SAE)

3. Temporal pattern recognition using GRU

4. Intrusion classification using thresholding

5. Optimization for real-time processing

6. Alert generation and response

7. Model training and performance evaluation

Input: Raw network traffic data D

For each network traffic record X in D:

— Handle missing values using mean/mode imputation
— Normalize numerical attributes using Min-Max scaling
— Convert categorical variables using One-Hot Encoding
-

Apply feature selection using Mutual Information & Variance Thresholding

End For

Input: Preprocessed network traffic features X

Encode: Z = fW.X + b,

Decode: X = f(W4Z + by)

Compute Loss: (L)

Input: Z from SAE

Initialize: GRU hidden state kg

For each time step ¢

— Compute update gate: z; = o(W,X; + Uh_1 + b,)
— Compute reset gate: r, = ¢ (W,Xt + Urhyyy + b,)
— Compute candidate activation: h; = tanh(WhXt + Uy (r,. h{t,l}) + bh)
— Update hidden state: h; = (1 — z).hy—1y + 2.1y

End For

Output: Final hidden state h; for classification
Input: GRU output h; Compute classification score S
If S > 7 then:

— Classify as Malicious Else
— Classify as Normal End If

Apply:

— Model pruning to remove redundant parameters

— Weight quantization to reduce precision for faster inference
— Sparse matrix multiplication for efficient computation
N

Deploy model on edge nodes for low-latency detection

If attack is detected:

— Generate alert with timestamp, device ID, attack type
— Log alert in central database
— Trigger security response: block IP, isolate device, deploy monitoring

End If

Train model:

—  Minimize loss function: L = — Y, ylog(y)

— Use Adam optimizer for learning rate adjustment

—  Apply dropout regularization & early stopping

— Evaluate model: Compute Accuracy, Precision, Recall, F1-score, AUC
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Supervised training process of the GRU network

The supervised training process of the GRU network was conducted using labeled data,
where each sequence of input feature vectors derived from the SAE was associated with a
corresponding class label indicating whether the traffic pattern represented normal
behavior or malicious activity. The use of labeled data allowed the GRU to learn from
ground-truth examples and distinguish between benign and anomalous patterns in
network traffic. The cross-entropy loss function was employed during training to quantify
the difference between the predicted class probabilities and the actual class labels. This loss
function was suitable for binary classification tasks, such as detecting botnet attacks, and is
represented in Eq. (10):

L0.3) =~ D bilog(7,) + (1 = ylog(1 5, (10)

where y; is the true label, y; is the predicted probability, and N represents the number of
samples. Herewith, we applied the Adam optimizer to compute individual adaptive
learning rates for each parameter and combines the benefits of both the AdaGrad and
RMSProp algorithms (as exhibited in Table 5), ensuring stable convergence even in
complex, high-dimensional spaces.

To enhance the generalization capability of the GRU network and prevent overfitting,
two techniques were applied: Dropout and Early Stopping. Dropout was introduced during
training by randomly setting a fraction of the units in the hidden layers to zero at each
iteration. This forced the network to learn redundant representations and reduced its
dependency on specific neurons. The dropout rate was carefully selected to achieve a
balance between underfitting and overfitting, typically ranging from 0.3 to 0.5 for optimal
performance. Early Stopping was employed as a regularization method that monitored the
model’s performance on a validation set and halted training when the validation loss
stopped improving. This ensured that the GRU network stopped training at its optimal
state and avoided overfitting the training data. Our observation revealed that by applying
these strategies, the GRU network achieved high accuracy and robustness in detecting
anomalies across diverse and complex IoT traffic patterns and demonstrated strong
generalization to unseen data during deployment.

Architecture of the combined SAE-GRU model

From the preceding discussion, it is evident that we have effectively conceptualized &
favorably designed optimal SAE-GRU model to efficiently process high-dimensional IoT
network traffic data and extracted temporal dependencies for effective intrusion detection.
Herewith, at this stage, the SAE acted as a dimensionality reduction layer to reduce noise
and compressed the raw high-dimensional input data into lower-dimensional feature
vectors. These feature vectors are then passed into the GRU network, which models the
temporal relationships between the sequences of traffic data. We designed the SAE as a
three-layer architecture: an input layer, a hidden layer, and an output (reconstruction)
layer. The number of hidden units in each layer was empirically determined, with the
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Table 5 Execution of AdaGrad and RMSProp in IoT botnet detection.

AdaGrad 1. Initialize:

+ Set initial learning rate #.

+ Initialize gradient accumulator g = 0.

2. For each parameter 0; at time ¢:

+ Compute gradient VOt based on current traffic data.
+ Accumulate squared gradients: g — g + (V6;)°.
+ Adjust learning rate: 1, = \/% (where € is a small constant to prevent division by zero).

+ Update parameter: 0;; = 0y — 1,V 0.

3. End For.
RMSProp 1. Initialize:

+ Set initial learning rate #.
+ Initialize moving average ¢ = 0, set decay rate p.

2. For each parameter 0; at time t:

+ Compute gradient V0, based on current traffic data.

+ Update moving average of squared gradients: g = pg + (1 — p)(V0,)>.

+ Adjust learning rate: 17, = ﬁ (where € prevents division by zero).

+ Update parameter: 0,41 = 0, — n,V0,.

3. End For.

Herewith,
» n: The initial learning rate, which controls how much to adjust the model’s weights in response to the estimated error during training.
» Oy The model parameter at time step ¢, representing the weights of the network that are being updated.
» V0;: The gradient of the loss function with respect to the parameter 0, representing the direction and rate of change to reduce the error.

» g: The gradient accumulator in AdaGrad or the moving average of squared gradients in RMSProp. It stores the sum or exponential decay of squared
gradients to adapt the learning rate over time.

» €: A small constant added to avoid division by zero during the learning rate adjustment. This ensures numerical stability when gradients are very
small. Numerical stability is crucial in emulated botnet detection because the learning process for detecting botnet patterns involved processing
large amounts of real-time, high-dimensional network traffic data. In this contexts, small gradients caused learning rates to become unstable,
potentially leading to either overly large updates (which would cause the model to diverge) or excessively small updates (which might slow down or
halt learning). Thus during our assessment, it was evident that if numerical stability is not maintained, the model exhibited: (a) Fail to converge (i.e.,
without stability, updates to the model parameters became erratic, making it difficult for the model to reliably detect botnet behavior), (b)
Misclassify traffic patterns (i.e., unstable learning resulted in poor detection of subtle or evolving botnet activities, leading to false negatives (missing
attacks) or false positives (flagging benign traffic as malicious), and (c) Cause computational inefficiencies (i.e., unstable calculations did lead to
inefficiencies or even system crashes, delaying the real-time detection needed to respond to botnet threats).

» 1, The adjusted learning rate at time step ¢, modified by the accumulated or moving average of the squared gradients.

» p: The decay rate in RMSProp, controlling the moving average calculation by determining how much of the previous squared gradient information
is retained.

» 0¢i1: The updated parameter at time step t + 1, after applying the learning rate adjustment and gradient-based correction.

hidden layer of the encoder having 128 units to balance expressiveness and computational
efficiency. The rectified linear unit (ReLU) was used to introduce non-linearity and
enhance the model’s ability to learn complex patterns. The GRU component comprised
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The tanh activation function was
employed in the GRU network to main-
tain stable gradient propagation during
the processing of sequential data and to
address the vanishing gradient problem.
Its capacity to map inputs within the
range of —1 to 1 allowed the GRU model
to capture both positive and negative
temporal dependencies, which made it
effective in detecting intricate patterns in
network traffic.

two layers of recurrent units, each with 64 hidden units, and uses the tanh activation
function®, which provided stability in gradient propagation, reduced the risk of exploding
or vanishing gradients, especially when processing long sequences. The choice of this
architecture ensured that the model could capture both spatial and temporal features in
network traffic data while remaining computationally feasible for real-time deployment.

The deployment of the trained SAE-GRU model for real-time intrusion detection in the
emulated network was achieved using Python-based machine learning libraries (i.e.,
TensorFlow), which supported efficient implementations of deep learning architectures.
The model was integrated into the existing network monitoring system through RESTful
APISs to enable real-time data stream input and analysis. Real-time inference was optimized
by batching incoming network packets and processed them through the SAE for
compression followed by GRU-based temporal analysis. The system operated on a cluster
of edge computing nodes equipped with moderate GPU support, which distributed the
computational workload of IoT traffic processing across multiple nodes. This hardware
configuration ensured that the model fulfilled the strict low-latency requirements of
real-time anomaly detection.

The mechanism for anomaly detection relied on analyzing incoming data streams and
comparing them to normal behavior patterns learned during training. Once a sequence of
compressed feature vectors passes through the GRU, the model outputs a score
representing the likelihood of the sequence being normal or malicious. Herewith, the
Thresholding method was applied to classify network behavior. A decision threshold T is
empirically set by analyzing the Receiver Operating Characteristic (ROC) curve during
validation. The value of T is chosen to balance the trade-off between false positives and
false negatives, minimizing the total classification error. If the output score s(x) exceeds T,
the behavior is classified as malicious. This is represented in Eq. (11):

Malicious, if s(x)>T
Class = {Normal, ’ szs(gc))g T. (1)

The model also incorporated a mechanism to handle false positives and false negatives
by maintaining an alert threshold buffer, which reduced the likelihood of triggering false
alarms due to benign fluctuations in network traffic. Upon detection of suspicious patterns
indicative of botnet activity, the SAE-GRU model automatically triggered a sophisticated
alert mechanism that was designed to efficiently inform network administrators and
initiate response protocols. The alert mechanism was integrated directly into the IDS in
order to ensure swift and effective responses.

Herewith, when the SAE-GRU model identifies an anomaly that exceeds the predefined
decision threshold T, it triggers an alert generation process. This process involves the
formation of an alert packet that includes detailed information about the detected
anomaly, such as the time of detection, affected network segments, and a risk assessment
score. This packet is then communicated to the IDS through a secure communication
channel, ensuring that the information is relayed promptly and securely to the network
administrators.
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Table 6 Automated response decision.

Input: Anomaly type, Risk score
Output: Mitigation action

begin

if Risk score > High risk threshold then

Execute high-priority response protocol

Actions: Immediate isolation of affected network nodes, automated blocking of suspected malicious IP addresses, rapid deployment of
autonomic security patches to vulnerable systems, forceful termination of unauthorized connections, real-time alerts to security operation

centers.

else if Risk score > Medium risk threshold then

Execute Moderate-priority response protocol

Actions: Enhanced monitoring of suspected traffic, temporary restriction of network access privileges for suspicious accounts, updating
autonomically the firewall rules to restrict unusual traffic patterns, automatically conducting vulnerability scans on potentially affected
segments, initiating detailed forensic analysis for gathered intelligence.

else

Execute low-priority monitoring protocol

Actions: Logging detailed event information for future analysis, regular updates of anomaly signature definitions, execution of performance and
security audits on potentially impacted systems, passive monitoring of network traffic for emerging patterns.

end if

end

The implemented alert mechanism included an automated logging system that records
every detected event into a centralized log database. This database is structured to store
comprehensive details of all alerts, facilitating subsequent analysis and forensic
investigations. The stored data includes timestamps, sensor IDs, the type of detected
anomalies, severity levels, and the actions taken in response to the alerts. This logging is
crucial for tracking the effectiveness of the detection system, auditing system responses,
and refining detection strategies over time.

The applied IDS was programmed to parse incoming alerts and categorize them based
on severity. Depending on the severity and the specific characteristics of the detected
anomaly, predefined mitigation strategies are automatically initiated. These strategies
include, but are not limited to, autonomic reconfiguring firewalls to block malicious traffic,
segmenting parts of the network to isolate compromised devices, and deploying additional
monitoring to the affected areas/zones. The system employs a rule-based decision
algorithm, as outlined in Table 6, to determine the appropriate response based on the risk
assessment score and the type of anomaly detected.

With this, each action was logged with a corresponding entry in the incident
management system, which included timestamps, the nature of the response, and status
updates on the resolution of the issue. This system not only ensured immediate attention
to potential threats but also allowed the designated network administrators to review and
adjust the automated responses based on effectiveness and evolving network security
requirements.
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® Quantization-aware training was utilized
to account for reduced precision during
the training phase, ensuring that the
model remained robust when deploying
weights in lower-precision. This
approach minimized the loss of accuracy
while reducing the computational load,
making the model suitable for real-time
intrusion detection in resource-
constrained emulated IoT environment.

Model optimization

In our emulated assessment, optimizing the SAE-GRU model was crucial to ensure
efficient performance while maintaining detection accuracy. One of the primary
optimization techniques applied was model pruning. Pruning involves systematically
removing less important neurons or connections from the model, which reduced the
overall complexity without significantly compromising its ability to detect anomalies. By
identifying and eliminating parameters that contributed minimally to the output during
the training phase, we reduced both the storage requirements and inference time. This
approach was particularly effective for the GRU component, where certain recurrent
connections were pruned based on their contribution to the loss function.

Weight quantization was another technique applied to reduce the computational load.
This method involves converting high-precision floating-point weights into
lower-precision formats, such as 8-bit integers. While this results in a minimal loss of
precision, it significantly decreases the memory footprint and increases the speed of
inference on edge devices that often lack powerful processing units. In this consideration,
the ‘Quantization-aware training” was used to account for the reduced precision during
the training phase which guaranteed that the model remained robust despite the
compressed representation of weights.

To further enhance efficiency, we implemented the Sparse matrix multiplication
algorithm (i.e., as exhibited in Fig. 2) designed to minimize computational overhead.
Specifically, sparse matrix operations were employed during inference, allowing the model
to bypass unnecessary computations associated with zero-valued parameters after pruning.
This was complemented by batch processing, where multiple incoming data streams were
processed simultaneously to utilize the parallelism to reduce latency. For temporal data
processing in the GRU, we employed truncated backpropagation through time (TBPTT) to
limit the number of sequential time steps during training. This reduced the computational
demand by restricting the depth of the network’s temporal memory to make it suitable for
real-time applications where long sequences would otherwise introduce delays.

To further elaborate on the applied optimization techniques, pruning in the proposed
model was not executed as a one-time static reduction but dynamically adjusted during
training using a gradient sensitivity score. Parameters with persistently low gradient
contributions across epochs were identified and removed, especially within GRU gates
where inactive pathways were filtered out to enhance information flow. For weight
quantization, the approach involved a mixed-precision strategy where core arithmetic
layers operated on 8-bit integers while retaining 16-bit accumulators in sensitive layers to
preserve gradient fidelity. This reduced computational overhead without undermining
convergence behavior. Herewith, the Sparse matrix multiplication was applied with
structure-aware indexing where zero-valued weights were skipped using pre-computed
mask arrays to permit optimized memory access patterns and cache-friendly execution.
Applied technique exploited sparsity resulting from pruning to accelerate matrix-vector
operations in the recurrent layers. These optimizations were tailored for execution on edge
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Figure 2 Sparse matrix multiplication to minimize computational overhead.
Full-size K&l DOT: 10.7717/peerj-cs.2869/fig-2

devices with constrained compute profiles so that the model would become eligible to meet
latency constraints under real-world traffic load.

For accurate representation, it is essential to convey that the Sparse matrix
multiplication was not merely used as a computational convenience but was structurally
embedded into inference routines to minimize multiplications involving zero-valued
weights post-pruning. This choice directly reduced processing latency, particularly during
peak network loads, where real-time response is critical. Correspondingly,
quantization-aware training allowed floating-point weights to be compressed into
lower-bit representations while retaining learning capacity through adjusted gradient
computations. By simulating inference-time quantization during training, the model
achieved reliability, consistency, and robustness in edge deployments. We also tailored the
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model pruning by using a relevance-based thresholding mechanism, which systematically
removed parameters with minimal impact on classification loss, especially within the GRU
gates where redundant recurrence was detected. The model employed ‘truncated
backpropagation through time’ to handle long sequences efficiently to enable temporal
learning with reduced memory consumption. We also applied the batch processing across
parallel IoT streams which further exploited hardware concurrency that allowed the model
to meet sub-second decision latency.

The cumulative effect of optimization technique ensured that the SAE-GRU model
could be deployed in metropolitan IoT environments with limited processing and memory
resources, while it is still capable of providing real-time, high-accuracy anomaly/malware/
intrusion detection. By balancing computational efficiency and detection performance, the
model effectively addressed the unique challenges posed by IoT-based smart city networks,
where rapid and lightweight processing is paramount for maintaining network security.

EMULATION RESULTS AND DISCUSSION

The emulation setup for the projected research had been designed to replicate a
comprehensive and realistic smart city network environment with diverse IoT devices that
has ensured a robust framework for testing the proposed intrusion detection system. The
experimental hardware included high-performance servers powered by Intel Xeon
processors with 32 cores and 64 threads on each server. These specifications supported
parallel processing required for handling large volumes of network traffic and running
machine learning models. Each server was equipped with 128 GB of DDR4 RAM to handle
memory-intensive tasks such as feature extraction and deep learning training efficiently.
The storage infrastructure consisted of a combination of 1 TB NVMe SSDs for fast data
access and 10 TB HDDs for long-term data retention. To enable high-bandwidth
communication, each server had been fitted with 10 Gbps Network Interface Cards to
ensure minimal latency during traffic processing and real-time anomaly detection. The
networking infrastructure included enterprise-grade switches and routers, which had been
configured to simulate the interconnectivity typical of a smart city. Wireless access points
supporting 802.11ac and 5G had been deployed to mimic public and private IoT
communication layers. The IoT devices, as detailed in Table 3, included a range of
environmental sensors, smart meters, and surveillance cameras.

The software environment had also been carefully tailored with the servers running a
combination of Ubuntu Linux for backend operations and Windows Server for data
management tasks. IoT devices were configured to operate on lightweight systems (i.e.,
FreeRTOS) for low-power sensors and customized Android OS for more advanced devices
like smart meters. Network emulation was conducted using Mininet, which enabled the
creation of a virtual network topology comprising hundreds of simulated IoT devices.
Mininet had been configured to mimic various smart city infrastructure components
including public Wi-Fi hotspots and smart utility management system. The emulated
cloud environment was hosted on Amazon EC2 (A WS, 2024) to allow scalability for testing
cloud-based services and data management (Liu, Wang ¢ Liu, 2023). Traffic from IoT
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devices was programmed using Python and C++ (pseudocode and partial dataset (Tarig ¢
Ahanger, 2024)) to maintain real-time control over device behavior and communication
patterns.

Furthermore, the emulation configuration was designed with a multi-layered network
topology, comprising more than 200 nodes to represent different types of IoT devices and
network nodes. The link characteristics were configured to simulate real-world conditions,
with bandwidths ranging from 10 Mbps for low-power IoT devices to 1 Gbps for critical
infrastructure nodes like public Wi-Fi hotspots. Latency varied between 5 and 200 ms
depending on the distance between nodes and the type of communication being emulated.
Packet loss rates were intentionally varied between 0% and 5% to study the system’s
resilience under different network conditions. Traffic was generated using ‘iperf and TC
(traffic control)’ utility to emulate different traffic patterns, such as constant bit rate for
routine operations and bursty traffic during periods of high demand. Multiple attack
scenarios, including DDoS§, botnet propagation, and malware injection, were emulated to
stress-test the system. Each attack was configured with varying intensities and durations to
assess how the model adapts to different attack vectors to ensure a thorough evaluation of
the intrusion detection system’s robustness.

Network analyzers such as Wireshark and tcpdump were used to monitor behavior and
collect data from the emulated network. These tools captured real-time traffic from IoT
devices and saved packet data for analysis. To track server performance, tools (i.e., iftop
and htop) monitored CPU load, memory usage, and network bandwidth during attack
simulations. Custom Python scripts automated the collection and organization of network
metrics, providing a clear view of both normal and malicious traffic patterns.

For data visualization and analysis, PowerBI was employed to generate time-series
graphs and heatmaps that allowed for a clear understanding of traffic patterns and
anomaly detection outcomes. This tool was used to provide real-time dashboards that
displayed key performance metrics, including attack detection rates, false positive rates,
and network throughput during the experiments. The collected data was analyzed using a
combination of Python’s statistical libraries (NumPy and SciPy) and machine learning
framework (i.e., TensorFlow and PyTorch) to ensure that the detection model was
evaluated with high precision. This combination of tools provided comprehensive insights
into the system’s performance which enabled us to effectively evaluatively the SAE-GRU’s
ability to detect and respond to various forms of IoT botnet attacks.

Performance evaluation

As it is evident from the preceding section’s discussion, the evaluation methodology used
to assess the performance of the SAE-GRU model was rigorous and multifaceted. It aimed
to provide a thorough understanding of its effectiveness in detecting IoT botnet activities.
For evaluation, we employed metrics such as accuracy, precision, recall, F1-score, and the
area under the receiver operating characteristic curve (AUC). These metrics were selected
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¢ False positive rate measures the propor-
tion of benign instances incorrectly
classified as threats, which is a critical
factor in evaluating the reliability of
applied IDS. A low false positive rate
reduces unnecessary alerts, ensuring that
security mechanisms focus on actual
threats rather than misclassifications.

for their ability to measure the correctness of the model’s predictions while balancing the
detection of true positives against the minimization of false positives®. Thus:

a. Precision measured the proportion of true positive detections among all positive
predictions, ensuring that false positives (benign traffic misclassified as malicious) are
minimized.

b. Recall, on the other hand, measured the proportion of actual attacks that were correctly
detected, which is critical for ensuring that no malicious behavior goes undetected.

c. The F1-score provided a harmonic mean between precision and recall which offered a
balanced metric in scenarios where both false positives and false negatives are of
concern.

d. The area under the ROC curve (AUC) was used to evaluate the model’s ability to
distinguish between normal and malicious traffic over a range of thresholds that
provided a more nuanced view of the classifier’s performance.

Hence, the accuracy of the model is defined as Eq. (12):

| TP + TN
ccuracy —
) T TP+ TN + FP + EN

(12)

where TP represents true positives TN true negatives, FP false positives, and FN false
negatives. Accuracy is a simple metric to assess overall performance but can be misleading
in imbalanced datasets. To address this, precision is defined as Eq. (13):

Precisi TP (13)
recision = ———.
TP + FP
Recall, which reflects the proportion of true positives among all actual positives, is

expressed as: Eq. (14):

TP
TP+ FN~

The F1-score combines precision and recall into a single metric, especially useful in

Recall = (14)

scenarios where both false positives and false negatives carry significant costs. It is defined
as:

Precision x Recall
F1 — score =2 X — ) (15)
Precision + Recall

Eventually, the AUC measures the model’s ability to distinguish between classes
(malicious vs. normal traffic) across different thresholds, with values closer to ‘1" indicating
better performance.

Hereby, Table 7 presents the performance evaluation of the proposed model using
ten-fold cross-validation to demonstrate its effectiveness in detecting IoT botnet activities.
The results indicate that the model achieves consistently high accuracy, precision, recall,
and F1-score across multiple iterations that is indicative of its robustness in differentiating
between normal and malicious network traffic. The low false positive rate confirms the
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Table 7 Performance metrics of SAE-GRU intrusion detection model in IoT botnet detection across
ten-fold cross-validation.

Iteration# Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC
1 98.5 97.8 98.2 98.0 0.992
2 98.7 98.1 98.5 98.3 0.993
3 98.6 98.0 98.3 98.1 0.992
4 98.8 98.3 98.6 98.4 0.994
5 98.7 98.2 98.5 98.3 0.993
6 98.6 98.0 98.4 98.2 0.992
7 98.5 97.9 98.3 98.1 0.992
8 98.7 98.2 98.5 98.3 0.993
9 98.6 98.0 98.4 98.2 0.992

10 98.8 98.3 98.6 98.4 0.994

Average 98.65 98.11 98.43 98.27 0.993

model’s ability to minimize erroneous classifications, which is essential for real-world
deployment.

To establish a comprehensive and meaningful evaluation of the proposed SAE-GRU
architecture, reference models Hazman et al. (2024) to Shareef et al. (2024) were carefully
selected based on their methodological diversity, real-world applicability, and relevance to
the evolving demands of intrusion detection in IoT-centric smart city environments. These
approaches represent state-of-the-art strategies that utilize advanced deep learning,
optimization algorithms, and hybrid techniques to address the complex landscape of IoT
security. Models such as LSTM-AE with feature engineering (Hazman et al., 2024) and
CANFIS-MDRL (Almasri ¢ Alajlan, 2023) incorporate temporal modeling and adaptive
inference, which are directly comparable to the GRU component of our architecture,
making them suitable benchmarks for assessing temporal learning efficacy. Similarly,
frameworks that use bio-inspired optimization—such as FGOA-kNN (Taher et al., 2023),
BBO-ERNN (Manickam et al., 2023), and ZOA-DGAN (Shareef et al., 2024)—emphasize
dimensionality reduction and adaptive feature selection, aligning closely with the SAE'’s
role in our model. These models were evaluated using comparable datasets (e.g., BoT-IoT,
NSL-KDD, N-BaloT, and IoT-23), which supports direct comparison across performance
metrics like accuracy, recall, and AUC.

A 360-degree (i.e., all inclusive, as exhibited in Table 7, and Figs. 3 to 8) performance
evaluation was conducted using cross-validation technique to ensure the robustness and
generalization of the SAE-GRU model. A k-fold cross-validation approach was applied,
where the dataset was divided into k subsets, and the model was trained on k — 1 folds
while the remaining fold was used for testing. This process was repeated k times to average
the performance across all subsets to provide a comprehensively reliable estimate of the
model’s effectiveness. The model was tested on various datasets, including synthetic botnet
traffic generated during the emulation and real-world IoT botnet datasets (i.e., described in
Table 2). The results were compared against baseline models, such as traditional machine
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Figure 3 Accuracy distribution across models. This box plot illustrates the accuracy distribution across
various machine learning models used for intrusion detection in IoT systems. Each box represents the
interquartile range (IQR) with the horizontal line inside indicating the median accuracy. The whiskers
extend to the minimum and maximum values within 1.5 times the IQR, while the cross symbols denote
the mean accuracy. The SAE_GRU model shows the highest median and least variance, reflecting its
consistent performance compared to other models such as AdaBoost_Boruta and CANFIS_MDRL,
which display wider variability in accuracy. Full-size K&l DOT: 10.7717/peerj-cs.2869/fig-3

learning-based IDS and deep learning models like LSTM networks, to validate the superior
performance of the SAE-GRU model. For instance:

Figure 3 illustrates the accuracy distribution across various machine learning models for
intrusion detection which highlights their performance variations. Among the models,
SAE-GRU exhibits the highest median accuracy with minimal variance that indicates its
robust and consistent performance. Other models demonstrate broader accuracy ranges,
reflecting higher sensitivity to data variability or parameter configurations. The SAE-GRU
model achieves better outcome due to its integration of Stacked Autoencoders for efficient
feature extraction, gated recurrent units for capturing temporal patterns, and robust
training strategies that enhance generalization while minimizing noise, overfitting, and
computational complexity.

The evaluation of accuracy, precision, recall, and F1-score in Fig. 4 emphasized the
robustness of SAE-GRU over alternative methodologies. By focusing on feature
compression and temporal pattern recognition, SAE-GRU demonstrated reduced variance
across performance metrics which indicates higher generalizability in real-world IoT
systems.
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Figure 4 Average of accuracy, precision, recall, and fl-score per model. The average performance metrics—AUC, F1-score, recall, precision, and
accuracy—across different machine learning models for intrusion detection. Each color represents a specific metric, with blue for AUC, purple for
F1-score, green for recall, red for precision, and dark-blue for accuracy. SAE_GRU shows consistently high values across all metrics, indicating its
superior performance compared to models like AdaBoost_Boruta and CANFIS_MDRL, which exhibit relatively lower and less consistent results.

Full-size k&l DOTI: 10.7717/peerj-cs.2869/fig-4

Figure 5 highlighted the trade-offs between computational efficiency and scalability to
showcase the ability of SAE-GRU to maintain optimal performance in
resource-constrained environments through its dimensionality reduction and parallel
processing capabilities. The scatter plot revealed that traditional models experienced
significant scalability bottlenecks, whereas SAE-GRU effectively balanced throughput and
real-time processing demands. Here, it is worth noting that the threshold values for
classification were determined through empirical tuning using the receiver operating
characteristic curve analysis where the optimal threshold was selected based on the highest
true positive rate with the lowest false positive rate. A paired t-test (i.e., comparison of the
means of two related datasets to determine if there is a statistically significant difference
between them) was conducted to compare the SAE-GRU model against baseline models,
which demonstrated a statistically significant improvement in detection accuracy with a
p-value below 0.05.

Insights into the sensitivity and specificity of models were revealed by mapping (i.e., as
illustrated in Fig. 6) false positive and false negative rates. The SAE-GRU model achieved
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Figure 5 Computational efficiency vs. scalability index. The relationship between computational efficiency and scalability index for different
machine learning models, with each model represented by a unique color. Cyan-Blue dots represent AdaBoost_Boruta, tealish-blue for CAN-
FIS_MDRL, orange for Dual Hannel GAN_ZON, purple for Elman Recurrent Neural Network pink for FGOA_KNN, purple-haze for
LSTM_Autoencodes and green for SAE_GRU. SAE_GRU shows the highest computational efficiency and scalability, clustering in the top-right
corner, while other models are spread across lower ranges, indicating varying levels of scalability and efficiency.

Full-size K&l DOT: 10.7717/peerj-cs.2869/fig-5

low false classification rates through its adaptive gating mechanisms that prioritized critical
traffic patterns. This approach ensured accurate anomaly detection within the complexity
of heterogeneous IoT traffic.

Figure 7 underscored the model’s adaptability across diverse datasets, with the
SAE-GRU architecture achieving high AUC values irrespective of dataset-specific traffic
characteristics. Its superior performance on datasets like IoT-23 (Garcia, Parmisano & Jose
Erquiaga, 2020) and MedBIoT (Guerra-Manzanares et al., 2020) confirmed its resilience to
evolving attack vectors and rare traffic anomalies. The selection of IoT-23 and MedBIoT
datasets was guided by their comprehensive representation of real-world IoT botnet
attacks, diverse attack vectors, and protocol-specific traffic patterns. For example, [oT-23
provides labeled network traffic from various IoT malware families that allow for a
structured evaluation of intrusion detection techniques. The dataset includes normal and
malicious traffic, which aids in training deep learning models for anomaly detection.
Whereas MedBIoT dataset contains a large collection of botnet traffic from multiple IoT
devices simulating real-world infection scenarios with different attack intensities. The
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Figure 6 Positive rate vs. false negative rate by model. The false positive rate and false negative rate for various machine learning models, with each
model represented by a unique color. Cyan-Blue represent AdaBoost_Boruta, tealish-blue for CANFIS_MDRL, orange for Dual_Hannel GAN_ZON,
purple for Elman Recurrent Neural Network pink for FGOA_KNN, purple-haze for LSTM_Autoencodes and green for SAE_GRU. SAE_GRU shows a
cluster in the lower-left region with the lowest false positive and false negative rates and demonstrates its superior accuracy and minimal error rates

compared to the more dispersed distributions of other models.

Full-size kal DOT: 10.7717/peerj-cs.2869/fig-6

inclusion of applied datasets strengthened the model’s ability to generalize across varying
threat landscapes. Their diverse attack signatures and device heterogeneity made them
well-suited for evaluation (i.e., validating the performance of the proposed SAE-GRU
model).

Figure 8 illustrated the multi-dimensional evaluation of performance metrics in a
consolidated manner, with the radar chart providing a holistic view of the SAE-GRU’s
capability to outperform baseline models across all critical dimensions. This analysis
demonstrated that SAE-GRU’s integration of stacked autoencoders and GRUs not only
reduced noise in high-dimensional data but also captured intricate sequential patterns that
were often overlooked by other models. By ensuring high detection accuracy while
maintaining efficiency, SAE-GRU emerged as a suitable solution for large-scale IoT
networks.

Feature importance analysis

Feature importance analysis was conducted to identify which features contributed most
significantly to the model’s decisions. This was achieved through feature ablation studies,
where individual features were systematically removed from the dataset, and the model’s
performance was re-evaluated. A substantial drop in performance upon the removal of a
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Figure 7 AUC across datasets for each model. The median AUC values of various machine learning
models across multiple datasets, with each model represented by distinct colors. SAE_GRU, marked in
green, consistently outperforms others across all datasets, maintaining the highest AUC values. Other
models, such as LSTM_Autoencoders in purple-haze and CANFIS_MDRL in tealish-blue, show fluc-
tuations in performance across datasets and highlight variability in their ability to adapt to different data
environments. Hereby, cyan-blue dots represent AdaBoost_Boruta, tealish-blue for CANFIS_MDRL,
orange for Dual Hannel GAN_ZON, purple for Elman Recurrent Neural Network pink for
FGOA_KNN, purple-haze for LSTM_Autoencodes and green for SAE_GRU.

Full-size K&] DOT: 10.7717/peerj-cs.2869/fig-7

particular feature indicated its importance in the detection process. Herewith,
interpretability technique, SHAP (SHapley Additive exPlanations), values were employed
to provide a more granular understanding of feature contributions. SHAP values
quantified the impact of each feature on the model’s output by attributing the change in
prediction to each feature. This approach provided a deeper understanding of how specific
network traffic characteristics influenced the detection of botnet activities. The insights
from this analysis revealed that features such as packet size, traffic volume, and protocol
usage held the most significant impact on detection accuracy. These findings offered
valuable information for refining the intrusion detection system in future iterations.

Comparative evaluation with recent IDS models

As evident from Figs. 3-8, in order to validate and contextualize the practical contributions
of the SAE-GRU model, a comparative evaluation was conducted against recently
proposed intrusion detection frameworks from relevant literature (e.g., LSTM (Hazman
et al., 2024), CANFIS (Almasri & Alajlan, 2023), FGOA_KNN (Taher et al., 2023), ERNN
(Manickam et al., 2023), AdaBoost (Hazman et al., 2023), DGAN (Shareef et al., 2024),
etc.). The comparison considered fundamental metrics including accuracy, precision,
recall, and F1-score across prominent intrusion datasets such as BoT-IoT (Alosaimi ¢
Almutairi, 2023), Edge-11oT (Nuaimi et al., 2023), and NSL-KDD (Zakariah et al., 2023).
Unlike conventional models that employed singular methods such as basic recurrent
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Figure 8 Variance performance metrics. The variance of performance metrics—accuracy, precision, recall, F1-score, and AUC—across different
machine learning models. Each color represents a specific variance metric, with light blue for accuracy, dark blue for precision, orange for recall,
purple for F1-Score, and pink for AUC. SAE_GRU shows minimal variance across all metrics, indicating its stability and consistent performance,
while other models, such as CANFIS_MDRL and Dual_channel GAN_ZON, exhibit higher variance, reflecting more fluctuation in their predictive
reliability. Full-size K&l DOT: 10.7717/peerj-cs.2869/fig-8

neural networks or static feature extraction, our approach uniquely integrated stacked
autoencoders with GRU layers for robust temporal dependency handling. While recent
methodologies primarily relied on generalized pruning or naive quantization, the proposed
SAE-GRU model adopted gradient-sensitivity-based pruning coupled with
mixed-precision quantization, thus optimizing model compactness and real-time
detection capability for edge computing scenarios. Compared to reported accuracy levels
between 96% and 98.7% (Hazman et al., 2024; Almasri ¢ Alajlan, 2023; Taher et al., 2023;
Manickam et al., 2023; Hazman et al., 2023; Ahmed, Beyioku & Yousefi, 2024; Shareef et al.,
2024), proposed SAE-GRU model exhibited strong performance across key evaluation
metrics, with high accuracy (98.65%), precision (98.11%), recall (98.43%), F1-score
(98.27%), and AUC (0.993) which reflects its effectiveness in identifying IoT botnet activity
while maintaining low false positive and false negative rates. Its hybrid design—combining
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SAEs for dimensionality reduction and GRUs for temporal pattern recognition—enabled
consistent classification and improved generalization. Optimization methods contributed
to efficient real-time processing and reduced resource consumption. Unfortunately, the
model’s dependence on labeled data may limit its adaptability to novel or evolving threats
in completely unknown traffic scenarios. Furthermore, its layered structure, though
streamlined, still imposes a moderate computational load that can hinder deployment in
extremely resource-limited IoT environments.

CONCLUSIONS

This research addressed the critical challenge of securing smart city infrastructures against
botnet-driven intrusions by introducing a deep learning-based hybrid model ‘SAE-GRU’
which is specifically designed to operate effectively within the resource and scalability
constraints of IoT environments. Methodologically, the model integrates a Stacked
Autoencoder for high-dimensional feature compression with a gated recurrent unit
network to capture temporal dependencies in network traffic. This combination allows for
both efficient feature extraction and sequential pattern recognition, which are essential for
detecting low-and-slow botnet behaviors that traditional models frequently miss. In
contrast to existing works that rely solely on recurrent networks or static classifiers
(Hazman et al., 2024; Almasri & Alajlan, 2023; Taher et al., 2023; Manickam et al., 2023;
Hazman et al., 2023; Ahmed, Beyioku & Yousefi, 2024; Shareef et al., 2024), SAE-GRU
benefits from model pruning and quantization techniques that significantly reduce
computational load without sacrificing detection accuracy. Sparse matrix multiplication &
truncated backpropagation through time further support low-latency, and real-time
inference on edge devices. Compared to the referenced models, which achieve detection
accuracies in the range of 96-99%, SAE-GRU consistently delivers accuracy above 98.6%
with superior precision and recall, while maintaining low false positive rates even under
diverse traffic scenarios. The model outperforms conventional LSTM- and ensemble-based
IDS by offering a structurally optimized and empirically validated solution that generalizes
well across real-world datasets such as IoT-23, MedBIoT, and BoT-IoT. These results
affirm that SAE-GRU not only advances the detection capabilities in smart city security but
also offers a scalable and computationally efficient framework suitable for deployment in
heterogeneous, high-volume IoT networks.

Recommendations for future studies

Future studies may focus on enhancing computational efficiency, improving adaptability
to zero-day attacks, and integrating decentralized architectures to strengthen resilience
while evaluating the model’s applicability across industrial IoT and healthcare systems.
Investigating how the SAE-GRU model performs under varying network loads, diverse
device configurations, and sector-specific security challenges will provide deeper insights
into its generalizability and optimization for real-world deployments.
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