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ABSTRACT

Financial market prediction faces significant challenges due to the complex temporal
dependencies and heterogeneous data relationships inherent in futures price-spread
data. Traditional machine learning methods struggle to effectively mine these
patterns, while conventional long short-term memory (LSTM) models lack focused
feature prioritization and suffer from suboptimal hyperparameter selection. This
article proposes the Improved Grey Wolf Optimizer with Multi-headed Self-
attention and LSTM (IGML) model, which integrates a multi-head self-attention
mechanism to enhance feature interaction and introduces an improved grey wolf
optimizer (IGWO) with four strategic enhancements for automated hyperparameter
tuning. Benchmark tests on optimization problems validate IGWO’s superior
convergence efficiency. Evaluated on real futures price-spread datasets, the IGML
reduces mean square error (RMSE) and mean absolute error (MAE) by up to 88%
and 85%, respectively, compared to baseline models, demonstrating its practical
efficacy in capturing intricate financial market dynamics.

Subjects Computational Biology, Artificial Intelligence, Data Mining and Machine Learning
Keywords Futures price-spread forecasting, LSTM network, Hyperparameter optimization,
Attention mechanism

INTRODUCTION

The prosperity of every developing economy, nation, or community in the 21st century
depends on their market economies, particularly with the financial market serving as the
central point (Nassirtoussi et al., 2014). Consequently, an extensive study and
understanding of the financial market are both crucial and indispensable. Predicting
financial markets is extremely challenging due to uncertainties such as overall economic
conditions at domestic and international levels, social factors, and political events (Zhao
et al., 2023; Song et al., 2023; Kehinde, Chan & Chung, 2023). However, compared to other
high-risk, high-reward financial derivatives, futures price-spread arbitrage can achieve a
low-risk, high-reward profile. Additionally, futures feature a two-way trading mechanism,
high leverage, flexible trading hours, and direct market responses. These characteristics
provide the futures market with more trading opportunities and the potential for higher
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returns compared to the financial derivatives market. Hence, futures trading plays a pivotal
role in the economic and financial sphere, exerting influence on both banking institutions
and the market for financial derivatives (Su et al., 2023; Mohsin ¢ Jamaani, 2023; He et al.,
2023). Historically, futures spread arbitrage has appealed to numerous financial experts
due to its supportive capacity and consistent returns. It is worth noting that even a slight
fluctuation in the price spread of certain commodities can lead to substantial profits or,
conversely, considerable investment and economic losses. The trend of futures prices is
influenced by numerous factors, such as supply-demand dynamics, seasonal variations,
natural calamities, and policy fluctuations. Additionally, there is a potential connection
between the prices of different commodities. For example, if the future price of raw
materials drops significantly, the prices of manufactured goods for processing
enterprises may also decrease. Such price changes can be profitable for investors

(Lang, 1995). Consequently, forecasting commodity price spreads can aid financial
investors in formulating sound investment strategies and minimizing potential

risks. However, the inherent complexity of accurately predicting price-spread trends is
widely regarded as a highly demanding and difficult endeavor (Li & Song, 2023; Deng et al.,
2023; Cheung et al., 2023).

Traditional finance has formed an abstract theoretical framework composed of theories
such as Portfolio Theory (PT), Capital Asset Pricing Model (CAPM), Arbitrage Pricing
Theory (APT), Efficient Market Hypothesis (EMH), and the Black-Scholes (BS) option
pricing model. The assumptions of mainstream economics are based on absolute
rationality, yet human decision-making inevitably involves emotional factors. Hence, with
the advancement of machine learning, investors have embarked on endeavors to apply it
within the realm of finance to assist them in making rational decisions. For decades,
research has been conducted on forecasting futures price-spread trends and analyzing its
influencing factors, resulting in various proposed approaches. Traditional time-series
methods, including multiple linear regression, along with the widely recognized
Auto-Regressive Integrated Moving Average (ARIMA) model, have been employed to
address the challenge of futures price-spread prediction (Ji et al., 2019; Wang ¢» Zhang,
2020). In Ray et al. (2023), proposed an enhanced hybrid ARIMA-long short-term
memory (LSTM) model that leverages a random forest for lag selection. The ARIMA
component estimates the mean effect, while the Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) model, applied to the ARIMA residuals, captures the
volatility of the series. Alongside traditional econometric and time-series methods,
machine learning techniques have been deployed to uncover the intricate patterns within
futures prices (Li ¢» Song, 2023; Zhao, 2021; Singh et al., 2023). Kuo ¢ Chiu (2024), in
article, devised a novel predictive model that integrates jellyfish search and particle swarm
optimization (HJPSO) to fine-tune support vector machine (SVM) parameters, with
SVM’s classification capabilities assessed through comparative experiments. Meanwhile,
financial researchers employed traditional statistical methods and signal processing
techniques to analyze stock market data. However, both statistical methods and machine
learning approaches often struggle to capture and model the nonlinear and complex
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dynamics within futures price-spread time series. Therefore, these methods are all
inadequate for the task of futures price-spread prediction.

In recent years, deep learning has been increasingly applied in various fields,
including time-series forecasting (Wang et al., 2023; Lin et al., 2023; Stefenon et al., 2023;
Kim, Kang & Kang, 2023). These technologies have demonstrated high performance when
dealing with nonlinear and highly volatile time series. Among the most popular, efficient,
and widely utilized deep learning approaches are long short-term memory (LSTM)
networks and convolutional neural networks (CNNs). Li, Guan ¢ Liu (2023) in article
proposed a model based on CNN and LSTM neural networks to account for
spatiotemporal correlations and external features in flight delay prediction. The CNN is
utilized to learn spatial correlations, while the LSTM captures temporal correlations to
enhance prediction accuracy. Wu et al. (2023) used the array as the input image of the
CNN framework, extracting certain feature vectors through the convolutional layer and
the pooling layer, and using them as the input vector of LSTM. The fundamental concept
behind using these models for time-series problems lies in the fact that LSTM models,
thanks to their unique architecture, are adept at capturing sequential pattern information.
Conversely, CNN models excel at filtering out noise from input data and extracting
valuable features that significantly contribute to the final prediction model. Although
LSTM networks are specifically designed to handle temporal correlations, they tend to
exploit only the features available in the training set. To overcome this issue, integrating
the strengths of different deep learning techniques can enhance the predictive performance
of time-series models. However, integrating multiple models introduces the challenge of
selecting additional hyperparameters.

Metaheuristic algorithms are strategy-based techniques that intelligently explore the
search space of optimization problems to discover solutions that are close to optimal.
Consequently, metaheuristics can be employed to optimize the hyperparameters of LSTM
models, offering greater efficiency than traditional optimization algorithms. Ren et al.
(2021) in article utilized the Squirrel Search algorithm to optimize the weights of the neural
network, applying the optimized model to stock price prediction. Guo ¢ Wang (2024)
utilized genetic algorithm and particle swarm optimization to optimize the Back
Propagation (BP) neural network model, achieving promising results in stock price
prediction as well. Experiments demonstrated that the proposed method achieves accurate
estimations under various conditions. The advantage of metaheuristic algorithms lies in
their ability to explore a larger search space and efficiently find the optimal global solution,
making them highly suitable for optimizing the numerous hyperparameters in neural
networks. For instance, when dealing with complex models such as LSTM networks,
traditional grid search or random search methods may be inefficient in handling such a
vast number of hyperparameters. In contrast, metaheuristic algorithms can leverage their
intelligent search strategies to find superior combinations of hyperparameters in a shorter
amount of time, thereby enhancing the performance and accuracy of neural networks.
However, even in these demanding scenarios, metaheuristic algorithms can manage this
complexity and noise to identify the best hyperparameters (Giilmez, 2023). However,
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traditional metaheuristic algorithms often fall into local optima, thereby failing to find the
global optimal solutions.

Existing approaches to futures price-spread forecasting exhibit three critical limitations.
First, conventional machine learning models fail to capture nonlinear interdependencies
between heterogeneous data sources, leading to oversimplified representations of market
microstructure. Second, while LSTM-based methods partially address temporal
dependency modeling, their fixed window-based processing often overlooks irregularly
spaced critical events, and their monolithic attention mechanisms struggle to prioritize
concurrent multi-scale market signals. Third, hyperparameter optimization in current
frameworks predominantly relies on grid search or vanilla evolutionary algorithms, which
lack the efficiency to handle high-dimensional parameter spaces in dynamic trading
environments—resulting in models that rapidly become obsolete during market regime
shifts. These shortcomings collectively hinder real-world deployment, particularly in
scenarios requiring adaptive responses to volatile, high-frequency data streams.

To tackle the aforementioned issues, this article proposes a hybrid forecasting model
that leverages the strengths of deep learning techniques. The model employs a multi-head
self-attention mechanism to capture extensive dependencies and learn the intrinsic
representations of time-series data. Additionally, an enhanced Grey Wolf Optimizer is
introduced in this article to dynamically optimize the model parameters, thereby
enhancing the model’s predictive capabilities. By analyzing historical futures price-spread
data, the model is able to predict the price-spread at the next time point and continuously
improve its predictive accuracy through the refined GWO.

This work makes the following key contributions:

(1) To tackle the issue of the GWO easily getting trapped in local optima, four
enhancement methods are proposed in this article. Through rigorous testing using
Congress on Evolutionary Computation (CEC) benchmark functions, the superiority
of the enhanced algorithm is demonstrated.

(2) To address the challenge of model parameter selection, this study integrates swarm
optimization algorithms to dynamically determine appropriate parameters for the
model under varying conditions, leading to a significant enhancement in the model’s
predictive capabilities. The improved model is abbreviated as IGML (Improved Grey
Wolf Optimizer with Multi-headed Self-attention and LSTM) in the following text.

(3) To mitigate the problem of gradient explosion in LSTM models, a multi-head self-
attention mechanism is introduced in this article. Experimental results indicate
improvements in key performance metrics such as root mean square error (RMSE),
mean absolute error (MAE), and coefficient of determination (R?), validating the
efficacy of the proposed approach.

The remainder of this article is divided into several sections: “Methodology” introduces
in detail the proposed deep learning model and the improved metaheuristic algorithm.
“Experiments” describes the data collection process and the simulation experiments
conducted. “Conclusion” presents the experimental conclusions and proposes some ideas
for improvement.
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METHODOLOGY

IGML model

The research presented an IGWO-LSTM network and a multi-head self-attention
mechanism for futures price-spread forecasting. Figure 1 depicts the futures price-spread
forecasting framework.

The prediction model comprises three pivotal components: the feature decomposition
layer, the LSTM neural network layer, and the attention mechanism layer. Additionally,
the parameters of the LSTM network layer are optimized using the Improved Grey Wolf
Optimizer.

In this framework, data features are first preprocessed and selected, and then the
processed features are input into the LSTM for training and prediction. To capture the
relationships between features and highlight important features, a multi-head
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self-attention mechanism layer is added after the LSTM layer. Finally, the prediction
results are output through a fully connected layer. To select appropriate hyperparameters
for the model, the GWO is introduced for parameter optimization. To address the issues of
slow convergence and susceptibility to local optima in GWO, this article proposes four
improvement measures.

The IGML model, which integrates LSTM with a multi-head self-attention mechanism
and utilizes IGWO, exhibits significant advantages in handling complex temporal
dependencies in financial data. The LSTM network is inherently adept at capturing
long-term dependencies in sequential data, effectively addressing the gradient vanishing
and gradient explosion issues faced by traditional recurrent neural networks (RNNs) when
processing long sequences through its unique gating mechanisms. The incorporation of
the multi-head self-attention mechanism further enhances the model’s ability to focus on
information from different positions in the sequence, enabling it to precisely capture
nuanced and crucial temporal dependency features in financial data. Additionally, the
application of IGWO for hyperparameter tuning optimizes key parameters within the
LSTM and multi-head self-attention mechanisms, further improving the model’s
generalization ability and prediction accuracy.

The subsequent discourse furnishes an elaborate exposition of each constituent element
comprising the predictive model.

Proposed model
Long short-term memory network
The LSTM neural network, introduced by Hochreiter ¢» Schmidhuber (1997), is RNN
featuring nonlinear gated units and memory cells that facilitate the capture of long-term
dependencies in sequential data (Greff et al., 2016). This capability is achieved through
selective information processing mechanisms, including reading, writing, and forgetting,
which ensure that only pertinent information is retained within the memory cells.

The LSTM network regulates the flow of information through its memory cells using
memory cells and three gates. The specific structure is illustrated in Fig. 2.

The mathematical formulas for various operations performed in LSTM are shown in
Egs. (1) to (8).

fi = o(WyX; + Uhy—y + by) (1)
C; = tanh < (WX, + U.h,_, + b,) (2)
iy = a(WX; + Uh;_1 + b;) (3)
Co=fix Ci+i x C (4)
O; = a(WoX; + Uphy 1 + by) (5)
h; = O, x tanh(C;) (6)
1
o(x) = Tre (7)
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e —e
tanh(x) = e-e?) (8)
(e*+e¥)

o(x) is log-sigmoid activation function and tanh(x) is the hyperbolic tangent activation
function.

Multi-head self-attention

To capture the relationships between features and highlight important information, this
article introduces a multi-head self-attention mechanism within a three-layer LSTM
network. Zhou et al. (2025) integrated large language models (LLM), linear transformers
(LT), and convolutional neural networks to enhance stock price prediction using historical
market data. By integrating multiple self-attention modules that perform feature learning
in distinct state subspaces, the multi-head structure significantly enhances the model’s
ability to learn long-term dependencies. Essentially, multi-head attention (MHA) achieves
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superior prediction performance through the interplay among its individual heads,
whereas a single-head structure tends to focus solely on important features at certain
stages, neglecting others. Compared with traditional recurrent layers, self-attention can
process all elements in a sequence in parallel and directly capture dependencies between
any two elements in the sequence, which helps the model to more accurately understand
the global structure of the data. Furthermore, by calculating relevance weights between
different elements, self-attention dynamically adjusts the level of attention to different
information, enhancing the model’s flexibility and expressive power.

By designating 0 = {0y, ...,0,}" € R'™%n as the input sequence and B = {by, ..., b;}"
€ R™¥n as the output sequence, the configuration of the masked Multi-Head Attention
(MHA) module is depicted in Fig. 3. The computational steps involved in the masked
MHA are outlined in Egs. (9) to (13).

i = 0NV (0) (W) = ()W (g e ot < RO<) ®

b (kT
ah :qi (kz) (10)

it \/El;
b = iSoft max(affr) Vi (11)
=1

h(gh\T
bf’zSoftmax(%) Vihe{1,...,P}) (12)
b = linear{concat (b}, b7, ...,b} ) } = concat (b}, b7, ..., b)) W°. (13)

The attention mechanism allocates varied weights to input features, thereby
emphasizing crucial factors, mitigating the impact of weakly correlated factors, capturing
correlations between multiple variables and prediction outcomes, and determining
long-range dependencies within the input sequence. This approach optimizes the network
structure. In contrast to traditional factor selection and uniform weight assignment, the
attention mechanism enhances prediction performance by emphasizing important
information through strategic weight allocation.

Algorithmic approaches and enhancements

Grey wolf optimizer

To tackle the problem of selecting optimal model parameters, Emary, Zawbaa & Grosan
(2017) proposes the GWO algorithm, which mimics the natural behavior of grey wolves.
The GWO algorithm was selected as the core methodology in this study due to its unique
bio-inspired mechanisms and efficient optimization performance. By simulating the social
hierarchy and cooperative hunting behavior (encompassing tracking, encircling, and
attacking phases) of grey wolf packs, this algorithm inherently achieves dynamic
equilibrium between global exploration and local exploitation. The leadership hierarchy
guides the population toward potential optimal regions, while subordinate wolves
maintain search diversity through information sharing, effectively mitigating premature
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convergence in GA and local optima entrapment in PSO. Compared with conventional
algorithms, GWO requires only the adjustment of population size and iteration count,
exhibiting a streamlined parameter configuration that substantially reduces tuning
complexity. Furthermore, experimental results demonstrate that GWO achieves
accelerated convergence rates and enhanced solution precision in high-dimensional,
nonlinear optimization problems. Its hierarchical collaboration mechanism proves
particularly advantageous for multimodal function optimization scenarios, thereby
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providing a robust and efficient solution framework for addressing complex engineering
challenges. The mathematical formulas are presented in Eqs. (14) to (21).

D =|C x Xp — X(t)| (14)
X(t+1)=Xp(t) —A XD (15)
A=2xAxr —a(t) (16)
C=2xn (17)
a(t) :2—% (18)
D, = |C x X, — X(1)|

Dg =|C, x X — X(1)] (19)

Ds = |C3 X X5 —X(t)|

Xi1(t) = X, (t) — Ain x Dy(t)

Xin(t) = Xp(t) — A x Dg(t) (20)

Xi3(t) = X5(t) — Az x Ds(t)

X (t) + Xin(t) + Xis(2)
3

While the GWO algorithm is straightforward and suitable for various applications, it

X(t+1)=

(21)

faces challenges such as limited population diversity, an uneven balance between
exploitation and exploration, and premature convergence (Heidari ¢» Pahlavani, 2017).
Additionally, the position update equation in GWO excels at exploitation but falls short in
achieving feasible solutions. To overcome these limitations, this article introduces an
enhancement strategy.

Slime mold algorithm
To address the tendency of GWO to converge prematurely to local optima, this article
proposes a hybrid approach combining GWO with the Slime Mold Algorithm (SMA).
SMA is a new meta-heuristic algorithm proposed by Li et al. (2020). Compared to other
intelligent optimization algorithms, slime mold algorithm has advantages such as simple
principles, ease of implementation, few adjustable parameters, and strong optimization
capabilities.

All individuals within the swarm are initialized randomly and uniformly across the
entire domain (LB, UB):

X; =r(UB—LB) + LB (22)
r, X (UB — LB) + LB, rn<z
Xi(t+1) = Xp+vp X [W x Xa(t) — Xp(t)], r3<p (23)
ve X Xi(t), p<nrn<l1
t
a= tanh(l — —) (24)
Max_iter
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t

b=1—-——— (25)

Max _iter

p = tanh|S; — DF| (26)

L4y x log( 1422 =St diti
. 4 X log bF — wE )’ condition

Wsi(l) = (27)

1—ryxlo 1+H others
428 N T —wE )
S; = sort(S). (28)
Improvement strategy

To enhance the global search capability of GWO and accelerate its convergence speed, this
article proposes the following three improvement strategies.
(1) NSGA-II improved population initialization

NSGA-II was originally proposed by Deb et al. (2002), with the basic definition and
construction:

Suppose G; is a s-dimensional Euclidean space, where r € G, then P, (i) = (ryi1, 12i2,
r3i3, ..., Tyin), i = 1,2,3, ..., n. n represents the sample size, P, (i) represents the set of
non-dominated solutions, and r refers to a non-dominated solution, usually taken as
r= {2 cos%ﬂji, 1<i<ml1<j< s} orr= {eji}. Here, ] is the smallest prime number
satisfying (k — 3)/2 > 0.

Step 1: Calculate r value, r = (ry, 12,13, ..., 7,), where = (2 cos(%”j)m,-, 1), 1<j<n.
n represents the dimension, m represents the population size, and m; represents the i-th
individual.

Step 2: Construct a set of optimal points with a quantity of m: P,(i) = {(r1i1, 212, ...,
Tpin)}, i=1,2,3,...n

Step 3: Map P, to the feasible domain where the population resides:

X{ = a; + P,(i) (b; — a;). Here, a; represents the lower bound of the current dimension,
and b; represents the upper bound of the current dimension.

Assuming a population size of 100, the comparison between the initialization of the
optimal point set population and the random initialization population is shown in the
Fig. 4.

(2) Nonlinear convergence factor variation

In vanilla GWO, when |A| > 1, the wolf population searches for potential prey
throughout the entire search domain; when |A| < 1, the wolf population gradually
surrounds and captures the prey. The value of A depends on the variation of the
convergence factor.

In Rodriguez et al’s (2017) study, it has been demonstrated that different updating
strategies for the critical parameter a can greatly impact the algorithm’s performance, and
linear strategies are often not the most effective. Therefore, this article proposes a new
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convergence factor updating method based on the periodic variation of the trigonometric
function, as shown in Eq. (29):

. T l
a:1+31n<(5)+7r>< <m>> (29)

As shown in the Fig. 5, the straight line represents the convergence factor updating
method used in GWO, while the curved line represents the new convergence factor
updating method proposed in this article.

The graph of the improved convergence factor is a curve based on trigonometric
function variation. It decreases slowly in the early iterations, allowing the convergence
factor to maintain a relatively large value for a longer time, thus enhancing search
efficiency. In the later iterations, it decreases rapidly, allowing the convergence factor to
maintain a relatively small value for an extended period, thereby improving search
accuracy. Therefore, the algorithm can focus on specific behaviors at different stages.

(3) Dynamic updating of leaders’ weights

In Zhang ¢ Zhou (2021), the shortcomings of the GWO position update formula are
pointed out, where the averaging of X;, X,, and X3 values fails to highlight the importance
of o, 5, and . To address this issue, Chiu, Shih ¢ Li (2018) introduces three improvement
strategies into the algorithm: the exponential law for adjusting the convergence factor, the
adaptive position updating strategy for grey wolves, and the revised dynamic weight
strategy.

The current distance weights of individual grey wolves to o, 8, and ¢ are given by
Egs. (30) to (32).

X4
W, = (30)
1X1| + [Xa] + |X;]
X
W, = Xa| (31)
|X1| + ’Xz‘ + |X3|
X
W; = %] . (32)
1X1| + |Xa| + X

However, in practical applications, Eqgs. (30) to (32) may result in a denominator of
zero. Therefore, it is necessary to add a very small constant €, with a value of e 16 The
modified equations are shown in Egs. (33) to (35):

_ X4
W, = (33)
1Xa| + | Xa| + [X3] + &
X
W, = Xl (34)
1Xa| + [ Xa| + [X3] + &
X

- |X1| + |X2| + |X3| +8.
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Combining the adaptive position update strategy, the final grey wolf position update
method is given by Eq. (34):

WiX, + WaXs + W3X ; t
X(t+1) = =22 33><<1—?>+X1><?. (36)

Improved grey wolf optimizer

By hybridizing the GWO and SMA, we combine the optimal position update formulas of
both methods to yield the complete update formula. For individuals ranking high in terms
of fitness, the updating equation for the hybrid GWO-SMA algorithm would be:

Xy +vp X [W X XA(t) —XB(t)], re < 0.5

Xi(t+1) =49 WiX; + WX, + W3X t t . 37
( ) 141 + Wois + 33><(1——>+X1><—,rc>0.5 (37)
3 T T
For wolves ranking low in fitness, the update formula is as Eq. (38):
Xy + vp X [W x Xa(t) — Xp(t)],r. <0.25
Wi X; + WX, + WsX t t
X(t+1) =4 2t ;2+ 33x@—?>+mxfxm5<ngoa (38)

r; X (UB—LB) +LB,0.5<r. <1

The complete flowchart of the algorithm is shown as Fig. 6.
The algorithm pseudocode is as Box 1 shows.
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By incorporating several key improvements, the performance of IGWO has been
enhanced in terms of efficiency, convergence speed, and the ability to avoid local optima,
making it a more robust and versatile optimization tool compared to the standard GWO.

EXPERIMENTS

Data preparation

In this section, we offer a clear and concise overview of the data employed in our study,
validating its relevance and suitability through correlation analysis and the Engle-Granger
(EG) cointegration test.

The data was sourced from the Shanghai Futures Exchange in China, which utilizes the
CTP protocol to provide snapshot-based order data aggregated over 500-ms intervals. The
original data used in the analysis originated from Shanghai Futures Exchange, and tick
data was exported through Python for fitting. By leveraging these tick data from rebar and
hot-rolled coil contracts, we computed the spread information, yielding one-minute K-line
data. The final dataset spans from 21:01 on July 15, 2020, to 10:50 on March 23, 2023,
encompassing 225,155 data points across 654 days.

The price spread data for each period (1 min) encompasses eight features: the opening
price spread, highest price spread, lowest price spread, closing price spread, MACD, DEA,
DIF, and price spread fluctuation. Among these, the closing price spread serves as our
prediction target. The dataset is divided into a training set (80%), a test set (20%), and a
validation set (10% of the training set). The training set is used to train the model, teaching
it to map input features to targets. The validation set assesses the model’s performance
during training and aids in hyperparameter tuning. Finally, the test set evaluates the
model’s overall performance.

To confirm whether there exists a long-term and stable cointegration relationship
between the selected futures contracts, Therefore, we conducted a cointegration analysis
on the closing prices of rebar and hot-rolled coil (HRC) futures.

Initially, unit root analysis was performed on both futures contracts’ closing prices to
assess stationarity characteristics. As evidenced in Table 1, the logarithmic price series for
both instruments exhibited non-stationary properties with the presence of unit roots.
Subsequent examination of their first-order differenced series revealed stationarity, as
indicated by the rejection of unit root null hypotheses in differenced data.

An econometric model was subsequently established to examine the relationship
between Hot Rolled Coil Futures (HC) and Ribbed Bar Futures (RB) closing prices.
Post-estimation diagnostic checks focused on the model’s residuals (resid01) through
additional unit root testing. Table 2 demonstrates that the residual series achieved
stationarity at conventional significance levels. This empirical evidence—non-stationary
original series coupled with stationary residuals and stationary differenced series—satisfies
the statistical requirements for cointegration. The results therefore confirm the existence of
a stable long-term equilibrium relationship between HC and RB futures prices, consistent
with cointegration theory.
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Table 1 Unit root test.

Variety Dickey-Fuller P-value Stationarity
HC 0.035680 0.6942 False
RB —-0.025008 0.6745 False
AHC -96.58328 0.0001 True
ARB —93.88820 0.0001 True
Note:

HC, Hot Rolled Coil Futures; RB, Ribbed Bar Futures.

Table 2 Residual series test.

Residual ADF statistic P-value Result
Resid01 -7.235169 0.0000 Stationary
Note:

ADF, Augmented Dickey-Fuller test.

Statistics

CEC 2019 benchmark

Each algorithm was individually assessed on the benchmark set to measure its
performance on specific test cases. The detailed parameters of the CEC2019 function set
are presented in Table 3. It mainly includes multimodal optimization problems,
high-dimensional optimization problems, unimodal and multimodal functions, hybrid
and composite functions, and other types of optimization problems.

Statistical results

Table 4 presents the statistical comparison of IGWO against other benchmark algorithms
on the CEC 2019 benchmark functions. In terms of average performance, IGWO achieves
the top rank on eight functions (CEC-01, CEC-02, CEC-03, CEC-05, CEC-06, CEC-07,
CEC-08, and CEC-10) and comes in third on the remaining two functions (CEC-04 and
CEC-09). Furthermore, when analyzing the statistical standard deviation (SD) results,
IGWO ties with CS as the most robust algorithms. Overall, IGWO demonstrates strong
performance across the CEC 2019 function set.

Judgment criteria

To evaluate the predictive capabilities of each model, we employed four metrics: mean
square error (RMSE), mean absolute error (MAE), and coefficient of determination (R?).
These metrics are computed in Egs. (39) to (41):

ERMSE = \/%Z (5/, —)/i)2 (39)
1

1 n
€MAE = — E
ne

Vi _}’i| (40)
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Table 3 CEC2019 test suit.

Func Descriptions Dim Range Jrmin
CEC-01 Storn’s Chebyshev polynomial fitting problem 9 [-8,192, 8,192] 1
CEC-02 Inverse Hilbert matrix problem 16 [-16,384, 16,384] 1
CEC-03 Lennard-Jones minimum energy cluster 18 [-4, 4] 1
CEC-04 Rastrigin’s function 10 [-100, 100] 1
CEC-05 Griewangk’s function 10 [-100, 100] 1
CEC-06 Weierstrass function 10 [-100, 100] 1
CEC-07 Modified Schwefel’s function 10 [-100, 100] 1
CEC-08 Expanded Schaffer’s F6 function 10 [-100, 100] 1
CEC-09 Happy Cat function 10 [-100, 100] 1
CEC-10 Ackley function 10 [-100, 100] 1

Table 4 Statistical results of EWOA and other comparative algorithms on classical benchmark
functions. The models with bold formatting represent the best-performing ones.

Functions Indicator Algorithms
IGWO GWO CS ZOA WOA
CEC-01 Mean 1.00E+00 7.51E+03 1.39E+04 1.00E+00 3.21E+06
Std Dev 0.00E+00 1.92E+04 7.69E+03 0.00E+00 4.11E+06
CEC-02 Mean 4.99E+00 1.06E+02 2.17E+02 5.00E+00 7.42E+03
Std Dev 9.15E-06 5.26E+01 5.23E+01 0.00E+00 2.16E+03
CEC-03 Mean 1.99E+00 2.61E+00 2.25E+02 7.27E+00 3.98E+00
Std Dev 7.21E-01 1.81E+00 5.99E+01 7.30E-01 1.95E+00
CEC-04 Mean 5.61E+01 7.37E+01 2.28E+01 1.40E+04 4.28E+01
Std Dev 2.09E+01 1.72E+02 3.59E+00 5.70E+03 1.61E+01
CEC-05 Mean 1.15E+00 1.32E+00 1.21E+00 5.58E+00 1.93E+00
Std Dev 9.00E-02 2.10E-01 3.01E-01 9.02E-01 4.99E-01
CEC-06 Mean 7.05E+00 1.01E+01 9.27E+00 1.07E+01 7.89E+00
Std Dev 6.40E-01 8.10E-01 7.50E-01 8.84E-01 1.97E+00
CEC-07 Mean 1.80E+01 —2.74E+01 —1.54E+02 9.32E+02 1.18E+03
Std Dev 1.25E+02 1.27E+02 1.63E-02 3.15E+02 3.29E+02
CEC-08 Mean 1.00E+00 1.00E+00 1.00E+00 1.55E+00 4.45E+00
Std Dev 5.43E-08 4.00E-03 8.64E-15 1.85E-01 3.56E-01
CEC-09 Mean 1.47E+00 4.97E+00 1.28E+00 6.49E+02 1.11E+00
Std Dev 1.80E-01 1.67E+00 6.00E-02 2.18E+02 1.92E-01
CEC-10 Mean 1.80E+01 2.09E+01 2.11E+02 2.14E+01 2.11E+01
Std Dev 2.68E-01 2.47E+00 5.10E-01 1.06E-01 1.21E+00
Note:

IGWO, Improved Grey Wolf Optimizer; GWO: Grey Wolf Optimizer; CS: Cuckoo Search; ZOA: Zebra Optimization
Algorithm; WOA: Whale Optimization Algorithm.
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In financial time series forecasting, RMSE, MAE, and R* are employed as evaluation
metrics because they collectively provide a comprehensive reflection of the model’s
predictive performance. Specifically, RMSE calculates the square root of the average of the
squared prediction errors, making it more sensitive to larger errors and thus suitable for
assessing the model’s ability to predict extreme values. MAE, on the other hand, directly
computes the average of the absolute differences between predicted and actual values,
offering an intuitive measure of the average deviation of the predictions. Lastly, R*
measures the proportion of the variance in the dependent variable that can be explained by
the independent variables, indicating the model’s fit to the data. The combined use of these
three indicators allows for a thorough evaluation of the model’s prediction accuracy and
reliability.

Model parameter selection

To enhance computational performance and accommodate large-scale data processing, we
selected the Adam optimizer and set the number of wolves in the pack to 6. We utilized the
Improved Grey Wolf Optimizer to optimize five hyperparameters: the time step, dropout
rate, and the number of neurons in each of the three hidden layers. The search range varies
based on the upper and lower limits of the parameters, and the dimensionality of the
search space changes with the number of hyperparameters. We use the Mean Squared
Error (MSE) of the prediction results as the fitness value. By navigating through the search
space, the IGWO can identify the combination of hyperparameters that yields the lowest
loss, which represents the optimal solution to the problem.

To avoid potential issues during the search process, such as excessive resource
consumption due to an overly broad search range, we analyzed relevant research articles
(Hochreiter & Schmidhuber, 1997; Greff et al., 2016; Zhou et al., 2025) that utilized LSTM
models for predicting the Chinese financial derivatives market, as well as other related
studies. The parameters employed in these articles have been tested through practice.
Therefore, the parameter settings in these studies provide valuable guidance for us in
setting our search range.

We observed that most researchers set the learning rate within the range of 0.001 to
0.01, with only a few opting for values outside this range. Additionally, many studies kept
the number of LSTM layer neurons below 100 and the time step under 20. Furthermore,
the number of epochs was typically set within 100 or around 200, with fewer studies
choosing a higher number. The learning rate is set to 0.01, with the number of neurons in
the LSTM layer ranging from 1 to 200. The DENSE layer contains 100 neurons, and the
time steps range from 5 to 20. After testing, we observed negligible improvements in
experiments with epochs exceeding 100. Considering environmental constraints, we
limited the search range for epochs to 100. Simultaneously, boundary constraints have
been incorporated. When a boundary is exceeded, a new position within the search space is

Tang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2865 19/30


http://dx.doi.org/10.7717/peerj-cs.2865
https://peerj.com/computer-science/

PeerJ Computer Science

—a— Neuron numbers in the first hidden layer
—e— Neuron numbers in the second hidden layer
—&— Neuron numbers in the third hidden layer

200 7
180
160
140 4

120

Value

100 4

80

60

40 T T T T T T T T T T

Iteration

—m— Timestep

8.09

7.5

7.0

Value

6.0

5.5

5.0 —a—an

6 10
Tteration

S
[oe}

Value

©

©

©

©

Rel

©

. 80E-06

. 75E-06

. 55E-06

. 50E-06 T T

—a— Fitness

T0E-06

65E-06

60E-06

T
6

Iteration

=~ -
oo -

10

—8&— Dropout
0. 45 7
—a—an
0.40 7
0.35

0.30 4

0.254

Value

0.20 4

0.15

0.104

0.05 4

10
Tteration

Figure 7 Optimization iterative process of IGML.

Full-size K&l DOT: 10.7717/peerj-cs.2865/fig-7

randomly selected. Once the search range for optimizing the target parameters has been
defined, we can employ the GWO to determine the optimal parameters. Figure 7 and
Table 5 illustrate the optimization process for each parameter.
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Table 5 Optimization iterative process of IGML.

Algorithm Neuron numbers in the first Neuron numbers in the second Neuron numbers in the LSTM Time Dropout Fitness

iterations LSTM layer LSTM layer hidden layer step value
1 108 54 112 8 0.05 9.76E-6
2 107 53 113 7 0.06 9.66E-6
3 107 53 113 7 0.06 9.66E—6
4 107 53 113 7 0.06 9.66E-6
5 107 53 113 7 0.06 9.66E-6
6 107 53 113 7 0.06 9.66E-6
7 107 53 113 7 0.06 9.66E-6
8 193 116 57 5 0.41 9.52E-6
9 193 116 57 5 0.41 9.52E-6

10 193 116 57 5 0.41 9.52E-6

Table 6 Results of hyperparametric optimization.

Parameter Search range Optimal value
Neuron numbers in the first hidden layer [1, 200] 193

Neuron numbers in the second hidden layer [1, 200] 53

Neuron numbers in the third hidden layer [1, 200] 113

Time step [5, 20] 5

Dropout [0.02, 0.5] 0.41

From Table 6, it can be seen that the optimal parameters obtained by IGWO for LSTM
are a dropout rate of 0.41, LSTM layer neuron numbers of 193, 53, and 113, and a time step
of 5. Based on these optimized parameters obtained through IGWO, we constructed a
prediction model for price forecasting. The neuron counts for the traditional models used
for comparison were all set to 100, and the learning rate was set to 0.01.

Experimental results and analysis
This section analyzes the predictive ability of IGML for price trends. Classic models such as
BP, multi-layer perceptron (MLP), RNN, gated recurrent unit (GRU), LSTM, and
bidirectional long short-term memory (BiLSTM) are widely used in futures price-spread
prediction. We used these price-spread prediction models as comparison models for IGML
in our experiments to directly test the effectiveness of the proposed model. Additionally,
we reproduced the GWO algorithm to optimize the LSTM model and used GWO-LSTM
as a comparative model in this study. By testing IGML’s predictive ability, we can further
compare the effectiveness of the IGWO and GWO population-based intelligent algorithms
in optimizing the LSTM model.

Figure 8 illustrates that the classic MLP network can roughly predict price-spread
trends. However, we find that when the futures price-spread fluctuates significantly, the
predictive performance of MLP is poor, with a significant error between the predicted and
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Figure 8 Experimental results.
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actual curves. BP performs better than MLP, but the error is still considerable. The RNN
model, known for handling time series problems, performs the worst on this dataset.
The LSTM network, a classic model for addressing time series problems, mitigates the
issue of vanishing gradients. Observing the prediction curve, it is apparent that LSTM has
enhanced its predictive performance, and the prediction errors have been reduced. An
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Table 7 Evaluation results of models. The models with best-performance are indicated in bold.

Model RMSE MAE R?

BP 2.7902 2.0558 0.9876
MLP 2.8319 2.1207 0.9794
RNN 11.6037 10.6687 0.8933
GRU 2.3610 1.7004 0.9604
LSTM 2.4001 1.8210 0.9825
BILSTM 2.2943 1.6490 0.9863
GWO-LSTM 2.0504 1.5069 0.9912
IGML 1.7313 1.2472 0.9955

improved version of LSTM, known as GRU, demonstrates even better prediction
performance. Additionally, BiLSTM, another refined model based on LSTM, further
diminishes prediction lag while maintaining high prediction accuracy. Although BiLSTM’s
fitting ability has significantly improved compared to LSTM, the prediction at turning
points is still not ideal.

GWO-LSTM utilizes swarm intelligence optimization algorithms to fine-tune its model
parameters, and we have found that the combined model exhibits improved prediction
performance. And on this basis, IGWO further enhances the model performance
significantly, resulting in IGML’s superior prediction effect compared to GWO-LSTM.
Compared to other prediction models, the IGML model demonstrates the smallest gap
between its predicted values and the actual values, and it is the least affected by data
fluctuations. This indicates that the IGML model possesses better fitting ability and risk
resistance compared to other prediction methods. By analyzing the prediction curves, the
conclusion can be more intuitively verified.

For a more intuitive and accurate comparison of the predictive performance among
models, to highlight the superiority of the IGML model, the evaluation metrics for each
model are shown in Table 7.

As shown in Table 7, MLP is an early model used in price-spread prediction, with values
of 2.8319, 2.1207, and 0.9794 for its three evaluation metrics. Higher RMSE and MAE
values indicate more significant prediction errors for MLP, while a smaller R-squared (R*)
value suggests weaker fitting capability. BP shows a significant improvement in prediction
compared to MLP, with RMSE, MAE, and R” values of 2.7902, 2.0558, and 0.9876,
respectively. However, BP’s predictions are still not accurate enough based on the
prediction curve and evaluation metrics. RNN exhibits a sharp decline in performance
with RMSE, MAE, and R? values of 11.6037, 10.6687, and 0.8933, respectively, indicating
its unsuitability for this dataset compared to other models.

LSTM, as a classic method in price-spread prediction, shows a significant enhancement
in prediction capability after addressing the gradient vanishing problem of RNN. Its
metrics are 2.4001, 1.8210, and 0.9825, indicating some errors compared to the proposed
model. GRU, an optimized model based on LSTM, outperforms LSTM in error metrics
(RMSE and MAE) with values of 2.3610 and 1.7004, respectively, but has a lower R* value
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than LSTM. BiLSTM, another optimized model based on LSTM, shows lower error metrics
(RMSE and MAE) than LSTM and a higher R? value.

By incorporating swarm intelligence algorithms with LSTM, the GWO-LSTM model
demonstrates enhanced prediction capabilities, with metric values of 2.0504, 1.5069, and
0.9912 respectively. These metric values significantly outperform those of traditional
prediction methods, validating the effectiveness of using swarm intelligence algorithms to
optimize LSTM model parameters.

The proposed IGML model, using IGWO to optimize LSTM, further enhances
prediction results compared to GWO-LSTM as expected. The metric values for IGML are
1.7313, 1.2472, and 0.9955, showing a 37.9%, 38.8%, 85.1%, 26.6%, 27.8%, 24.5%, and
15.5% lower RMSE compared to BP, MLP, RNN, GRU, LSTM, BiLSTM, and GWO-LSTM
models, respectively. The MAE metric also decreases by 39.3%, 41.1%, 88.3%, 26.6%,
31.5%, 24.3%, and 17.2% compared to these models. These metrics indicate that IGML has
smaller errors between predicted and actual values, thus higher prediction accuracy than
other models.

In Table 7, IGML’s R value is closest to 1 among all models, indicating strong fitting
capability. Overall, these experimental results demonstrate that IGML has the best
predictive capability and effectiveness compared to other methods.

Based on the above analysis, the IGML model is more effective and has higher
prediction accuracy in handling price-spread time series data compared to traditional
neural network models. Specifically, when dealing with complex time series data, the
IGML model is able to more accurately capture the dynamic changes and underlying
patterns in the data, thereby generating more precise prediction results. These advantages
make the IGML model highly valuable and competitive in financial applications such as
futures spread prediction.

Backtesting experiment

To validate the performance of IGML in actual trading, this article conducts a backtesting
comparison using three models. We utilized correlated data from rebar and hot-rolled coil,
with the rebar 5-min K-line data used for model training. The backtesting was then
performed on the hot-rolled coil 5-min K-line data from 2019 to 2024, using three
different models: Rbreaker, Rbreaker-LSTM-Attention (Rbreaker-LA), and Rbreaker-
IGML. In the Rbreaker-LA strategy, we introduced the LSTM-Attention model to predict
market trends in terms of rises and falls. This prediction served as Supplemental
Information to assist the Rbreaker strategy in making more precise trading decisions. The
Rbreaker-IGML strategy further optimized the Rbreaker-LA by incorporating the
Improved Grey Wolf Optimizer (IGWO) to tune the hyperparameters within the strategy.
Specifically, we adjusted key parameters in the formulas for breakthrough buy price,
observation sell price, reversal sell price, reversal buy price, observation buy price, and
breakthrough sell price, aiming to achieve better trading performance. The results of the
backtesting experiments have been compiled in the following table for further analysis and
discussion.
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Table 8 Comparison of backtesting results. The best performance models are shown in bold.

Indicator Rbreaker Rbreaker-LA Rbreaker-IGML
Initial capital 50,000 50,000 50,000
Ending capital 61,772.3 71,965.3 168,233.7
Total profit/loss 11,772.3 21,965.3 118,233.7
Average profit/loss 60.4 264.6 185.6
Return rate 23.3% 43.9 212.3%
Annualized return rate 4.61% 8.78% 42.6%
Total number of trades 195 83 637

Total number of profitable trades 118 50 387
Average profit 214.4 839.5 1,118.8
Maximum proﬁt 1,217.1 3,955.1 12,121.1
Number of losing trades 77 33 250
Average loss -175.6 -606.4 -1,259.0
Maximum loss -1,507.4 -2,595.9 -7,537.1
Maximum drawdown ratio 0.39% 1.38% 3.66%
Maximum drawdown amount 197.46 669.98 2,209.66
Sharpe ratio —-1.9853 -0.34 1.12

Based on the data presented in Table 8, we can clearly see that the Rbreaker algorithm
exhibits an advantage in the metric of maximum drawdown, with the smallest value
among all. This indicates that the Rbreaker algorithm performs exceptionally well in risk
control, effectively reducing potential losses during the investment process. When we
combine the LSTM-Attention mechanism with the Rbreaker algorithm, it can be observed
that this integration improves the strategy’s return rate and Sharpe ratio at the cost of
increased drawdown. The increase in return rate signifies higher investment returns, while
the improvement in Sharpe ratio indicates that the strategy achieves higher excess returns
for the same level of risk. In this article, we propose the combination of the IGML model
with the Rbreaker algorithm. After adjusting the parameters using IGWO, although the
new strategy slightly underperformed the previous two in terms of maximum drawdown, it
achieved significant improvements in both return rate and Sharpe ratio. The results
indicate that through reasonable algorithm integration and parameter optimization, not
only is good risk control capability maintained, but the profitability and risk-adjusted
returns of the investment strategy are further enhanced. Furthermore, parameter
optimization is not only applicable to optimizing model hyperparameters, but can also be
used to optimize parameters in financial trading strategies, demonstrating excellent
adaptability.

CONCLUSION

This study introduces an innovative IGML model for futures spread prediction, which
integrates LSTM networks with an IGWO. By optimizing the hyperparameters of LSTM
through the IGWO algorithm, the model has made significant progress, including
establishing an objective criterion for architecture selection, which reduces human bias
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compared to manual tuning. Cross-validation on two highly correlated steel futures
contracts from the Shanghai Futures Exchange demonstrates the model’s excellent
generalization ability. The experimental validation was conducted using 1-min
high-frequency K-line spread data from the Shanghai Futures Exchange, along with a
backtesting comparison experiment. The results show that the IGML model outperforms
traditional machine learning methods in terms of directional accuracy and error reduction,
demonstrating significant practical value. For instance, automated parameter optimization
reduces model development time, enhanced prediction stability provides more reliable
guarantees for generating trading signals, and the framework can be transplanted for
spread trading across related commodity pairs. Furthermore, the IGML model can also be
applied to other types of financial data, such as stocks or cryptocurrencies, by
incorporating domain-specific characteristics and leveraging advanced machine learning
techniques. By tailoring input features and model architecture according to the
characteristics of different financial data, the IGML model can provide accurate and timely
predictions for a wide range of financial assets.

This model holds practical significance for both traders and policymakers. For traders, it
enables them to gain a more precise and nuanced understanding of market behavior,
thereby aiding them in making more informed decisions about when to buy, sell, or hold
assets. By incorporating complex factors such as economic indicators, sentiment analysis,
and historical trends, the model can reveal patterns and insights that may be overlooked by
traditional methods. For policymakers, this model serves as an invaluable tool for
forecasting economic trends and assessing the impact of various policies. By simulating
different scenarios, policymakers can gain deep insights into how changes in interest rates,
fiscal policies, or regulations might affect markets and the broader economy, allowing for
more effective and targeted interventions.

However, despite these achievements, there are still limitations that require further
research. The dependency on high-frequency data may limit the model’s applicability in
illiquid markets, and the current implementation primarily focuses on pairwise spreads
rather than complex multi-asset portfolios. In addition, computational efficiency needs to
be optimized for real-time trading systems. To address these limitations and advance the
field, future research directions should focus on expanding the framework to incorporate
macroeconomic indicators to accommodate different market environments, implementing
online learning protocols to adapt to dynamic market conditions, and conducting
real-time trading experiments to quantify economic value creation.

In future research, the IGML model can be further improved in several aspects. Firstly,
more advanced machine learning algorithms and deep learning architectures can be
explored to enhance the model’s predictive accuracy and generalization capability. This
includes trying different feature selection methods, optimizing model parameters, and
incorporating more contextual information to improve the model’s understanding.
Additionally, research can be conducted on how to integrate more types of financial data,
such as news and social media sentiment, into the model to provide a more comprehensive
market analysis.
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In summary, this study has built a bridge between computational intelligence and
financial engineering, offering contributions in both methodology and practice. It provides
a scalable foundation for algorithmic trading. With further research and optimization, this
model has the potential to aid in the analysis and trading of financial markets.
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