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ABSTRACT

An intelligent detection and recognition model for the fish species from camera footage
is urgently required as fishery contributes to a large portion of the world economy,
and these kinds of advanced models can aid fishermen on a large scale. Such models
incorporating a pick-and-place machine can be beneficial to sorting different fish
species in bulk without human intervention, significantly reducing costs for large-
scale fishing industries. Existing methods for detecting and recognizing fish species
have many limitations, such as limited scalability, detection accuracy, failure to detect
multiple species, degraded performance at a lower resolution, or pinpointing the
exact location of the fish. Modifying the head of a compelling deep learning model,
namely VGG-16, with pre-trained weights, can be used to detect both the species of
the fish and find the exact location of the fish in an image by implementing a modified
You Only Look Once (YOLO) to incorporate the bounding box regression head. We
have proposed using the Enhanced Super Resolution Generative Adversarial Network
(ESRGAN) algorithm and the proposed neural network to amplify the image resolution
by a factor of 4. With this method, an overall detection accuracy of 96.5% has been
obtained. The experiment has been conducted based on a total of 9,460 images spread
across nine species. After further improving the model, a pick-and-place machine could
be integrated to quickly sort the fish according to their species in different large-scale
fish industries.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Data
Science
Keywords Deep learning, Super resolution, Object detection

INTRODUCTION

Around 34,000 fish species exist worldwide, and about 250 fishes are being discovered
yearly (Manjarrés-Herndndez et al., 2021; Ward & McCann, 2017). The per capita fish
consumption per year rose from 9.9 kg in the 1960s to 20.5 kg in 2018. According to
a report, 67 million tonnes of fish were exported for 164 billion US dollars in 2018,
significantly impacting GDP worldwide (SOFIA, 2022). In the same year, 179 million
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tonnes of fish were landed, of which 88% were used for direct human consumption.
The report further states that aquaculture had record-high fish production in 2018,
producing 114.5 million tonnes of fish, with a total valuation of 263.6 billion USD. All
of these statistics signify the importance of fish in multiple aspects. Although the fish
industry is so important, it still lacks many advanced technologies that may significantly
improve its efficiency (Naylor et al., 2021; Knausgdrd et al., 2022). One such technology
can be an advanced fish species identification system to detect the species accurately. This
technology can be used to build an automated species-wise fish segregation system to
reduce manual labor in separating fishes according to their species (Liu et al., 2022). In a
practical scenario, the model might need to detect fish species from many fishes captured
within a single camera frame (Lalasa, Srija & Kumar, 2024). Given the limited resolution
of a digital camera, some fishes might be constrained to a lower number of pixels, making
it harder to detect by a deep learning classification model (Risholm et al., 20225 Jarefio et
al., 2024). Therefore, there is a requirement for a method to improve the resolution of
these images for the classification model to work better (Morrow et al., 2022; Ovalle, Vilas
¢ Antelo, 2022). For this purpose, a form of deep learning technique called Enhanced
Super Resolution Generative Adversarial Network (ESRGAN) is used, which specializes
in improving the image resolution of an image from lower quality (Wang et al., 2022b;
Kandimalla et al., 2022). Therefore, using ESRGAN on these images could improve the
image quality, which can be further used with a deep-learning classification model for
better detection accuracy.

VGG-16 is a neural network architecture that has become the winner of the ImageNet
challenge (Mittal, Srivastava ¢ Jayanth, 2022). It has been trained on 14 million images
belonging to 1,000 categories. The trained weights can be used for faster neural network
convergence for better detection by training with smaller datasets as well (Ren ¢ Li, 2022;
Alaba et al., 2022). Further, the output layer of the model could be modified to form a
bounding box regression (Wen et al., 2022). Utilizing this property with the You Only Look
Once (YOLO) algorithm can be used for the detection of fishes and identifying species
at a large scale (Bhavya Sree, Yashwanth Bharadwaj ¢ Neelima, 2021). YOLO works by
splitting the image into multiple cells, running the classification model for each such cell,
and counting the probability of occurrence; therefore, there exists scope for cross-validating
the bounding-box regression with the detected category for better detection accuracy.

The primary contribution of the article includes:

e To create a neural network model composed of VGG-16 with two heads, one for
classification and one for regression.

e To combine the regression head of the neural network with a customized YOLO
algorithm to find the exact location of the fish.

e To add ESRGAN on low-resolution images to amplify the resolution by four times.

The article is arranged by providing a literature survey in ‘Related Works’. The
experimental settings are provided in ‘Experiment Settings’. The methodology for
the experiment is provided in ‘Methodology’. The results and observations obtained
from the experiment are provided in ‘Results’. Other necessary discussions are

Adhikary et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2860 2/26


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2860

PeerJ Computer Science

provided in ‘Discussion’. Finally, ‘Conclusion’ concludes the paper and suggests future
improvement scopes. Portions of this text were previously published as part of a preprint
(https:/doi.org/10.21203/rs.3.r5-2266266K2).

RELATED WORKS

With recent advancements in computational power, artificial intelligence algorithms, and
image processing techniques, several newer methods have been proposed for building
advanced fish monitoring systems (Mana ¢ Sasipraba, 2022; Hasegawa, Kondo ¢ Senou,
2024). Input pictures, pre-processing, image segmentation, feature extraction, and image
classification are all covered by image processing techniques (Pauzi et al., 2021). In general,
researchers in various sectors, such as medicine, agriculture, industry, and law enforcement,
employ image processing extensively. Digital Image Processing (DIP) is widely used in
recognition, remote sensing, image enhancement, color and video processing, and the
medical area, among other applications (Adhikary et al., 2021). Image processing is also
used for visualization, image sharpening, restoration, and image identification (Bhatt, Naik
& Subramanian, 2021). Blob processing, support vector machine (SVM), neural network,
and K-nearest neighbour (KNN) might all be used to classify images (Machado, Silva ¢
Goldschmidt, 2021).

High-quality images of fish in complicated habitats are required for effective fish
categorisation (Togacar ¢ Ergen, 2022; Dai et al., 2024). The quality of the obtained
pictures determines the effectiveness of a fish classification system; however, water
turbidity has been a key issue impacting the quality of the acquired images (Moghimi
& Mohanna, 2021). When the water’s turbidity affects the fish’s vision, several researchers
have proven experimentally that frontal lighting with backlight images can produce
relatively acceptable results (Zheng et al., 2024). An essential aspect of the machine vision
model is pre-processing, which is one of the most critical steps in classifying fish using
machine vision models (Li ef al., 2015; Yassir et al., 2023). Image pre-processing includes a
variety of processes such as image grayscale, image denoising, image enhancement, image
segmentation, and image augmentation (Dharejo et al., 2024). The image quality of images
acquired from real-world environments can be improved by pre-processing them before
the feature extraction process (Prasetyo, Suciati ¢ Fatichah, 2020). Image segmentation
may be used to discover the area of interest in an image by dividing it into numerous
distinct sub-regions (Yu et al., 2020).

Various fish farming techniques and methods are currently available (Prasetyo et al.,
2022). These include everything from large-scale factory farming inside a controlled
environment to traditional in-floor floating cage and fence farming to aquaponics and
large seine culture, which have both gained popularity in recent years (Agossou ¢ Toshiro,
20215 Ibrahim et al., 2018). The process of categorizing fish is necessary to precisely measure
the behavior of distinct species. Different fish species exhibit more minor variances in
size, texture, form, and other physical characteristics than other species of fish (Jia ef
al., 2021; Horne, Hirst ¢~ Atkinson, 2020) as the three most crucial attributes for visual
identification, texture characteristics, shape characteristics, and color characteristics
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must all be utilized in conjunction to define image characteristics to produce superior
classification results (Fernandes Junior ¢ Yen, 2019; Almero et al., 2020). Deep learning

is a fast-evolving subset of machine learning comprising multiple neural network layers
stacked together under different conditions (Jalal et al., 2020; Hasegawa, Kondo & Senou,
2024). Neural networks have been developed to mimic the human brain’s nerve activity
for analyzing and learning data like text, sound, images, and more. Deep learning has
advanced at a breakneck pace in recent years, and its use in the aquatic industry has
become more commonplace (Deep ¢ Dash, 2019; Lu et al., 2024). Deep learning has also
performed well in various applications, including live fish identification, fish classification,
behavioral analysis, feeding analysis, biomass estimate, size and weight classification, and
more (Banan, Nasiri & Taheri-Garavand, 2020). In contrast to typical machine learning
methods, the combination of appearance-based characteristics with traditional machine
learning techniques is highly interpretable and relatively resilient, and it can obtain
excellent results on smaller datasets (Tamou et al., 2018). The Visual Geometry Group
Network (VGGNet) is a concept established by Oxford University in 2014 to improve
visual geometry education (Chhabra, Srivastava ¢ Nijhawan, 2020). It has quickly become
one of the most popular CNN models, owing to its simplicity and utility (Agarwal et al.,
2021). By raising the network’s depth, VGGNet can increase the model’s performance in
the context of picture classification (Nijhawan, 2019; Islam et al., 2020). Instead of using
a single convolution layer and a large convolution kernel, multiple convolution layers
and smaller convolution kernels are employed (Thorat, Tongaonkar & Jagtap, 2020). This
significantly reduces the number of parameters while also greatly improving the fitting
ability of the network (Mascarenhas & Agarwal, 2021; Schwindt et al., 2024). VGG-16 is one
of the VGGNet variations that have been frequently employed in the categorization of fish
species (Prasetyo, Suciati ¢ Fatichah, 2021; Zhao et al., 2019). Classification for multiple
fish species has earlier been performed for fish species of great economic importance, like
different variants of carps have been performed with VGG-16 (Kong et al., 2021; Wang et
al., 2021b). The model, on the other hand, is prone to overfitting, and the performance
of the classifier is biased in favor of most of the sampled fish species. The researchers
have thereby enhanced the effectiveness of CNN by including extra meta-information
(such as the migration date and fish length) in CNN’s training data. According to many
peer-reviewed literature, increasing the number of network layers is helpful in terms of
improving classification accuracy (Voulodimos et al., 2018; Chen et al., 2019). Rauf et al.,
(2019), Dhillon & Verma (2020) developed a fish classification system that is based on a
32-layer VGGNet that is supervised. Even though marine image improvement is vital in
marine engineering, more study must be done in this area.

Motivation for the experiment

After thoroughly investigating the literature, multiple similar works have been observed.
Table 1 summarizes the state of the art and describes their limitations addressed in the
presented work. Earlier multiple works have been conducted to detect fishes by different
methods (Zhao et al., 20215 An et al., 2021). Some have used motion sensors to sense the
waves created by the fishes, some have utilized remote sensing sensors, and some have used
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Table 1 Summary of the State of the Art and their limitations that have been addressed with the proposed work.

Source

Objective

Data type

Algorithm

Remark

Limitations

Pudaruth et al. (2020)
Garcia et al. (2019)
Hu et al. (2022)

Baker et al. (2022)
Palmer et al. (2022)
Palmer et al. (2022)
Desai et al. (2022)
Kandimalla et al. (2022)

Lekunberri et al. (2022)

Wang et al. (2022a)

Hong Khai et al. (2022)

Al Smadi et al. (2022)

Fish species recognition
Fish size recognition

Fish feeding system by fish movement
recognition

Underwater fish density detection
Large scale fish monitoring

Counting fish larvae using smartphones
Fish species recognition

Fish detection, classification and counting
in fish passages

Identification and measurement of
tropical tuna

Tracking fish to identify abnormal behaviour
in real-time

Underwater fish detection and counting

Fish classification using deep learning

Camera
Camera within fishing box

Motion sensors

Camera

High resolution camera
Smartphone Camera
Camera

Camera

Camera

Camera

Camera

Camera

Machine learning
Mask R-CNN

Deep learning

Thresholding

Mask R-CNN

Faster and Grid R-CNN
ANN

Mask R-CNN and YOLO

Mask R-CNN

YOLOv5

Mask R-CNN
Multiple DNN

96% accuracy
Up to 96% accuracy

93.2% accuracy

429 fishes were detected
86.10% accuracy

97.3% accuracy

100% accuracy

up to 0.73 mAP

70% accuracy

76.7% tracking precision

97.48% accuracy

98.46% accuracy

Lesser number of images & limited scalability
Cannot identify species

Cannot work for idle fish

Reduced performance for lower resolution
Lower accuracy on low resolution

Grown fishes cannot be recognized
Reduced results at lower resolution

Reduced performance for lower resolution

Only 1 species can be detected which is tuna

Cannot recognize species

Method is species insensitive

Reduced performance at lower resolution

80URI0S JeindwioD) rieed



https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2860

PeerJ Computer Science

camera-based approaches (Franceschelli et al., 2021; Li ¢» Du, 2021). Motion sensors-based
method is highly prone to noises in turbulent water (Li et al., 2021; Wageeh et al., 2021).
Remote sensing-based methods perform poorly as most satellites cannot zoom in to
levels to detect fish accurately. Therefore, these are primarily useful for detecting zones
with a high density of fish (Belkin, 2021; Qiao et al., 2020). Many works have also been
performed to detect fish underwater, but that produces further challenges based on the
turbidity of the water (Ubina ¢ Cheng, 2022; Wang et al., 2022). Other works have been
performed to classify fish, including usage of the very high-resolution cameras or pictures
captured by cameras dedicated to a limited number of fishes. Therefore, their large-scale
implementation is often not feasible (Zhang et al., 2022; Zhang, Chow & Zhang, 2021).
These produce multiple knowledge gaps in existing studies, which can be improved to
build a model that can be used to detect and recognize fishes outside water at a considerable
scale, verified for a large number of samples, and can be implemented for both high as well
as low-resolution images and this motivates to conduct this experiment.

EXPERIMENT SETTINGS

The work has been conducted on an open-sourced database containing 9,460 images of fish
from eight different species and one shrimp species. Within this dataset, 8,109 images were
used to train the model, 909 images were used to validate the model during training, and
439 images were used to test the performance. Kodak Easyshare Z650 and Samsung ST60
cameras were used to capture images of the fish. The images were resized to 590 x 445 pixels.
The species of fish considered for the experiment include gilt-head bream, Sparus aurata,
red sea bream, Pagrus major, sea bass, Centropristis striata, red mullet, Mullus barbatus,
horse mackerel, Trachurus trachurus, black sea sprat, Clupeonella cultriventris, striped red
mullet, Mullus surmuletus, trout, Oncorhynchus mykiss and shrimp, Caridea. This is to
note that, scientifically, shrimps are not considered fish because they are crustaceans. But
they are still included in the study because from an implementational point of view, while
catching fish, non-fish species can be caught in the fishing nets as well, and therefore, a
method to separate fish and non-fish species is required. These fishes can be replaced with
a database of other fish species by transferring the weights and biases of the neural network
(Ulucan, Karakaya & Turkan, 2020). After the data collection, the images have been further
resized for the experiment. Firstly, a dataset was created after resizing all the images to 400
x 400 pixels (considered as “Original” in this case). Following that, the images were resized
to 100 x 100 pixels, considered low-resolution images. The experiment was conducted
with a Linux operating system having kernel 5.11.0-38-generic, 10th gen intel i5 processor
of 4 physical cores with hyperthreading, CUDA enabled NVIDIA GPU with 4GB VRAM,
16GB RAM, and solid state drive based memory.

After this step, the ESRGAN have been used to transform the low-resolution images into
super-resolution images, which improved the image pixel density by four times (Gao, 2021).
This algorithm compares a sequence of low-resolution photos with their corresponding
high-resolution images from training data (Wang et al., 2021a). The network will learn to
translate low-resolution to high-resolution images (LR to HR). The suggested network
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is divided into the generative network and the discriminative network (Rakotonirina ¢
Rasoanaivo, 2020). We want to train a generation function G, which will convert the LR
input photos to the HR images at the end of the process. The ESRGAN model that was used
for the experiment was trained on the ImageNet dataset, and further, the trained weights
were transferred to our model to make use of the model without retraining.

METHODOLOGY

The work has been conducted in multiple stages. Firstly, the data collection was performed,
followed by pre-processing, application of ESRGAN, VGG-16, and YOLO, and finally,
performance comparison. Figure 1 shows the Flowchart of the steps taken to experiment
(Adhikary, 2022).

Neural network architecture

The detection of the fishes and their species has been facilitated using a two-headed neural
network model on top of a VGG-16 model (Rabbi et al., 2020). The two heads of the network
perform different tasks. Where one head is used to perform a bounding box regression,
which detects the exact location of the fish within the image and on the other hand, and the
other head of the network is used to perform the categorical classification, which is used
to detect the species of the fish (Gu et al., 2021). The most prominent difference between
the two architectures is the input and output shapes of all the layers till the categorical
classification and bounding box regression have been performed. Between these layers, the
input/output shapes of the ESRGAN-based network were roughly four times larger than
the low-resolution images. The VGG-16 head is made by taking the weights of the model
in non-trainable fashion, then flatenning them. Later, a trainable multi-layer perceptron
head was added with a dense layer of 512 nodes with rectified linear unit (ReLU), followed
by a dropout of 0.5, then a dense layer of 512 nodes with relu and a dropout of 0.5 and
finally dense layer of nine nodes with softmax activation function to produce categorical
outputs for the different classes of fish images. This head was trained with categorical
crossentropy loss. On the other hand, the bounding box regression head was made with
a dense layer of 128 nodes and relu activation with 0.5 dropout rate, followed by a dense
layer of 64 nodes with relu and 0.5 dropout, then 32 node layer with relu and 0.5 dropout
and finally a dense layer of four nodes with relu activation. These four layers indicates
the top-left, top-right, bottom-left and bottom-right corners of the bounding box. This
head was trained with mean squared error loss. For both the model, adam optimized with
0.0001 learning rate was used for the training. The model was trained for 50 epochs with
each epoch having 50 steps each. A batch size of 32 was used for training. A a k-fold cross
validation with 10 splits were used to train and validate the model. Figure 2 shows the
picture of the proposed neural architecture with two heads to perform both classification

and bounding box regression simultaneously.

Combining YOLO and VGG-16
An important deep learning-based object detection algorithm is called YOLO (Zhang et al.,
2018). This works by splitting the target image into multiple smaller segments and applying
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Figure 1 The flowchart of the procedures undergone to experiment.
Full-size Gal DOI: 10.7717/peerjcs.2860/fig-1

a classification algorithm to each of these segments. A corresponding matrix is generated,
where each element is associated with a segment of the image, and the magnitude is based
on a corresponding class as detected by the classification model. Following this, probability
mapping is performed to detect multiple objects within the same image. We have modified
the usage of a regular YOLO algorithm to suit our experiment better (Zhao et al., 2017).
We have used the earlier defined ESRGAN-based VGG-16 model on each smaller segment
of the image, and based on the edges of the bounding box regression, the next segment of
the image has been considered, which ultimately provides the location of the entire fish
along with its species.
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Classification Head

o

Bounding-box reéression Head

Figure 2 The proposed two-headed neural network model to perform both classficiation and
bounding-box regression at the same time.
Full-size Gl DOI: 10.7717/peerjcs.2860/fig-2

Innovative combination of YOLO and VGG-16 with dual-headed
neural network

The primary novelty of the work involves merging a dual-headed neural network along with
VGG-16 based YOLO that can perform both classification and bounding box regression
on a particular tile concurrently and accurately. This is done by first using the neural
network defined earlier that takes in images as input, performs classification and bounding
box regression with its two different heads and outputs the results. Now, this is done by
first increasing the resolution of the image to four times using ESRGAN, then splitting
the full image into multiple blocks and running the neural network on each tile. Finally
YOLO is used to adjust the overlaps in bounding box regression to properly localize the
bounding boxes. This enables the model to take advantage of the low latency bounding
box regression, accurate classification of VGG-16, 4x image resolution enhancement of
ESRGAN and reliability of YOLO algorithm.

Performance comparison

The performance of the work has been compared with several metrics. The detection
performance was measured with accuracy, precision, recall, training, and testing time.
Following this, the difference between the original image and ESRGAN-generated images
were compared based on several metrics, which include mean squared error (MSE), root
mean squared error (RMSE), peak signal-to-noise ratio (PSNR), structural similarity
index (SSIM), universal image quality index (UQI), multi-scale structural similarity
index (MSSSIM), erreur relative globale adimensionnelle de synthese (ERGAS), spatial
correlation coefficient (SCC), relative average spectral error (RASE) and spectral angle
mapper (SAM) (Hu et al., 20205 Liang ¢ Weller, 2016).

Ethics statement

The author confirms that the ethical policies of the journal, as noted on the journal’s author
guidelines page, have been adhered to. No ethical approval was required as the data used
in the experiment was obtained from published literature (Ulucan, Karakaya ¢ Turkan,
2020).
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Low Resolution

[

Figure 3 Difference between a low-resolution fish image and its corresponding super-resolved image
generated by ESRGAN.
Full-size 4 DOI: 10.7717/peerjcs.2860/fig-3

RESULTS

Different patterns were observed while experimenting. The following texts summarize the
most prominent results obtained from the experiment.

Comparison of original and ESRGAN generated super-resolved
images
The application of ESRGAN on low-resolution images provides a four times clearer picture,
which can be used for more accurate fish detection and species identification. When caught
in bulk, usually on a ship, the fish are kept on the deck or similar associated areas where
the fish are further sorted. As a large volume of fish is kept, capturing individual pictures
of the fish makes it difficult to identify the species. Hence, while capturing photos of a
large number of fish, the resolution of each fish is generally very low. The low-resolution
image symbolizes these small segments of images containing individual fish. Figure 3
shows the difference between a symbolic representation of a cropped low-resolution image
captured by a camera at a deck of a ship from a distance and an ESRGAN generated
super-resolved image of the fish. At first glance, the differences between the two are visible.
The low-resolution image appears blurry, but the super-resolution image is much sharper.
Further, more differences are observed by comparing the original 400 x 400 image (not
the low-resolution image) and the super-resolution image based on different statistical
parameters. Table 2 records the average statistical differences between the original and
super-resolved images for all sample images. It has been observed that the MSE of black sea
sprat was the lowest among all 20.12 and the highest for horse mackerel, which was 87.9.
This indicates the increasing difficulty for the ESRGAN algorithm to super-resolve the
images. This has supposedly occurred because of these fish species’ growing color contrast
and more complex texture. Accordingly, the RMSE score also follows the order of black
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Table 2 The image restoration quality comparison for the original and super-resolution images (Units not mentioned as all comparisons are
based on unitless quantities).

Species MSE RMSE PSNR SSIM UQI MSSSIM ERGAS SCC RASE SAM

Black Sea Sprat 20.12 4.48 35.09 0.9204,0.9206 0.998 0.9694 1,207.38 0.1065 150.92 0.0251
Gilt Head Bream 55.11 7.42 30.71 0.8698,0.8714 0.989 0.9478 1,943.06 0.0947 242.88 0.0511
Horse Mackerel 87.90 9.37 28.69 0.8278,0.8287 0.991 0.9242 2,865.90 0.1003 358.23 0.0641
Red Mullet 76.96 8.77 29.26 0.8418,0.8422 0.995 0.9303 2,399.61 0.1061 299.95 0.053

Red Sea Bream 47.96 6.92 31.32 0.8704,0.8709 0.995 0.9481 1,887.01 0.1018 235.87 0.0433
Sea Bass 86.94 9.32 28.73 0.8349,0.8354 0.993 0.9304 2,497.43 0.1024 312.17 0.0656
Shrimp 49.51 7.03 31.18 0.8827,0.8831 0.996 0.9534 1,813.61 0.1095 226.70 0.0396
Striped Red Mullet 63.43 7.96 30.10 0.8514,0.8517 0.995 0.9377 2,136.50 0.1019 267.06 0.0487
Trout 80.25 8.95 29.08 0.8542,0.8566 0.987 0.9396 2,530.33 0.1423 316.29 0.0631

sea sprat, red sea bream, shrimp, gilt-head bream, striped red mullet, red mullet, trout,
sea bass, and horse mackerel. PNSR, or peak signal-to-noise ratio, indicates the degree of
improvement of the resolved image compared to the original image. Higher PNSR scores
indicate a better restoration. Accordingly, in this case, the same order has been found for
all the fish species. The UQI or universal image quality index represents the summation
of errors between the restored and original image based on loss of correlation, luminance
distortion, and contrast distortion. The UQI values have been found to be maximum in
Black Sea sprat and minimum in trout. For the multi-scale structural similarity index
(MSSSIM). However, a direct trend cannot be observed; an indirect downward trend
of fluctuations could be kept in the order mentioned earlier. An upward trend can be
observed for ERGAS values, indicating an increasing computational complexity. The RASE
or relative average spectral error for the fishes was found to be in a similar order with slight
fluctuations. The SAM or spectral angle mapper error for the different fishes shows an
upward trend with minor variations.

Investigating further, the color histogram for all fish species has been evaluated for
original, low-resolution, and ESRGAN-generated high-resolution images, shown in Fig. S1.
This figure contains a pixel density distribution histogram for red, green, blue, and all colors
combined (represented by yellow color) for pixel intensity ranging from 0-255. For all the
species, it can be observed that the peaks of all the graph colors for low-resolution images
are uneven. Still, for the original and ESRGAN-generated images, the peaks are smoother.
Also, the ESRGAN-generated images and original images have a higher number of pixels for
each intensity level for each color compared to the low-resolution image, which is evident
from the fact that the low-resolution image had been reduced by 1/4" of the original
image. However, original and ESRGAN-generated super-resolved images have no generic
differences, but some variations can still be observed, which change according to the target
picture. For example, in graphs of Horse Mackerel, during the intensity range of 225 to
250, few blue bars are visible in the original image, which is missing in ESRGAN-generated
images. Similar patterns can also be observed in many other fish species as well.
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Figure 4 Confusion matrix for the detection shows reliable and consistent results across all species.
Full-size G DOI: 10.7717/peerjcs.2860/fig-4

Detection performance

After applying ESRGAN to the images and obtaining the generated super-resolution images,
the photos were passed into the earlier discussed neural network and the YOLO algorithm.
This results in the detection of each fish along with the species. Figure 4 shows the confusion
matrix of the detection and Fig. 5 shows a sample detection on the super-resolved images
where each of the species of fish (written within a black patch with white fonts) has been
detected along with a precise surrounding bounding box marked with a green line. After
running the algorithm on all test images, a detection accuracy 96.5% has been obtained.
The details have been recorded in Table 3. Further, it has been observed that the precision
of the performance was 0.93, and the recall of the performance was 0.96, which indicates
that there were fewer false-negative errors compared to false-positive errors. The model
took 1,323.8 s to train and 12.6 s to generate all the results. Further, from the confusion
matrix, it can be seen that for all the species, the detection is successful at a range of 96-98%
accuracies. Thus, it can be claimed that for all the fish species, the detection results are
consistent and this further clarifies the reliability of the model.

A comparison of the proposed model with other super-resolution models has been
presented in Table 4. From this table, it is clear that the proposed model surpasses the
performances obtained from BiCubic, Waifu2x, Upscayl, RealScaler, Togacar ¢ Ergen
(2022), Moghimi & Mohanna (2021), Zheng et al. (2024) and Dharejo et al. (2024) in terms
of accuracy by each respectively attaining accuracy of 92.5%, 89.9%, 92.7%, 88.4%, 91.8%,
90.5%, 92.1% and 88.2%, respectively. Similarly, the comparison of the proposed model
with other transfer learning models has also shown similar results. VGG-19, XCeptionV3

Adhikary et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2860 12/26


https://peerj.com
https://doi.org/10.7717/peerjcs.2860/fig-4
http://dx.doi.org/10.7717/peerj-cs.2860

PeerJ Computer Science

Fish Species Detection and Identification Results for ESRGAN based on
VGG-16 and Bounding Box Regression
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Figure 5 Detection results for the algorithm including the species name and its precise location

marked by bounding box.

Full-size &4 DOI: 10.7717/peerjcs.2860/fig-5

Table 3 Performances for the detection with ESRGAN-based approach.

Algorithm Accuracy Precision Recall F1 score AUC Train time Test time
(%) score (s) (s)
Proposed 96.5 93.2 96.1 94.6 98.5 1,323.8 12.6
YOLO 87.4 85.3 86.1 85.6 89.1 1,285.4 13.2
SSD 91.2 90.7 92.1 91.3 93.2 2,342.6 26.3
ResNet 88.4 89.2 87.4 88.2 91.4 1,865.3 21.4
Knausgdrd et al. (2022) 92.4 90.1 91.4 90.7 94.2 1,643.1 14.2
Ovalle, Vilas & Antelo (2022) 89.8 87.4 88.1 87.7 91.7 1,594.3 16.4
Kandimalla et al. (2022) 90.7 88.1 87.6 87.8 92.9 1,586.4 15.2
Alaba et al., (2022) 87.6 85.2 84.2 84.6 89.1 1,891.1 22.5
Mana & Sasipraba (2022) 90.1 88.4 87.9 88.1 93.5 2,153.4 21.3
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Table 4 Performances for the detection with different super resolution techniques.

Algorithm Accuracy Precision Recall F1 score AUC Train Test
(%) score time (s) time (s)
Proposed 96.5 93.2 96.1 94.6 98.5 1,323.8 12.6
BiCubic 92.5 87.3 89.5 88.3 94.3 1,352.7 14.1
Waifu2x 89.9 88.1 91.7 89.8 93.6 1,521.8 17.4
Upscayl 92.7 90.1 90.6 90.3 94.2 1,893.2 18.3
RealScaler 88.4 89.2 85.3 87.2 91.3 1,534.8 22.6
Togagar & Ergen (2022) 91.8 90.2 90.4 90.3 94.0 1,786.3 20.4
Moghimi & Mohanna (2021) 90.5 87.5 86.2 86.8 91.8 1,923.3 18.5
Zheng et al. (2024) 92.1 89.2 90.1 89.6 95.1 1,854.3 19.2
Dharejo et al. (2024) 88.2 87.1 86.6 86.8 90.5 2,132.5 21.5
Table5 Performances for the detection with different transfer learning techniques.
Algorithm Accuracy Precision Recall F1 score AUC Train Test
(%) score time (s) time (s)
Proposed 96.5 93.2 96.1 94.6 98.5 1,323.8 12.6
VGG-19 95.2 94.3 95.2 94.7 97.4 2,142.4 15.2
XCeptionV3 92.1 92.7 91.0 91.8 94.6 1,543.7 18.3
InceptionV3 93.7 91.8 92.4 92.0 95.3 1,634.8 16.6
Hasegawa, Kondo & Senou (2024) 94.2 92.3 93.5 92.9 97.1 1,643.7 17.2
Lu et al. (2024) 91.6 90.5 91.2 90.8 94.2 1,862.6 18.2
Schwindt et al. (2024) 90.3 91.2 88.6 89.8 92.5 1,768.1 24.2
Dai et al. (2024) 91.2 90.2 88.7 89.4 91.9 1,938.6 22.4

and InceptionV3 have obtained 95.2%, 92.1% and 93.7%, respectively. For all of these

cases, the proposed model have attained up to 96.5 accuracy. Thus, this further confirms
the reliability of the model. Details of which have been added in Table 5.
The performances of the proposed model have been thoroughly investigated with

10-fold cross-validation method. During all the 10 iterations, a range of accuracies was

observed, which was between 94.1%-98.9%. The mean accuracy was found to be 96.5%.

The standard deviation of accuracy during the 10-fold cross-validation was found to be

1.68, thus further strengthening the findings. The details of the cross-validation, which

includes accuracy, precision, recall, f1-score, AUC score, training time and testing time,

can be found in Table 6. A consistent result can be observed during all iterations.

Comparison with the state-of-the-art methods
The presented work has outperformed the state-of-the-art methods in multiple parameters.

The technique shown by Pudaruth et al. (2020) has been surpassed by testing with a larger

dataset. Also, the presented experiment is more scalable because of deep learning. The

work presented by Garcia et al. (2019) cannot differentiate between different species of

fish, and therefore, the presented model surpasses this study by introducing multiple

species detection models. The experiment presented by Hu et al. (2022) cannot be used to

detect the exact location and species of fish that the proposed model has performed. The
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Table 6 10-fold cross validation performance for the proposed model shows consistent results across
all iterations.

Fold iteration = Accuracy  Precision  Recall F1Score = AUC Train Test
(%) score time time

1 98.5 95.3 96.8 96.0 99.6 1,376.8 12.9
2 96.3 91.9 97.2 94.4 98.5 1,434.2 12.2
3 97.6 92.6 96.5 94.5 99.8 1,443.4 11.7
4 98.9 95.3 95.1 95.1 99.1 1,216.7 12.6
5 95.6 92.3 96.6 94.4 98.2 1,252.7 13.5
6 97.2 95.1 98.2 96.6 98.5 1,269.3 12.8
7 97.4 90.1 95.2 92.5 98.6 1,321.9 11.7
8 95.3 93.7 96.1 94.8 98.7 1,268.3 11.5
9 94.2 93.6 94.2 93.8 97.3 1,301.5 14.6
10 94.1 92.1 95.1 93.5 96.7 1,353.2 12.6
Mean 96.5 93.2 96.1 94.6 98.5 1,323.8 12.6
STD 1.68 1.71 1.19 1.16 0.94 76.9 0.93

model built by Baker et al. (2022) could not detect the species, has reduced performance
at a lower resolution, and cannot pinpoint the exact location of the fish. The presented
model has addressed all of these parameters. Palimer et al. (2022); Al Smadi et al. (2022)
had performance degradation at lower resolution images where the method proposed in
the experiment obtained higher accuracy, which is 96.5% for lower resolution. Palmier et
al. (2022) had built a model that cannot individually identify the fish species. However,
although the method proposed in our experiment has not been tuned in for detecting fishes
at the larval stage, grown-up fishes could be identified. The model developed by Desai et al.
(2022) has yet to be tuned to recognize fish species at a lower resolution, which our method
has solved. The algorithm of Kandimalla et al. (2022) needs to be tuned appropriately

to handle lower-resolution images, which our algorithm has solved. Our method has
outperformed (Lekunberri et al., 2022; Wang et al., 2022a) by both performance accuracy
and the number of species detected. The model shown in Hong Khai et al. (2022) could not
identify different species that our proposed model has performed.

DISCUSSION

The results that have been obtained are further compared with other strategies and the
state of the art. Following this, the model has been retested with low-resolution images to
compare the performance difference, and the performances are recorded in Table 7. Also,
the importance of the work, its practical significance, and implementations. have been
further discussed in the following text.

Quality control documentation

The study was conducted on eight fish species and one shrimp species, with approximately
one thousand images from each species. The detection performances obtained during the
experiment can vary with changing the images, but a properly tuned and trained model
with similar data may consistently provide accuracy over 85%. The resource consumption
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Table 7 Performances for the detection with raw low-resolution data to better compare the
performance.

Method Accuracy Precision Recall F1 score AUC Train time Test time
(%) score (s) (s)

Proposed 96.5 93.2 96.1 94.6 98.5 1,323.8 12.6

Raw 82.3 81.5 83.2 82.3 85.8 738.2 9.2

for building the model can also change depending on the underlying hardware. The
presence of other processes or threads running in the background can further degrade the
model’s resource consumption; therefore, hardware with minimal background processes
and threads is required to replicate results similar to the experiment. Minor variations in
the accuracy may be observed when the model is applied to real-world data, as there might
be different backgrounds compared to the ones used during training. Also, other lighting
conditions, foggy weather conditions, and contamination of foreign materials may further
introduce accuracy variations. A very close overlap of two fishes of the same species may
also sometimes be detected as a single fish. Despite these challenges, the model can still
work better than most other algorithms because the unpredictability of any threshold-based
algorithm is eliminated by using smart deep learning algorithms, and the image quality for
the purpose has been improved by another innovative deep learning algorithm, which in
this case is ESRGAN.

Real world implementation & practical feasibility

The method can be best utilized in the real world at fish sorting centers where a large volume
of fish needs to be sorted based on their species and sizes. The sorting based on size can
easily be performed by reading the weight of the fish, but the species identification at a fast
scale for a large volume would require a vision-based system where the presented method
can be utilized. To build such a system, a properly calibrated pick-and-place machine on
a conveyor belt must be integrated with a camera and processing unit. The conveyor belt
would carry many fish where the camera would grab the image, the processing unit would
find the species and location of that specific fish, and the pick-and-place machine would
pick the target fish and place it in its appropriate box. Unlike other methods where one
fish must be processed at a time, the presented method can sort a large number of fish
simultaneously.

Priorities for next steps & possible impacts in next 10 years timescale
Certain steps need to be taken to complete this work and make it deployable. Firstly,
during the first year, the model needs to be tested for more species of fish, and as discussed
earlier, a pick-and-place machine needs to be integrated with the system for better sorting.
Then, appropriate calibration of the model is necessary to make the system robust in an
uncontrolled environment. Once the calibration is properly executed, during the next 5
years, the entire system could be processed to be deployed in different places where fish
sorting is necessary, such as in fishing ships or fish markets. Once the system has been
deployed, many fish could be automatically sorted based on their species. Accordingly,
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manual labor involvement in sorting these fish would be dramatically reduced, and the
sorting speed would exponentially increase. This would also reduce the cost of handling all
these fish. Sorting smaller fish generally requires a lot of focus for manual laborers, which
the proposed system could completely or partially replace.

Limitations of the work

The work is exploratory and has been conducted on eight fish and one shrimp species. This
number needs to be higher for a real-world application. The work needs to be extended by
including several other fish species. The work has been tested on images of 500 fish from
each category, and this is also a smaller number to have a concrete result. The training has
been performed for images under similar lighting conditions and environments; therefore,
more variations of environment and light conditions are required for training the model.
The classification and regression model is based on the VGG-16 network trained on
ImageNet weights. Although VGG-16 provides very accurate results, the network itself
is extensive, and therefore, fitting the model into storage constraint devices produces
deployment challenges that can be further solved by introducing better alternatives.

CONCLUSION & FUTURE SCOPES

The fish detection and recognition models are fundamental in large-scale fish industries
for quickly sorting fish according to their appropriate species. Existing models have many
scalability, feasibility, and performance limitations, which have been solved with the
presented work. The work uses VGG-16 by customizing and adding two heads with it, one
for classification and one for bounding box regression, and the bounding box regression
has been integrated with a customized YOLO algorithm for detecting the precise location
of the fish in low latency. Also the algorithm uses ESRGAN to amplify the resolution of the
images four times, further enhancing the detection performance.

The proposed experiment was conducted on 9,460 images for eight different species
of fish and one species of shrimp and obtained up to 96.5% detection accuracy. The
model has further been tested for comparison with raw data, which had obtained 82.3%
detection accuracy, indicating the improvement of the proposed algorithm. Investigating
the super-resolution images, it has been observed that the black sea sprat had the lowest
MSE of 20.12, and red mullet trout had the highest MSE of 80.25 among all species when
the super-resolution images were compared to the original images. Also, the color pixel
density distribution histogram revealed relations between original, low-resolution, and
ESRGAN-generated super-resolution images.

The work can further be improved by increasing the number of species and testing the
model on a larger scale. Integrating the system with a pick-and-place machine with proper
calibration would complete the technology, and a very fast, accurate, very large-scale fish
sorting machine could be built.

REPRODUCIBILITY

e The dataset have been obtained from this article: DOI: 10.1109/ASYU50717.2020.
9259867.
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e Computing infrastructure: The experiment was conducted with a Linux operating
system having kernel 5.11.0-38-generic, 10th gen intel i5 processor of four physical cores
with hyperthreading, CUDA enabled NVIDIA GPU with 4GB VRAM, 16GB RAM, and
Solid State Drive based memory.

DESCRIPTION OF MODELS USED

The experiment was conducted by first using the Enhanced Super Resolution Generative
Adversarial Neural Network (ESRGAN) model. Later a custom neural network was
developed with a VGG-16 base and two heads, one capable of classification and another
capable of creating bounding box regression.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Subhrangshu Adhikary is a Director for Spiraldevs Automation Industries Pvt. Ltd.
Saikat Banerjee is a Director for Aerosys Defence and Aerospace Pvt. Ltd.

Author Contributions

e Subhrangshu Adhikary conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

e Saikat Banerjee conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Rajani Singh conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Ashutosh Dhar Dwivedi conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
The code is available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.2860#supplemental-information.

Adhikary et al. (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2860 18/26


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2860#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2860#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2860#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2860

PeerJ Computer Science

REFERENCES

Adhikary S. 2022. Fish species identification on low resolution-a study with enhanced
super resolution generative adversarial network (ESRGAN), YOLO and VGG-16.
Research Square preprint DOI 10.21203/rs.3.rs-2266266/v1.

Adhikary S, Chaturvedi S, Chaturvedi SK, Banerjee S. 2021. COVID-19 spreading
prediction and impact analysis by using artificial intelligence for sustainable global
health assessment. In: Siddiqui NA, Bahukhandi KD, Tauseef SM, Koranga N, eds.
Advances in environment engineering and management. Cham: Springer International
Publishing, 375-386.

Agarwal AK, Tiwari RG, Khullar V, Kaushal RK. 2021. Transfer learning inspired fish
species classification. In: 2021 8th international conference on signal processing and
integrated networks (SPIN). 1154—-1159 DOI 10.1109/SPIN52536.2021.9566067.

Agossou BE, Toshiro T. 2021. IoT &a Al based system for fish farming: case study of
Benin. In: Proceedings of the conference on information technology for social good,
GoodIT ’21. New York, NY, USA: Association for Computing Machinery, 259-264
DOI 10.1145/3462203.3475873.

Al Smadi A, Mehmood A, Abugabah A, Almekhlafi E, Al-smadi AM. 2022. Deep convo-
lutional neural network-based system for fish classification. International Journal of
Electrical and Computer Engineering 12(2):2026 DOT 10.11591/ijece.v12i2.pp2026-2039.

Alaba SY, Nabi MM, Shah C, Prior J, Campbell MD, Wallace F, Ball JE, Moorhead R.
2022. Class-aware fish species recognition using deep learning for an imbalanced
dataset. Sensors 22(21):8268 DOI 10.3390/522218268.

Almero V]D, Concepcion RS, Sybingco E, Dadios EP. 2020. An image classifier for
underwater fish detection using classification tree-artificial neural network hybrid.
In: 2020 RIVF international conference on computing and communication technologies
(RIVF). 1-6 DOI 10.1109/RIVF48685.2020.9140795.

An D, Hao J, Wei Y, Wang Y, Yu X. 2021. Application of computer vision in fish
intelligent feeding system—a review. Aquaculture Research 52(2):423-437
DOI10.1111/are.14907.

Baker R, Bilbrey D, Bland A, D’Alonzo F, Ehrmann H, Havard S, Porter Z, Ramsden S,
Rodriguez AR. 2022. Underwater video as a tool to quantify fish density in complex
coastal habitats. Diversity 14(1):50 DOI 10.3390/d14010050.

Banan A, Nasiri A, Taheri-Garavand A. 2020. Deep learning-based appearance features
extraction for automated carp species identification. Aquacultural Engineering
89:102053 DOI 10.1016/j.aquaeng.2020.102053.

Belkin IM. 2021. Remote sensing of ocean fronts in marine ecology and fisheries. Remote
Sensing 13(5):883 DOI 10.3390/rs13050883.

Bhatt R, Naik N, Subramanian VK. 2021. SSIM compliant modeling framework with
denoising and deblurring applications. IEEE Transactions on Image Processing
30:2611-2626 DOI 10.1109/T1P.2021.3053369.

Bhavya Sree B, Yashwanth Bharadwaj V, Neelima N. 2021. An inter-comparative
survey on State-of-the-Art detectors—R-CNN, YOLO, and SSD. In: Reddy A,

Adhikary et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2860 19/26


https://peerj.com
http://dx.doi.org/10.21203/rs.3.rs-2266266/v1
http://dx.doi.org/10.1109/SPIN52536.2021.9566067
http://dx.doi.org/10.1145/3462203.3475873
http://dx.doi.org/10.11591/ijece.v12i2.pp2026-2039
http://dx.doi.org/10.3390/s22218268
http://dx.doi.org/10.1109/RIVF48685.2020.9140795
http://dx.doi.org/10.1111/are.14907
http://dx.doi.org/10.3390/d14010050
http://dx.doi.org/10.1016/j.aquaeng.2020.102053
http://dx.doi.org/10.3390/rs13050883
http://dx.doi.org/10.1109/TIP.2021.3053369
http://dx.doi.org/10.7717/peerj-cs.2860

PeerJ Computer Science

Marla D, Favorskaya MN, Satapathy SC, eds. Intelligent manufacturing and energy
sustainability. Singapore: Springer Singapore, 475-483.

Chen Y, SunJ, Jiao W, Zhong G. 2019. Recovering super-resolution generative adver-
sarial network for underwater images. In: Gedeon T, Wong KW, Lee M, eds. Neural
information processing. Cham: Springer International Publishing, 75-83.

Chhabra HS, Srivastava AK, Nijhawan R. 2020. A hybrid deep learning approach for
automatic fish classification. In: Singh PK, Panigrahi BK, Suryadevara NK, Sharma
SK, Singh AP, eds. Proceedings of ICETIT 2019. Cham: Springer International
Publishing, 427-436.

Dai K, Shao J, Gong B, Jing L, Chen Y. 2024. CLIP-FSSC: a transferable visual model
for fish and shrimp species classification based on natural language supervision.
Aquacultural Engineering 107:102460 DOI 10.1016/j.aquaeng.2024.102460.

Deep BV, Dash R. 2019. Underwater fish species recognition using deep learning
techniques. In: 2019 6th international conference on signal processing and integrated
networks (SPIN). 665—-669 DOI 10.1109/SPIN.2019.8711657.

Desai NP, Baluch MF, Makrariya A, MusheerAziz R. 2022. Image processing model with
deep learning approach for fish species classification. Turkish Journal of Computer
and Mathematics Education (TURCOMAT) 13(1):85-99.

Dharejo FA, Ganapathi II, Zawish M, Alawode B, Alathbah M, Werghi N, Javed S.
2024. SwinWave-SR: multi-scale lightweight underwater image super-resolution.
Information Fusion 103:102127 DOI 10.1016/j.inffus.2023.102127.

Dhillon A, Verma GK. 2020. Convolutional neural network: a review of models,
methodologies and applications to object detection. Progress in Artificial Intelligence
9(2):85-112 DOI 10.1007/s13748-019-00203-0.

Fernandes Junior FE, Yen GG. 2019. Particle swarm optimization of deep neural
networks architectures for image classification. Swarm and Evolutionary Computation
49:62-74 DOI 10.1016/j.swevo0.2019.05.010.

Franceschelli L, Berardinelli A, Dabbou S, Ragni L, Tartagni M. 2021. Sens-
ing technology for fish freshness and safety: a review. Sensors 21(4):1373
DOI 10.3390/521041373.

Gao L. 2021. ERDBNet: enhanced residual dense block net—a new net to rich
ESRGAN image details. Journal of Physics: Conference Series 2083(4):042026
DOI 10.1088/1742-6596/2083/4/042026.

Garcia R, Prados R, Quintana J, Tempelaar A, Gracias N, Rosen S, Vagstol H, Lovall
K. 2019. Automatic segmentation of fish using deep learning with application
to fish size measurement. ICES Journal of Marine Science 77(4):1354-1366
DOI 10.1093/icesjms/fsz186.

GuY,LiJ, Wu(,Jia W, Chen J. 2021. Small object detection by generative and discrim-
inative learning. In: 2020 25th international conference on pattern recognition (ICPR).
1926-1933 DOI 10.1109/ICPR48806.2021.9412830.

Hasegawa T, Kondo K, Senou H. 2024. Transferable deep learning model for the
identification of fish species for various fishing grounds. Journal of Marine Science
and Engineering 12(3):415 DOT 10.3390/jmse12030415.

Adhikary et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2860 20/26


https://peerj.com
http://dx.doi.org/10.1016/j.aquaeng.2024.102460
http://dx.doi.org/10.1109/SPIN.2019.8711657
http://dx.doi.org/10.1016/j.inffus.2023.102127
http://dx.doi.org/10.1007/s13748-019-00203-0
http://dx.doi.org/10.1016/j.swevo.2019.05.010
http://dx.doi.org/10.3390/s21041373
http://dx.doi.org/10.1088/1742-6596/2083/4/042026
http://dx.doi.org/10.1093/icesjms/fsz186
http://dx.doi.org/10.1109/ICPR48806.2021.9412830
http://dx.doi.org/10.3390/jmse12030415
http://dx.doi.org/10.7717/peerj-cs.2860

PeerJ Computer Science

Hong Khai T, Abdullah SNHS, Hasan MK, Tarmizi A. 2022. Underwater fish detection
and counting using mask regional convolutional neural network. Water 14(2):222
DOI 10.3390/w14020222.

Horne CR, Hirst AG, Atkinson D. 2020. Selection for increased male size predicts
variation in sexual size dimorphism among fish species. Proceedings of the Royal
Society B: Biological Sciences 287(1918):20192640 DOI 10.1098/rspb.2019.2640.

Hu W-C, Chen L-B, Huang B-K, Lin H-M. 2022. A computer vision-based intelligent
fish feeding system using deep learning techniques for aquaculture. IEEE Sensors
Journal 22:1-1 DOT 10.1109/JSEN.2022.3151777.

Hu B, Li L, Wu ], Qian J. 2020. Subjective and objective quality assessment for image
restoration: a critical survey. Signal Processing: Image Communication 85:115839
DOI10.1016/j.image.2020.115839.

Ibrahim A, Ahmed A, Hussein S, Hassanien AE. 2018. Fish image segmentation using
salp swarm algorithm. In: Hassanien AE, Tolba MF, Elhoseny M, Mostafa M,
eds. The international conference on advanced machine learning technologies and
applications (AMLTA2018). Cham: Springer International Publishing, 42-51.

Islam MJ, Sakib Enan S, Luo P, Sattar J. 2020. Underwater image super-resolution using
deep residual multipliers. In: 2020 IEEE international conference on robotics and
automation (ICRA). 900-906 DOI 10.1109/ICRA40945.2020.9197213.

Jalal A, Salman A, Mian A, Shortis M, Shafait F. 2020. Fish detection and species
classification in underwater environments using deep learning with temporal
information. Ecological Informatics 57:101088 DOI 10.1016/j.ecoinf.2020.101088.

Jareiio J, Barcena-Gonzélez G, Castro-Gutiérrez J, Cabrera-Castro R, Galindo PL. 2024.
Automatic labeling of fish species using deep learning across different classification
strategies. Frontiers in Computer Science 6:1326452 DOI 10.3389/fcomp.2024.1326452.

JiaY, Jiang Y, Liu Y, Sui X, Feng X, Zhu R, Chen Y. 2021. Understanding trophic
structure variation in fish assemblages of subtropical shallow lakes: combined effects
of ecosystem size, productivity, and disturbance. Ecological Indicators 129:107924
DOI 10.1016/j.ecolind.2021.107924.

Kandimalla V, Richard M, Smith F, Quirion J, Torgo L, Whidden C. 2022. Automated
detection, classification and counting of fish in fish passages with deep learning.
Frontiers in Marine Science 8:823173 DOI 10.3389/fmars.2021.823173.

Knausgard KM, Wiklund A, Serdalen TK, Halvorsen KT, Kleiven AR, Jiao L, Good-
win M. 2022. Temperate fish detection and classification: a deep learning based
approach. Applied Intelligence 52(6):6988—7001 DOI 10.1007/s10489-020-02154-9.

Kong W, Li D, Li ], Liu D, Liu Q, Lin B, Su H, Wang H, Xu C. 2021. Detection of golden
crucian carp based on YOLOVS. In: 2021 2nd international conference on artificial
intelligence and education (ICAIE). 283-286 DOI 10.1109/ICAIE53562.2021.00064.

Lalasa K, Srija R, Kumar K. 2024. Maritime security—illegal fishing detection using deep
learning. In: 2024 international conference on knowledge engineering and communica-
tion systems (ICKECS), vol. 1. 1-5 DOI 10.1109/ICKECS61492.2024.10617407.

Lekunberri X, Ruiz J, Quincoces I, Dornaika F, Arganda-Carreras I, Fernandes JA.
2022. Identification and measurement of tropical tuna species in purse seiner

Adhikary et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2860 21/26


https://peerj.com
http://dx.doi.org/10.3390/w14020222
http://dx.doi.org/10.1098/rspb.2019.2640
http://dx.doi.org/10.1109/JSEN.2022.3151777
http://dx.doi.org/10.1016/j.image.2020.115839
http://dx.doi.org/10.1109/ICRA40945.2020.9197213
http://dx.doi.org/10.1016/j.ecoinf.2020.101088
http://dx.doi.org/10.3389/fcomp.2024.1326452
http://dx.doi.org/10.1016/j.ecolind.2021.107924
http://dx.doi.org/10.3389/fmars.2021.823173
http://dx.doi.org/10.1007/s10489-020-02154-9
http://dx.doi.org/10.1109/ICAIE53562.2021.00064
http://dx.doi.org/10.1109/ICKECS61492.2024.10617407
http://dx.doi.org/10.7717/peerj-cs.2860

PeerJ Computer Science

catches using computer vision and deep learning. Ecological Informatics 67:101495
DOI 10.1016/j.ecoinf.2021.101495.

Li D, Du L. 2021. Recent advances of deep learning algorithms for aquacultural ma-
chine vision systems with emphasis on fish. Artificial Intelligence Review 55:1-40
DOI 10.1007/s10462-021-10102-3.

Li D, Miao Z, Peng F, Wang L, Hao Y, Wang Z, Chen T, Li H, Zheng Y. 2021. Automatic
counting methods in aquaculture: a review. Journal of the World Aquaculture Society
52(2):269-283 DO 10.1111/jwas.12745.

Li X, Shang M, Qin H, Chen L. 2015. Fast accurate fish detection and recognition of
underwater images with Fast R-CNN. In: OCEANS 2015—MTS/IEEE Washington.
1-5 DOI 10.23919/0OCEANS.2015.7404464.

Liang H, Weller DS. 2016. Comparison-based image quality assessment for se-
lecting image restoration parameters. I[EEE Transactions on Image Processing
25(11):5118-5130 DOI 10.1109/T1P.2016.2601783.

Liu C, Gu B, Sun C, Li D. 2022. Effects of aquaponic system on fish locomotion by
image-based YOLO v4 deep learning algorithm. Computers and Electronics in
Agriculture 194:106785 DOI 10.1016/j.compag.2022.106785.

Lu], ZhangS, Zhao S, Li D, Zhao R. 2024. A metric-based few-shot learning
method for fish species identification with limited samples. Animals 14(5):755
DOI 10.3390/ani14050755.

Machado GR, Silva E, Goldschmidt RR. 2021. Adversarial machine learning in image
classification: a survey toward the defender’s perspective. ACM Computing Surveys
55(1):8 DOI 10.1145/3485133.

Mana SC, Sasipraba T. 2022. An intelligent deep learning enabled marine fish species
detection and classification model. International Journal on Artificial Intelligence
Tools 31(01):2250017 DOT 10.1142/S0218213022500178.

Manjarrés-Hernandez A, Guisande C, Garcia-Rosell6 E, Heine ], Pelayo-Villamil
P, Pérez-Costas E, Gonzalez-Vilas L, Gonzélez-Dacosta J, Duque SR, Granado-
Lorencio C. 2021. Predicting the effects of climate change on future freshwater fish
diversity at global scale. Nature Conservation 43:1-24
DOI 10.3897/natureconservation.43.58997.

Mascarenhas S, Agarwal M. 2021. A comparison between VGG16, VGG19 and ResNet50
architecture frameworks for Image Classification. In: 2021 international conference on
disruptive technologies for multi-disciplinary research and applications (CENTCON),
vol. 1.96-99 DOI 10.1109/CENTCON52345.2021.9687944.

Mittal S, Srivastava S, Jayanth JP. 2022. A survey of deep learning techniques for
underwater image classification. IEEE Transactions on Neural Networks and Learning
Systems 34:1-15 DOI 10.1109/TNNLS.2022.3143887.

Moghimi MK, Mohanna F. 2021. Real-time underwater image resolution enhancement
using super-resolution with deep convolutional neural networks. Journal of Real-
Time Image Processing 18(5):1653—-1667 DOI 10.1007/s11554-020-01024-4.

Morrow BD, O’Hara PD, Ban NC, Marques TP, Fraser MD, Serra-Sogas NS, Bone CE.
2022. Improving effort estimates and informing temporal distribution of recreational

Adhikary et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2860 22/26


https://peerj.com
http://dx.doi.org/10.1016/j.ecoinf.2021.101495
http://dx.doi.org/10.1007/s10462-021-10102-3
http://dx.doi.org/10.1111/jwas.12745
http://dx.doi.org/10.23919/OCEANS.2015.7404464
http://dx.doi.org/10.1109/TIP.2016.2601783
http://dx.doi.org/10.1016/j.compag.2022.106785
http://dx.doi.org/10.3390/ani14050755
http://dx.doi.org/10.1145/3485133
http://dx.doi.org/10.1142/S0218213022500178
http://dx.doi.org/10.3897/natureconservation.43.58997
http://dx.doi.org/10.1109/CENTCON52345.2021.9687944
http://dx.doi.org/10.1109/TNNLS.2022.3143887
http://dx.doi.org/10.1007/s11554-020-01024-4
http://dx.doi.org/10.7717/peerj-cs.2860

PeerJ Computer Science

salmon fishing in British Columbia, Canada using high-frequency optical imagery
data. Fisheries Research 249:106251 DOI 10.1016/j.fishres.2022.106251.

Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH, Little DC,
Lubchenco J, Shumway SE, Troell M. 2021. A 20-year retrospective review of global
aquaculture. Nature 591(7851):551-563 DOI 10.1038/541586-021-03308-6.

Nijhawan R. 2019. A hybrid deep learning approach for automatic fish classification. In:
Proc. Emerging Trends Inf. Tech. 427.

Ovalle JC, Vilas C, Antelo LT. 2022. On the use of deep learning for fish species
recognition and quantification on board fishing vessels. Marine Policy 139:105015
DOI 10.1016/j.marpol.2022.105015.

Palmer M, Alvarez Ellacuria A, Molt6 V, Catalan IA. 2022. Automatic, operational,
high-resolution monitoring of fish length and catch numbers from landings using
deep learning. Fisheries Research 246:106166 DOI 10.1016/j.fishres.2021.106166.

Pauzi SN, Hassan MG, Yusoff N, Harun NH, Bakar AHA, Kua BC. 2021. A review
on image processing for fish disease detection. Journal of Physics: Conference Series
1997:012042 DOI 10.1088/1742-6596/1997/1/012042.

Prasetyo E, Purbaningtyas R, Adityo RD, Suciati N, Fatichah C. 2022. Combining
MobileNetV1 and depthwise separable convolution bottleneck with expansion for
classifying the freshness of fish eyes. Information Processing in Agriculture 9:485-496
DOI10.1016/j.inpa.2022.01.002.

Prasetyo E, Suciati N, Fatichah C. 2020. A comparison of YOLO and mask R-CNN for
segmenting head and tail of fish. In: 2020 4th international conference on informatics
and computational sciences (ICICoS). 1-6 DOI 10.1109/ICIC0S51170.2020.9299024.

Prasetyo E, Suciati N, Fatichah C. 2021. Multi-level residual network VGGNet for fish
species classification. Journal of King Saud University—Computer and Information
Sciences 34:5286—5295 DOI 10.1016/].jksuci.2021.05.015.

Pudaruth S, Nazurally N, Appadoo C, Kishnah S, Vinayaganidhi M, Mohammoodally
I, Ally YA, Chady F. 2020. SuperFish: a mobile application for fish species recogni-
tion using image processing techniques and deep learning. International Journal of
Computing and Digital Systems 10:1-14 DOI 10.12785/ijcds/1001104.

Qiao M, Wang D, Tuck GN, Little LR, Punt AE, Gerner M. 2020. Deep learning methods
applied to electronic monitoring data: automated catch event detection for longline
tishing. ICES Journal of Marine Science 78(1):25-35 DOI 10.1093/icesjms/fsaal58.

Rabbi J, Ray N, Schubert M, Chowdhury S, Chao D. 2020. Small-object detection in
remote sensing images with end-to-end edge-enhanced GAN and object detector
network. Remote Sensing 12(9):1432 DOI 10.3390/rs12091432.

Rakotonirina NC, Rasoanaivo A. 2020. ESRGAN+: further improving enhanced super-
resolution generative adversarial network. In: ICASSP 2020—2020 IEEE interna-
tional conference on acoustics, speech and signal processing (ICASSP). 3637-3641
DOI 10.1109/ICASSP40776.2020.9054071.

Adhikary et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2860 23/26


https://peerj.com
http://dx.doi.org/10.1016/j.fishres.2022.106251
http://dx.doi.org/10.1038/s41586-021-03308-6
http://dx.doi.org/10.1016/j.marpol.2022.105015
http://dx.doi.org/10.1016/j.fishres.2021.106166
http://dx.doi.org/10.1088/1742-6596/1997/1/012042
http://dx.doi.org/10.1016/j.inpa.2022.01.002
http://dx.doi.org/10.1109/ICICoS51170.2020.9299024
http://dx.doi.org/10.1016/j.jksuci.2021.05.015
http://dx.doi.org/10.12785/ijcds/1001104
http://dx.doi.org/10.1093/icesjms/fsaa158
http://dx.doi.org/10.3390/rs12091432
http://dx.doi.org/10.1109/ICASSP40776.2020.9054071
http://dx.doi.org/10.7717/peerj-cs.2860

PeerJ Computer Science

Rauf HT, Lali MIU, Zahoor S, Shah SZH, Rehman AU, Bukhari SAC. 2019. Visual
features based automated identification of fish species using deep convolu-
tional neural networks. Computers and Electronics in Agriculture 167:105075
DOI10.1016/j.compag.2019.105075.

Ren S, Li CQ. 2022. Robustness of transfer learning to image degradation. Expert Systems
with Applications 187:115877 DOI 10.1016/j.eswa.2021.115877.

Risholm P, Mohammed A, Kirkhus T, Clausen S, Vasilyev L, Folkedal O, Johnsen @,
Haugholt KH, Thielemann J. 2022. Automatic length estimation of free-swimming
fish using an underwater 3D range-gated camera. Aquacultural Engineering
97:102227 DOI 10.1016/j.aquaeng.2022.102227.

Schwindt S, Meisinger L, Negreiros B, Schneider T, Nowak W. 2024. Transfer learning
achieves high recall for object classification in fluvial environments with limited data.
Geomorphology 455:109185 DOI 10.1016/j.geomorph.2024.109185.

SOFIA. 2022. SOFIA 2018—State of Fisheries and Aquaculture in the world 2018.
Available at https://www.fao.org/state-of-fisheries-aquaculture/2018 (accessed on 28
February 2022).

Tamou AB, Benzinou A, Nasreddine K, Ballihi L. 2018. Underwater live fish recogni-
tion by deep learning. In: Mansouri A, El Moataz A, Nouboud F, Mammass D, eds.
Image and signal processing. Cham: Springer International Publishing, 275-283.

Thorat P, Tongaonkar R, Jagtap V. 2020. Towards designing the best model for classifi-
cation of fish species using deep neural networks. In: Bhalla S, Kwan P, Bedekar M,
Phalnikar R, Sirsikar S, eds. Proceeding of international conference on computational
science and applications. Singapore: Springer Singapore, 343-351.

Togacar M, Ergen B. 2022. Classification of cloud images by using super resolution,
semantic segmentation approaches and binary sailfish optimization method
with deep learning model. Computers and Electronics in Agriculture 193:106724
DOI 10.1016/j.compag.2022.106724.

Ubina NA, Cheng S-C. 2022. A review of unmanned system technologies with its
application to aquaculture farm monitoring and management. Drones 6(1):12
DOI 10.3390/drones6010012.

Ulucan O, Karakaya D, Turkan M. 2020. A large-scale dataset for fish segmentation and
classification. In: 2020 innovations in intelligent systems and applications conference
(ASYU). Piscataway: IEEE, 1-5 DOI 10.1109/ASYU50717.2020.9259867.

Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. 2018. Deep learning
for computer vision: a brief review. Computational Intelligence and Neuroscience
2018:7068349.

Wageeh Y, Mohamed HE-D, Fadl A, Anas O, ElMasry N, Nabil A, Atia A. 2021. YOLO
fish detection with Euclidean tracking in fish farms. Journal of Ambient Intelligence
and Humanized Computing 12:5-12 DOIT 10.1007/512652-020-02847-6.

WangY, Li X, Nan F, Liu F, Li H, Wang H, Qian Y. 2022b. Image super-resolution
reconstruction based on generative adversarial network model with feedback and
attention mechanisms. Multimedia Tools and Applications 81:1-20.

Adhikary et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2860 24/26


https://peerj.com
http://dx.doi.org/10.1016/j.compag.2019.105075
http://dx.doi.org/10.1016/j.eswa.2021.115877
http://dx.doi.org/10.1016/j.aquaeng.2022.102227
http://dx.doi.org/10.1016/j.geomorph.2024.109185
https://www.fao.org/state-of-fisheries-aquaculture/2018
http://dx.doi.org/10.1016/j.compag.2022.106724
http://dx.doi.org/10.3390/drones6010012
http://dx.doi.org/10.1109/ASYU50717.2020.9259867
http://dx.doi.org/10.1007/s12652-020-02847-6
http://dx.doi.org/10.7717/peerj-cs.2860

PeerJ Computer Science

Wang C, Ruifei Z, Bai Y, Zhang P, Fan H. 2021a. Single-frame super-resolution for high
resolution optical remote-sensing data products. International Journal of Remote
Sensing 42(21):8099-8123 DOI 10.1080/01431161.2021.1971790.

Wang X, Shi Y, Yang P, Tao X, Li S, Lei R, Liu Z, Wang ZL, Chen X. 2022. Fish-
wearable data snooping platform for underwater energy harvesting and fish behavior
monitoring. Small 18(10):210-232 DOI 10.1002/sml.202107232.

Wang QX, SuLH, Zou ], Chen NX, Wu T, Yang L. 2021b. Research on hard-
ness detection method of crisped grass carp based on visible—near infrared
hyperspectral technology. Journal of Physics: Conference Series 1757:012002
DOI 10.1088/1742-6596/1757/1/012002.

Wang H, Zhang S, Zhao S, Wang Q, Li D, Zhao R. 2022a. Real-time detection and track-
ing of fish abnormal behavior based on improved YOLOV5 and SiamRPN++. Com-
puters and Electronics in Agriculture 192:106512 DOI 10.1016/j.compag.2021.106512.

Ward CL, McCann KS. 2017. A mechanistic theory for aquatic food chain length. Nature
Communications 8(1):1-10 DOI 10.1038/s41467-016-0009-6.

Wen N, Guo R, Ma D, Ye X, He B. 2022. AloU: adaptive bounding box regression
for accurate oriented object detection. International Journal of Intelligent Systems
37(1):748-769 DOI 10.1002/int.22646.

Yassir A, Jai Andaloussi S, Ouchetto O, Mamza K, Serghini M. 2023. Acoustic fish
species identification using deep learning and machine learning algorithms: a
systematic review. Fisheries Research 266:106790 DOI 10.1016/j.fishres.2023.106790.

Yu C, Fan X, Hu Z, Xia X, Zhao Y, Li R, Bai Y. 2020. Segmentation and measurement
scheme for fish morphological features based on Mask R-CNN. Information
Processing in Agriculture 7(4):523-534 DOI 10.1016/j.inpa.2020.01.002.

Zhang T-T, Chow C-Y, Zhang J-D. 2021. Fish image instance segmentation: an enhanced
hybrid task cascade approach. In: 2021 IEEE 15th international conference on semantic
computing (ICSC). 306-313 DOI 10.1109/ICSC50631.2021.00058.

Zhang Z, Du X, Jin L, Wang S, Wang L, Liu X. 2022. Large-scale underwater fish
recognition via deep adversarial learning. Knowledge and Information Systems
64:1-27 DOI 10.1007/s10115-021-01643-8.

Zhang X, Qiu Z, Huang P, Hu J, Luo J. 2018. Application research of YOLO v2
combined with color identification. In: 2018 international conference on cyber-
enabled distributed computing and knowledge discovery (CyberC). 138-1383
DOI 10.1109/CyberC.2018.00036.

Zhao R, Niu X, Wu Y, Luk W, Liu Q. 2017. Optimizing CNN-based object detection
algorithms on embedded FPGA platforms. In: Wong S, Beck AC, Bertels K, Carro
L, eds. Applied reconfigurable computing. Cham: Springer International Publishing,
255-267.

Zhao S, Zhang S, Liu J, Wang H, Zhu J, Li D, Zhao R. 2021. Application of ma-
chine learning in intelligent fish aquaculture: a review. Aquaculture 540:736724
DOI 10.1016/j.aquaculture.2021.736724.

Adhikary et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2860 25/26


https://peerj.com
http://dx.doi.org/10.1080/01431161.2021.1971790
http://dx.doi.org/10.1002/smll.202107232
http://dx.doi.org/10.1088/1742-6596/1757/1/012002
http://dx.doi.org/10.1016/j.compag.2021.106512
http://dx.doi.org/10.1038/s41467-016-0009-6
http://dx.doi.org/10.1002/int.22646
http://dx.doi.org/10.1016/j.fishres.2023.106790
http://dx.doi.org/10.1016/j.inpa.2020.01.002
http://dx.doi.org/10.1109/ICSC50631.2021.00058
http://dx.doi.org/10.1007/s10115-021-01643-8
http://dx.doi.org/10.1109/CyberC.2018.00036
http://dx.doi.org/10.1016/j.aquaculture.2021.736724
http://dx.doi.org/10.7717/peerj-cs.2860

PeerJ Computer Science

Zhao Z-Q, Zheng P, Xu S-T, Wu X. 2019. Object detection with deep learning: a review.
IEEE Transactions on Neural Networks and Learning Systems 30(11):3212-3232
DOI 10.1109/TNNLS.2018.2876865.

Zheng T, Wu ], Kong H, Zhao H, Qu B, Liu L, Yu H, Zhou C. 2024. A video object
segmentation-based fish individual recognition method for underwater complex
environments. Ecological Informatics 82:102689 DOI 10.1016/j.ecoinf.2024.102689.

Adhikary et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2860 26/26


https://peerj.com
http://dx.doi.org/10.1109/TNNLS.2018.2876865
http://dx.doi.org/10.1016/j.ecoinf.2024.102689
http://dx.doi.org/10.7717/peerj-cs.2860

