
Scaling laws for Haralick texture features
of linear gradients
Sorinel A. Oprisan and Ana Oprisan

Physics and Astronomy, College of Charleston, Charleston, SC, United States

ABSTRACT
This study presents a novel analytical framework for understanding the relationship
between the image gradients and the symmetries of the Gray Level Co-occurrence
Matrix (GLCM). Analytical expression for four key features–sum average (SA), sum
variance (SV), difference variance (DV), and entropy–were derived to capture their
dependence on image’s gray-level quantization (Ng), the gradient magnitude (7),
and the displacement vector (d) through the corresponding GLCM. Scaling laws
obtained from the exact analytical dependencies of Haralick features on Ng,7 and |
d| show that SA and DV scale linearly with Ng, SV scales quadratically, and entropy
follows a logarithmic trend. The scaling laws allow a consistent derivation of
normalization factors that make Haralick features independent of the quantization
scheme Ng. Numerical simulations using synthetic one-dimensional gradients
validated our theoretical predictions. This theoretical framework establishes a
foundation for consistent derivation of analytic expressions and scaling laws for
Haralick features. Such an approach would streamline texture analysis across datasets
and imaging modalities, enhancing the portability and interpretability of Haralick
features in machine learning and medical imaging applications.

Subjects Computer Vision, Data Mining and Machine Learning, Data Science, Visual Analytics
Keywords Texture classification, Image analysis, Gray Level Co-occurrence Matrix, Haralick
features, Scaling laws

INTRODUCTION
Researching image texture presents a fundamental challenge: it requires a universally
accepted definition. Texture can be perceived through tactile means Manjunath & Ma
(1996) and optical methods (Tuceryan & Jain, 1999). Humans recognize texture in images
(Papathomas, Kashi & Gorea, 1997; Aviram & Rotman, 2000; Jagadeesh & Gardner, 2022),
distinguishing it by attributes such as coarseness and roughness. The human visual system
relies on local contrast ratios and intensity differences, rather than absolute pixel intensity
values, to interpret image patterns, such as intensity gradients (Werner, 1935; Land &
McCann, 1971; Attneave, 1954; Barten, 1999). In non-human primates, neurons selectively
respond to surface luminance gradients and utilize linear shading gradients to infer
three-dimensional (3D) structure (Hanazawa & Komatsu, 2001). While previous
experimental findings established that the primate visual cortex prioritizes luminance
gradients over absolute luminosity as a key visual feature for pattern classification
(Correani, Scott-Samuel & Leonards, 2006; Keil, 2007), more recent research has
demonstrated that image gradients also facilitate the neural encoding of 3D
representations of textured objects (Gomez & Neumann, 2016).
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Furthermore, MRI studies in humans have shown that luminance gradients along the
vertical axis of an image elicit stronger neural responses in scene-selective brain regions
compared to horizontal gradients (Cheng, Chen & Dilks, 2023). This directional selectivity
suggests that the human brain assigns different levels of importance to intensity gradients
depending on their orientation within natural scenes. Experimental evidence also suggests
that vertical intensity gradients are processed by distinct neural pathways in the early
visual cortex than those used for gradients in other orientations (Vaziri et al., 2014).

Computer applications have leveraged human visual perception by incorporating
gradients as fundamental visual features to enhance the informational content of images.
For instance, geographic information system (GIS) tools utilize color gradients to represent
variations in elevation and population density (DeMers, 2008). In image processing,
gradients serve as essential components for various tasks, including edge detection (Canny,
1986), to correct different lighting or camera properties (Marchand, 2007), and
distinguishing between digital camera images and scanned images (Mettripun &
Amornraksa, 2014). Additionally, reducing gradient magnitudes at transitions within
mosaic images helps create visually cohesive scenes, which human observers perceive as
single, unified images (Perez, Gangnet & Blake, 2003).

Natural-scene images depict nature-made objects, such as landscapes, animals, and
plants. At the initial stage of an image processing pipeline, basic image enhancement tasks
must make assumptions about the image through interpolation methods like smoothing
and filtering or model fitting techniques such as Bayesian inference. Although prior
knowledge is essential for image processing, it can also introduces bias by favoring
expected outcomes. Spectral priors do not directly encode information about an image’s
specific properties but instead influence its histogram (the spectrum). Many image
features, including color and texture, can be derived from image gradients or spectral
priors, as they exhibit remarkable invariance across images (Long & Purves, 2003; Tward,
2021; Dresp-Langley & Reeves, 2024). Each pixel in a gradient image contains two values
corresponding to the gradient components at that location. The gradient distribution
represents these values’ histogram or probability distribution across all pixels or multiple
images. This study focused on one-dimensional gradients in two-dimensional images to
explore how Haralick statistical features relate to image gradients. Significant discrepancies
exist between human and machine vision in classifying the same textures (Tamura, Mori &
Yamawaki, 1978). Efforts to enhance machine-based texture recognition have included
detailed models of human visual perception of luminance differences (Chan, Golub &
Mulet, 1970; Miao & Shaohui, 2017) and techniques that focus on grouping similar image
regions (Rosenfeld & Kak, 1982) or analyzing semi-repetitive pixel arrangements in natural
scenes (Pratt, 1978, 2006).

Computer vision and “big data” efficient algorithms driven by machine learning (ML)
and Artificial Intelligence (AI) rapidly expanded into the medical imaging field in
healthcare. Despite its significance, over 97% of recorded medical images remain unused
due to inadequate feature extraction and classification methods (Murphy, 2019). With the
emergence of ML and AIs, several automated systems for medical image analysis have been
developed. These include tools for bone age estimation (Kim et al., 2017), detection of
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pulmonary tuberculosis and lung nodules (Hwang et al., 2018; Singh et al., 2018), and
AI-based lobe segmentation in CT images (Fischer et al., 2020). Texture analysis is crucial
in such applications, including diagnosing microcalcifications in breast tissue
(Karahaliou et al., 2007) and detecting cancer from ultrasound images of various organs
(Faust et al., 2018).

Texture analysis has been applied to improve the quality of life for individuals with
visual impairments. For example, it has enhanced handwriting digit identification accuracy
(Sanchez Sanchez et al., 2024) and improved the performance of classification algorithm
(Alshehri et al., 2024). In nondestructive material testing, texture analysis helps
characterize changes in microstructure caused by mechanical, thermal, and operational
stresses. By analyzing microstructural features, researchers gain a deeper understanding of
bulk material properties and their macroscopic mechanical behavior. Microstructure
texture classification has been widely used in metallurgical studies, based on second-order
statistical features such as Haralick features (Haralick, Shanmugam & Dinstein, 1973;
Haralick, 1979). Applications include identifying constituent metallurgical phases in steel
microstructures (Naik, Sajid & Kiran, 2019), assessing surface hardening during cooling
(Fuchs, 2005), detecting phase transitions in two-phase steel systems (Liu, 2014), and
analyzing the effects of tempering parameters on steel microstructure (Dutta et al., 2014).
Additionally, texture analysis has been utilized to quantify corrosion in steam piping
systems (Fajardo et al., 2022). In soft condensed matter, texture classification has been
used for identifying phase transitions in polymers and liquid crystals (Pieprzyk et al., 2022;
Sastry et al., 2012) and measuring shear modulus, failure temperature, and zero shear
viscosity, in polymeric colloids (Xu et al., 2024).

Texture-based image analysis often utilizes advanced statistical methods, such as
discriminative binary and ternary pattern features (Midya et al., 2017), wavelet-based
techniques (Wan & Zhou, 2010; Karahaliou et al., 2007), and matrix-based approaches
such as gray-level run length (Raghesh Krishnan & Sudhakar, 2013), autocovariance
(Huang, Lin & Chen, 2005), and spatial gray-level dependence matrices (Kyriacou et al.,
1997; Pavlopoulos et al., 2000).

One widely used approach to texture analysis is the Gray Level Co-occurrence Matrix
(GLCM), a statistical method that captures spatial relationships between pixel intensities
(Oprisan & Oprisan, 2023). GLCM, which belongs to second-order statistical methods
(Humeau-Heurtier, 2019), quantifies occurrences of pixel pairs that exhibit specific spatial
relationships. Haralick, Shanmugam & Dinstein (1973), Haralick (1979) identified 14
texture features derived from GLCM; however, many have been critiqued for redundancy
(Conners & Harlow, 1980) and computational complexity. Advanced methods, including
higher-order statistics and fractal dimensions (Pavlopoulos et al., 2000; Kyriacou et al.,
1997), have further enriched the field but remain limited in practical application due to
high computational demands.

The primary objective of this study is to derive analytical expressions for the GLCM and
its related features, in order to better understand how they depend on gray-level
quantization (Ng), image gradient magnitude (r), and displacement vector (d). The
secondary objective is to use these newly derived expressions, particularly those from the
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GLCM of linear gradients, to establish scaling laws that govern the dependence of Haralick
features onNg ,r, and d. These scaling laws will help determine the asymptotic behavior of
Haralick features and identify data-driven normalization factors, ensuring that results
remain independent of the image quantization scheme. Previous studies primarily relied
on empirical methods to estimate normalization factors that could make Haralick features
invariant to the number of gray levels (Ng). For instance, Clausi (2002) proposed
normalizing gray-level intensities by the total number of gray levels in the GLCM, but
applied this only to two features—inverse difference and inverse difference moment.
Similarly, Shafiq-ul Hassan et al. (2017, 2018) aimed to enhance the reproducibility of
MRI-based Haralick features across different voxel volumes and scanner models (Philips,
Siemens, and GE models). However, their empirical approach identified only two
reproducible GLCM-based features, and they noted that “for some features, their
relationship with gray levels appeared to be random, therefore, no normalizing factor
could be identified” (Shafiq-ul Hassan et al., 2017). Lofstedt et al. (2019) also investigated
methods to reduce the sensitivity of Haralick features to image size, noise levels, and
different quantization schemes. Their approach involved normalizing each gray level byNg

and additional empirical normalization factors, effectively transforming the GLCM into an
equivalent normalized Riemann sum. While this normalization improved consistency for
many texture features, it did not work universally, although “most of the modified texture
features quickly approach a limit.” This study introduces a systematic methodology for
deriving scaling laws that explain how Haralick features evolve with changes in the number
of gray levels (Ng). By establishing these scaling laws analytically, we aim to provide a more
rigorous foundation for normalization strategies, reducing the reliance on empirical
estimations.

This study demonstrates the derivation methodology for feature dependencies on Ng , d,
andr for four Haralick features: sum average (SA), sum variance (SV), difference average
(DA), and entropy. We chose these four Haralick features because they have received
significantly less attention than those based directly on calculating various moments of the
GLCM. Examples include Second Angular Moment or Energy f1 (over 19,300 publications
in Google Scholar), Contrast f2 (22,500 publications), Correlation f3 (21,000 publications),
Sum of Squares Variance f4 (20,100 publications), Inverse Difference Moment or Local
Homogeneity f5 (16,000 publications), and Entropy f9 (19,100 publications) (Haralick,
Shanmugam & Dinstein, 1973). The remaining Haralick features are used significantly less
often because they depend on marginal probabilities derived from the GLCM and require
extra computational steps. For instance, SA f6 (3,080 publications), the SV f7 (2,720
publications), and the difference variance f10 (2,600 publications) are cited at about one
order of magnitude lower than the previous category. Consequently, their meanings are
more complex to grasp. We have included entropy in this study for two reasons: to
demonstrate how a logarithmic moment of GLCM is estimated and, more importantly, to
illustrate that the derived marginal probabilities used for evaluating SA and sum difference
can immediately apply to calculating sum entropy and difference entropy features. By
advancing the theoretical understanding of these features, this work aims to enhance the
applicability of Haralick features in machine learning and AI-driven texture analysis.
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The manuscript is structured as follows. The Methods “The Gray Level Co-occurrence
Matrix (GLCM)” defines the meaning and notation for the GLCM. Figure 1 shows a
reference frame attached to the upper left corner of the image and the offset vector
d ¼ ðDx;DyÞ between the reference (shaded) pixel and its set of neighbours. Descriptions
of the x-direction pxðiÞ, y-direction pyðjÞ, sum pxþyðkÞ, and difference px�yðkÞ marginal
distributions are provided in “Marginal Distributions Associated with the GLCM”. A
visual aid is included to help elucidate the meaning of the marginal distributions in Fig. 2.
The numerical procedure used for generating synthetic images is detailed in “Synthetic
Gradient Images”. The Results section begins with a two-dimensional Nx � Ny gradient
map for a periodic vertical gradient of length Ny in “Two-dimensional (2D) Gradient

Figure 1 Gray Level Co-occurrence Matrix (GLCM) displacement vectors. (A) By convention, the
x-direction runs horizontally to the right and y-direction vertically downward with the image’s origin at
the upper left corner. Pixel offsets are given by the displacement vector d ¼ ðDx;DyÞ. (B) In a non-
periodic Nxð¼ 5Þ � Nyð¼ 4Þ 2-bit image, there are Rx ¼ ðNx � 1ÞNy ¼ 16 horizontal pairs of pixels at a
displacement d ¼ ðDx ¼ 0;Dy ¼ 1Þ and Ry ¼ NxðNy � 1Þ ¼ 15 vertical pairs of pixels at a displacement
d ¼ ðDx ¼ 1;Dy ¼ 0Þ. (C) The GLCM for unit horizontal displacement has Ng � Ng ¼ 16 non-zero
entries for a 2-bit depth image. For example, the two horizontal pairs 0-1 highlighted with elliptic shades
in panel B give the GLCM entry Pð0; 1Þ ¼ 2. (D) The GLCM for unit vertical displacement has 15
non-zero entries. For example, the vertical pairs 1-2 indicated with rectangular shades in panel B yield the
GLCM entry Pð1; 2Þ ¼ 1. Full-size DOI: 10.7717/peerj-cs.2856/fig-1

Figure 2 Marginal probability distributions from the GLCM. (A) The probability of finding a gray
level intensity i along the horizontal x-direction in the image is pxðiÞ and along vertical direction is pyðiÞ.
(B) The probability of finding a gray level difference of k ¼ ji� jj units is px�yðkÞ. It is determined by
summing elements parallel to the primary diagonal at a distance of k units above and below the GLCM
along the corresponding dashed lines. By summing GLCM elements parallel to its secondary diagonal,
one obtains pxþyðsÞ. Full-size DOI: 10.7717/peerj-cs.2856/fig-2
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Maps”, supporting the transition to the Ng � Ng GLCM matrix by wrapping around the
2D map in “Wrap Around the 2D Gradient Map to get the GLCM”. Utilizing GLCM
symmetry for periodic linear gradients enables us to estimate the number of nonzero
GLCM entries for a given gradientr in “On the Number of Nonzero GLCM Entries for a
Linear Gradient”, which is necessary for calculating the marginal distribution of gray level
differences px�yðkÞ (Marginal distribution of gray level differences px�y for linear
gradients), the marginal distribution of gray level sums pxþyðkÞ (Marginal distribution of
gray level sums pxþy for linear gradients). The numerical procedure used for comparing
analytic predictions against numerically computed Haralick features for synthetic
one-dimensional gradients is detailed in “Analytic Scaling Laws for Haralick Features of
Linear Gradients. Comparison with Numerical Results”. The subsequent subsections of the
Results section apply the findings to derive analytic expressions and scaling laws for sum
average, sum variance, difference average, and entropy dependence on Ng ;r and jdj. Side-
by-side comparison of analytical and numerical findings are summarized in the Discussion
and Conclusions section.

METHODS
The Gray Level Co-occurrence Matrix
A grayscale image is a two-dimensional matrix Iðx; yÞ that stores gray-level intensities (see
Fig. 1A). The bit depth of an image determines the number Ng of gray levels. For instance,
an 8-bit image has Ng ¼ 28 ¼ 256 gray levels. By convention, a gray level of zero,
Iðx; yÞ ¼ 0, represents black, while Iðx; yÞ ¼ Ng � 1 corresponds to white. Intermediate

intensities represent various shades of gray. Figure 1A shows the upper left corner
reference frame attached to an image with x-direction pointing horizontally to the right
and the y-direction vertically downward. Each square in Fig. 1A represents an image pixel.
Arrows from the central highlighted pixel indicate the offset vectors d ¼ ðDx;DyÞ to its
neighbors. The increment Dx represents the image row offset and Dy represents the image
column offset.

Figure 1B illustrates a rectangular Nxð¼ 5Þ � Nyð¼ 4Þ image with a 2-bit depth
(Ng 2 f0; 1; 2; 3g). For the same image, as shown in Fig. 1B, each displacement vector d
defines a corresponding GLCM. For instance, a unit displacement along horizontal
direction d ¼ ðDx ¼ 1;Dy ¼ 0Þ produces Fig. 1C. Indeed, there are two pairs of pixels
with the starting point gray level i ¼ 0 and endpoint intensity level j ¼ 1 separated by one
pixel displacement along the horizontal direction. The array coordinates (1,4)-(1,5) and
(2,2)-(2,3) are marked with elliptical shaded area and connected by the two horizontal lines
extending from panel B image to the corresponding GLCM entry Pð0; 1Þ ¼ 2 in panel C.
Similarly, there is only one pair of pixels in the Fig. 1B image with the starting point gray
level i ¼ 1 and endpoint intensity level j ¼ 2 separated by one pixel displacement along the
vertical direction. The array coordinates (3,4)-(4,4) are marked with rectangular shaded
area and connected horizontally by a line extending from panel B image to the
corresponding GLCM entry Pð1; 2Þ ¼ 1 in panel D. The unnormalized GLCM counts the
number of occurrences of the (reference) gray level i at a distance specified by the
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displacement vector d ¼ ðDx;DyÞ from the (target) gray level j (Haralick, Shanmugam &
Dinstein, 1973):

Pdði; jÞ ¼ #fððxi; yiÞ; ðxj; yjÞÞ : Iðxi; yiÞ ¼ i&Iðxj; yjÞ ¼ jg; (1)

where # denotes the number of elements in the set, the coordinates of the reference gray
level i are ðxi; yiÞ, and the coordinates of the neighbor (target) pixel with gray level j are
ðxj ¼ xi þ Dx; yj ¼ yi þ DyÞ.

In the GLCM Eq. (1), the first index i represents the intensity of the reference point, or
the starting point of the displacement vector d, while the second index j corresponds to the
intensity of the endpoint of the displacement vector. For instance, an offset
d ¼ ðDx ¼ 1;Dy ¼ 0Þ indicates that the row index (in the y-direction) remains
unchanged since Dy ¼ 0, and the column index (in the x- or horizontal direction across
the image) increases by one unit ðDx ¼ 1Þ.

For simplicity, Fig. 1 only counts the pairs for gray levels one pixel apart along the
horizontal (Fig. 1C) and vertical (Fig. 1D) directions, respectively. For example, only one
pair of gray level intensities 1-0 is counted between the spatial coordinates (2,3) and (2,4)
in Fig. 1B, which is shown as Pð1; 0Þ ¼ 1 in Fig. 1C GLCM. As a result, the Fig. 1B GLCM
is not symmetric. In the original definition of the GLCM provided by Haralick (Haralick,
Shanmugam & Dinstein, 1973), symmetry allows both Pð1; 2Þ and Pð2; 1Þ pairings to be
counted as instances where the pixel value 1 is separated by the distance vector d from the
pixel value 2. Mathematically this is achieved by adding to the GLCMs in Figs. 1C and 1D
their corresponding transposed arrays. In line with Haralick’s definition, our
implementation and all the results presented in this study used a symmetric GLCMmatrix
definition.

The number of possible pairs in the image typically normalizes the GLCM. For instance,
in an Nx � Ny image, there are Rx ¼ ðNx � 1ÞNy horizontal pairs and Ry ¼ ðNy � 1ÞNx

vertical pairs. In the example depicted in Fig. 1, since the image has 4� 5 pixels, the GLCM
normalization factors are Rx ¼ 16 and Ry ¼ 15. The corresponding normalized GLCM
values in Fig. 1C are, for example, pdð0; 2Þ ¼ Pð0; 2Þ=Rx ¼ 2=16, and for Fig. 1D, they are
pdð1; 2Þ ¼ Pdð1; 2Þ=Ry ¼ 1=15. The unnormalized GLCM is indicated with capital letters

such as Pdði; jÞ, while its normalized version is denoted as pdði; jÞ:

pdði; jÞ ¼ Pdði; jÞPNg�1
i¼0

PNg�1
j¼0 Pdði; jÞ

: (2)

The normalized GLCM indicates the likelihood of finding gray level j at a displacement
d ¼ ðDx;DyÞ from the current location of the reference pixel with gray level i in an image.
It adheres to the normalization condition

PNg�1
i¼0

PNg�1
j¼0 pdði; jÞ ¼ 1. More than half of the

original 14 Haralick features rely on an additional step that involves computing marginal
probability distributions from pdði; jÞ.

The GLCM is a natural measure of image gradients, quantifying the change in light
intensity from the reference intensity i to the target intensity j along the displacement
vector d ¼ ðDx;DyÞ. Since Haralick features are scalar measures defined by the two-point
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histogram represented by the GLCM, they also inherently measure light intensity gradients
present in images.

Marginal distributions associated with the GLCM
Only three of the original Haralick features (Haralick, Shanmugam & Dinstein, 1973;
Haralick, 1979) use the normalized GLCM pdði; jÞ as defined in Eq. (2). All the other use
one of the four marginal probability distributions derived from pdði; jÞ. To simplify the
notation, one dropped the subscript d from the normalized GLCM pdði; jÞ. The x-direction
marginal probability distribution can be obtained by summing along the rows of the
GLCM pði; jÞ:

pxðiÞ ¼
XNg�1

j¼0

pði; jÞ;

as shown in Fig. 2A. For example, pxð0Þ is the sum of all row elements with an intensity
i ¼ 0 at the reference point (see Fig. 1A), regardless of the intensity of its endpoint
determined by the displacement vector. Therefore, pxðiÞ gives the probability of finding
gray level i in the image. The mean and variance of the GLCM along the marginal

distribution pxðiÞ are lx ¼
PNg�1

i¼0 ipxðiÞ; and r2x ¼
PNg�1

i¼0 ði� lxÞ2pxðiÞ:
The y-direction marginal probability distribution pyðiÞ can be obtained by summing the

columns of the GLCM pði; jÞ:

pyðjÞ ¼
XNg�1

i¼0

pði; jÞ:

For example, pyð0Þ is the sum of all column elements with an endpoint intensity j ¼ 0,
regardless of the intensity of the reference (starting) point. These marginal probabilities are
illustrated in Fig. 2, along the horizontal dashed lines representing the GLCM line
summation for px and along the vertical dashed lines representing the GLCM column
summation of pði; jÞ to obtain py, respectively.

The marginal distribution of gray level differences k ¼ i� j between the reference pixel
intensity i and the endpoint intensity j determined by the displacement vector d is:

px�yðkÞ ¼
XNg�1

i¼0

XNg�1

j¼0

dji�jj;kpði; jÞ; (3)

where dm;n is Kronecker’s symbol. For example, px�yð0Þ represents the sum of all primary
diagonal elements of the GLCM, as these elements exhibit no gray level differences
between the reference point and the endpoint of the vector d, as illustrated in Fig. 2B.
Similarly, the sum of the elements along the first line parallel to and above the primary
diagonal reflects a gray level difference of k ¼ þ1 units between the reference gray level i
and the endpoint gray level j of the GLCM, which defines px�yð1Þ. The sum
pð0; 1Þ þ pð1; 2Þ þ pð2; 3Þ of GLCM entries along the first line parallel and above the
primary diagonal in Fig. 2B correspond to the fraction of px�yð1Þ with j� i ¼ þ1. The
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sum pð1; 0Þ þ pð2; 1Þ þ pð3; 2Þ of GLCM entries along the first line parallel and below the
primary diagonal in Fig. 2B correspond to the fraction of px�yð1Þ with j� i ¼ �1. Since
the definition of gray level differences marginal distribution px�yð1Þ in Eq. (3) counts
absolute differences k ¼ ji� jj, the two partial sums must also be added (see the� symbol)
to produce px�yð1Þ.

The marginal distribution of gray level sums k ¼ iþ j between the reference pixel
intensity i and the endpoint neighbor intensity j is:

pxþyðkÞ ¼
XNg�1

i¼0

XNg�1

j¼0

diþj;kpði; jÞ: (4)

To prevent overcrowding in Fig. 2B, we only showed the pxþyð3Þ, which signifies the
sum of the GLCM elements along its secondary diagonal with iþ j ¼ 3, i.e.,
pð3; 0Þ þ ð2; 1Þ þ pð1; 2Þ þ pð0; 3Þ. Other values for pxþyðsÞ correspond to summation

along lines parallel to the secondary diagonal in Fig. 2B.

Synthetic gradient images
While the GLCM method described in “Methods” applies to any image, this study
specifically focuses on computer-generated (synthetic) images with one-dimensional
vertical gradients. This focus is motivated by the fact that image gradients are
highly invariant across images (Long & Purves, 2003; Tward, 2021; Dresp-Langley &
Reeves, 2024).

Image gradients have long been used as statistical (or spectral) priors for estimating
image features (Gong & Sbalzarini, 2014, 2016). A gradient image Gðx; yÞ, is derived from
the first-order spatial differences of the original image, Iðx; yÞ, such that
Gðx; yÞ ¼ ðIðx � 1; yÞ � Iðx; yÞ; Iðx; y � 1Þ � Iðx; yÞÞ (McCann & Pollard, 2008; Sevcenco
& Agathoklis, 2021). The gradient image retains the same dimensions as the original but
stores the x- and y-direction gradient values at each pixel.

Gradient spectral priors have been extensively applied in various image processing
tasks, including denoising and deblurring (Chen, Yang & Wu, 2010), image restoration
(Cho et al., 2012), range compression (Fattal, Lischinski & Werman, 2002), shadow
removal (Finlayson, Hordley & Drew, 2002), and image compositing (Levin et al., 2004;
Perez, Gangnet & Blake, 2003). Notably, deblurring in the gradient domain is often more
computationally efficient than operating on raw pixel values (Cho & Lee, 2009; Shan, Jia &
Agarwala, 2008; Wang & Cheng, 2016).

Traditionally, images are decomposed into 2D orthogonal gradient maps assuming that
x- and y-direction gradients are statistically independent. One of the first studies to explore
potential correlations between these gradient distributions in natural scene images found
“weakly negatively correlated in the training dataset (from edges in the images)”
(Gong & Sbalzarini, 2016). Consistent with these findings, recent algorithms for image
denoising and deblurring (Zheng et al., 2022; Zhangying et al., 2024), range compression
(Yan, Sun & Davis, 2024), or pattern classification (Wang et al., 2025) continue to treat
orthogonal gradients as independent and their spectral priors as uncorrelated. Based on
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this well-supported assumption, our study focuses exclusively on a vertical gradient for
calculating Haralick texture features.

Figure 3A shows a b ¼ 3-bit depth grayscale image with dimensions Nx � Ny, featuring
a vertical, linearly increasing, periodic intensity gradient ofr ¼ 1 gray level per pixel. The
array Iðx; yÞ that represents the image is given by Iðxi; yiÞ ¼ yir where
yi ¼ f0; 2;…;Ny � 1g. Since image intensities do not depend on the

xi ¼ f0; 2;…;Nx � 1g matrix index, the image appears as horizontal stripes with linearly
increasing intensity (Fig. 3A). Furthermore, the vertical gradients are periodic, i.e., the
intensity pattern repeats after reaching the maximum number of gray levels Ng ¼ 2b. In
other words, the vertical coordinate yi and pixel intensity are connected through

Figure 3 Periodic and linear vertical gradients and their GLCM. (A and E) Horizontal stripes of
constant intensity with a periodic vertical gradient of r ¼ 1 (panel A) and r ¼ 2 (panel 2) gray levels
per pixel in a b ¼ 3-bit depth grayscale image. Each horizontal line is one pixel wide. (B and F) Numerical
representation of the grayscale image with values ranging from zero to Ng � 1: (C and G) The two-
dimensional (2D) gradient map of the periodic gray level gradient displays nonzero entries at the
coordinates ðyi; yjÞ ¼ ðyi; yiþjdjÞ, which are spaced by the distance d and maintain the absolute coordi-
nates of pixels along the gradient. The first non-zero entry occurs at ði ¼ 0; j ¼ dÞrÞ, with all nonzero
entries separated by distances of r both vertically and horizontally. (D and H) The shaded gray levels
i ¼ 0 and j ¼ 1 at a vertical distance of one pixel d ¼ ð0; 1Þ in panel B determine the GLCM entry
Pð0; 1Þ ¼ 1. The GLCM can be obtained by wrapping around the 2D gradient map by modulo Ng þ 1 in
both array dimensions. Full-size DOI: 10.7717/peerj-cs.2856/fig-3
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Iðxi; yiÞ ¼ modðyi;NgÞr. The modulo (“mod”) operation along the vertical spatial indices

yi ensures the gradient repeats periodically after Ng pixels. In Fig. 3A example, the gray

levels increase linearly from zero to Ng � 1 with a step of r ¼ 1 gray level per pixel. The
arrow next to the gradient in Fig. 3A indicates the gradient’s direction. Similarly, Fig. 3E
shows a synthetically generated image with a vertical, linearly increasing, and periodic
gradient r ¼ 2 gray levels per pixel. The grayscale images from Fig. 3A and Fig. 3E are
numerically represented in Fig. 3B and Fig. 3F, respectively. The horizontal arrows
between panels A and B indicate that the constant intensity line of pixels is represented
numerically by the corresponding integer values with black mapped to 0. Following the
procedure described above, we generated square synthetic images of 1024� 1024 pixels
containing periodic linear gradient patterns, as illustrated in Fig. 3. Our analysis focuses on
three key variables:

(1) The number of gray levels in the image (Ng),

(2) The intensity of the image gradients (r) in gray levels per pixel, and

(3) The displacement vector (d ¼ ðDx;DyÞ) in pixels, which determines the GLCMmatrix
used to compute the Haralick features.

We created images with a bit depth (b) ranging from 4 to 8, corresponding to

Ng ¼ 2b 2 f16; 32; 64; 128; 256g. These values represent a broad and realistic range for

evaluating how Haralick features depend on Ng (see Figs. 4 and 5). For each bit depth we
generated synthetic images with gradient intensities (r) ranging from 1 to 8. However, to
reduce visual clutter, only odd r values are displayed in Figs. 4 and 5. Finally, for each
combination of bit depth (b) and gradient intensity r, we computed GLCMs for vertical
displacement vectors jdj ¼ 1; . . . ; 8.

RESULTS
Interpreting GLCM and Haralick features is difficult because they contain second-order
statistical information about image pixels. To calculate Haralick features, one employs
images with a single periodic and linear gradient to understand the relationship between
image gradients and GLCM symmetries.

Two-dimensional gradient maps
To count the pairs of pixels with a starting gray level i and an endpoint gray level j
separated by a distance d ¼ ðDx;DyÞ pixels, one can create a two-dimensional (2D)
Ny � Ny gradient map such that its ðyi; yjÞ ¼ ðyi; yj¼iþjdjÞ entry is 1 if

Iðxi; yj¼iþjdjÞ � Iðxi; yiÞ ¼ d � r and zero otherwise as shown in Fig. 3C. Here, � is the dot
product and ensures that one considers the relative orientation of the gradient r to the
displacement vector d. From Figs. 3B and 3F, one notices that the gray level intensity at
spatial coordinate yi is always yi ¼ ir with i ¼ 0; . . . ;Ny � 1. The pixel intensity at a
vertical coordinate yj, which is a distance jdj from yi, is yj ¼ yi þ d � r ¼ ðiþ jdjÞr. As a
result, the 2D maps in Figs. 3C and 3G are one-to-one correspondences between pixel
location yi and its corresponding gray level intensity ir. One notices in Fig. 3C withr ¼ 1

Oprisan and Oprisan (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2856 11/30

http://dx.doi.org/10.7717/peerj-cs.2856
https://peerj.com/computer-science/


gray level per pixel and Fig. 3G with r ¼ 2 gray level per pixel that the vertical and
horizontal distance between any non-zero entries of the 2D gradient map is r. These r
displacements are marked in Fig. 3C and Fig. 3G, respectively. Additionally, one can

Figure 4 Analytical vs numerically calculated features scaling with image bit depth. Synthetic linear
gradient images were used with Ng 2 f16; 32; 64; 128; 256g gray levels. The GLCMs were numerically
evaluated for a fixed integer vertical displacement jdj ¼ 1 pixels and variable linear gradients of r ¼ 1
gray level per pixel (symbol “�”), r ¼ 3 gray levels per pixel (symbol “o”), r ¼ 5 gray levels per pixel
(symbol “+”), and r ¼ 7 gray levels per pixel (symbol “.”). All Haralick features were computed
numerically using Matlab’s graycopropsðÞ function. The continuous lines represent the analytically
predicted scaling laws for the corresponding features. (A) The numerically computed sum average (SA)
feature f6 increases linearly with Ng and is independent of the magnitude of the displacement vector and
the gradient. (B) The numerically computed sum variance (SV) feature f7 exhibits a quadratic depen-
dence on the magnitude of the displacement vector and is independent of the magnitude of the dis-
placement vector and the gradient, as predicted by Eq. (13). (C) The numerically computed difference
variance (DV) f10 scales linearly with the image bit depth and the slope increases linearly with the image
gradient intensity r, as predicted by Eq. (15). (D) The experimental values of entropy f9 show the
predicted logarithmic trend, but they are consistently and slightly shifted in comparison to the theoretical
prediction from Eq. (20). The reason is that the numerically computed Entropy feature uses
logðpði; iÞ þ eÞ with a small e constant to prevent logarithm divergence for sparse GLCM with many
pði; iÞ ¼ 0. Full-size DOI: 10.7717/peerj-cs.2856/fig-4
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observe from the 2D gradient maps in Figs. 3C and 3G that all nonzero entries are aligned
with the primary diagonal of the 2D gradient map at a distance of d � r from it. The
distance of the gradient pattern from the primary diagonal of the 2D gradient maps is
determined by the first gray level intensity, i.e., i ¼ 0, which is always paired with the gray

Figure 5 Analytical vs numerically calculated features scaling with displacement vector magnitude.
All synthetic gradient images were 8-bit depth. The GLCMs were numerically evaluated for vertical
displacements jdj ¼ 1; . . . ; 8 pixels and linear gradients r ¼ 1 gray level per pixel (symbol “�”), r ¼ 3
gray levels per pixel (symbol “o”), r ¼ 5 gray levels per pixel (symbol “+”), and r ¼ 7 gray levels per
pixel (symbol “.”). All features were numerically computed using Matlab’s function graycopropsðÞ. The
continuous lines illustrate the analytically predicted scaling laws for the corresponding features. (A) The
numerically computed sum average (SA) feature f6 remains independent of the magnitude of the dis-
placement vector and exhibits negligible gradient dependence due to the integer part function, as ela-
borated in the text. (B) The numerically computed sum variance (SV) feature f7 scales linearly with the
magnitude of the displacement vector, with a slope proportional to the gradient, as predicted by Eq. (13).
(C) The numerically computed difference variance (DV) f10 scales linearly with the magnitude of the
displacement vector and the slope is proportional to the gradient, as predicted by Eq. (16). (D) The
experimental values of entropy f9 are independent of the magnitude of the displacement vector and
increase with the gradient, as expected from Eq. (20). The slight systematic difference between the
computed and predicted values is due to the actual entropy feature calculation using logðpði; iÞ þ eÞ with
a small e constant to prevent logarithm divergence for sparse GLCM with many
pði; iÞ ¼ 0: Full-size DOI: 10.7717/peerj-cs.2856/fig-5
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label j ¼ d � r for any displacement vector d and gradient intensityr. Finally, all nonzero
entries ðyi; yjÞ in the 2D gradient maps shown in Figs. 3C and 3G obey the condition
k ¼ ji� jj ¼ d � r shown with dashed line parallel to the principal axis diagonal. The
principal diagonal elements are always zero because they correspond to a uniform image
with no intensity changes from pixel to pixel.

Wrap around the 2D gradient map to get the GLCM
While illuminating, representing a periodic linear gradient of length Ny using a sparse
Ny � Ny 2D gradient maps, as shown in Figs. 3C and 3G, is not efficient. As a result, the

GLCM removes the extra spatial information about pixel coordinates ðyi; yjÞ retained by
the 2D gradient map and only counts the co-occurrence of gray level intensities i and j at a
relative distance d ¼ ðDx;DyÞ, as illustrated in Figs. 3D and 3H. Consequently, for a
specific displacement vector d, the GLCM is an Ng � Ng matrix that solely counts the
co-occurrence of gray levels i and j at a relative distance d from each other, irrespective of
their absolute spatial coordinates yi and yj. Because the absolute coordinates ðyi; yjÞ of the
pixel intensity pair i and j are no longer recorded, the GLCM is not a one-to-one mapping
of the original gradient (unlike the 2D gradient map). For instance, in Fig. 3C, the pixel
intensities i ¼ 7 and j ¼ 0 are located at a distance d ¼ ð0; 1Þ, and they are represented in
the 2D gradient map by a value of “1” at spatial coordinates ðyi ¼ 7; yj ¼ 8Þ, as shown in
Figs. 3A and 3B. However, the GLCM represents the same pair as an entry at ði ¼ 7; j ¼ 0Þ
as it remaps all 2D gradient map entries from Figs. 3C and 3G using a modulo Ng

operation. For example, the spatial coordinates ðyi ¼ 7; yj ¼ 0Þ from Fig. 3C are mapped
modulo Ng þ 1 ¼ 9 to GLCM coordinates ðyi ¼ 7; yj ¼ 0Þ, which correspond to gray
levels ði ¼ 7; j ¼ 0Þ in GLCM. Although the Ng � Ng GLCM array can no longer be
mapped back to the original image, it retains essential second-order spatial correlations of
gray level intensities.

On the number of nonzero GLCM entries for a linear gradient
For any linear gradient r, the starting point of the GLCM has an index i from the set

f0;r; 2r; . . . ; ð~Ng � 1Þrg, where ~Ng is the number of non-zero GLCM entries shown in

Figs. 3D and 3H, i.e.:

~Ng ¼ 1þ Ng � 1

jrj
� �

: (5)

In the above formula, ½. . .� denotes the integer part. Each endpoint index j of the GLCM
is also expressed as j ¼ iþr. This relationship indicates that the increment of endpoint
indices in the GLCM, represented by Dj, is equivalent to that of the starting point indices,
denoted as Di, meaning that Dj ¼ Di ¼ r, as illustrated by the horizontal and vertical
double arrows in Fig. 3C forr ¼ 1 and in Fig. 3G forr ¼ 2. For example, in Fig. 3D and
r ¼ 1 gray level per pixel along with Eq. (5) determines how many non-zero GLMC
entries ~Ng result from sampling the Ng ¼ 8 gray levels of the image, i.e.,
~Ng ¼ 1þ ½ð8� 1Þ=1� ¼ 8. Similarly, for Fig. 3H with r ¼ 2 gray levels per pixel in

conjunction with Eq. (5), it yields ~Ng ¼ 1þ ½ð8� 1Þ=2� ¼ 4.
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One can notice that Fig. 3 displays the GLCMs for positive gradients r>0 and positive
displacement vectors, such as d ¼ ðDx;DyÞ ¼ ð0; 1Þ. Reversing the direction of the
gradient would merely shift all non-zero entries in the two-dimensional representation
shown in Figs. 3C and 3G below the primary diagonal at a distance i� j ¼ d � r<0.

Marginal distribution of gray level differences px�y for linear gradients
The marginal probability distribution px�yðkÞ, defined by Eq. (3) and visually represented
in Fig. 2B, accounts for the sum of GLCM entries with specified gray level differences
k ¼ j� i. As observed in Figs. 3D and 3H, the lines parallel to the primary diagonal of the
GLCM convey information about image gradients and represent the lines of constant gray
level differences px�yðkÞ. For example, the GLCM primary diagonal entries have zero gray
level differences, i.e., k ¼ j� i ¼ 0: Consequently, the sum of the primary diagonal

elements, i.e., px�yð0Þ ¼
PNg�1

i¼0

PNg�1
j¼0;ji�jj¼0 pði; jÞ, is a zero gradient line because the gray

level differences, i.e., the difference between the gray level value i of the start (reference)
point ðxi; yiÞ and the endpoint gray level intensity j at ðyj; xjÞ along the displacement vector
d ¼ ðDx;DyÞ, is k ¼ ji� jj ¼ 0. Figure 3D illustrates that the GLCM of a gradient r ¼ 1
gray level per pixel along the vertical unit displacement vector d ¼ ð0; 1Þ contains all
entries (except one) aligned along a parallel line with the primary diagonal at gray level
differences k ¼ j� i ¼ d � r ¼ 1. The sole exception is the GLCM entry at the
discontinuity between the first period and the subsequent gradient repeats (see Fig. 3A and
Fig. 3E). For example, the first period of the gradient in Fig. 3E and Fig. 3F ends with a gray
level of i ¼ 6 in an image with Ng ¼ 8 gray levels and a gradient intensity r ¼ 2:
Therefore, its pair must have an intensity j ¼ iþr ¼ 8, which is mapped modulo Ng to
j ¼ 0. It corresponds to Pð6; 0Þ ¼ 1 (remember that the wrapping around of GLCM in
gray level spaces is done modulo Ng because the gray level indices start at zero while the
spatial coordinates wrap around with modulo Ng þ 1 operation because they begin at
index 1). Since accounting for another period of the same gradient increases all nonzero
entries of GLCM by one unit, from this point forward, one only calculates the GLCM for a
single period of the gradient. To compute Haralick’s features, one uses the symmetry of the
GLCM induced by periodic linear gradients such as those shown in Fig. 3.

One can observe from Fig. 3 that the nonzero GLCM entries parallel to the primary
diagonal for a given gray level difference k ¼ j� i ¼ d � r begin at a distance of d � r
from the first GLCM entry pð0; 0Þ. The line of constant gray level differences
k ¼ j� i ¼ d � r (dotted line parallel to the primary diagonal of the GLCM in Figs. 3D
and 3H) starts at pð0; d � rÞ and ends at pði ¼ ðm1 � 1Þr; j ¼ iþ d � rÞ, where m1 is the
number of GLCM entries along the gray level differences line with k ¼ j� i ¼ d � r,
which is:

m1 ¼ ~Ng � jdj: (6)

In the example depicted in Figs. 3A–3D, the GLCM for a unit vertical displacement
d ¼ ð0; 1Þ in an image exhibiting a linear gradient ofr ¼ 1 gray level per pixel andNg ¼ 8

gray levels has a total of ~Ng ¼ 8 nonzero entries (from Eq. (5)), of which m1 ¼ 7
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(see Eq. (6)) along the line of constant gray level differences k ¼ j� i ¼ d � r ¼ 1. This
line starts at pð0; d � rÞ ¼ pð0; 1Þ and ends at pði ¼ ðm1 � 1Þr; j ¼ iþ d � rÞ ¼ pð6; 7Þ.
Similarly, for the example shown in Figs. 3E–3H, r ¼ 2 gray levels per pixel and Ng ¼ 8,
one gets a total number of GLMC entries of ~Ng ¼ 4 (from Eq. (5)), of which m1 ¼ 3 (see
Eq. (6)) along the line of constant gray level differences k ¼ j� i ¼ d � r ¼ 2 that starts at
pð0; d � rÞ ¼ pð0; 2Þ and end at pði ¼ ðm1 � 1Þr; j ¼ iþ d � rÞ ¼ pð4; 6Þ.

The GLCM always has exactly ~Ng nonzero entries according to Eq. (5), of which,
according to Eq. (6), m1 are on the constant gray level differences line k ¼ j� i ¼ d � r.
The remaining m2 nonzero GLCM entries have the endpoint coordinate j always
beginning at zero due to the wrapping around modulo Ng in the gray level intensity space:

m2 ¼ ~Ng �m1 ¼ jdj: (7)

Such GLCM entries are pði ¼ m1r; j ¼ 0Þ, pði ¼ ðm1 þ 1Þr; j ¼ rÞ, and so on. One
notices that all these newm2 ¼ jdjGLCM entries align along the line of constant gray level
differences k ¼ j� i ¼ �m1r, as shown in Figs. 3D and 3H. To summarize, the
(unnormalized) marginal distribution of gray level differences px�y for linear gradients
represents the frequency of various combinations of pixel intensities that yield a specific
absolute difference value k ¼ jj� ij:

px�yðkÞ ¼
1; for k ¼ j� i ¼ d � r with i ¼ f0; 1; . . . ;m1�1gr;
1; for k ¼ j� i ¼ �m1r with i ¼ fm1;m1 þ 1; . . . ~Ng �m1gr;
0; otherwise:

8<
: (8)

Marginal distribution of gray level sums pxþy for linear gradients
The previous section demonstrated that linear gradients are naturally represented by
non-zero entries parallel to the primary diagonal of the GLCM. Thus, the marginal
distribution of gray level difference px�y arises naturally from GLCM symmetry. Other
Haralick features require calculating the marginal distribution pxþyðsÞ for a given sum of
gray level intensity s ¼ iþ j, where s ¼ f0; 1; . . . ; 2ðNg � 1Þg: One can utilize the GLCM
symmetries caused by linear gradients and the corresponding marginal distribution
px�yðkÞ where k ¼ j� i ¼ d � r to streamline the calculation of the other marginal

distribution pxþy. Indeed, from px�yðkÞ, the m1 nonzero endpoint gray level intensity are
j ¼ iþ k ¼ iþ d � r where i ¼ f0;r; . . . ; ðm1 � 1Þrg. Therefore, the elements of the
marginal distribution pxþyðsÞ are s ¼ iþ j ¼ 2iþ d � r with i ¼ f0;r; . . . ; ðm1 � 1Þrg.
Similarly, the second line of constant gray level differences is k ¼ j� i ¼ �m1r where
j ¼ i�m1r and i ¼ fm1r; ðm1 þ 1Þr; . . .g, which determines the marginal distribution
pxþyðsÞ with s ¼ iþ j ¼ 2i�m1r. In summary, the (un-normalized) marginal

distribution of gray level sums pxþy for linear gradients indicates the frequency of various
combinations of pixel intensities that total a specific value s ¼ jþ i:

pxþyðsÞ ¼
1; for s ¼ 2iþ d � r with i ¼ f0; 1; . . . ;m1�1gr;
1; for s ¼ 2i�m1r with i ¼ fm1;m1 þ 1; . . . ~Ng �m1gr;
0; otherwise:

8<
: (9)
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Analytic scaling laws for Haralick features of linear gradients
Comparison with numerical results
The previous subsection includes all the elements needed to estimate analytically any
Haralick feature. In the following subsections, we derive analytical formulas for SA, SV,
difference variance (DV), and Entropy based on the GLCMs symmetries derived in the
previous subsections. Anticipating the results from the following subsections, the analytic
scaling laws for Haralick features take the general form

f / Na
g jdjbrc;

where the scaling exponents a;b and c are derived from the GLCM symmetries as we will
prove below.

To validate our theoretically predicted scaling laws for Haralick features, we performed
numerical calculations using synthetic (computer-generated) gradient images. The
predictions are represented by continuous lines in Figs. 4 and 5. At the same time, the
corresponding numerical simulation results—based on the synthetic images described in
“Synthetic Gradient Images”—are shown as discrete points with different symbols, as
indicated in the figure legends.

To reduce plot clutter in Figs. 4 and 5, we present results only for odd intensity gradient
values of r 2 f1; 3; 5; 7g gray levels per pixels. In Fig. 4 the displacement vector
magnitude was fixed at jdj ¼ 1, while the number of gray levels varied as
Ng 2 f16; 32; 64; 128; 256g. Conversely, in Fig. 5 the bit depth was set to b ¼ 8 bits

(Ng ¼ 256), while the vertical displacement vector magnitude varied as jdj ¼ 1; . . . ; 8: For
each synthetic image with a given bit depth b and gradient intensity r, we computed the
GLCMs for each vertical displacement vector d using Matlab’s graycomatrixðÞ function.
For instance, the GLCM shown in Fig. 1C was obtained using graycomatrix(img,‘Offset’,[0
1], ‘NumLevels’, 4, ‘GrayLimits’, [], ‘Symmetric’,false). Additionally, when calculating all
Haralick features, we consistently set the ‘Symmetric’ flag in graycomatrix() to true.
Subsequently, we computed Haralick features from GLCMs using Matlab function
graycopropsðÞ.

For a single period of a linear gradientr (see Fig. 3) all ~Ng nonzero entries of the GLCM
given by Eq. (5) have equal weight and are only aligned to two parallel lines to the primary
diagonal as in Figs. 3D and 3H.

Sum average f6
The SA indicates the uniformity of intensity values across the image texture. A higher SA
value represents an even distribution of intensity sums between neighboring pixels. SA is
defined as:

f6 ¼
X2ðNg�1Þ

k¼0

kpxþyðkÞ: (10)

A high SA implies that most pixel pairs have similar intensity sums, indicating a
relatively uniform texture. A low SA suggests more significant variation in intensity
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sums between neighboring pixels, signifying a more textured appearance. From Eq. (10)
with Eq. (9)

f6 ¼ 1
~Ng

drþ ðdrþ 2rÞ þ . . . ðdrþ 2ðm1 � 1ÞrÞþ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{k¼j�i¼dr0

B@
m1rþ ðm1rþ 2rÞ þ . . . ðm1rþ 2ð~Ng �m1ÞrÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k¼j�i¼�m1r

!
¼ ð~Ng � 1Þr ¼ r Ng � 1

r
� �

: (11)

To simplify the calculation of f6 above, we separated the contributions of the GLCM
entries that are parallel to its primary diagonal at a distance of k ¼ j� i ¼ dr from those
on the line where k ¼ j� i ¼ �m1r. Each of the two terms in Eq. (11) is an arithmetic
series with the sum

PQ
q¼0 aþ 2rq ¼ aðQþ 1Þ þ QðQþ 1Þr. For k ¼ j� i ¼ dr in

Eq. (11) one uses a ¼ dr andQ ¼ m1 � 1 for k ¼ j� i ¼ �m1r one substitute a ¼ m1r
and Q ¼ ~Ng �m1.

The first observation is that the theoretically predicted SA value given by Eq. (11) is
independent of the gradient intensity r (see the continuous lines in Fig. 4A) and the
displacement vector d (see the continuous lines in Fig. 5A) as summarized also in Table 1.
Numerically computed Haralick feature SA confirms that its values are independent of
gray level intensity gradientsr and increases linearly with the number of gray levels Ng as
shown in Fig. 4A. The exact formula in Eq. (11), which involves the discontinuous integer
part function ½. . .�, is challenging to work with; however, by dropping the integer part
operation, one finds a continuous approximate value ~f6 � Ng � 1. This approximation
demonstrates that f6 scales linearly with Ng (see the continuous lines Fig. 4A, which is also
confirmed numerically by the linear increase of Haralick features with the number Ng of
gray levels shown in Fig. 4A. The second observation is that, numerical simulations shown
in Fig. 5A confirm our theoretical prediction based on Eq. (11) that SA feature is
independent of the displacement vector magnitude jdj. One notices, a slight error in
approximating f6 with ~f6. For example, a Ng ¼ 256 gray level image and a gradient r ¼ 2
gray levels per pixel gives f6 ¼ 2 ð256� 1Þ=2½ � ¼ 254, which is slightly less than the
simplified approximation ~f6 ¼ 255, but the error is under 0.4%. Even for gradients as large
as r ¼ 10 gray levels per pixel, the error of approximating f6 with ~f6 � Ng � 1 is below
1%. This slight disagreement between the theoretical predicted SA value from Eq. (11) and
the numerically computed values is emphasized in Fig. 5A. One can conclude that the
gradient r slightly decreases the SA value f6, but the correction is negligible for small
gradients r<10 gray levels per pixel. This fact is marked by the general attribute
“independent” with an asterisk in Table 1.

Sum variance
The sum variance feature is defined as follows:

f7 ¼
X2ðNg�1Þ

k¼0

ðk� f6Þ2pxþyðkÞ; (12)
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and can be analytically estimated for GLCM of linear gradients using the same strategy
described above when deriving explicit analytical expression for SA in Eq. (11).

f7 ¼ 1
~Ng

ðdr� f6Þ2 þ ðdrþ 2r� f6Þ2 þ . . . ðdrþ 2ðm1 � 1Þr � f6Þ2þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{k¼j�i¼dr0

B@
ðm1r� f6Þ2 þ ðm1rþ 2r� f6Þ2 þ . . . ðm1rþ 2ð~Ng �m1Þr � f6Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k¼j�i¼�m1r

!
¼

r2ð~N2
g =3� ~Ngd þ d2 � 1=3Þ: (13)

To accurately predict the scaling law of SV features from the exact formula given by
Eq. (13), one could eliminate the integer part function from the definition of ~Ng and utilize
an approximate estimate:

~f7 ¼ ððNg � 1Þ2=3� ðNg � 1Þdrþ d2r2 � 1=3r2Þ: (14)

The discrepancy between the true f7 (Eq. (13)) and the approximate estimate ~f7 is minor
but can reach several percentage points. For example, the largerst error occurs for
Ng ¼ 256, r ¼ 7, and jdj ¼ 8, which is approximately 3.33%.

Based on Eq. (14), one notice that SV scales quadratically with Ng . Indeed, the second
term in Eq. (14), which is linear in Ng , is always smaller than the first term, quadratic in Ng

if dr<Ng . This condition is fulfilled because the product d pixels times r gray levels per
pixel is the number of gray levels variation across an image, which cannot be larger than
Ng . Numerical simulations confirmed our analytical prediction of a quadratic scaling law

for f7 with Ng , as shown in Fig. 4B. One also notices from Fig. 4B that for fixed
displacement vector magnitude jdj, numerical values of SV are independent of gradient
intensity r as predicted analytically by Eq. (14).

For an image with a fixed number of gray levels Ng and gradientr gray levels per pixel,
the second term in Eq. (14) dominated SV’s dependence on jdj. This is because
ðNg � 1Þdr>d2r2, which reduces to Ng � 1>dr. This was shown above to be true for all

images. Furthermore, the second term in Eq. (14) ðNg � 1Þdr is also larger than the fourth
term 1=3r2 because ðNg � 1Þd>1=3r even for the smallest possible displacement vector
with jdj ¼ 1. As a result, the linear term jdj is the primary influence in the scaling law of f7,
which aligns with our numerical simulations shown in Fig. 5B. As noticed from Fig. 5B, for

Table 1 Summary of feature scaling laws f / Na
g jdjbrc.

Ng jdj r
Sum average Linear Independent Independent*

Sum variance Quadratic Linear Linear

Difference variance Linear Linear Linear

Entropy Logarithmic Independent Independent*

Note:
The asterisk mark next to “independent” attribute means the respective feature very slightly decreases with r, and this
effect can be neglected for r<10 gray levels per pixel.
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a fixed displacement vector magnitude jdj, SV linearly changes with the gradient intensity
r as predicted analytically (see also Table 1).

Difference variance
The definition of difference variance is:

f10 ¼
X2ðNg�1Þ

k¼0

ðk� DAÞ2px�yðkÞ; (15)

where the DA is given by DA ¼ P2ðNg�1Þ
k¼0 kpx�yðkÞ. The evaluation of DA is

straightforward and follows from Eq. (8) since all GLCM entries are equal weight:

DA ¼ 1
~Ng

ðm1drþm2ð�m1rÞÞ ¼ 0:

As a result, the DA reduces to

f10 ¼
X2ðNg�1Þ

k¼0

k2px�yðkÞ ¼ 1
~Ng

ðm1ðdrÞ2 þm2ð�m1rÞ2Þ ¼ r2dð~Ng þ 1� dÞ: (16)

To infer the asymptotic scaling law exponents from the exact formula of DS given by
Eq. (16), one drops the integer part function from ~Ng and uses an approximate formula
~f10 � rdðNg � 1Þ þ ð1� dÞr2 � rdNg , which suggests the scaling law

f10 / Ng jdjr:

The theoretically predicted linear scaling withNg is confirmed by numerical simulations
shown in Fig. 4C, for a fixed jdj ¼ 1 pixel and slopes that increase linearly with the
gradient intensity r.

The scaling of experimental f10 with the displacement vector d exhibits a linear
dependence with a slope proportional to the gradient r. Additionally, the plot of the
theoretical prediction from Eq. (16) shows some deviation from linearity for large
gradients. This is expected because ~f10 neglects the contribution of the term ð1� dÞr2

compared to rdðNg � 1Þ. However, the contribution of the neglected term increases
quadratically with the gradient r and could become significant for images with large
gradients (see Table 1).

Entropy
The Haralick features discussed thus far are derived from different moments of the
marginal distribution of either the difference intensity (see Eq. (8)) or the sum intensity
(see Eq. (9)). In contrast, entropy employs a logarithmic scale to compute features from the
GLCM. The definition of the entropy feature is:

f9 ¼ �
XNg�1

i¼0

XNg�1

j¼0

pði; jÞ logðpði; jÞÞ: (17)
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Entropy reaches its maximum value when a probability distribution is uniform (entirely
random texture) and its minimum value of 0 when all grayscale values in the image are the
same. If the entropy f9 is defined using the base-2 logarithm log2ðÞ, then f9 is measured in
bits. While we only examined the entropy feature f9, employing the marginal distributions
of pixel intensity sums from Eq. (9) along with the detailed calculation examples for the SA
and SV features, one can easily deduce the scaling law of SE defined by:

f8 ¼ �
X2ðNg�1Þ

k¼0

pxþyðkÞ logðpxþyðkÞÞ: (18)

Similarly, by using the marginal distribution of pixel intensity difference from Eq. (8)
and the detailed calculation examples provided for the DA feature, one can easily derive
the scaling law of DE defined by:

f11 ¼ �
XNg�1

k¼0

px�yðkÞ logðpx�yðkÞÞ: (19)

Calculating entropy is straightforward because all GLCM entries carry equal weight,
leading to:

f9 ¼ �
XNg�1

i¼0

XNg�1

j¼0

pði; jÞ logðpði; jÞÞ ¼ logð~NgÞ: (20)

As seen from the numerical simulation results presented in Fig. 4D, the theoretical
scaling law derived from Eq. (20) captures the general logarithmic trend of the entropy.
However, it slightly underestimates it (see Table 1). Numerical simulations illustrated in
Fig. 5D confirm that Entropy feature f9 is independent of the magnitude of the
displacement vector, as predicted by Eq. (20), and also slightly underestimates the actual
values. The discrepancy arises from an offset constant e used in estimating the entropy
from images where logðpði; jÞ þ eÞ was employed instead of logðpði; jÞÞ to prevent the
entropy singularity for sparse GLCM.

DISCUSSIONS AND CONCLUSION
Haralick’s features are widely used in data dimensionality reduction and ML
algorithms for image processing in a wide range of practical applications such as MRI
(Brynolfsson et al., 2017) and CT scan image processing (Cao et al., 2022; Chen et al., 2021;
Park et al., 2020; Shafiq-ul Hassan et al., 2017, 2018; Tharmaseelan et al., 2022), cancer
detection (Faust et al., 2018; Cook et al., 2013; Permuth et al., 2016; Soufi, Arimura &
Nagami, 2018), liver disease (Acharya et al., 2012, 2016; Raghesh Krishnan & Sudhakar,
2013) and mammographic masses classification (Midya et al., 2017), colon lesions (Song
et al., 2014), prostatic devices for disable people (Alshehri et al., 2024), detection of violent
crowd (Lloyd et al., 2017), image forensic (Kumar, Pandey & Mishra, 2024), malware
detection (Ahmed, Hammad & Jamil, 2024; Karanja, Masupe & Jeffrey, 2020), human face
detection (Jun, Choi & Kim, 2013), computer network intrusion detection (Baldini,
Hernandez Ramos & Amerini, 2021). However, their interpretation poses challenges since
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they are second-order statistics that depend in a complicated and nonlinear manner on
image characteristics such as the number of gray level quantization Ng and and the
intensity of image gradientsr and the selected displacement vector d ¼ ðDx;DyÞ between
adjacent pixels through the image. This study focused on extracting meaningful analytic
expressions and deriving asymptotic scaling laws from Haralick’s features for synthetic
images containing only linear gradients. We focused on linear gradients for several
reasons: (a) The human visual system efficiently decomposes and analyzes natural scenes
using orthogonal gradients (Jagadeesh & Gardner, 2022; Barten, 1999; Bracci & Op de
Beeck, 2023; Cheng, Chen & Dilks, 2023; Henderson, Tarr & Wehbe, 2023), (b) Efficient
computer vision algorithms leverage gradient spectral priors to extract image features
(Gong & Sbalzarini, 2016; Zheng et al., 2022), (c) In 2D natural scene images, orthogonal
gradients are uncorrelated (Gong & Sbalzarini, 2016), and (d) The entries of the GLCM
serve as natural measures of image gradients. For instance, pdði; jÞ is the gradient intensity
ðj� iÞ=jdj in a given image along the displacement vector d ¼ ðDx;DyÞ. We demonstrated
that the GLCM for any linear gradient has nonzero entries solely along the two lines
parallel to its principal axis diagonal shown in Fig. 3. We found that for any GLCM
associated with an image gradient, the total number of entries is ~Ng given by Eq. (5). The
two lines parallel to the primary diagonal in Fig. 3 represent the gray level differences: (1)

k ¼ j� i ¼ d � r, with m1 ¼ ~Ng � jdj entries (see Eq. (6)) and (2)

k ¼ j� i ¼ �ð1þm1Þr, with jdj entries (see Eq. (7)). Due to the GLCM symmetry for
linear gradients, we derived explicit analytical expressions for the marginal probabilities
px�yðiÞ and pxþyðiÞ that are used to compute some of Haralick’s features. To our

knowledge, this is the only study that derived explicit mathematical expressions of
Haralick’s features in terms of the number of gray level quantization Ng , the magnitude of
the linear gradient r present in the image, and the displacement vector d used for
calculating the GLCM of the image.

We found that the analytic formula for the SA f6 in Eq. (10) scales linearly with the
number of gray levels Ng in the image and is independent of both the image gradient r
and displacement vector d. The numerically estimated dependence of f6 on Ng shown in
Fig. 4A confirms the theoretical predictions. Similarly, numerical simulations confirm that
f6 is independent of the magnitude image gradient r and the vertical displacement vector
d as shown in Fig. 5A.

The theoretical formula for the SV in Eq. (12) shows the asymptotic scaling law as

f7 / N2
g jdjr. As predicted theoretically, SV increases quadratically with Ng , which was

confirmed numerically (see Fig. 4B). The analytically predicted SV increases linearly with
dr, which was numerically confirmed in Fig. 5B, which shows that the slope of the SV vs d
increases proportional to the gradient intensity r.

We also predicted analytically that the DV features given by Eq. (16) has a scaling law
f10 / Ngrjdj. Our numerical simulations confirmed that SD increases linearly with Ng ,

with a slope that itself increases linearly with the image gradient r, as shown in Fig. 4C.
For a fixed Ng ¼ 256, the SV increases linearly with the magnitude of the displacement
vector (jdj), with a slope proportional to r (see Fig. 5C).
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As we predicted theoretically, the entropy scales logarithmically with Ng and r and is
independent of jdj, i.e., f9 / ~Ng .

We provided a detailed derivation of exact analytic formulas and asymptotic scaling
laws for the four Haralick features associated with vertical image gradients.

Since natural scenes can be decomposed into orthogonal and uncorrelated gradients
(Gong & Sbalzarini, 2016), our derivations can be extended to a multidimensional
gradient-based Haralick feature space. In our synthetic images, we introduced a single
gradient along the vertical direction (ry ¼ r) while setting the horizontal gradient to zero
(rx ¼ 0) as shown in Fig. 3. This design simplified the identification of general GLCM
symmetries induced by the gradient, as described in “Methods”. However, our derived
formulas remain valid because, even in natural scenes, orthogonal image gradients are
uncorrelated.

To generalize our findings, the scalar gradient r must be replaced with the gradient
vector ðrx;ryÞ for 2D images. The analytical formulas we derived for Haralick’s features
can be used to estimate image gradients from measured features. Another application
involves deriving consistent normalization factors for Haralick features. Comparing the
values of Haralick features across datasets from different scanners with varying resolutions
is challenging and different empirical normalizations algorithms achieved only limited
success (Clausi, 2002; Lofstedt et al., 2019; Shafiq-ul Hassan et al., 2017, 2018). Thus,
identifying suitable normalization factors that render Haralick features invariant to the
number of gray levels or the quantization scheme is crucial among other fields in radionics.

We demonstrated that the SA feature in Eq. (10) should be normalized by Ng to ensure
asymptotic independence from the quantization scheme. This normalization allows for the
consistent comparison of the Haralick SA feature across images obtained at different
resolutions and with various imaging devices. Similarly, we analytically proved that the SV
feature in Eq. (12) should be normalized by N2

g to achieve invariance to the image
quantization scheme. Unlike empirical trial-and-error approaches, our normalization
factors are rigorously derived based on the symmetries of the GLCM, ensuring
mathematical consistency and robustness.
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