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ABSTRACT
Objective: To introduce and evaluate an efficient neural network approach for
human pose estimation and correction during physical therapy exercises using
wearable sensor data.
Methods:We leveraged benchmark data consisting of 276,625 records from wearable
inertial and magnetic sensors. A novel method termed Random Forest Long
Short-Term Memory (RFL), which integrates long short-term memory and Random
Forest neural networks, was implemented for transfer feature engineering. The
smartphone sensor data was used to generate new temporal and probabilistic
features. These features were then utilized in machine learning methods to classify
physical therapy exercises. Rigorous experiments, including k-fold validation and
hyperparameter optimization, were conducted to validate the performance of the
RFL approach.
Results: The RFL approach demonstrated superior performance, achieving a
remarkable 99% accuracy with the Random Forest method. The rigorous
experiments confirmed the efficacy and reliability of the method in classifying
physical therapy exercises.
Conclusions: The proposed RFL method introduces a novel feature generation
approach enhancing the accuracy of physical therapy exercise classification and
correction. This innovative integration not only improves rehabilitation monitoring
but also paves the way for more adaptive and intelligent physiotherapy assistance
systems. By leveraging sensor data and advanced machine learning techniques, it has
the potential to mitigate risks associated with disabilities and major diseases, thereby
offering a feasible alternative to frequent clinic visits for consistent therapist
guidance.
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INTRODUCTION
Physical therapy is marked by a continually evolving theoretical and scientific foundation
(Stevens-Lapsley et al., 2023), playing a crucial role in the rehabilitation of individuals with
various disorders. Medical specialties such as cardiopulmonary medicine, neurology,
orthopedics, and pediatrics can significantly benefit from the application of physical
therapy, contributing to the health and well-being of individuals, families, and
communities (Yurtman & Barshan, 2014).

Regular physical activity is vital for maintaining overall well-being, particularly in
enhancing strength, flexibility, and endurance (Asghar et al., 2023). Physiotherapy
interventions, including manual therapy, exercise programs, electrotherapy, and
sensorimotor rehabilitation, cater to individuals of diverse ages and abilities. Applying
exercise physiology knowledge facilitates the development of advanced exercise programs
focused on strengthening the arms and legs and enhancing overall posture.

The upper limb, known as the human arm, plays a vital role in daily activities such as
eating, writing, and driving, primarily focusing on object manipulation. Unfortunately,
injuries and diseases can compromise its mobility and functionality. Neurological diseases
such as polio, hemiplegia, paraplegia, and sclerosis can impact armmotion (Chaparro-Rico
et al., 2020). Injuries to the lower limb are also significant, with half of all general injuries
leading to activity limitations. About three-quarters of these injuries involve lower body
sprains and fractures, contributing to 40% of cases of restricted bed disability. Stroke
survivors may encounter challenges in regaining full function in their lower limbs
(Khemani & Hahm, 2021). Consequently, rehabilitation therapy becomes essential to
restore normal function and recover the range of motion in both the upper and lower
limbs.

A crucial concern in physical therapy is the assessment of exercises and the evaluation of
their effectiveness in each session. Patients and physiotherapists face psychological
hurdles, including misconceptions about exercise, fear of pain, reluctance towards physical
activity, mental strain associated with weight-bearing functional programs, and
underestimation of capability (Lawford et al., 2020). Patients seek guidance from physical
therapists to improve their specific weaknesses through exercises. While therapists
demonstrate proper techniques, patients are responsible for performing regular exercises
between visits, posing a common challenge in physical therapy (Khemani & Hahm, 2021).

Physiotherapy interventions are essential for individuals with physical disabilities or
those aiming to regain functionality post-injury or surgery. Yet, for home-based therapy to
be effective, automated assessment mechanisms are necessary to ensure the proper
execution of physiotherapy exercises. Despite the availability of innovative tools and
equipment that facilitate home-based physical therapy, cost-effective implementations
may prove ineffective if patients perform exercises incorrectly or at an unconventional
pace (Carrera, Arequipa & Hernández, 2022). Approaches to address these challenges
include implementing incentives for exercise, fostering accountability, providing education
and reassurance, customizing exercise programs, and devising monitoring and correction
systems to ensure the correctness of exercises.
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Prior physiotherapy exercise correction techniques (Liao, Vakanski & Xian, 2020),
particularly those based on convolutional neural networks (CNNs) and Gaussian models,
face several limitations. CNN-based approaches, while effective in capturing spatial
features, struggle with temporal dependencies in sequential sensor data, making them less
suitable for dynamic motion analysis. Gaussian models, on the other hand, assume a
predefined statistical distribution of movement patterns, limiting their adaptability to
diverse patient variations and real-world complexities. These constraints highlight the
need for more flexible and robust methods to enhance physiotherapy exercise classification
and correction.

Predictive analysis with machine learning
Research conducted by Asghar et al. (2023) emphasized the importance of accurate and
reliable observation and evaluation of arm and shoulder movements in physical therapy
and fitness exercises. They developed a wrist-worn device using an MPU-6050 to capture
data on a user’s arm movement values. The collected data were transmitted to a
microcontroller that assessed movement magnitude using an accelerometer. The actual
MPU-6050 output was compared with a preset value via the microcontroller, and the
results were processed using classification algorithms. The findings indicate that wristband
data, when analyzed with machine learning techniques, accurately represent various arm
and shoulder movements. The study employed four distinct machine learning algorithms
for optimal accuracy: Weighted k-nearest neighbors (KNN) achieved 92% accuracy,
bagged trees reached 91.6% accuracy, decision trees achieved 91.4% accuracy, and fine
Gaussian support vector machine achieved 86.1% accuracy. Notably, the KNN approach
demonstrated a success rate of 92% and is emerging as the most effective method. These
results underscore the effectiveness of wristbands in monitoring upper-body workouts
with precision.

In this study, Hong et al. (2023) introduced an automated method for assessing the
functional movement screen (FMS) using an enhanced Gaussian mixture model (GMM).
The refined GMM yielded superior scoring accuracy compared to alternative models. This
methodology involved increased sampling of minority samples and manual extraction of
movement characteristics from the FMS dataset, recorded using two Azure Kinect depth
sensors. The GMM was trained using separate sets of feature data, each assigned a distinct
score (1, 2, or 3 points). The assessment of the FMS was performed using maximum
likelihood estimation. Comparative analysis revealed that the improved GMM achieved
heightened scoring accuracy (0.8) compared to other models, such as traditional GMM
(0.38), AdaBoost.M1 (0.7), and Naïve Bayes (0.75). Moreover, the scoring outcomes from
the enhanced GMM demonstrated substantial agreement with expert scoring (kappa =
0.67). This refined Gaussian mixture approach proves effective for FMS assessment and
shows potential for leveraging depth cameras in this context.

Kanade, Sharma & Muniyandi (2023) proposed a novel deep learning framework
with an attention-guided approach for assessing movement quality (MQ). This study
investigates a transformer-based architecture guided by attention for MQ assessment. To
validate the proposed model, a comparative analysis was conducted against existing state-
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of-the-art methods. Examining the attention maps of the model provides valuable insights
into the decision-making process, thereby enhancing the interpretability of predicted
assessment scores. Notably, the proposed model demonstrated significant improvements
in both training and inference times, crucial for real-time systems. The attention-guided
transformer-based architecture for MQ assessment exhibits promising potential for
delivering swift and interpretable movement quality assessments, particularly in
home-based rehabilitation contexts.

Liu et al. (2023) focused on expanding a wearable-based recognition system for frozen
shoulder rehabilitation exercises using machine learning approaches. The proposed
methods enable automatic identification of movement and silence segments, as well as
accurate classification of rehabilitation exercise types. The study involved twenty subjects
performing six distinct exercises, demonstrating high accuracy in recognizing movement
and silence segments with a notable 95.6% accuracy and 95.83% F-score, and in classifying
exercise types with a 95.58% accuracy and 95.49% F-score. These findings underscore the
viability of the approach for monitoring frozen shoulder rehabilitation exercises. However,
it is important to acknowledge the study’s limitations, including the small sample size of
twenty participants, which may not fully represent the broader population.

Hofmann et al. (2020) presented an activity recognition system utilizing machine
learning techniques. Automating the recognition and assessment of rehabilitation exercises
poses significant challenges, particularly in capturing the comprehensive nature of these
activities. While basic parameters such as joint angles can be measured through various
sensing modalities, the holistic recognition and assessment of entire exercises remain
complex. The study aimed to examine the application of machine learning approaches and
models in the context of activity recognition and assessment within rehabilitation
exercises. These findings indicate that machine learning has been effectively employed for
recognizing specific exercises, evaluating exercise quality, and automatically scoring
exercises based on established clinical assessment scales.

Galán-Mercant et al. (2019) introduced a human activity recognition (HAR) system
designed to monitor patients’ adherence to elbow extension and flexion physiotherapy
exercises in their everyday surroundings using a single wrist-worn accelerometer. The
proposed approach involved a one-class classification (OCC) strategy, where training data
exclusively focuses on the target class, and data representing other classes are synthetically
generated from the target activity data. The study evaluated four distinct classifiers—KNN,
logistic regression, support vector machine (SVM), and Naive Bayes. In intra-subject
evaluation, the SVM classifier demonstrated moderate success rates of 99% for classifying
the target class and 83.3% for the other classes. During inter-subject evaluation, SVM
achieved success rates of 90% and 100% on a per-subject basis, establishing itself as the
most effective classifier among those examined.

Predictive analysis with deep learning
Arrowsmith et al. (2022) focused on developing and evaluating a system that uses a
smartphone camera to automatically identify physiotherapy exercises for the lower back
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and shoulders at home. This was achieved by employing a freely available pose detection
system to track joint positions in video recordings of healthy individuals performing these
exercises. Subsequently, a CNN was trained to classify physiotherapy exercises based on
keypoint time-series data. The model’s performance was evaluated across various input
keypoint combinations and its robustness to changes in camera angles. The CNN model
demonstrated superior performance, particularly using 12 pose estimation landmarks
from the upper and lower body, achieving high accuracy in classifying low-back exercises
(0.995 ± 0.009) and shoulder exercises (0.963 ± 0.020). Furthermore, assessing the
robustness of keypoint detection and CNN classifiers under diverse environmental
conditions is essential. Lastly, developing a smartphone application is crucial for deploying
the system in remote care settings.

Uday et al. (2022) focused on human activity recognition using both machine learning
and deep learning methodologies. The primary objective was to categorize six distinct
human activities by analyzing inertial signals acquired from smartphones. Data
visualization employed t-distributed Stochastic Neighborhood Embedding. Various
machine learning techniques, including logistic regression, linear support vector classifier
(SVC), kernel support vector machine (SVM), and decision trees, were utilized. In parallel,
deep learning approaches such as long short-term memory (LSTM), bidirectional LSTM,
recurrent neural network (RNN) and gated recurrent unit (GRU) were implemented using
unprocessed time-series data. Performance was evaluated using metrics such as accuracy,
confusion matrix, precision, and recall. Notably, among the machine learning models,
linear support vector classifier, and among the deep learning models, GRU demonstrated
higher effectiveness in recognizing human activities compared to other models.

Miron & Grosan (2021) addressed the application of machine learning in assessing the
accuracy of human motion, which is more complex than gestures and action recognition.
Experiments conducted on a recent dataset aimed to evaluate the efficacy of machine
learning approaches in categorizing the correctness of physical rehabilitation exercises.
These findings underscored the potential of machine learning approaches in this task.
However, the research also highlighted a limitation where machine learning algorithms
could misclassify incorrectly executed actions as correct executions of different actions.

In Liao, Vakanski & Xian (2020), a novel deep learning framework was proposed to
automatically evaluate the effectiveness of physical rehabilitation exercises. This
framework integrates several components, including measurement tools for assessing
movement quality, scoring algorithms to convert these measurements into scores, and
advanced neural network models for specific movement evaluations. It introduced a novel
performance measurement method using log-likelihood from a Gaussian mixture model,
coupled with a deep autoencoder network for compressing data into a lower-dimensional
format. The system processes the movement of individual body parts using a sophisticated
spatiotemporal neural network that organizes data into temporal pyramid structures and
utilizes specialized sub-networks. The effectiveness of this framework was tested on a
dataset containing ten different rehabilitation exercises, marking the initial application of
deep neural networks in evaluating rehabilitation exercise performance. The results
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indicate that this new deep learning-based framework holds promise for assessing the
quality of physical rehabilitation exercises.

The research introduced an adaptive architecture tailored for end-users to assess
movements through RGB videos in Palomares-Pecho et al. (2020), enabling
physiotherapists to incorporate personalized exercises with minimal training instances.
Real-time tracking of key body joint values from image data was achieved using deep
learning-based pose estimation (Sadeghi Bigham et al., 2023; Borau Bernad,
Ramajo-Ballester & Armingol Moreno, 2024) frameworks. The method underwent
assessment using four physiotherapeutic exercises focused on shoulder strengthening,
illustrating a reduction in physiotherapist training time and facilitating the automatic
evaluation of patients’ movements without continuous supervision. By leveraging deep
learning-based pose estimation, the system monitors key body joints in real time from red,
green and blue (RGB) videos. Physiotherapists contribute a small number of video training
examples to individualize exercises for patients, mirroring the traditional rehabilitation
process where therapists guide patients through demonstrative instances. The results
confirmed that this approach significantly reduces physiotherapist training time and
enables autonomous assessment of patients’movements, as evidenced by the evaluation of
four shoulder-strengthening exercises in a physiotherapeutic context.

Zhang, Su & He (2020) introduced a sensor-based rehabilitation exercise recognition
approach, utilizing a deep learning framework to analyze movement data recorded during
rehabilitation exercises. This innovative system integrates a CNN named D-CNN and
Gaussian mixture models (GMM) to identify and assess rehabilitation exercises. The
D-CNN processes sensory data related to body movements during exercises, while GMMs
segment input signals into diverse shapes for multiple CNN routes. The sensor CNN
(S-CNN) employs an improved lossless information compression algorithm to determine
the likelihood of state transitions in hidden states. The research presented test results that
highlighted the distinction between the best attribute values and the test scores, utilizing
collected data and various activity recognition datasets. The outcomes showcased the
efficacy of the proposed SSRER system in accurately evaluating rehabilitation exercises.

The summary of previous works includes an evaluation of the utilized methods, their
achieved accuracy rates, and an analysis of the limitations associated with existing
approaches, as detailed in Table 1.

Therefore, this study presents an artifician intelligence (AI) driven approach to identify
and correct physiotherapy exercises. To achieve this, we utilized a multi-class exercise
dataset that included 10 features extracted from arm and leg movements observed during
eight diverse exercises. The development of the applied deep and machine learning
methods was based on this dataset. Our primary contributions to the identification and
correction of physiotherapy exercises are as follows:

. We present a novel method called Random Forest long short-term memory (RFL),
which integrates a LSTM network with a Random Forest method to enhance feature
engineering using physical therapy exercise signal data. The initial data from physical
therapy exercises is processed through the RFL method, generating newly derived
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temporal and probabilistic features. These transfer features are then used as input for
various machine-learning methods to improve the identification and performance of
physical therapy exercises.

. We employed four advanced machine learning and deep learning networks for
comparative analysis. The utilized methods include logistic regression, Gaussian Naive
Bayes, decision tree, and Random Forest. Each method underwent thorough validation
using k-fold and hyperparameter optimization. The Random Forest method
demonstrated superior performance compared to state-of-the-art approaches,
particularly when leveraging the proposed RFL feature generation.

METHODOLOGY FRAMEWORK
This section outlines the proposed approach for identifying and correcting physical
therapy exercises. We provide a comprehensive discussion of the methods employed for
analysis and the resulting calculations. This section offers a detailed, step-by-step
description of the proposed method.

Table 1 Analysis of physical therapy exercises detection-related literature summary.

Ref Year Research aim Applied research techniques Performance results

Asghar et al. (2023) 2023 Arm exercises monitoring. Weighted KNN, Fine Gaussian SVM,
Decision Tree and Bagged Trees.

KNN-92%

Hong et al. (2023) 2023 Improved GMM for FMS. Oversampling, feature extraction, GMM
training.

GMM achieved heightened scoring accuracy
(0.8).

Kanade, Sharma &
Muniyandi (2023)

2023 Attention-Guided MQA
Framework

Transformer-based architecture,
attention

Significant improvements in training and
inference time.

Liu et al. (2023) 2023 Frozen shoulder exercises
recognition

Wearable-based system, machine
learning models

Recognizing movement/silence segments-
95.6% and exercise types-95.58%.

Hofmann et al. (2020) 2022 ML for rehabilitation
exercise assessment

Machine learning algorithms in
rehabilitation

Potential for enhancing automated systems in
rehabilitation.

Arrowsmith et al.
(2022)

2022 Video-based physiotherapy
monitoring

Single-camera pose detection and CNN
training

For low-back (0.995 � 0.009) and shoulder
exercise classification (0.963 � 0.020).

Uday et al. (2022) 2021 Human activity recognition
with ML

Machine learning and deep learning
techniques

Superior accuracy in human activity
recognition.

Miron & Grosan
(2021)

2020 Correctness assessment in
rehab exercises

Experiments on machine learning
algorithms

Potential of ML algorithms, highlighted
limitations.

Liao, Vakanski &
Xian (2020)

2020 Deep learning for rehab
exercise evaluation

Gaussian mixture model deep,
Spatio-temporal neural network

Promising framework for evaluating
rehabilitation exercise quality.

Palomares-Pecho
et al. (2020)

2020 Adaptive architecture for
movement assessment

End-user assessment through RGB
videos

Reduced physiotherapist training time and
facilitated automatic evaluation.

Zhang, Su & He
(2020)

2020 Smart Sensor-based Rehab
Exercise Recognition

Deep learning framework (CNN and
GMM)

Accurate evaluation of rehabilitation exercises.

Galán-Mercant et al.
(2019)

2020 HAR system for elbow
exercises

KNN, SVM, logistic regression, and
Naive Bayes

LIBSVM-90%.

Uslu et al. (2020) 2019 Deep learning for
forecasting physical
activity

CNN and CAE Significant accuracy in predicting physical
functional and activity fitness levels.
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Figure 1 illustrates the workflow architecture of the proposed methodology. Our
experiment focused on eight types of arm and leg physical therapy exercises using a
publicly accessible dataset. The proposed RFL method utilizes feature engineering from
data collected by wearable inertial and magnetic sensors during these exercises. The
resulting feature set extracted from the wearable sensor data was utilized in subsequent
experiments. The dataset was divided into training (80%) and testing (20%) sets. Various
advanced AI approaches were trained and tested, and the performance of
hyperparameter-tuned models was evaluated using unseen test data. The approach
demonstrating superior performance was then applied to identify and correct physical
therapy exercises, specifically within physiotherapy fitness routines.

Ethical considerations
This study ensures ethical compliance by utilizing publicly available sensor data,
maintaining participant anonymity, and adhering to data privacy regulations. No
personally identifiable information was used, and all data processing aligns with ethical
guidelines for human movement analysis.

Phase 1: physiotherapy exercise data
We utilized a benchmark dataset (Aras & Barshan, 2022) captured from wearable inertial
and magnetic sensors during the execution of eight distinct physical therapy exercises. The
experiments included multiple repetitions performed by five individuals wearing MTx
sensor units produced by XSens. Each sensor unit contained three tri-axial sensors—
accelerometer, gyroscope, and magnetometer—sampled at a rate of 25 Hz. The dataset
properties were derived from readings of these three tri-axial sensors.

Figure 1 The analysis of our novel proposed study methodology for classifying physical therapy
exercises. Full-size DOI: 10.7717/peerj-cs.2854/fig-1
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The dataset is collected from a diverse group of participants, ensuring a broad
representation of demographic factors such as age, gender, physical fitness levels, and
varying degrees of motor impairments. This diversity is crucial for developing a robust
physiotherapy exercise correction model that generalizes well across different populations.

The dataset comprises 276,625 samples with 10 features, where nine serve as input
variables, and one represents the target activity label, as shown in Table 2. It is split into
80% training data (221,300 samples) and 20% test data (55,325 samples). The target
variable consists of eight distinct classes, each corresponding to a specific exercise
movement. The features capture essential characteristics of these movements, aiding in
accurate activity recognition. The class distribution is well-documented, with the largest
category being extended leg raises (41,000 samples) and the smallest being prone lying
elbow extension (31,625 samples). This structured dataset provides a solid foundation for
effective model training and evaluation.

Phase 2: preprocessing and exploratory data analysis
During the reprocessing step, we formatted the dataset and excluded the “time index”
column, as it does not provide information about the performed exercise. The dataset

Algorithm 1 Training and evaluation process.

1: Dataset Collection: Collect physical therapy data with 8 different exercises.

2: Data Preparation & Feature Engineering: Perform preprocessing, including feature selection, transformation, and normalization.

3: Splitting the Dataset: Divide the dataset into:

4: Training Set (80%)—Used to train the model.

5: Validation Set—Used for hyperparameter tuning.

6: Test Set (20%)—Used for final model evaluation.

7: Train the Neural Network: Train the proposed hyper-parameterized neural network using the training set.

8: Fine-tune the Model: Adjust model parameters based on validation set performance.

9: Evaluate the Model: Assess model effectiveness and accuracy.

10: Develop the Predictive Model: Finalize the trained model for predictions.

11: Test Set Evaluation: Test the predictive model on the test set (20%) to validate performance.

Table 2 Dataset overview—summary of dataset size, features, and train-test split.

Attribute Details

Total samples 276,625

Total features 10

Train samples 221,300 (80%)

Test samples 55,325 (20%)

Feature dimensions 9 (excluding label)

Target variable 1 (Activity Label)
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distinguishes between eight distinct target classes: Target 0, extended leg raises; Target 1,
forward bending; Target 2, straight lying-leg raises; Target 3, side-lying hip abduction;
Target 4, alternating leg lifts prone; Target 5, elbow flexion; Target 6, shoulder abduction;
and Target 7, prone lying elbow extension, as depicted in Fig. 2. It comprises 276,625 rows
and 10 columns containing attributes derived from eight types of physical therapy
exercises, illustrated in Fig. 3.

Phase 3: novel transfer feature engineering
The novel transfer-learning-based feature generation approach introduced in this study for
identifying and correcting physical therapy exercises is depicted in Fig. 4. The proposed
RFL method integrates LSTM and Random Forest neural networks to extract transfer
features from sensor data. Initial data from wearable inertial and magnetic sensors were
simultaneously processed through LSTM and Random Forest models. Subsequently,
temporal and probabilistic features (Raza et al., 2023) were derived from LSTM and RF
models, respectively. These novel transfer features served as inputs for the machine
learning methods used to identify and correct physical therapy exercises in this
investigation. The findings demonstrate that the proposed RFL approach achieves superior
performance scores.

LSTM captures sequential dependencies in the time-series data. Given a sensor input
sequence X ¼ fx1; x2;…; xTg, the hidden state at time t is computed as:

ht ¼ f ðWhht�1 þWxxt þ bhÞ (1)

whereWh andWx are weight matrices, bh is the bias term, and f is the activation function.

Figure 2 The analysis of physical therapy exercise image data with their target label.
Full-size DOI: 10.7717/peerj-cs.2854/fig-2
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RF generates probabilistic outputs from decision trees. Given an input feature vector X,
the probability of class c is computed as:

PðcjXÞ ¼ 1
N

XN
i¼1

PiðcjXÞ (2)

Classes

C
ou
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Figure 3 The physical therapy exercise image data distribution analysis with their target label.
Full-size DOI: 10.7717/peerj-cs.2854/fig-3

Figure 4 Conducting a comprehensive architectural analysis of the workflow for our innovative
feature engineering method introduced for the classification of images related to physical therapy
exercises. Full-size DOI: 10.7717/peerj-cs.2854/fig-4
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where PiðcjXÞ is the probability estimate from the i-th tree and N is the total number of
trees.

Algorithm 2 outlines the sequential process for extracting the transfer features.
Accurately classifying physical therapy exercises is crucial for tailoring rehabilitation

plans and optimizing patient outcomes and treatment effectiveness. In recent years, the
adoption of machine learning techniques, particularly transfer learning-based feature
engineering (Rehman et al., 2023), has significantly improved accuracy scores. Ensemble
transfer learning (Haider et al., 2024), which combines multiple models to enhance
prediction accuracy beyond individual capabilities, has proven effective in enhancing the
accuracy of models that classify physical therapy exercises. Additionally, feature extraction
involves selecting and transforming the most informative feature values from raw data,
improving interpretability and generalization in these models. The synergistic use of these
techniques has enabled the development of precise models for classifying physical therapy
exercises, capable of accurately identifying various exercises with high recall and precision
scores.

The proposed model integrates LSTM and Random Forest to extract temporal and
probabilistic transfer features from sensor data. LSTM captures sequential dependencies,
while RF enhances feature diversity. Machine learning models then utilize these extracted
features to identify and correct physical therapy exercises, ensuring both robustness and
efficiency.

Phase 4: applied artificial intelligence approaches
Artificial intelligence, particularly deep learning techniques (Eliwa et al., 2024; Mostafa
et al., 2024; Taha et al., 2023; Eman et al., 2023), has revolutionized human pose estimation
in physiotherapy and fitness exercise correction. By employing advanced algorithms and
neural networks, AI systems can analyze and correct body postures in real time during
physiotherapy sessions or fitness exercises.

. When applied to physiotherapy fitness exercise correction, the decision tree (DT)
classifier (Wu et al., 2008) effectively utilizes sensor data to make informed decisions. By
analyzing patterns and variations in data such as movement angles, speed, and
consistency, the DT classifier can identify deviations from ideal exercise execution.
Assume x1; x2; . . . ; xn represent sensor data features such as acceleration, angular

Algorithm 2 RFL algorithm.

Input: Wearable Inertial and Magnetic Sensors Features.

Output: Novel Transfer Learning Feature Set.

initiate;

1- RFtf  � TRFðSf Þ // here RFtf are the transfer features and Sf are input sensor features set.

2- LSTMtf  � TLSTMðSf Þ // here LSTMtf are the transfer features and Sf are input sensor features
set.

3- Ft  � fRFtf þ LSTMtf g // here Ft are the combined transfer feature set.

end;
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velocity, etc., used for physiotherapy fitness exercise correction. A simplified decision
tree can be represented as:

y ¼
Class 1 if x1>h1
Class 2 if x2 � h2
Class 3 otherwise

�
otherwise

8<
:

where y is the output class (e.g., correct or incorrect exercise form), and h1, h2 are
thresholds determined from the training data.

. Employed in physiotherapy fitness exercise correction, Random Forest (RF) (Ho, 1995)
effectively utilizes sensor data to enhance exercise accuracy and safety. By analyzing
sensor inputs such as motion, force, and posture, this method identifies incorrect
exercise forms and suggests necessary adjustments. Through its ensemble of decision
trees, RF provides robust and precise feedback, significantly improving the effectiveness
of physiotherapy exercises. Let X represent the input sensor data vector and Y the output
prediction for exercise correctness. An RF method can be represented as:

Y ¼ RFðXÞ ¼ 1
N

XN
i¼1

TiðXÞ (3)

where TiðXÞ is the result of the prediction of the ith decision tree in the forest, and N is
the total values of trees in the RF.

. Logistic regression (LR) (Chung, 2020) is employed in physiotherapy fitness exercise
correction by analyzing sensor data to assess the correctness of exercise movements.
Utilizing a binary classification system, the LR model interprets sensor inputs, such as
motion or pressure data, to distinguish between correct and incorrect exercise postures.
The LR model can be expressed as:

Pðy ¼ 1jxÞ ¼ 1

1þ e�ðb0þb1x1þb2x2þ���þbnxnÞ
(4)

where Pðy ¼ 1jxÞ is the values of probability that the exercise is performed correctly,
given sensor data inputs x ¼ ðx1; x2; . . . ; xnÞ. Here, b0; b1;b2; . . . ; bn are the parameters
of the model.

. Gaussian Naive Bayes (GNB) (Anand et al., 2022) is effectively utilized in physiotherapy
fitness exercise correction by analyzing sensor data. This probabilistic model assumes
feature independence and applies Gaussian distribution to predict the likelihood of
specific exercise postures. By processing sensor inputs, such as motion and force data,
GNB identifies incorrect exercise forms. Given a set of features x1; x2;…; xn obtained
from physiotherapy fitness exercise sensor data, the GNB classifier estimates the
posterior probability of an exercise being performed correctly (class C) as:

PðCjx1; x2;…; xnÞ ¼
PðCÞQn

i¼1
PðxijCÞ

Pðx1; x2;…; xnÞ (5)
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where PðCÞ is the prior probability values of the exercise being correct, PðxijCÞ is the
likelihood of analyzing feature xi given that the exercise is correct, assumed to utilized a
Gaussian distribution, and Pðx1; x2;…; xnÞ is the evidence, a normalizing constant.
For Gaussian distributions, the likelihood PðxijCÞ is given by:

PðxijCÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2C;i

q exp �ðxi � lC;iÞ2
2r2C;i

 !
(6)

where lC;i and r2C;i are the mean and variance values of feature xi for class C.
. LSTM (Aggarwal, 2018) plays a pivotal role in enhancing physiotherapy fitness exercises
by analyzing sensor data. These LSTM networks, adept at processing time-series data,
effectively learn from sequences of movements captured by sensors, identifying patterns
and deviations for accurate exercise correction. This mechanism allows for real-time
feedback and tailored adjustments, significantly improving the effectiveness and safety of
physiotherapy fitness routines. The layered architecture analysis of the applied LSTM is
described in Table 3. The LSTM model for physiotherapy fitness exercise correction
using sensor data can be formulated as follows:

ft ¼ rðWf � ½ht�1; xt� þ bf Þ
it ¼ rðWi � ½ht�1; xt� þ biÞ
~Ct ¼ tanhðWC � ½ht�1; xt� þ bCÞ
Ct ¼ ft � Ct�1 þ it � ~Ct

ot ¼ rðWo � ½ht�1; xt� þ boÞ
ht ¼ ot � tanhðCtÞ
where:

– xt is the input values sensor data at time step t.

– ht is the hidden state values at time step t.

– Ct is the cell state value at time step t.

– ft , it , and ot are the forget, input, and output gates values, respectively.

– W and b are the weights and bias values for different gates.

– r represents the sigmoid values function.

– tanh is the hyperbolic tangent values function.

. Convolutional neural network (CNN) (Aggarwal, 2018) is employed in physiotherapy
for fitness exercise correction utilize sensor data to analyze and improve exercise
execution. By processing data from accelerometers, gyroscopes, and other sensors
attached to the body, the CNN effectively identifies patterns and deviations in
movements, enabling precise assessment of the exercise form. This mechanism facilitates
real-time feedback and correction, significantly enhancing the effectiveness and safety of
physiotherapy exercises. The layered architectures of the applied CNN are described in
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Table 3. Given a set of sensor input data X, the CNN operates through a series of
convolutional layers, each defined as:

FlðxÞ ¼ rðBl þ
XK
k¼1

Wlk � xkÞ (7)

where FlðxÞ denotes the feature map in layer l, r denotes the nonlinear activation
function value (e.g., ReLU), Bl denotes the bias, Wlk denotes the weights of the
convolution kernel, * denotes the convolution operation, and xk denotes the input from
the kth sensor or feature map from the previous layer.

After convolutional layers, the pooling layers reduce dimensionality.

PlðxÞ ¼ poolðFlðxÞÞ (8)

where pool is a pooling function (e.g., max pooling).
The final classification layer, which is typically a fully connected layer, outputs the

corrected exercise posture or classification.

y ¼ softmaxðWf � flattenðPLðxÞÞ þ Bf Þ (9)

where y is the output vector representing different exercise postures or correction
categories; Wf and Bf are the weights and biases of the fully connected layer, flatten
transforms the feature map into a vector; and softmax provides the probability distribution
over classes.

Phase 5: hyperparameter tuning
The optimal parameters for the deep learning and machine learning approaches were
determined through iterative testing and training procedures (Aach et al., 2022). The
best-fit hyperparameters were selected using a k-fold cross-validation mechanism. Table 4

Table 3 An analysis of layered architecture in applied deep learning models.

Layer (Type) Output shape Parameters

CNN

conv1d (Conv1D) (None, 9, 8) 32

max_pooling1d (MaxPooling1 D) (None, 2, 8) 0

flatten (Flatten) (None, 16) 0

dropout_3 (Dropout) (None, 16) 0

dense_3 (Dense) (None, 8) 16

Total parameters
6,319,464

LSTM (None, 16) 1,152

lstm_2 (LSTM)

dropout_2 (Dropout) (None, 16) 0

dense_2 (Dense) (None, 8) 136

Total parameters 1,288
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presents the optimal parameters chosen for the physical therapy exercise classification
model.

RESULTS AND DISCUSSIONS
In this section, we analyze the outcomes resulting from the application of advanced deep
learning and machine learning methods. Additionally, we conducted comprehensive
scientific discussions to analyze and compare the results, aiming to assess the performance
of each machine learning technique employed.

Experimental setup
In this subsection, we outline the experimental configuration used in our study. We
utilized Python programming (version 3.0) to implement various machine learning
techniques. The experiments were conducted in the Google Colab framework (Carneiro
et al., 2018), leveraging a GPU backend system with 13 GB of RAM and 90 GB of disk
space. All experiments related to our study were executed within this framework. To assess
performance, key metrics such as precision score, accuracy score, recall score, and
F1-scores were employed.

Results with original sensors features
Table 5 provides a detailed analysis of these key performance metrics, including F1-score,
precision, recall, and accuracy. These metrics are crucial in machine learning and were
evaluated using sophisticated methods applied to the features of the original dataset. The
analysis of results indicated that the RF, DT, GNB, and LR machine learning techniques
exhibited varying performances compared to RF. Although RF achieved a commendable
score of 0.96, it was not the highest score obtained, suggesting the potential for further
enhancements to optimize the classification of physical therapy exercises. Moreover, the
performance metrics analysis revealed that RF outperformed other techniques in terms of
accuracy, recall, and precision. The notable recall rate of the RF model indicates its
effectiveness in detecting a significant number of positive instances. In conclusion,
improving these performance scores is crucial for achieving optimal classification accuracy
in identifying physical therapy exercises.

The objective of this research is to evaluate the effectiveness of various machine learning
approaches based on key metrics such as recall, F1-score, precision, and accuracy, as

Table 4 Analysis of the fine-tuning techniques applied in the field of artificial intelligence.

Techniques Hyperparameters

RF n_estimators = 10, max_depth = 10, random_state = 0, criterion = ‘entropy’

DT Random_state = None, max_leaf_nodes = None, min_impurity_decrease = 0.0

GNB Priors = None, var_smoothing = 1e−09

LR Random_state = 0, max_iter = 200, multi_class = ‘auto’, C = 1.0

LSTM Optimizer = ‘adam’, loss = ‘categorical_crossentropy’, metrics = [‘accuracy’]

CNN Optimizer = ‘adam’, metrics = [‘accuracy’], loss = ‘categorical_crossentropy’
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depicted in Fig. 5. The comparison, illustrated in a bar chart, reveals that the LR, DT, and
GNB models exhibited subpar performance across all metrics. In contrast, the RF
approach demonstrated highly favorable outcomes, scoring an impressive 96%. It is

Table 5 Analysis results of performance metrics with original features using machine learning
models.

Technique Accuracy Target exercise Precision Recall F1 Support

RF 0.96 Extended leg raises 0.91 0.94 0.93 7,951

Forward bending 0.99 0.93 0.96 7,448

Straight lying-leg raises 0.94 0.96 0.95 7,386

Side lying hip abduction 0.98 0.99 0.98 6,484

Alternating leg lifts prone 0.93 0.96 0.94 6,273

Elbow flexion 0.96 0.99 0.98 6,711

Shoulder abduction 0.98 0.91 0.94 6,692

Prone lying elbow extension 1.00 1.00 1.00 6,380

Average 0.96 0.96 0.96 55,325

DT 0.88 Extended leg raises 0.88 0.84 0.86 7,951

Forward bending 0.85 0.83 0.84 7,448

Straight lying-leg raises 0.87 0.90 0.88 7,386

Side lying hip abduction 0.86 0.97 0.91 6,484

Alternating leg lifts prone 0.91 0.87 0.89 6,273

Elbow flexion 0.77 0.95 0.85 6,711

Shoulder abduction 0.94 0.77 0.85 6,692

Prone lying elbow extension 0.99 0.93 0.96 6,380

Average 0.88 0.88 0.88 55,325

GNB 0.40 Extended leg raises 0.41 0.25 0.31 7,951

Forward bending 0.28 0.69 0.40 7,448

Straight lying-leg raises 0.52 0.49 0.50 7,386

Side lying hip abduction 0.46 0.60 0.52 6,484

Alternating leg lifts prone 0.39 0.23 0.29 6,273

Elbow flexion 0.45 0.54 0.49 6,711

Shoulder abduction 0.32 0.13 0.19 6,692

Prone lying elbow extension 0.52 0.20 0.29 6,380

Average 0.42 0.40 0.38 55,325

LR 0.32 Extended leg raises 0.39 0.60 0.39 7,951

Forward bending 0.47 0.36 0.47 7,448

Straight lying-leg raises 0.29 0.33 0.29 7,386

Side lying hip abduction 0.04 0.02 0.03 6,484

Alternating leg lifts prone 0.16 0.12 0.14 6,273

Elbow flexion 0.31 0.46 0.37 6,711

Shoulder abduction 0.08 0.05 0.06 6,692

Prone lying elbow extension 0.48 0.53 0.51 6,380

Average 0.28 0.32 0.29 55,325
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important to note that the features utilized in this analysis did not yield satisfactory results,
emphasizing the necessity for additional feature extraction or selection. These findings
underscore the importance of careful model selection and feature engineering to achieve
optimal performance in machine learning.

The evaluation of the performance of the employed deep learning methods in a time
series context is illustrated in Fig. 6. This analysis involves assessing the performance
metrics throughout the training of LSTM and CNN models. Over ten training epochs,
there was a notable increase in loss scores and a simultaneous decrease in accuracy scores.
The examination reveals that both LSTM and CNN, as deep learning-based methods,
yielded suboptimal performances on the given dataset. These observations suggest that
LSTM and CNNmethods did not achieve satisfactory scores in classifying physical therapy
exercises, as illustrated in Fig. 7.

The assessment of performance results for unseen testing data using deep
learning-based LSTM and CNN is presented in Table 6. The examination of the unseen
testing data reveals that the LSTM model achieved an accuracy score of 0.88, whereas the
CNN model showed an accuracy score of 0.47 in classifying physical therapy exercises.
This analysis leads to the conclusion that the employed deep learning models exhibited
subpar performance in exercise classification.

The analysis depicted in Fig. 8 discusses the outcomes of a comparative radar chart
analysis (Chen et al., 2022) applied to machine-learning approaches based on the original
features. Radar charts proved to be a robust method for representing the performance of
each model, with each point on the chart illustrating the strengths and weaknesses of the
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Figure 5 The histogram-based performance outcomes analysis of applied machine learning models
with original features. Full-size DOI: 10.7717/peerj-cs.2854/fig-5
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Figure 6 The results analysis of performance for applied LSTM (A) and CNN (B) deep learning
models with original features. Full-size DOI: 10.7717/peerj-cs.2854/fig-6
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Figure 7 An analysis of performance outcomes using histograms is conducted on deep learning
models that utilized original features. Full-size DOI: 10.7717/peerj-cs.2854/fig-7
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models across various aspects. The visual representation highlights that the RF technique
demonstrated superior performance by covering a broader area under the radar span
across various performance metrics curves. The findings indicate that DT, GNB, and LR
exhibited lower performance scores in the radar chart analysis.

A comprehensive examination of model performance is presented in Fig. 9 through a
detailed analysis of the confusion matrix. This assessment evaluates and summarizes the
effectiveness of the machine learning approaches used in this study. The results indicate
that the DT, GNB, and LR methods exhibited elevated error rates in target class prediction
when utilizing the original features, suggesting suboptimal results for accurately
categorizing the data. In contrast, the RF method demonstrates significantly reduced error
rates, as evidenced by the corresponding confusion matrix. These observations highlight
the critical importance of judiciously selecting feature extraction and classification
methods to achieve optimal results in machine learning applications. Furthermore, the
findings underscore the potential for improved model performance through the
incorporation of ensemble learning-based feature engineering specific to this dataset.

A thorough examination of the confusion matrix is presented in Fig. 10 to evaluate and
succinctly depict the effectiveness of the deep learning approaches employed in this
investigation. The assessment revealed that when utilizing the original features, the CNN
technique exhibited elevated error rates for the target classes, indicating suboptimal
accuracy in data classification. In contrast, the LSTM method demonstrated significantly
reduced error rates for the target classes, as evidenced by the LSTM confusion matrix. To

Table 6 Analysis results of performance metrics with original features with implemented deep
learning models.

Technique Accuracy Target exercise Precision Recall F1 Support

LSTM 0.88 Extended leg raises 0.84 0.89 0.86 7,951

Forward bending 0.90 0.90 0.90 7,448

Straight lying-leg raises 0.86 0.92 0.89 7,386

Side lying hip abduction 0.93 0.93 0.93 6,484

Alternating leg lifts prone 0.86 0.83 0.84 6,273

Elbow flexion 0.89 0.94 0.91 6,711

Shoulder abduction 0.88 0.78 0.82 6,692

Prone lying elbow extension 0.94 0.88 0.91 6,380

Average 0.89 0.88 0.88 55,325

CNN 0.47 Extended leg raises 0.40 0.49 0.44 7,951

Forward bending 0.43 0.47 0.45 7,448

Straight lying-leg raises 0.49 0.62 0.55 7,386

Side lying hip abduction 0.50 0.67 0.57 6,484

Alternating leg lifts prone 0.55 0.50 0.52 6,273

Elbow flexion 0.44 0.55 0.49 6,711

Shoulder abduction 0.41 0.12 0.19 6,692

Prone lying elbow extension 0.62 0.32 0.42 6,380

Average 0.48 0.47 0.45 55,325
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further enhance the performance of deep learning on this sensor dataset, incorporating
ensemble learning-based feature generation is essential.

Results with novel proposed transfer features
Our research aims to evaluate the effectiveness of different methods in correcting physical
therapy exercise tasks through an innovative approach to feature engineering. Table 7
presents the results of the applied approaches with novel feature extraction. Notably, these
methods showed significant improvements in accuracy scores with the introduction of our
proposed feature generation approach. The DT, GNB, and LR approaches achieved
accuracy scores of 0.98, 0.97, and 0.96, respectively. Remarkably, the proposed RF method
emerged as the top-performing approach with an accuracy of 0.99, highlighting its
superiority over the other methods employed. These findings strongly indicate that our
feature extraction approach successfully enhances the performance of all tested methods
across various metrics. This analysis underscores the importance of integrating effective
feature extraction techniques to optimize machine learning approaches for classifying
physical therapy exercises.

Accuracy Precision Recall F1-score

Figure 8 An assessment of the performance results achieved by employed methods utilizing original
features through radar chart analysis. Full-size DOI: 10.7717/peerj-cs.2854/fig-8
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The evaluation of different machine learning models was conducted through a
histogram-based bar chart analysis, assessing recall, F1-score, precision, and accuracy
results, as depicted in Fig. 11. The comparison presented in the bar chart indicates that the
DT, GNB, and LR approaches demonstrated commendable performances across all
metrics, although not the highest. In contrast, the RF technique exhibited exceptionally
favorable outcomes, achieving a magnificent score of 99%. These findings underscore the
importance of innovative feature generation in attaining optimal results using machine
learning.

The results illustrated in Fig. 12 showcase the efficacy of innovative feature extraction
strategies in elevating the capabilities of machine learning methodologies. Radar chart
analysis revealed that all employed techniques exhibited commendable performance, as

Figure 9 Analysis of the confusion matrix outcomes for the employed machine learning methodologies using the original features.
Full-size DOI: 10.7717/peerj-cs.2854/fig-9
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Figure 10 Analysis of the confusion matrix outcomes for the employed deep learning methodologies using the original features.
Full-size DOI: 10.7717/peerj-cs.2854/fig-10

Table 7 Performance metrics analysis results with proposed feature engineering with implemented
machine learning models.

Technique Accuracy Target Precision Recall F1 Support

DT 0.98 Extended leg raises 0.99 0.99 0.99 7,951

Forward bending 0.99 0.99 0.99 7,448

Straight lying-leg raises 0.98 0.98 0.98 7,386

Side lying hip abduction 0.99 0.99 0.99 6,484

Alternating leg lifts prone 0.97 0.98 0.97 6,273

Elbow flexion 0.99 0.99 0.99 6,711

Shoulder abduction 0.98 0.99 0.99 6,692

Prone lying elbow extension 1.00 1.00 1.00 6,380

Average 0.99 0.99 0.99 55,325

LR 0.97 Extended leg raises 0.96 0.97 0.97 7,951

Forward bending 0.97 0.95 0.96 7,448

Straight lying-leg raises 0.97 0.97 0.97 7,386

Side lying hip abduction 0.99 0.99 0.99 6,484

Alternating leg lifts prone 0.97 0.97 0.97 6,273

Elbow flexion 0.99 0.99 0.99 6,711

Shoulder abduction 0.96 0.96 0.96 6,692

Prone lying elbow extension 1.00 1.00 1.00 6,380

Average 0.98 0.98 0.98 55,325

(Continued)
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Table 7 (continued)

Technique Accuracy Target Precision Recall F1 Support

GNB 0.96 Extended leg raises 0.95 0.94 0.94 7,951

Forward bending 0.97 0.94 0.95 7,448

Straight lying-leg raises 0.94 0.96 0.95 7,386

Side lying hip abduction 0.99 0.98 0.98 6,484

Alternating leg lifts prone 0.94 0.96 0.95 6,273

Elbow flexion 0.98 0.98 0.98 6,711

Shoulder abduction 0.93 0.95 0.94 6,692

Prone lying elbow extension 1.00 1.00 1.00 6,380

Average 0.96 0.96 0.96 55,325

RF 0.99 Extended leg raises 0.99 0.99 0.99 7,951

Forward bending 1.00 0.99 0.99 7,448

Straight lying-leg raises 0.99 0.99 0.99 7,386

Side lying hip abduction 0.99 1.00 0.99 6,484

Alternating leg lifts prone 0.98 0.98 0.98 6,273

Elbow flexion 1.00 1.00 1.00 6,711

Shoulder abduction 0.99 0.99 0.99 6,692

Prone lying elbow extension 1.00 1.00 1.00 6,380

Average 0.99 0.99 0.99 55,325
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Figure 11 The results analysis of performance for applied machine learning models with proposed
transfer features. Full-size DOI: 10.7717/peerj-cs.2854/fig-11
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indicated by the extensive coverage of the performance metric curves within the radar
boundaries. While DT, GNB, and LR techniques scored satisfactorily, they did not attain
the highest levels. What is particularly noteworthy is the exceptional performance of the
RF technique, which encompassed a substantial area in the radar graph and achieved
maximal scores across all metrics. These outcomes imply that the proposed feature
generation approach holds the potential to significantly enhance the efficiency of machine
learning methods, with RF emerging as the most encouraging approach for optimal
performance.

A comprehensive evaluation of the performance of different methods incorporating a
novel feature extraction approach is presented in Fig. 13 through a detailed analysis of the
confusion matrix. The findings from the analysis indicated a significant reduction in error
rates for the target classes across all applied methods, demonstrating consistently
high-performance scores. Notably, the RF method, as depicted in its confusion matrix,
shows minimal error rates for the target classes, along with commendable accuracy scores
across various classes. This analysis concludes that the proposed feature generation
approach based on ensemble learning has the potential to significantly enhance the
performance of machine learning models in the classification of physical therapy exercises.

Accuracy Precision Recall F1-score

Figure 12 An assessment of the performance results achieved by employed methods utilizing
proposed transfer features through radar chart analysis.

Full-size DOI: 10.7717/peerj-cs.2854/fig-12
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K-fold-based performance validations
The efficacy of each approach, coupled with the proposed feature engineering, was
thoroughly assessed through K-fold analysis (Anam et al., 2021), as detailed in Table 8. The
results indicated that integrating a new feature dataset significantly enhanced the
effectiveness of the implemented machine-learning methods. This improvement was
evident in the increased K-fold cross-validation scores and reduced standard deviation
observed. Among the techniques evaluated, RF emerged as the most effective, achieving
exceptional K-fold accuracy of 0.99 and demonstrating the lowest standard deviation
(0.005) compared to other methods. This underscores the success of the proposed RFL
feature engineering approach in enhancing the generalizability of machine-learning
algorithms for classifying physical therapy exercises. The findings highlight the potential of

Figure 13 Analysis of the results from the confusion matrix for the implemented techniques using the proposed transfer features.
Full-size DOI: 10.7717/peerj-cs.2854/fig-13
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this innovative feature extraction approach to improve the accuracy and reliability of
classifying and correcting physical therapy exercises across various applications.

Computational complexity analysis
An analysis of the computational complexities of various machine learning approaches,
combined with the proposed feature engineering, is detailed in Table 9. This examination
illustrates the enhanced efficiency of machine learning methods when utilizing the
proposed novel feature extraction method compared to using original features alone.
Specifically, the LR technique had the longest computational runtime score of 17.32 s,
while the GNBmethod demonstrated the shortest runtime score of 0.34 s, albeit with lower
performance accuracy. These findings indicate that the proposed RF technique, coupled
with the novel feature engineering approach, achieved a reduced runtime computational
score. In addition, the scalability of the RFL model is analyzed by evaluating its
computational runtime with increasing dataset sizes. As the dataset size increased, the RFL
model demonstrated a moderate rise in runtime, indicating a computational cost higher
than traditional models.

Comparison of feature space
A comparative analysis of feature space representations, depicted in Fig. 14, compares
original features with a recently developed set. The examination suggests that original
features from the wearable inertial and magnetic sensor dataset lack linear separability,
resulting in sub-optimal performance with machine learning techniques. In contrast, our
proposed feature engineering approach results in a newly created feature set that exhibits
enhanced linear separability. Overall, increased linear separability in our proposed features
contributes to superior performance in the classification of physical therapy exercises.

Table 9 Analysis of the computational complexity in applied methods utilizing the suggested
transfer feature engineering approach.

Technique Runtime computation (S)

RF 6.879

DT 3.063

LR 17.32

GNB 0.347

Table 8 K-fold cross-validation performance results analysis of applied method with proposed
transfer feature engineering.

Technique Fold K-fold accuracy Standard deviation (+/−)

DT 10 0.98 0.0006

LR 10 0.97 0.0007

GNB 10 0.96 0.0009

RF 10 0.99 0.0005
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State of the art comparisons
Our study conducted a comparative performance analysis, detailed in Table 10, across
studies published from 2020 to 2023 focusing on the classification of physical therapy
exercises. These studies primarily utilized deep learning and machine learning models to
achieve favorable scores. Our findings consistently show superior results compared to
these studies, with our proposed approach achieving high accuracy scores in the
classification of physical therapy exercises.

Results with independent data
To assess the robustness and generalizability of the RFL method, we evaluated the model’s
performance on an independent test dataset Fedesoriano (2024). The results demonstrate a
high accuracy of 99.45%, with an error rate of only 0.54%, indicating that the model
effectively distinguishes between classes. The precision, recall and F1-score values are
consistently high, further confirming the method’s reliability, as shown in Table 11.

Discussions and limitations
In this study, an innovative approach to feature engineering was employed to classify
physical therapy exercises with exceptional efficiency. Various machine learning and deep
learning techniques were implemented and compared to assess their performance. Each
method’s performance was rigorously validated through the k-fold technique and
hyperparameter training. The extensive analysis of results demonstrates that the utilization

Figure 14 (A) Representations of original features; (B) representations of the newly generated features.
Full-size DOI: 10.7717/peerj-cs.2854/fig-14
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of the newly proposed feature engineering methods leads to impressive performance
improvements. In contrast, the original dataset features exhibited lower performance
scores, as confirmed by the feature space analysis. Furthermore, computational cost
analysis highlighted the efficiency of the proposed method in this study.

In conclusion, our introduced approach has the potential to significantly transform the
classification of physical therapy exercises by achieving high-performance scores. A
comprehensive performance comparison with state-of-the-art approaches further
establishes the superiority of our proposed technique in effectively classifying and
enhancing physical therapy exercises.

The potential drawbacks and challenges encountered during the study:

. Sensor data variability: Differences in sensor placement, calibration, and user movement
variations could introduce inconsistencies in the collected data, affecting model
generalization.

. Feature selection challenges: Extracting meaningful transfer features from LSTM and RF
models required careful tuning, and suboptimal selections could degrade model
performance.

. Real-time implementation: While the proposed model demonstrated high accuracy, its
feasibility for real-time applications, particularly in resource-constrained devices,
remains a challenge.

The proposed model has the potential to significantly reduce the cost and frequency of
clinic visits by providing real-time feedback on physical therapy exercises. By leveraging
wearable sensor data, the model can accurately classify and correct exercises without

Table 10 The performance comparisons of our novel proposed method with state of the art techniques.

Ref. Year Learning type Proposed technique Performance accuracy (%)

Uslu et al. (2020) 2020 Machine learning SVM 90

Francisco & Rodrigues (2023) 2022 Machine learning MNN 90

Carrera, Arequipa & Hernández (2022) 2022 Deep learning RNN 95

Bansal & Vishwakarma (2023) 2023 Machine learning KNN 92

Kanungo et al. (2023) 2023 Machine learning ML system 96

Our 2024 Transfer learning RFL 99

Table 11 Performance evaluation of RFL method with an independent dataset.

Metric Value

Accuracy 99.45%

Error rate 0.54%

Training time 0.0649 s

Precision (Avg.) 1.00

Recall (Avg.) 0.99

F1-score (Avg.) 0.99
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requiring constant supervision from physiotherapists. This enables patients to perform
rehabilitation exercises at home with immediate guidance, minimizing the need for
in-person consultations. Another key application is home-based physiotherapy, where
patients can perform prescribed exercises independently while receiving real-time
feedback from the model. This reduces reliance on frequent clinic visits, making
rehabilitation more convenient and cost-effective.

CONCLUSIONS
This study introduces a novel technique for classifying and correcting physical therapy
exercises using advanced machine learning approaches to achieve high-performance
results. The investigation utilized publicly available data from wearable inertial and
magnetic sensors for experimentation. Four sophisticated machine-learning techniques
were implemented and compared. A novel RFL method was proposed for feature
generation from sensor data, which was then used to develop learning approaches for
classifying physical therapy exercises. The study results indicate that the proposed RFL
approach achieves the highest performance in correcting physical therapy exercises.
Extensive experiments showed that employing RF within the proposed RFL method
achieved a remarkable performance score of 99%. Performance was rigorously validated
using the k-fold method and hyperparameter optimization. Additionally, comprehensive
analyses of computational complexity and feature space confirmed the superior
performance of the proposed approach.

Future Directions
In future work, our plan includes developing a graphical user interface (GUI) integrating
our proposed machine-learning model into the backend. The framework will receive
real-time sensor data from patients during physical therapy exercises and provide
corrections by alerting them if exercises are performed incorrectly.
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