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ABSTRACT
This article introduces methods for initializing a single-trajectory-based
metaheuristic, specifically a simulated annealing (SA) algorithm, using constructive
heuristics. These methods are designed to target promising regions within the search
space of an nondeterministic polynomial time (NP)-hard problem, namely the single
allocation p-hub center and routing problem. The objective of this problem is to
allocate demand centers to hubs and design vehicle routes such that the maximum
distance between all origin-destination pairs is minimized. To analyze the impact of
different initial solutions, various constructive heuristics, including greedy and
hybrid strategies, have been proposed. Additionally, a problem decomposition
approach leveraging domain-specific knowledge has been incorporated through a
matheuristic initial solution strategy to enhance the efficiency of the simulated
annealing algorithm. This approach generates high-quality initial solutions by first
solving the p-hub center problem and then using the obtained hubs and their
assignments as inputs to the min-max multiple traveling salesman problem. In this
problem, the objective function is formulated differently from the literature by
minimizing the longest distance between the two nodes. Several experiments have
been conducted on the Turkish network, and upon examining the results, it has been
observed that each initial solution generation strategy provides improvements in
problem instances with specific characteristics, such as the number of vehicles and
nodes. We also observed lower objective function values for all medium- and
large-sized test problems taken from the literature, highlighting the effectiveness of
the proposed strategies.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation
Keywords P-hub center problem, P-hub center and routing problem, Matheuristics, Simulated
annealing

INTRODUCTION
Heuristic algorithms are methods developed to solve problems more efficiently when
traditional techniques are either too slow for finding an exact or approximate solution or
unable to find any exact solution within a given search space. The goal of a heuristic
algorithm is to generate a solution within a reasonable time frame that is sufficiently
effective for addressing the problem at hand. Although this solution may not be the

How to cite this article Kassoumeh AK, Kartal Z, Arslan A. 2025. The effect of different initial solutions on the metaheuristic algorithms
for the single allocation p-hub center and routing problem. PeerJ Comput. Sci. 11:e2840 DOI 10.7717/peerj-cs.2840

Submitted 19 January 2024
Accepted 26 March 2025
Published 26 June 2025

Corresponding author
Zühal Kartal,
zkartal@eskisehir.edu.tr

Academic editor
Dragan Pamucar

Additional Information and
Declarations can be found on
page 27

DOI 10.7717/peerj-cs.2840

Copyright
2025 Kassoumeh et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2840
mailto:zkartal@�eskisehir.�edu.�tr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2840
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


optimal one or might only approximate the exact solution, it remains valuable because it
can be obtained without taking an excessive amount of time.

Generally, heuristics are classified into improvement and constructive heuristics, based
on their respective strategies to solve the problems. Constructive heuristics begin their
approach with an empty solution, subsequently employing an iterative process to
progressively build the complete solution. Hence, constructive heuristics do not explore
the entire solution space. Instead, they utilize a specific type of strategy to determine the
approach for constructing the whole solution. As implied by their name, constructive
heuristics generate solutions by composing their individual components, as opposed to
improving whole solutions, which is accomplished by sequentially introducing one
element at a time to an incomplete (partial) solution. Constructive heuristics commonly
adjust and utilize greedy algorithms, where the best possible element is incorporated
during each step. Nonetheless, due to using some greedy approach in building whole
solutions, constructive heuristics might have the potential to obtain local optima.

Improvement heuristics require an initial solution to start the exploration of the
solution space for the given problem, aiming to reach the best possible solution. This is
done through a series of iterative steps, each deploying a range of diverse neighborhood
operations. Improvement heuristics have the potential to yield good solutions for
combinatorial optimization problems due to their comprehensive exploration of the
solution space.

Improvement heuristics rely on an initial solution to start the exploration of the solution
space for the given problem, aiming to reach the best possible solution. There are two main
sources of the initial solutions which are: a random solution generation mechanism and
constructive heuristics. The former generates solutions using random processes, the latter
is an iterative method. Both can quickly generate/build complete solutions from scratch
that can be integrated into complex constructive or iterative heuristics.

It should be noted that constructive heuristics are designed with the problem at hand in
mind. For instance, the “Savings Algorithm” of Clarke &Wright (1964) can be an example
of such constructive heuristic when the particular problem to be addressed is the vehicle
routing problem (VRP). Throughout the years, several variations and specializations of the
VRP have been introduced (see Elatar, Abouelmehdi & Riffi, 2023 for a comprehensive list
of problem variants). Consequently, the Savings algorithm was reformulated to handle the
time-window variant in Solomon (1987), and it may well be extended to other VRP variants
in the future. However, it cannot be used to solve an arbitrary combinatorial optimization
problem such as scheduling. Thus, the problem and the heuristics are tightly coupled. For
this very reason, the existing studies investigating the impact of the initial solution, in
which problems and heuristics to form initial solutions are closely intertwined, consider
only a single problem type per publication at a time.

Metaheuristic algorithms, in contrast to heuristic algorithms which are designed to
solve a wide range of optimization problem types, are adaptable and can be employed
across various problem domains. They are generally classified into two groups:
population-based or single trajectory. The former concentrate on maintaining and
enhancing multiple candidate solutions (genetic algorithms, ant colony etc.), while the
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latter focus on modifying and improving a single initial solution (simulated annealing,
tabu search etc.). The initial solution in a metaheuristic algorithm constitutes a critical
element impacting its capacity to ascertain solutions of superior or acceptable quality. In
the absence of any prior domain-specific information about the problem at hand, it is
customary for the initial solution to be predominantly formed through entirely random
procedures. When information about the problem is available, constructive heuristics can
be utilized to generate an initial solution.

Metaheuristic algorithms typically comprise iterative optimization algorithms, often
sharing a common step in their algorithmic framework, namely solution(s) initialization.
Within the research community, it is widely acknowledged that this initialization step
holds significant importance in the optimization process. This is because all subsequent
solutions generated rely, to some extent, on their predecessors and ultimately on the initial
solution or initial population of solutions. In the literature, the impact of initial solutions
on metaheuristics has predominantly been examined within the context of
population-based metaheuristics. As pointed out in a recent by review article by Sarhani,
Voß & Jovanovic (2023), which clearly reveals the research gap on initialization of
metaheuristics, including single trajectory-based metaheuristics.

The ‘initial solution effects’ line of research is summarized in the following paragraph.
These problems extend from the quadratic assignment problem to energy resource
planning, and from the production routing problem to transmission expansion planning.
The effects of the initial solution on an algorithm are examined as stated above, and each
article addresses a specific problem.

In Liu’s (2021) study, the impact of the initial solution was examined for a genetic
algorithm developed for the quadratic assignment problem. The following initial solution
strategies were proposed: random, random plus local search, random plus bad local search,
a greedy randomized adaptive search procedure (GRASP), and a greedy randomized
adaptive search procedure plus local search. When the genetic algorithm ran on top of
different initial solution strategies, the authors observed that the quality of the final (best-
found) solution was formed in reverse order to the above ranking. Antonio, Ramon &
Ruben (2011) investigated how selecting good initial populations for genetic algorithms
influences both the speed of convergence and the overall quality of the final solutions of
transmission expansion planning problem. Sousa et al. (2016) proposed five different
initial solutions for a simulated annealing algorithm to solve the energy resource
scheduling in smart grids. These initial solutions are (a) random solution; (b) ant colony
optimization; (c) naive-scheduling heuristic; (d) pre-scheduling heuristic; and (e)
mixed-integer linear programming. The authors used the results of a relaxed version by
removing certain constraints from the resource scheduling problem in the mixed-integer
linear programming based initial solution. Ahmed, Hvattum & Agra (2023) investigated
the impact of the initial solutions obtained by mathematical modeling relaxation of a
two-commodity flow formulation, a three-index flow formulation, and a four-index flow
formulation for the production routing problem on the performance of the proposed
matheuristic. Oman & Cunningham (2001) investigated how seeding genetic algorithms
with high-quality initial solutions-evaluated based on their objective values-impacted
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performance on the traveling salesman problem (TSP) and the job-shop scheduling
problem. Burke, Newall & Weare (1998) applied various initialization strategies to the
population of a genetic algorithm for the timetabling problem. In their study, Fischetti,
Ljubic & Sinnl (2016) evaluated the performance of three distinct initial solutions for the
prepack optimization problem using an ad-hoc heuristic. These initial solutions were
constructed through three different approaches: random generation, selecting the most
dissimilar options, and the most similar ones. Their effectiveness was further assessed by
incorporating a refinement heuristic.

In line with the literature review provided in the above paragraph, this study also
focuses on a single problem, namely the single allocation p-hub center and routing
problem. The primary motivation of this study is to investigate the effects of three different
constructive heuristics developed for the single allocation p-hub center and routing
problem on a single trajectory metaheuristic, which is simulated annealing (SA). The
reason for selecting SA is the need for a well-balanced interplay between diversification
and intensification throughout the search process (Assad & Deep, 2018). Intensification,
commonly referred to as exploitation, signifies the algorithm’s ability to exploit the search
space surrounding the current good solution, while diversification, also known as
exploration, entails exploring new regions of the search space to introduce novel
information. We also note here that SA had been selected due to its recognized capability
to strike a proper balance between these two conflicting characteristics in combinatorial
optimization problems and especially in hub location and routing problems (Ernst &
Krishnamoorthy, 1996; Kartal, Krishnamoorthy & Ernst, 2019; Ghaffarinasab, 2018).

Despite the existence of a wide variety of metaheuristics in the literature, several
interesting metaheuristic algorithms have also been introduced in recent years. Interested
readers may examine a novel genetic algorithm for solving the fuzzy dynamic ship routing
and scheduling problem (Das et al., 2022), a novel discrete rat swarm optimization
algorithm designed for the quadratic assignment problem (Mzili et al., 2023b), a discrete
penguins search algorithm proposed for the multiple traveling salesman problem (Mzili,
Mzili & Riffi, 2023), and hybrid genetic and penguin search optimization algorithms
developed for the flow shop scheduling problem (Mzili et al., 2023a).

In the literature, the performance of metaheuristic algorithms is influenced by factors
such as parameter optimization and the quality of the initial solution used. While
considerable attention has been devoted to parameter tuning, the impact of a strong initial
solution has often been overlooked. Yet, an effective initialization can play a role similar to
that of parameter tuning by increasing the likelihood of reaching better final objective
function values, especially when early-stage diversification is incorporated. Most studies
that focus on initialization tend to address population-based algorithms (Li, Liu & Yang,
2020; Oman & Cunningham, 2001), leaving its effect on single trajectory-based
metaheuristics less explored.

Research focusing on the impact of initial solutions in single trajectory-based algorithms
remains scarce. For instance, Alfonzetti, Dilettos & Salerno (2006) demonstrated that in SA,
the algorithm restarts with a new starting solution when no improvement is observed; a
mechanism that often involves randomly selecting a new starting point or choosing the
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best candidate from a randomly generated pool to escape local optima. Similarly, Li, Liu &
Yang (2020) showed that even if the initial solutions are not near optimal, the algorithm
can still yield good outcomes provided that high diversity is maintained, and sufficient
iterations are performed. This extensive search allows the algorithm to effectively explore
the solution space, mitigating any drawbacks of an initial starting point.

Building on these insights, our study addresses this gap by investigating how the quality
of the initial solution affects the final outcome in single trajectory-based metaheuristic
algorithms. Specifically, we focus on the uncapacitated single allocation p-hub center and
routing problem; a decomposable problem and evaluate three constructive heuristics,
designed to exploit its structure within a simulated annealing framework.

The uncapacitated single allocation p-hub center and routing problem allocates demand
centers to hubs and designs vehicle routes in such a way that the maximum distance is
minimized between all origin-destination pairs (Kartal, Krishnamoorthy & Ernst, 2019).
This problem is a combination of two well-known problems in the literature, namely the
uncapacitated single allocation p-hub center (USApHCP) and the (multiple) traveling
salesman problem (mTSP). USApHCP is NP-hard, which has been proven by Ernst et al.
(2009). The NP-Complete class of the traveling salesman problem (TSP) has been proven
by Karp (1972). Therefore, developing algorithms that are capable of obtaining optimal
solutions for such problems within a reasonable time is not possible. As a result, a diverse
range of heuristic algorithms can be employed to address both hub location and routing
type problems. Although almost every hub location and routing problem in the literature
takes into account different routing constraints and objective functions, in the following
paragraph and Table 1 we provide an overview of both the metaheuristic and matheuristic
algorithms developed for hub location and routing problems also the initial solutions
strategies used strategies employed by these methods.

De Freitas et al. (2023) used a biased random-key genetic algorithm for the hub location
routing problem with directed tours, incorporating a random initial solution. Aloullal,
Saldanha-da-Gama & Todosijević (2023) introduced an input into matheuristic algorithms
by relaxing integrality constraints formed by constraints involving only related to hub
locations for the multi-period single-allocation hub location-routing problem, aiming to
find a feasible solution. Wang, Liu & Yang (2023) developed a genetic algorithm for the
robust hub location and routing problem with a third-party logistics strategy, generating
initial solution populations based on random and greedy heuristics. For the multiple
allocation hub location and routing problem,Wu, Qureshi & Yamada (2022) used a greedy
approach as the initial solution for the adaptive large neighborhood search (ALNS)
algorithm they developed. This approach was based on a two-stage construction phase.
Bütün, Petrovic & Muyldermans (2021) proposed a tabu search algorithm for the
capacitated directed cycle hub location and routing problem under congestion, suggesting
a three-stage decomposition-based greedy heuristic for the initial solution. Yang, Bostel &
Dejax (2019) developed a memetic algorithm for a hub location and routing problem with
distinct collection and delivery tours, deriving an initial population consisting of random
and greedy-based solutions. Danach, Gelareh & Neamatian Monemi (2019) solved the
capacitated single-allocation p-hub location and routing problem using a feasible initial
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solution based on the Lagrangian relaxation technique. Clarke &Wright (1964) introduced
three metaheuristic algorithms based on iterated local search, ant colony system, and
discrete particle swarm optimization for the USApHCRP. The authors utilized random
initial solutions for the iterated local search and discrete particle swarm optimization
algorithm. Lopes et al. (2016) developed a biased random key genetic algorithm using both
greedy-generated initial solutions and using random chromosomes for generating initial
solutions for a hub location and routing problem. The authors also used a random solution
for their variable neighborhood search-based heuristic. Ratli et al. (2022) addressed the

Table 1 Metaheuristics and initial solution strategies in hub location and routing related studies.

Metaheuristics Problem type Initial solution strategy

De Freitas et al. (2023) Biased random-key genetic
algorithm

Hub location routing problem with directed
tours

Random

Aloullal, Saldanha-da-
Gama & Todosijević
(2023)

Matheuristic Multi-period single-allocation hub
location-routing problem

Relaxed MIP

Wang, Liu & Yang
(2023)

Genetic algorithm Robust hub location and routing problem with
a third-party logistics strategy

Random and greedy heuristics

Wu, Qureshi &
Yamada (2022)

Adaptive large neighborhood search Multiple (single) allocation hub location and
routing problem

A two-stage greedy heuristic

Bütün, Petrovic &
Muyldermans (2021)

Tabu search Capacitated directed cycle hub location and
routing problem under congestion

A three-stage decomposition-based
greedy heuristic

Yang, Bostel & Dejax
(2019)

Memetic algorithm Hub location and routing problem with distinct
collection and delivery tours

Random and greedy heuristics

Danach, Gelareh &
Neamatian Monemi
(2019)

Hyper heuristic Capacitated single-allocation p-hub location
and routing

Lagrangian relaxation technique

Kartal,
Krishnamoorthy &
Ernst (2019)

Iterated local search, Ant colony
system, Discrete particle swarm
optimization

Uncapacitated single allocation p-hub center
and routing problem

Random

Kartal, Hasgul & Ernst
(2017)

Ant colony system simulated
annealing algorithm

Single allocation hub location and routing
problem with simultaneous pick-up and
delivery

For SA: A greedy heuristic drawn
from the first solution of ant
colony system

Lopes et al. (2016) Biased random key genetic
algorithm, Variable neighborhood
search

A hub location and routing problem with one
route per hub

Random and greedy heuristics

Ratli et al. (2022) General variable neighborhood
search

The same problem with Lopes et al. (2016) Random

Pandiri & Singh (2021) Hyper heuristic The same problem with Lopes et al. (2016) 2 Greedy Heuristics

Rieck, Ehrenberg &
Zimmermann (2014)

Fix and optimize genetic algorithm Many-to-many location- routing with
inter-hub transport and multi-commodity
pickup-and-delivery

Random initial solution with
feasibility check

This study Simulated annealing algorithm Uncapacitated single allocation p-hub center
and routing problem

-Random

-Greedy

-Hybrid

-Decomposition based mathematical
programming formulation
(Matheuristic)

Kassoumeh et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2840 6/31

http://dx.doi.org/10.7717/peerj-cs.2840
https://peerj.com/computer-science/


problem studied by Lopes et al. (2016) and proposed a solution in the form of the General
Variable Neighborhood Search algorithm. The initial solution was randomly generated.
Pandiri & Singh (2021) also considered the same problem studied by Lopes et al. (2016).
The authors developed two greedy heuristics for the initial solution to be used in the hyper
heuristic. Kartal, Hasgul & Ernst (2017) utilized the initial solution obtained by the first
iteration of an ant colony system algorithm in their study as the starting solution for the
simulated annealing algorithm. Indeed, the final objective function results obtained by the
simulated annealing algorithm are better than the final objective results obtained by the ant
colony system. Rieck, Ehrenberg & Zimmermann (2014), worked on many-to-may location
routing problem with inter-hub transport and multi commodity pickup-and-delivery and
for the solution of the problem, the authors developed a fix-and-optimize heuristic and a
genetic algorithm.

As motivation drawn from real-life applications, readers can refer to the works of Kuby
& Gray (1993), Aykin (1995), Bruns, Klose & Stahly (2000), Grünert & Sebastian (2000),
Wasner & Zapfel (2004), Cetiner, Sepil & Sural (2010), De Camargo, Miranda &
Lokketangen (2013), and Rodríguez-Martín, Salazar-González & Yaman (2014) which
incorporate routing decisions into the hub location problem for various versions of the
problem. For interested readers, Wandelt, Wang & Sun (2025) provide a recent
comprehensive review of hub location-routing problems (HLRPs), exploring the
integration of hub location and vehicle routing to optimize logistics and transportation
networks. The article examines various HLRP models, their mathematical formulations,
and solution techniques, including exact and heuristic methods.

Recent algorithmic advancements in both metaheuristics and exact methods have led
researchers to consider techniques from these two domains together. It has become
common to integrate metaheuristic elements (typically local search) with exact algorithms
devised for (mixed integer) linear programming. These techniques are called as
matheuristics. Archetti & Speranza (2014) have categorized matheuristics into three
distinct classes in routing related problems. The first of these is the decomposition
approach, where the method subdivides the problem into smaller and less complex
subproblems, each of which is addressed with a particular solution technique. The second
class is improvement heuristics. In this type of matheuristics, the solution is improved by
using mathematical programming models. The third class is branch-and-price/column
generation-based approaches. These approaches are commonly used in solving routing
problems. Such algorithms utilize a set partitioning formulation where a binary or integer
variable is associated with each possible column. Given the exponential number of
variables, the solution of the linear relaxation of the formulation is achieved through
column generation. In the context of matheuristics based on branch-and-price or column
generation, the exact method is adjusted to enhance convergence speed, albeit at the
expense of losing optimality assurance. For example, the column generation phase may be
terminated prematurely.

In the literature of the hub location and routing problem, there are few studies that
include a matheuristic algorithm. Aloullal, Saldanha-da-Gama & Todosijević (2023)
developed a four-phase matheuristic for the multi-period single-allocation hub
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location-routing problem, combining principles of relax-and-fix. Geçer (2020) worked on
fixed p-hub center and routing problem where the locations of the hubs are predetermined.
The author suggested a mathematical programming formulation for the problem. For
finding an initial solution with a mathematical model, we modified Geçer’s (2020)
mathematical programming formulation to form the routes with a min-max multiple
travelling salesman problem. Unlike Geçer (2020), the locations of the hubs are not known
in priori, and we find the hubs by using a modified radius-based p-hub center
mathematical model and for creating the routes we use a modified mTSP formulation with
min-max objective function to develop a matheuristic based strategy.

In this study, inspired by the concept of starting from a high-quality initial solution
obtained through a constructive algorithm; an approach widely used in local search
metaheuristics, we investigate the impact of various initial solution strategies on the final
solution of the USApHCRP. To generate initial solutions, we propose four strategies:
random, greedy, a hybrid approach combining random and greedy methods, and a
decomposition-based matheuristic that formulates the problem in two hierarchical
parts—hub location and node allocation, followed by routing part. These initial solutions
serve as starting points for the proposed SA algorithm.

The second section presents the proposed initial solution strategies, detailing the
random, greedy, hybrid, and decomposition-based matheuristic approaches, along with
the modified formulations of the USApHCP and mTSP. The third section focuses on the
specifics of the developed SA algorithm. The fourth section provides numerical results and
their detailed analysis. The fifth section includes a discussion of the findings, and finally,
the conclusion section summarizes the key insights and offers suggestions for future
research.

INITIAL SOLUTION STRATEGIES
USApHCRP involves determining hubs, assigning non-hub nodes to hubs, and creating
the associated routing structure. The mathematical model for this problem was initially
presented in the literature by Geçer (2020) in three formulations: two-index vehicle-flow,
three-index vehicle-flow, and finally, the four-index multi-commodity flow-based
formulation. For the mathematical model of the problem, references can be made to Geçer
(2020) and Kartal, Krishnamoorthy & Ernst (2019).

Before outlining the initial solution structures, a corresponding illustration of a hub
location and routing example is presented in Fig. 1.

Figure 1 illustrates a hub location and routing structure. In this example, nodes 1 and 2
serve as hub nodes. Each route starts and ends at its respective hub node: the first hub
follows the route 1 → 5 → 7 → 6 → 1, while the second hub follows the route 2 → 8 → 4 → 3 →
2. As observed, the routes involve multiple stopovers, with the primary objective being the
minimization of the maximum distance or cost between any origin-destination pair. To
accurately compute this maximum value, the model differentiates between collection and
distribution routes for each vehicle. In many real-world scenarios, vehicles often return
along the same path they took outbound, albeit in reverse order; thus, the outbound
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journey is considered the collection route, while the return journey is treated as the
distribution route.

Random initial solution generation strategy
In the random initial solution strategy, hubs are chosen randomly and the assignments of
non-hub nodes to the hubs are randomly performed to create routes.

Greedy initial solution generation strategy
In this initial solution strategy, the location of the hubs and non-hub assignments to the
hubs are carried out greedily. When selecting hubs, the distances from a node to all other
nodes are calculated, and we select the required number of hubs by starting from the
smallest. After selecting hub nodes, the allocation of nodes to the nearest hubs is
performed for each vehicle, ensuring that each vehicle has a minimum of 1 and a
maximum of n� ðp � ðnv þ 1ÞÞ þ 1 nodes. Finally, the routing process is accomplished
by sequentially combining routes assigned to hubs.

Random-greedy initial solution generation strategy
This initial solution strategy locates the hubs randomly, while the assignments of non-hub
nodes to hubs are carried out greedily by allocating non-hub nodes to their nearest hubs.
The routing process is completed similarly to the previous section by sequentially
combining routes assigned to hubs.

Mat-heuristic based initial solution generation strategy
This section presents a matheuristic algorithm developed to solve the single allocation
p-hub center and routing problem, separately. Accordingly, the locations of hubs are
determined by solving the modified radius based single allocation p-hub center problem.
Then, depending on the number of vehicles assigned to each hub, either a modified
min-max mTSP (if there are multiple vehicles assigned to each hub) or TSP formulations
are utilized (if there is only one vehicle assigned per hub). In the subsequent section,
modified single allocation p-hub center problem and min-max mTSP formulations are

Figure 1 Representation of a hub location and routing solution.
Full-size DOI: 10.7717/peerj-cs.2840/fig-1
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introduced. We note here that although we use the following algorithm to construct an
initial solution strategy, this approach could also be used as an entire solution finding
strategy, since we could obtain a complete solution for the problem.

Modified p-hub center problem formulation
In this study, to determine the hub locations, the radius-based p-hub center model
proposed by Ernst et al. (2009) in the literature was used.

In the original version of the p-hub center problem, a node can be a hub, and no other
non-hub nodes can be assigned to this hub, which means a cluster can be included in just
one hub node. However, in our settings, at least a non-hub node has to be assigned to each
vehicle. Therefore, the p-hub center problem’s mathematical programming model
developed by Elatar, Abouelmehdi & Riffi (2023) was modified by transforming it into a
form where for each hub, at least the number of nodes assigned to that hub as vehicles will
be assigned as nodes. Decision variables and parameters are used for this mathematical
model as follows:

Decision variables:

Xik ¼ f1; if node i is allocated to hub k 0; otherwise

Xkk ¼ f1; if node k is a hub 0; otherwise

rk ¼ radius of hub k

Parameters:

a: the discount coefficient,

ni: the number of vehicles which are assigned to hub i

dij: distance between node i e N and node j e N

We provide the modified mathematical modelling formulation:

Min Z; (1)

Z � rk þ rm þ a � dkm; 8 i <m 2 N;m 2 N (2)
X

k2N
xkk ¼ p; (3)

X

k2N
xik ¼ 1; 8 i 2 N (4)

xij � xii; 8 i 2 N; j 2 N (5)

rk � dik � xik; 8 i; k 2 N (6)
X

i2N
xij � ni þ 1ð Þ � xjj; 8 j 2 N (7)

xij 2 0; 1f g; (8)

Z; rk 2 0; 1ð Þ: (9)
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The objective is represented by a free variable Z (Eq. (1)). The objective function aims to
minimize the maximum distance between any pair of nodes, taking into account the
associated hub radii. Constraint Eq. (2) ensures that the objective is no less than the travel
distance between any pair of nodes allocated to hubs k and m. This is achieved by using rk
and rm, which represent the distance to the farthest node allocated to hubs k and m,
respectively. Constraint Eq. (3) ensures to locate of exactly p hubs, while Constraint Eq. (4)
guarantees that each node is allocated to exactly one hub. Constraint Eq. (5) guarantees
that if a node is allocated to another node, then the latter must be chosen as a hub.
Constraint Eq. (6) calculates the radius of hub k. With Constraint Eq. (7), we ensure that a
sufficient number of non-hub nodes are assigned to each hub.

As mentioned above, with this mathematical model, the non-hub nodes assigned to a
hub and the hub locations are determined. Subsequently, a complete solution for the
problem is obtained by transforming the m(TSP) model into a min-max objective function
and solving it for observing the vehicle routes.

Min-Max multiple travelling salesman problem formulation

In this section, we introduce a min-max mTSP. This mathematical model is developed by
excluding the part of Geçer’s (2020) mathematical model that calculates the distance
between hubs. By using the original version of Geçer (2020) mathematical model, the
objective function can also be calculated by the model itself. However, it has been observed
that this model can solve instances with up to 25 nodes in a reasonable time (Geçer, 2020).
The solution of larger instances with more nodes cannot be solved in a reasonable time.
Therefore, based on the decomposition approach, the mathematical model from Geçer’s
(2020) study has been updated and used in this section for the case of a single hub with
multiple vehicles assigned to each hub. This update involves minimizing the maximum
distance between two nodes assigned to the same hub when multiple vehicles are assigned
to the hub.

We note here that if there is only one vehicle assigned to each hub, then this problem
can be solved via classical TSP mathematical model. Therefore, we used two-index vehicle
flow TSP mathematical model if there is only one vehicle assigned to each hub.

The additional parameters and decision variables are as follows (Box 1):

Box 1

Sets Indices

NH: set of non-hub nodes k: hub nodes

H: set of hub nodes i, j, l: nodes that include hub nodes and non-hub

N: set of nodes nodes

V: set of vehicles v,w: vehicles
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Parameters

hi: f1; node i is a hub node 0; otherwise:

L: the maximum number of nodes a vehicle may visit.

Decision Variables
cvvkij ¼

f1; if vehicle v e V begins its trip f rom hub node k e H and travels to node i e N and
node j e N in that order collectionð Þ 0; otherwise:
dww

ijk =

f1; if vehicle w e V completes its route at hub node k e H by visiting node i e N and
node j e N in that order distributionð Þ 0; otherwise:
xvij = f1; if vehicle v e V traverses arc i; jð Þ 0; otherwise

ziv = f1; if hub node i e H is assigned to vehicle v e V 0; otherwise:

mckv = maximum collection distance of vehicle v e V that starts its route from hub
node k e H.

mdkw = maximum distribution distance of vehicle w e V that ends its route at hub node
k e H:

ui = auxiliary variable which defines the sequence number in which city i e N visited.
β = the maximum distance between any node pair.
The mathematical programming formulation of our problem is shown below:

Min b (10)
X

i e H

X
j 6¼i e N

xvij ¼ 1 8 v 2 V ; (11)

X
j6¼i

xvij �
X

j6¼i
xvji ¼ 0 8 i 2 N; v 2 V ; (12)

X
j6¼i

X
v
xvij ¼ ni 8 i 2 H; (13)

X
j6¼i

X
v
xvji ¼ ni 8 i 2 H; (14)

X
j6¼i

X
v
xvji ¼ 1 8 i 2 NH; (15)

X
j6¼i

X
v
xvij ¼ 1 8 i 2 NH; (16)

ui � uj þ L �
X

v
xvij þ ðL� 2Þ �

X
v
xvji � L� 1 8 i 2 NH; j 2 NH: i 6¼ j; (17)

X
k2H cvvkij ¼ xvij 8 i 2 N; j 2 NH; v 2 V : j 6¼ i; (18)

cvvkij � xvij 8 i 2 N; j 2 NH; k 2 H; v 2 V ; (19)

mckv ¼
X

i2N
X

j2NH
ðdij � cvvkijÞ 8 k 2 H; v 2 V; (20)
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X
k2H dww

ijk ¼ xwij 8 i 2 NH; j 2 N;w 2 V: j 6¼ i; (21)

dww
ijk � xwij 8 i 2 NH; j 2 N; k 2 H;w 2 V ; (22)

mdiw ¼
X

i2NH

X
j2N ðdij � dww

ijkÞ 8 i 2 H;w 2 V ; (23)

b � ðmciv þmdiwÞ 8 i 2 H; v 2 V;w 2 V; (24)

b�
X

i2N
X

j 6¼i2Nðdij � x
v
ijÞ � dkl � xvkl �M � ð1� xvklÞ 8 k 2 N; l 2 N; v 2 V: (25)

xvij; dw
w
ijk; cv

v
kij 2 0; 1f g (26)

ui;mckv;mdiw; b � 0 (27)

The objective function minimizes the maximum distance between any node i and node j
Eq. (10). Two different constraints form the objective function (Constraint Eq. (15) and
Constraint Eq. (16)). The collection route is formed by picking up the parcels from all
stopover nodes starting from the first non-hub node on the route through to the hub node,
and the distribution route is formed by dropping off the parcels by visiting all non-hub
nodes starting from the hub node through the last non-hub node along the route. Note
here that unlike Geçer (2020), we do not take into consideration the distances between
hubs.

The main aim of the objective function is to minimize the longest distance between any
pair of nodes, denoted as i and j Eq. (10). This objective function is derived from the
combination of two constraints, namely Constraint Eq. (24) and Constraint Eq. (25). The
creation of the collection route involves systematically picking up parcels from all
intermediate nodes, starting at the initial non-hub node along the route and continuing up
to the hub node. Conversely, the distribution route is formed by delivering parcels, which
includes visiting all non-hub nodes. This process starts at the hub node and concludes at
the final non-hub node along the vehicle route. Finally, the maximum of distance can be
calculated by analyzing a single route where node i directly succeeds node j within the
scope of a single hub (Constraint Eq. (25)).

Each vehicle is dedicated to a specific hub node (Constraint Eq. (11)). Constraint
Eq. (12) enforces a degree restriction that guarantees an equivalent count of vehicles
arriving and departing from each node i. Constraints Eqs. (13) and (14) guarantee that the
count of outgoing links from a hub node i corresponds to the count of vehicles allocated to
it. However, in the case where node i is a non-hub node, Constraints Eqs. (15), (16) ensure
that a vehicle can make only one visit to each i� j non-hub link. Constraint Eq. (17) is the
Miller, Tucker & Zemlin (1960), (Kartal & Ernst, 2015) sub-tour breaking constraint that
prevents sub-tours.

The collection distances (costs) for each vehicle route are calculated via Constraints
Eqs. (18)–(20). Constraints Eqs. (18)–(20) calculate the collection distances for each
vehicle. Constraint Eq. (18) ensures that the values of cvvkij variables progress from the hub
node k to the final non-hub node j along the route, incorporating any intermediate node i.
The values of cvvkij variables begin from the hub node k and extend to the final non-hub
node j. We obtain the correct values cvvkij variables for any solution of xvij variables if vehicle
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v visits node i and node j in that order via Constraint Eq. (19). Through Constraint Eq.
(20), the maximum collection distance using the mckv variables along the vehicle route v
for hub k is calculated. This distance represents the cumulative sum of all distances
between the initial non-hub node and the hub node along the collection route of a given
vehicle.

The distribution distances (costs) are calculated by Constraints Eqs. (21)–(23).
Constraint Eq. (21) ensures that the dww

ijk variables are assigned a value of 1 only when
vehicle v completes its route at hub node k. Additionally, the dww

ijk variables take on values
starting from the initial non-hub node i when the final node k serves as a hub node.
Constraint Eq. (22) ensures that the dww

ijk variables attain accurate values based on the
solutions of the xwij variables, when vehicle w sequentially visits node i and then node j.
Constraint Eq. (23) ensures that the dww

ijk variables attain accurate values based on the
solutions of the xwij variables, when vehicle w sequentially visits node i and then node j. We
determine mdkw by aggregating the distances from the hub node to the most distant node
along a vehicle’s distribution route. Constraint Eq. (26) enforces the decision variables to
take binary values. Lastly, Constraint Eq. (27) imposes non-negativity constraints on the
variables.

SIMULATED ANNEALING
Simulated annealing (SA) a stochastic search method originally proposed by Kirkpatrick,
Gelatt & Vecchi (1983), is employed to address optimization problems. It has been
successfully applied to numerous large-scale real-world problems including TSP. Due to its
ease of implementation, convergence characteristics, and the strategy it employs to avoid
getting trapped in local optima. SA has become a widely used method for solving
optimization problems in recent years. The name “Simulated Annealing” is derived from
its analogy to the annealing process in solid materials. SA operates as a gradual refinement
process. This progression involves the consideration not only of improved solutions but
also the acceptance of poor solutions with a certain likelihood. This strategy leads the
algorithm to escape from being trapped in local optima. This process constitutes one of the
fundamental characteristics of the SA method. The acceptance probability is expressed as

eð�DE=TÞ based on a conceptual temperature. Here, ΔE represents the change in objective
functions between the current solution and the generated neighboring solution. In this
context, T represents the control parameter, which corresponds to the temperature. For
small values of DE, the likelihood of accepting a poor solution is higher than for larger
values. Additionally, at higher temperature values, most new neighborhood solutions will
be accepted. As the temperature approaches 0, the acceptance probability of new
neighborhood solutions will decrease. Hence, in the SA algorithm, the initial temperature
is typically set to a relatively high value to escape local optima.
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Simulated annealing neighborhood moves
The hub location and routing problem representation for the SA is structured as follows: In
this solution representation, we selected the problem structure from Fig. 1 for clarity and
ease of understanding for the reader. Accordingly, the bold numbers 1 and 2 represent the
hubs, while the nodes adjacent to the hubs are the non-hub nodes included in the route,
listed in the order they are visited is shown in Fig. 2.

As seen in Fig. 2, the routes start and end at hub nodes 1 and 2. In the route of hub 1, the
nodes 6, 7, and 5 are visited sequentially, departing from the hub and returning to it (1 → 6
→ 7 → 5 → 1). Similarly, in the route of hub 2, the nodes 3, 4, and 8 are visited in order,
before returning to the hub node 2. In Table 2, we provide all SA neighborhood moves,
demonstrating the independent application of each to the initial state to derive the
perturbed solution/state for better clarity.

Table 2 summarizes the solution representation for the initial state (the first row), while
the subsequent rows present the perturbed solution representations obtained after applying
each move type independently to the initial state. The bold values in Table 2 indicate the
hub locations. Italicized nodes indicate the ones that have undergone positional changes due
to the corresponding neighborhood move operations. In the following, we explain how the
neighborhood moves operate and provide examples for each.

1. Inter-node-insertion: A randomly selected node from a randomly selected route is
placed next to another randomly chosen city within the same route. In routes containing
only one node, both the node to be moved and the node where the operation will take place
are the same, resulting in no change. Therefore, intra-insertion cannot be performed
within routes containing only one non-hub node. An example of an insertion within the

Figure 2 A solution structure for SA. Full-size DOI: 10.7717/peerj-cs.2840/fig-2

Table 2 Example of each move applied to the initial state independently to obtain the perturbated
solution/state.

No State/Move type Route 1 Route 2

– Initial state/solution 1-6-7-5-9-1; 2-3-4-8-2;

1. Inter-node-insertion 1-7-5-6-9-1; 2-3-4-8-2;

2. Intra-node-insertion 1-6-5-9-1; 2-3-4-7-8-2;

3. Inter-node-swap 1-9-7-5-6-1; 2-3-4-8-2;

4. Intra-node-swap 1-6-7-8-9-1; 2-3-4-5-2;

5. Inter-hub-swap 7-6-1-5-9-7; 2-3-4-8-2;

6. Inter-edge-opt 1-5-9-6-7-1; 2-3-4-8-2;

7. Intra-edge-opt 1-6-4-8-9-1; 2-3-7-5-2;

Note:
The bold values in Table 2 indicate the hub locations. Italicized nodes indicate the ones that have undergone positional
changes due to the corresponding neighborhood move operations.
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same route is provided in the first row of Table 2, where node 6 has been inserted after
node 5 within the same route (Route 1).

2. Intra-node-insertion: A randomly chosen node from one route is placed adjacent to a
randomly selected node from another route (these two different routes may belong to the
same hub), both of which are chosen randomly. If a non-hub node is chosen where there is
only one non-hub node for relocation, the insertion is prohibited, it would result in only a
hub node remaining in the route. An example of inter-route insertion is shown in the
second row of Table 2, where node 7 has been relocated and positioned after the randomly
chosen node 4 in a different vehicle’s route.

3. Inter-node-swap: A route containing at least two cities is randomly selected, and two
cities are then selected randomly from this route to swap their positions. The third row of
Table 2. illustrates an example of a swap within the same route, where node 9 and node 6
have exchanged positions in Route 1.

4. Intra-node-swap: First, two routes are randomly selected. Then, one city is randomly
chosen from each of these routes, and their positions are swapped. The fourth row of
Table 2, presents an example of inter-route swap, where node 5 from the Route 1 and node
8 from the Route 2.

5. Inter-hub-swap: A node is randomly chosen from within a randomly selected route,
and this node is located as the new hub, while the node that was previously the hub is
placed at the location where the new hub is chosen. An example of the inter-hub swap is
provided in fifth row of Table 2, where the hub node (node 1) has swapped positions with
node 7 within its route.

6. Inter-edge-opt: Exchange the positions of two consecutive non-hub nodes within a
single route. An example is provided in sixth row of Table 2, where two edges from hub 2’s
route have been swapped—specifically, edges 5–9 and 6–7 have been exchanged.

7. Intra-edge-opt: Swap the positions of two consecutive non-hub nodes (edges)
between two routes that are randomly selected. An example of intra-edge-opt is provided
in seventh row of Table 2, where the 4–8 edge from Route 2 has been swapped with the 7–5
edge from Route 1.

The steps of SA
SA involves several parameters, including the initial temperature, cooling rate, acceptance
criterion, and termination condition. The initial solution in this study is constructed by
selecting one of the strategies presented in the previous section. The cooling process should
be carried out slowly to obtain high-quality solutions, for which a cooling rate (θ) is
utilized. When transitioning from one temperature to another, the new temperature is
determined by multiplying the previous temperature by the cooling rate (T = θ � T − 1).
Parameter selection is a crucial aspect for all heuristic optimization problems. A time limit
is used as the stopping criterion for the algorithm. As the temperature value decreases, a
certain number of new solutions are generated at each temperature to facilitate the search
process.
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We provide the steps for the SA that we used in this study:
Step 1: Input the parameters; T (initial temperature), θ (cooling rate), CS (number of

solutions generated at each temperature), time_limit (maximum time limit).
Step 2: Generate an initial solution by choosing one of the four strategies (random,

greedy, random-greedy and mathematical programming). Calculate f (cost of the initial
solution).

Step 3: Sbest (best solution); S (current solution); S′ (neighbor solution); i_n (counter for
solutions generated at each temperature) = 1, and fbest (best solution cost); (current
solution cost) = f; iter_n (iteration count); CS (iteration number at each temperature); time
(elapsed time)=0;

Step 4: Generate a neighboring solution (S′) from the current solution as defined above.
Calculate the cost of the neighboring solution (f′).

Step 5: Calculate Δ = f′ – f.
Step 6: If (Δ < 0), proceed to step 8; otherwise, go to step 7.
Step 7: Generate a uniformly distributed random number (r). If r < eð�D=TÞ, move to

step 8; otherwise, proceed to step 9.
Step 8: Set S = S′ and f = f′.
Step 9: If f < fbest, then set Sbest = S and fbest = f; otherwise, proceed to step 10.
Step 10: If i_n < CS, i_n = i_n + 1 and go back to step 4, otherwise proceed to step 11.
Step 11: Set iter_n = iter_n + 1, T + 1 = h � T and i_n = 1.
Step 12: If time < time_limit, go to step 4; otherwise, proceed to step 13.
Step 13: Terminate the algorithm and write the results to a file.

COMPUTATIONAL RESULTS
Tan & Kara (2007) introduced Turkish Cargo Delivery (Turkiye network) into the
literature. There are 81 demand centers in this dataset, flow amongst these demand
centers, and distances in this network. The Turkish network dataset is also available
through the OR library (Beasley, 1990).

We employed SA with four different initial solution strategies independently to address
the USApHCRP, and Gurobi Optimizer version 9.0.2 was utilized to run mathematical
models. We conducted the experimental tests on a server operating with the UBUNTU
operating system, equipped with a 3.5 GHz Intel Xeon E5-2643 v2 processor and a total of
128.863 GB RAM, with 30 GB allocated to the heap. The SA algorithm was implemented in
Java, while the Gurobi components were implemented in Python. The code is available at
https://github.com/AbdKa/pHMLRP.

Parameters
The initial temperature T value which is set to 1,000,000 and the temperature is decreased
by θ = 0.99; that is better than 0.9 and 0.95 after conducting a comparison on a decent
sample. The maximum time for an instance is considered as the primary stopping
condition for the algorithm. The run times for each strategy for 10 node instances are 10 s,
for 15 nodes 30 s, for 25 nodes 60 s, for 50 nodes 270 s and for 81 nodes 1,000 s,
respectively. The number of solutions that we generated at each iteration was n: number of
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nodes (CS). We note here that the run time of each problem instance is independent of the
initial solution time.

Results
The numerical results were initially obtained using the GUROBI 9.0.2 solver. First,
instances with 10 and 15 nodes were run. In Table 3, under the Gurobi column, the
objective function, lower bound, gap between lower bound and objective function, and the
CPU time spent for obtaining solutions by Gurobi are provided. It is important to mention
that for the USApHCRP, we employed the two-index vehicle-flow formulation as outlined
in the study by Kartal, Krishnamoorthy & Ernst (2019). Under the column of the random
initial solution strategy (RND), the gap to the lower bound recorded by Gurobi and the
solution time which also includes the initial solution generation time, are presented. These
values are subsequently given for the Greedy initial solution strategy (GRD),
Random-Greedy (RND_GRD), and finally, for the mathematical programming based
matheuristic algorithm.

We see in Table 3 that Gurobi was able to find optimal solutions for the datasets with 10
nodes. However, for the SA algorithm run with four different initial solution strategies,
these values only slightly exceeded 10 s, and all solutions were able to reach optimal values.
Notably, despite the matheuristic algorithm taking the longest time, the solution time for
TR10.2.1 was 10.09 s. Even though 5 h were allocated for the 15.2.1 and 15.2.2 instances,
they could not reach the optimal solution. For the 15.2.1 instance, both Gurobi and all
initial strategies yielded the same result. Conversely, for the 15.2.2 instance, SA with four
different initial strategies managed to achieve a slightly improved results compared to
Gurobi. Moreover, due to Gurobi’s inability to achieve optimal solutions within the
allotted 5-h time frame, the decision was made not to run the other problem instances.

In the numerical results, the initial solution generation strategies were individually
examined, and each problem instance was run 10 times. The initial solution strategy is the
method used to find/construct a feasible whole solution. Tables 4–6 present the
experimental results of/for different strategies in which an initial solution is constructed in
a random, greed, hybrid of the previous two respectively. The initial solution strategy based
on mathematical programming formulation (matheuristic) is provided in Table 7. In the
first row of each table, the problem type is denoted as TR.n.p.v, where n signifies the

Table 3 Results for Gurobi and SA with four initial solution strategies.

Gurobi Simulated annealing

RND GRD RND_GRD Matheuristic

Problem Obj Lower bound Gap (%) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s)

TR.10.2.1 3,597 3,597 0.00 124.05 0.00 10.0004 0.00 10.0023 0.00 10.0002 0.00 10.09

TR.10.2.2 2,331 2,331 0.00 92.43 0.00 10.0001 0.00 10.0003 0.00 10.0002 0.00 10.08

TR.10.3.1 2,651 2,651 0.00 75.73 0.00 10.0001 0.00 10.0003 0.00 10.0002 0.00 10.08

TR.15.2.1 4,128 2,386 42.19 7.200 42.19 30.0001 42.19 30.0003 42.19 30.0011 42.19 30.23

TR.15.2.2 2,835 1,652 41.72 7,200 39.4 30.0011 39.4 30.0029 39.4 30.0011 39.4 30.32
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Table 5 Results on greedy initial solution strategy with SA.

Problem Least cost Avg. init. obj. gap Avg. gap Avg. iteration Co of. variation Init. sol. CPU (s)

TR.10.2.1 3,597 64.55 0.87 21,101 0.02 0.00230

TR.10.2.2 2,331 87.69 0.00 20,310 0.00 0.00030

TR.10.3.1 2,651 72.54 0.00 16,769 0.00 0.00030

TR.15.2.1 4,128 87.79 1.04 43,107 0.02 0.00030

TR.15.2.2 2,769 137.38 0.39 56,007 0.01 0.00290

TR.25.2.1 5,247 170.67 2.41 145,965 0.02 0.00050

TR.25.2.5 2,136 223.27 0.69 253,220 0.01 0.00060

TR.25.5.1 2,721 226.39 1.77 200,990 0.01 0.00050

TR.25.5.2 2,031 168.05 1.45 341,019 0.01 0.00070

TR.50.2.1 7,797 256.59 2.92 1,411,573 0.02 0.00080

TR.50.2.5 2,597 643.09 1.88 6,760,667 0.01 0.00110

TR.50.5.1 3,709 456.51 3.78 1,599,012 0.03 0.00070

TR.50.5.2 2,569 576.96 1.42 3,873,652 0.02 0.00090

TR.81.2.1 9,823 310.99 4.29 2,632,723 0.02 0.00100

TR.81.2.5 2,906 1,139.81 2.80 17,689,600 0.02 0.00160

TR.81.5.1 4,530 702.49 2.76 6,009,446 0.02 0.00250

TR.81.5.2 2,896 1,091.02 3.23 11,885,840 0.02 0.00260

Average 3,790.47 377.40 1.86 3,115,353 0.0153 0.00115

Table 4 Results on random initial solution strategy with SA. The footnotes indicate the optimal objective function values.

Problem Least cost Avg. init. obj. gap Avg. gap Avg. iteration Co of. variation Init. sol. CPU (s)

TR.10.2.1 3,597* 108.23 0.44 18,866 0.01 0.00036

TR.10.2.2 2,331* 163.23 0.00 19,039 0.00 0.00008

TR.10.3.1 2,651* 121.99 0.00 16,829 0.00 0.00006

TR.15.2.1 4,128 169.28 1.59 49,867 0.02 0.00008

TR.15.2.2 2,769 226.25 0.26 93,189 0.01 0.00109

TR.25.2.1 5,247 269.05 1.28 173,390 0.02 0.00008

TR.25.2.5 2,136 417.93 0.25 287,946 0.01 0.00017

TR.25.5.1 2,710 374.58 2.62 198,719 0.02 0.00005

TR.25.5.2 2,026 366.49 1.38 318,794 0.01 0.00007

TR.50.2.1 7,861 400.39 2.82 974,202 0.02 0.00008

TR.50.2.5 2,609 962.36 1.69 7,026,864 0.02 0.00015

TR.50.5.1 3,737 681.86 1.48 1,581,300 0.02 0.00008

TR.50.5.2 2,536 844.64 2.16 1,947,525 0.01 0.00011

TR.81.2.1 9,980 507.36 2.63 2,822,916 0.02 0.00013

TR.81.2.5 2,952 1,535.91 2.42 15,564,091 0.01 0.00028

TR.81.5.1 4,514 975.43 2.55 6,725,910 0.02 0.00015

TR.81.5.2 2,895 1,527.63 2.22 17,333,433 0.02 0.00027

Average 3,804.65 567.80 1.52 3,244,287 0.014 0.00019
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Table 6 Results on random-greedy initial solution strategy with SA.

Problem Least cost Avg. init. obj. gap Avg. gap Avg. iteration Co of. variation Init. sol. CPU (s)

TR.10.2.1 3,597 57.24 0.44 19,626 0.01 0.0002

TR.10.2.2 2,331 88.59 0.00 19,286 0.00 0.0002

TR.10.3.1 2,651 79.25 0.00 19,889 0.00 0.0002

TR.15.2.1 4,128 87.79 2.99 44,082 0.02 0.0011

TR.15.2.2 2,769 141.96 0.92 57,351 0.02 0.0011

TR.25.2.1 5,247 126.22 0.86 162,182 0.01 0.0002

TR.25.2.5 2,136 260.53 1.15 384,528 0.01 0.0004

TR.25.5.1 2,710 199.96 2.00 233,931 0.01 0.0004

TR.25.5.2 2,042 171.11 1.12 313,575 0.01 0.0005

TR.50.2.1 7,919 175.81 2.37 701,317 0.02 0.0003

TR.50.2.5 2,571 483.08 2.22 5,385,418 0.01 0.0015

TR.50.5.1 3,696 326.14 2.58 1,498,131 0.02 0.0007

TR.50.5.2 2,547 445.19 1.83 3,307,866 0.02 0.0008

TR.81.2.1 9,922 263.16 3.68 3,759,052 0.02 0.0003

TR.81.2.5 2,946 909.78 1.76 37,548,078 0.01 0.0011

TR.81.5.1 4,495 558.62 2.71 8,360,778 0.02 0.0011

TR.81.5.2 2,913 756.40 2.14 20,706,028 0.01 0.0015

Average 3,801.18 301.81 1.69 4,854,183 0.0129 0.0007

Table 7 Results on matheuristic algorithm.

Problem Least cost Avg. init. obj. gap Avg. gap Avg. iteration Co of. variation Init. sol. CPU (s)

TR.10.2.1 3,597 47.71 0.00 20,786 0.00 0.09

TR.10.2.2 2,331 71.13 0.00 20,310 0.00 0.08

TR.10.3.1 2,651 51.83 0.00 16,769 0.00 0.08

TR.15.2.1 4,128 34.35 0.95 46,585 0.01 0.23

TR.15.2.2 2,769 50.23 0.00 51,277 0.00 0.32

TR.25.2.1 5,266 28.96 2.99 136,261 0.02 0.75

TR.25.2.5 2,136 23.36 0.60 333,694 0.01 45,268

TR.25.5.1 2,721 31.20 1.86 217,771 0.01 25,934

TR.25.5.2 2,031 54.26 0.66 356,891 0.01 45,263

TR.50.2.1 7,912 16.29 2.57 2,762,613 0.02 32,021

TR.50.2.5 2,572 30.87 3.24 2,992,098 0.02 14,411.21

TR.50.5.1 3,696 37.61 3.53 2,027,856 0.03 51.11

TR.50.5.2 2,521 64.22 2.53 2,319,834 0.02 176.11

TR.81.2.1 9,846 14.91 5.60 3,774,488 0.03 40.92

TR.81.2.5 2,905 33.29 3.55 21,561,828 0.02 14,436.73

TR.81.5.1 4,502 39.94 2.42 12,002,209 0.01 5,235.67

TR.81.5.2 2,853 103.33 4.42 19,103,802 0.02 3,127.45

Average 3,790.41 43.15 2.05 3,984,887 0.0135 10,939.22
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number of nodes, p represents the number of hubs, and v indicates the number of vehicles
allocated to each hub. The second column of each table presents the least cost objective
function value obtained by the respective initial solution strategy. The third column
records the average gap between the 10 generated initial solutions and the best solution
yielded by that particular initial solution strategy. The fourth column of the tables gives the
average gap; average iteration numbers, coefficient of variance and lastly, the average time
spent for generation the initial solutions in fifth, sixth and seventh columns, respectively.
The footnotes in Table 4 indicate the optimal objective function values. They are not
marked in the other tables to keep the representation simple.

When we examine Table 4, the average of the best solutions reached by the algorithm,
wherein the initial solutions are generated randomly, is 3,804.65; however, this value is
4,036.35 in Kartal, Krishnamoorthy & Ernst (2019) study. Indeed, we believe that this
disparity highlights the efficacy of the SA algorithm. In Table 4, we observe that the
algorithm consistently attains the optimal objective function values across all 10 runs for
the TR10.2.2 and TR10.3.1 instances. The largest average gap value of the SA algorithm,
initiated with random solution strategy, remains at a deviation of 2.82% from the best
objective function value (TR50.2.1). Subsequently, the second maximum average gap value
emerges in TR81.2.1 (2.63%). As can be seen in Table 4, the average iteration counts
increase proportionally to the complexity of the problem. Among the randomly generated
initial solutions, the most substantial differences are observed in the TR81.2.5 and
TR81.5.2 instances, respectively. This can be attributed to the observation that as the
number of nodes and routes increases, random solutions tend to deviate significantly from
the optimal solution values. However, for the problem instance TR10.2.1, featuring 10
nodes and two routes, the initial solution’s gap to the optimal solution is the closest on
average, at 108.23%. The overall average gap of the initial objective function values to the
best solutions is around 567%. This represents the highest overall gap value among the
provided initial solutions in this research.

We can observe from Table 5 that the average of the best results achieved by the greedy
initial solution strategy with SA is 3,790.47. However, SA with random initial solution
strategy corresponds to 3,804.65, as indicated in Table 4. Analogous to the randomly
constructed initial solution strategy, in the instances where the initial solution is formed
greedily, the largest gap is 1,139.81% in TR81.2.5 instance in terms of first solution. We
think that this huge gap stems from locating of hubs in distant nodes from the optimal hub
locations. Analyzing final solutions’, the average gaps, we obtain that the highest gap is
found in the TR81.2.1 instance (4.29%). Here, we believe that where we locate the hubs
significantly influences the solution due to the there is only single route in per hub.
Nevertheless, overall average gap remains at 1.86%. Considering the robustness of the
algorithm, we anticipate that this value is quite reasonable. We note here that since there is
no randomness in generating the initial solutions by using greedy strategy, we report the
initial objective functions gaps considering the best-found solutions by this strategy
(Table 5). Lastly, when we examine the CPU times of the initial solutions, we observe that
the runtime of this deterministic algorithm is quite short.
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When examining the hybrid constructed random-greedy initial solution strategy
(Table 6), we obtain that the average of the best solution values (3,801.18) falls within the
range between the averages of solutions initiated with random solutions (3,804.65) and
those with greedy solutions (3,790.47), respectively. We see that this strategy outperforms
the previous two initial solution strategies (random and greedy), with overall average gap
of approximately 301.81% in terms of the first (initial) solutions. Upon investigating the
average gaps, in line with the previous tables (Tables 4 and 5), the highest gap is observed
in TR81.2.1 (3.68%). Furthermore, the algorithm’s average run time of generating initial
solutions takes approximately 0.0007 s.

In Table 7, we present the results of the matheuristic algorithm, which employs a
strategy relying solely on mathematical models as the initial solution generating approach,
constituting the method undertaken in this part. It’s noteworthy that, the data in the
second column is deterministic. TR10.2.1 and TR15.2.2 consistently found the optimal
solution in all 10 runs (Table 7). This might be because the success of the hub changing
operator; it could find the optimal locations of the hubs in each run. We note here that if
the algorithm cannot place the hubs into the exact nodes, then achieving the optimal
solution is impossible. When we analyzed the overall average gap of this strategy (2.05%), a
slight increase is noticeable in comparison to other strategies. The reason for this situation
can be explained that the random neighborhood changes of the heuristic algorithm, which
starts from a very good place as a starting point, may not cause quite large jumps on the
solution to get rid of stucking in local optima.

The process of generating mathematical programming based initial solutions requires a
substantial amount of computational time, particularly if the problem instances have a
large number of nodes n, (denoted as n). This is due to the time constraints we put on the
p-hub center model (2 h in total), and an additional 2 h dedicated to finding each route for
each hub through mTSP or TSP formulations. To illustrate, instances like TR.50.2.5 and
TR.81.2.5 each extend beyond the 4-h threshold (two vehicles � 2 h). Consequently, the
optimization of the two hubs’ routes utilizing mTSP, where the number of vehicles per hub
(v) exceeds 1, hits the predetermined time limit in both scenarios, with the remaining CPU
time allocated to p-hub center optimization. However, when considering the practical
significance of the problem in real-world scenarios, it is believed that the spent time for the
initial solution generation and the algorithm are tolerable, especially when taking into
account the cost reduction achieved.

We also analyze the coefficient of variation values as presented in Tables 4 to 7. The
coefficient of variation (CoV) is a statistical measure used to evaluate the relative
dispersion of a dataset by expressing the standard deviation as a proportion of the mean,
simply calculated by dividing the standard deviation by the mean. It provides insights into
the stability and consistency of an algorithm’s performance across multiple runs. In this
study, CoV values have been analyzed for four different initialization strategies within SA.
Table 4, which reports the random initial solution strategy, presents the lowest CoV values,
ranging from 0.00 to 0.02, with an average of 0.014. This suggests that although random
initialization introduces some level of uncertainty, the SA method effectively stabilizes the
final solutions, leading to minimal variability across different runs. Table 5, in which we
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provide the results for the greedy initial solution strategy, shows a slight increase in
variability, with CoV values ranging between 0.00 and 0.03 and an average of 0.0153.
While greedy approach results in obtaining better initial solutions, it also leads to slightly
higher variation in the final outcomes, possibly due to premature convergence to locally
optimal solutions. The random-greedy hybrid approach, analyzed in Table 6, aims to strike
a balance between randomness and greediness. The results indicate that this method
achieves an average CoV of 0.0129, which is lower than the random or greedy strategies.
This suggests that incorporating elements of both randomness and greediness can improve
solution stability while still benefiting from the strengths of each approach. Finally, in
Table 7, we provide the results for the matheuristic algorithm, exhibits CoV values in a
similar range (0.00 to 0.03) but shows slightly higher variation in larger problem instances.
The average CoV of 0.0135 suggests that while the matheuristic approach maintains strong
consistency, starting from good initial solutions can sometimes cause the algorithm to get
trapped in local optima, leading to slightly increased variability in some cases.

Overall, the results confirm that all four initialization strategies exhibit low CoV values,
demonstrating the stability and reliability of the SA algorithm. While random initialization

Table 8 A comparison of results. All values shown in bold under the “Least cost” columns represent the minimum objective function values
obtained up to that point for the corresponding problem instance. Please note that the values reported for TR.10.2.1, TR.10.2.2, and TR.10.3.1.
represent optimal solutions.

Problem Kartal,
Krishnamoorthy &
Ernst (2019) Least
cost

Imp.
(%)

Least
cost

Initial solution strategies

RND GRD RND-GRD Matheuristic

Avg.
init.
obj. F.

Least
cost

Min
gap
(%)

Avg.
init.
obj. F.

Least
cost

Min
gap
(%)

Avg.
init.
obj. F.

Least
cost

Min
gap
(%)

Init.
obj. F.

Least
cost

Min
gap
(%)

TR.10.2.1 3,597 0.0000 3,597 7,490 3,597 0.0000 5,919 3,597 0.0000 5,656 3,597 0.0000 5,310 3,597 0.0000

TR.10.2.2 2,331 0.0000 2,331 6,136 2,331 0.0000 4,375 2,331 0.0000 4,396 2,331 0.0000 3,989 2,331 0.0000

TR.10.3.1 2,651 0.0000 2,651 5,885 2,651 0.0000 4,574 2,651 0.0000 4,752 2,651 0.0000 4,025 2,651 0.0000

TR.15.2.1 4,128 0.0000 4,128 11,116 4,128 0.0000 7,752 4,128 0.0000 7,752 4,128 0.0000 5,546 4,128 0.0000

TR.15.2.2 2,769 0.0000 2,769 9,034 2,769 0.0000 6,573 2,769 0.0000 6,700 2,769 0.0000 4,160 2,769 0.0000

TR.25.2.1 5,247 0.0000 5,247 19,364 5,247 0.0000 14,202 5,247 0.0000 11,870 5,247 0.0000 6,791 5,266 0.0036

TR.25.2.5 2,219 0.0389 2,136 11,063 2,136 0.0000 6,905 2,136 0.0000 7,701 2,136 0.0000 2,635 2,136 0.0000

TR.25.5.1 2,779 0.0255 2,710 12,861 2,710 0.0000 8,881 2,721 0.0041 8,129 2,710 0.0000 3,570 2,721 0.0041

TR.25.5.2 2,112 0.0424 2,026 9,451 2,026 0.0000 5,444 2,031 0.0025 5,536 2,042 0.0079 3,133 2,031 0.0025

TR.50.2.1 7,919 0.0156 7,797 39,336 7,861 0.0082 27,803 7,797 0.0000 21,841 7,919 0.0156 9,201 7,912 0.0147

TR.50.2.5 3,003 0.1680 2,571 27,717 2,609 0.0148 19,298 2,597 0.0101 14,991 2,571 0.0000 3,366 2,572 0.0004

TR.50.5.1 4,233 0.1453 3,696 29,218 3,737 0.0111 20,641 3,709 0.0035 15,750 3,696 0.0000 5,086 3,696 0.0000

TR.50.5.2 2,970 0.1781 2,521 23,956 2,536 0.0060 17,391 2,569 0.0190 13,886 2,547 0.0103 4,140 2,521 0.0000

TR.81.2.1 10,002 0.0182 9,823 60,615 9,980 0.0160 40,372 9,823 0.0000 36,033 9,922 0.0101 11,314 9,846 0.0023

TR.81.2.5 3,515 0.2100 2,905 48,292 2,952 0.0162 36,029 2,906 0.0003 29,748 2,946 0.0141 3,872 2,905 0.0000

TR.81.5.1 5,568 0.2387 4,495 48,545 4,514 0.0042 36,353 4,530 0.0078 29,605 4,495 0.0000 6,300 4,502 0.0016

TR.81.5.2 3,575 0.2531 2,853 47,120 2,895 0.0147 34,492 2,896 0.0151 24,947 2,913 0.0210 5,801 2,853 0.0000

Average 0.0785 0.0054 0.0037 0.0047 0.0017
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provides general robustness, greedy and hybrid strategies lead to slightly improved initial
solutions but with minor increases in variability. The matheuristic approach, despite being
more computationally demanding, maintains comparable consistency levels. These
findings suggest that the choice of initialization strategy should be guided by the problem
characteristics, with hybrid and matheuristic approaches being particularly advantageous
for larger and more complex instances due to their balance between solution quality and
stability.

Lastly, we present Table 8 to comprehensively evaluate the overall effectiveness of all
initial solution strategies. Note here that the time limits employed in Kartal,
Krishnamoorthy & Ernst (2019) were also adopted in this study. We acknowledge that to
perform a fair comparison, obtaining all runs under the same environment is necessary.
Currently, our settings are not identical; however, considering the significance of the
problem, certain variations in the settings can be tolerated.

In Table 8, the problem instance is presented first, followed by the best results obtained
from Kartal, Krishnamoorthy & Ernst (2019) study. In columns 3 and 4, the improvement
rates and best objective function values obtained by the SA (within all strategies) are
presented, respectively. Below the initial solution strategies, each column provides the
average initial objective function values, the least objective function values found by each
strategy, and finally, the minimum gap of each strategy’s results to the best values found by
the SA algorithm. In the Table 8, all values shown in bold under the “Least cost” columns
represent the minimum objective function values obtained up to that point for the
corresponding problem instance. Please note that the values reported for TR.10.2.1,
TR.10.2.2, and TR.10.3.1. represent optimal solutions.

In Table 8, 11 out of 17 instances, ranging from TR25.5.2 to TR81.5.2, we observed
better (less) objective function values. When compared to the study by Kartal,
Krishnamoorthy & Ernst (2019), the overall average improvement rate is 7.85%. The
minimum improvement rate is observed in the TR50.2.1 instance (1.56%), while the
highest improvement rate is recorded in the TR81.5.2 instance (25.31%). The maximum
improvement rate is recorded in the TR81.5.2 instance (25.31%). Remarkably, instances
denoted by TRxx.2.1 show the least pronounced improvement rates. It is noteworthy that a
slight improvement rate is also noted in the TR81.2.1 instance (1.82%). The relatively
lower improvement rates in instances with two nodes can be explained by the substantial
route costs. Since the route costs are higher, even though a notable improvement is
achieved, the increase remains relatively low.

When we analyzed Table 8 further, it is observed that as the number of nodes and
vehicles increases, the improvement percentages also rise. For instance, the problem
instance where the first improvement is observed in TR25.2.5, the improvement rate
stands at 3.89%, whereas in the TR81.5.2 instance, this improvement percentage is
approximately six times higher. Furthermore, among the instances with 81 nodes,
improvement percentages were above 20% in three cases, except TR81.2.1 instance.

Interestingly, it is observed in Table 8 that an improvement pattern is observed across
all initial solution construction strategies. SA algorithm starting with a random initial
solution has managed to find better solutions in the problems with lower node numbers
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(25 nodes); namely TR25.5.1, TR25.2.5, and TR25.5.2. On the other hand, SA starting with
a greedily constructed initial solution strategy has achieved the most significant
improvements in instances denoted by TRxx.2.1; such as TR50.2.1 and TR81.2.1.
Random-Greedy initial solution strategy demonstrated the most substantial improvements
in the instances denoted by TRxx.5.1 and TRxx.2.5. Lastly, the matheuristic produced the
most significant improvement percentages across instances containing 50 and 81 nodes,
which are relatively considered large nodes.

The strategy that yielded the maximum of overall minimum average gap was SA started
with a random solution strategy (0.54%). This result suggests that a guided initial solution
strategy might result in further performance increase in the algorithm. Random-Greedy
initial solution strategy ranks second in terms of improvement percentage, with an overall
minimum average gap value of approximately 0.47%. This observation is in line with our
expectations. Greedy initial construction solution strategy was in third order in terms of
the improvement rate (0.37%), while the closest algorithm in terms of the overall
minimum gap to the best solutions found was the matheuristic algorithm (0.17%). In
conclusion, in larger-node instances, the most significant improvements are achieved by
the matheuristic approach. Despite the time-consuming nature of this initial solution
generation strategy, the matheuristics’ success increases as the node count increase,
making it a viable choice for decision-makers in the logistics sector.

To evaluate the performance of SA, in this study, we employed the lower bound used in
the Kartal, Krishnamoorthy & Ernst (2019) study. The lower bound involves using the
maximum distance of the associated data instance. Distances between node i and node j,
with at least one intermediary node k, where i ≠ j ≠ k, are computed utilizing the
formula dik + dkj. According to the principle of the triangle inequality, it is established that
dik + dkj ≥ dij for all i, j, and k. Given that each dij in the distance dataset includes the
maximum value among dij, this particular value serves as a lower limit for
USApHCRP. The lower bound values are 1,740 for instances with 25 nodes, and 2,045 for
instances with 50 and 81 nodes, respectively. For SA, the average gaps between its best
solution costs and the corresponding lower bounds were found to be 33.45% for instances
with 25 nodes, 38.75% for instances with 50 nodes, and 47.58% for instances with 81
nodes, respectively.

DISCUSSION
In this section, we discuss the advantages and disadvantages of our proposed methodology,
highlighting key trade-offs. This discussion not only revisits our primary research
objectives but also contextualizes our findings within the broader literature.

Our study has several key strengths. First, we show that tailored initial solutions can
greatly improve solution quality within a single-trajectory metaheuristic, specifically the
SA algorithm.

Our initial solution strategies integrate problem-specific techniques from matheuristics
and greedy heuristics, drawing on expertise knowledge. This approach takes advantage of
the problem’s decomposable structure, resulting in good solutions.
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Furthermore, our methods exhibit strong performance on large-scale problem
instances. While NP-hard problems are inherently challenging, employing
matheuristic-based and greedy initial solution strategies provide a competitive advantage
over established methods, as demonstrated in our comparison with Kartal,
Krishnamoorthy & Ernst (2019).

Notwithstanding the advantages, the matheuristic initial solution approach also has
some limitations. The main drawback is the significant computational time required to
solve mixed-integer programming models using a commercial solver to achieve optimal
solutions, especially for large-scale problems. As the problem size increases, the
computational time required on the solver grows, prompting us to impose a 2-h time limit
on the solution process. While this constraint ensures practical computation times, it
creates a trade-off between solution quality and efficiency.

Additionally, since SA is a single-trajectory-based metaheuristic that perturbs solutions
through neighborhood moves and often accepts worse solutions, especially in the early
stages, the impact of the initial solution may diminish as the algorithm progresses. This
effect is particularly evident in the case of random initial solutions, where despite starting
from poor-quality solutions, the final objective function values remain competitive.
However, this may not completely eliminate the benefits of starting from a good initial
solution, such as those generated by matheuristic or greedy approaches. On the contrary,
starting from a well-structured solution is likely to have a positive impact, particularly in
increasing the chances of outperforming existing methods in the literature.

CONCLUSIONS
This study addresses the uncapacitated single allocation p-hub center and routing problem
by proposing an SA algorithm enhanced with four distinct initial solution strategies. Our
findings suggest that the quality and structure of the initial solution can significantly
impact the performance of an improvement-type metaheuristic, particularly across
different problem structures, such as varying hub numbers and vehicle configurations. Our
analysis indicates that random initialization is more effective for smaller problem
instances, while greedy-based initialization performs better in cases with fewer hubs. This
might be because the greedy approach selects hubs based on proximity to other nodes,
often selecting more central locations. When the number of hubs is low, this approach
might lead to a more balanced distribution of routes. The random-greedy strategy
effectively balances exploration and exploitation, producing strong results across multiple
instances. In contrast, the matheuristic-based strategy yields the most significant gains in
larger problem instances. Specifically, the matheuristic approach employs the
decomposition of the problem, allowing the underlying mathematical models to find either
exact solutions or high-quality approximations within the given time constraints.

Our research contributes to the literature in two folds. First, it systematically examines
how different initial solution generation strategies affect the performance of a
single-trajectory metaheuristic, filling an existing gap where most studies have focused on
population-based methods. Second, it introduces a novel matheuristic algorithm for the
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USApHCRP, which utilizes a modified p-hub center and an mTSP-based routing
formulation, demonstrating the potential of hybrid methodologies in complex network
optimization problems.

The initial solution strategies developed in this study are problem-specific,
constructive-based algorithms that incorporate expert knowledge. This underscores the
importance of domain expertise in designing effective constructive heuristics for
decomposed problem structures. The integration of expert-driven insights into
constructive solution generation could significantly influence the final outcomes of an
optimization algorithm. Given its potential advantages, the methodologies developed in
this study may also be applicable to similar problem structures where location-routing
decisions play a crucial role.

The computational results on the Turkish Network validate the effectiveness of our
approach, as our SA algorithm outperformed other metaheuristics in the literature. These
promising results encourage further exploration into the use of constructive heuristics
within metaheuristic frameworks.

Future work could extend our methodology to other variants of the hub location and
routing problem, such as capacitated or multiple allocation versions, and explore
additional hybrid strategies that integrate metaheuristic and exact optimization
techniques. Expanding these results to other domains, it is evident that any problem with
an underlying location-routing model could benefit from this approach. Additionally,
future research may compare the performance of single-trajectory and population-based
algorithms for this decomposable network design problem, broadening the applicability of
our findings and contributing to the ongoing development of efficient solution methods
for combinatorial optimization challenges.
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