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ABSTRACT
A novel personalized tour recommendation model, the Happiness Model (HM), is
presented. The HM optimizes itineraries by considering traveler satisfaction as a
function of time and maximizing it over the trip duration. The model integrates the
Item Constraints Data Model (ICDM) to reduce data dimensionality and search
space. By considering various activities within different points of interest (POIs) and
minimizing wasted time, the HM overcomes the limitations of existing methods.
Unlike existing POI-centric models, the HM is time-centric, creating tour
recommendations that maximize user satisfaction throughout the trip. Experimental
results demonstrate the model’s effectiveness in generating personalized tour
recommendations aligned with user preferences. The HM achieves an average
satisfaction score of 0.85 across multiple datasets, outperforming traditional models
such as the Time-Dependent Orienteering Problem with Time Windows (TOPTW),
which achieves an average score of 0.72. Additionally, the HM reduces waiting times
by 30% and increases the number of recommended POIs by 20% compared to
existing methods. These results highlight the HM’s ability to provide more efficient
and enjoyable travel experiences.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Aided Design,
Optimization Theory and Computation, Theory and Formal Methods
Keywords Ant colony optimization (ACO), Happiness model (HM), Personalized tour trips,
Recommender systems (RS), User satisfaction

INTRODUCTION
Research background
Recently, governments, industry stakeholders, and academic researchers in tourism studies
have progressively focused on happiness research to address their respective challenges
(Chen & Li, 2018). Travelers often embark on vacations with the aim of enhancing their
happiness levels, and recent findings highlight the positive impact of holidays on
individual well-being (Nawijn, 2011). However, existing travel recommender systems
(TRSs) often fail to fully capture the complexities of traveler preferences, particularly in
terms of time management, activity selection, and satisfaction optimization.

Research problem
Travel-related decision-making involves consideration of multiple objectives and
constraints. According to Burke & Kendall (2014), higher-quality personalized
recommendations significantly persuade travelers to undertake specific trips. Essentially,
aligning suggested tours with traveler preferences is found to be a key factor in fostering
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trust towards recommender systems. Current TRSs predominantly focus on selecting
points of interest (POIs) based on static preferences, neglecting critical factors such as time
constraints, waiting times, and the holistic satisfaction of travelers throughout their trips.
This results in suboptimal itineraries that do not align with the dynamic needs of modern
travelers. Additionally, existing models often treat waiting times and travel connections as
fixed costs, failing to account for their impact on overall traveler satisfaction (Halder et al.,
2024). These limitations highlight the need for a more comprehensive and time-centric
approach to tour recommendations.

To further elucidate the research problem addressed in this article, an illustrative
example is presented involving two distinct groups of travelers who are visiting a city,
denoted as A and B. Figure 1 illustrates a city map with various POIs and designated
starting and ending points. The numbers on the map represent unique identifiers for each
POI. The starting point is labeled as ‘Start Point (Hotel)’, and the ending point is labeled as
‘End Point (Airport)’. POIs are categorized based on their appeal to two distinct traveler
groups: Group A (preferring natural environments such as zoos, parks, and mountains)
and Group B (preferring modern settings such as shopping malls, street markets, and
museums). The edges between POIs represent travel routes, with associated costs or
distances indicated by the numbers. This figure serves as a visual representation of the
input data used to generate personalized tour recommendations. Moreover, it is not merely
the type of POIs that differentiates the groups; their preferred modes of transportation
between POIs also vary significantly. For instance, Group B favors walking between POIs
to experience more traditional areas and street markets. In contrast, Group A prefers
traveling by car, which enables them to visit a greater number of natural POIs, such as
wildlife parks and rivers. This variation in travel preferences underscores the need for
customized trip planning to accommodate the distinct requirements of each group.

Proposed solution
To address these challenges, this article introduces the Happiness Model (HM), a novel
personalized tour recommendation model that optimizes itineraries by maximizing
traveler satisfaction as a function of time. The HM integrates the Item Constraints Data
Model (ICDM) to reduce data dimensionality and search space, enabling efficient and
personalized recommendations. Unlike traditional POI-centric models, the HM adopts a
time-centric approach, dynamically adjusting recommendations to maximize satisfaction
over the entire trip duration. The model considers three key components: (1) activities at
POIs, (2) connections between POIs, and (3) waiting times, ensuring a holistic and efficient
travel plan.

Context and motivation
Given the growing importance of time management in travelers’ hectic schedules—
wherein they frequently coordinate bookings for hotels, flights, tours, and event tickets
simultaneously—there is a pressing need for a model capable of integrating these factors to
provide comprehensive trip plan recommendations. Recommender systems (RSs) have
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emerged as a crucial tool in aiding users by providing personalized suggestions amidst
extensive selections of options. This capability is anchored in decision-support
mechanisms (Mao et al., 2024; Wu, Lyu & Liu, 2022; Felfernig et al., 2018; Liu, Zhong &
Zhou, 2022). Specifically, travel recommender systems (TRSs) endeavor to facilitate
itinerary planning by matching user preferences with the attributes of their intended
journeys (Zhou et al., 2023). Nonetheless, empirical evidence indicates a bias in current
TRSs towards recommending points of interest (POIs) predominantly situated in urban
locales (Quijano-Sánchez et al., 2020). Effective travel planning demands the consideration
of various factors, including temporal constraints, budgetary restrictions, transportation
alternatives, and meteorological conditions (Sun & Wandelt, 2021).

Challenges in existing systems
Driven by the economic importance of the tourism industry, computer scientists have been
at the forefront of developing innovative tools to enhance the sector. Such tools provide
personalized recommendations that cater to users’ unique constraints and preferences,
potentially enhancing tourist satisfaction and industry growth. This research area has

Figure 1 City map with POIs and designated start/end points.
Full-size DOI: 10.7717/peerj-cs.2837/fig-1
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garnered significant attention from various disciplines, including computer science,
information systems, and marketing (Sarkar et al., 2023). Travel recommender systems
(TRSs) have become a cornerstone of the tourism industry, offering personalized itinerary
suggestions (Sarkar et al., 2023). These systems leverage various models that consider user
preferences and constraints to design optimal tour plans (Beed et al., 2020). While relevant
studies from literature acknowledge the limitations of solely focusing on POIs, they still
face challenges in comprehensively addressing both travel preferences and time
management (Beed et al., 2020). Subramaniyaswamy et al. (2018) propose a multi-modal
itinerary recommendation system that considers user preferences for transportation and
activity duration. However, their model treats waiting times as a fixed cost between POIs,
neglecting the impact of unplanned delays or activity overruns. Renjith, Sreekumar &
Jathavedan (2020) introduce a context-aware recommendation system that incorporates
real-time information like weather and traffic conditions. This approach offers dynamic
recommendations but may struggle with limited user data on travel preferences for
connection types and their impact on enjoyment. On the other hand, some studies delve
deeper into specific aspects beyond POI selection, but lack a holistic approach. Chen et al.
(2017) present a framework for optimizing travel routes considering user preferences for
scenic beauty along the way. While this caters to a specific travel desire, it does not
integrate preferences for transportation type or waiting times. Su et al. (2020) propose an
emotion-based model for personalized travel recommendation systems. This addresses the
emotional aspect of travel but does not explicitly consider the impact of connection
preferences and waiting times on user emotions.

Key contributions
In light of the preceding discussion, this article presents a novel personalized tour
recommendation model, the HM, that offers the following key contributions:

. Time-centric approach: Unlike traditional models that focus on points of interest
(POIs), the proposed HM focuses on maximizing user satisfaction over time,
dynamically adjusting to traveler preferences during the trip.

. Integration of the Item Constraints Data Model (ICDM): By incorporating ICDM, the
HM reduces data dimensionality, thereby improving computational efficiency while
maintaining personalization.

. Consideration of various activities: The proposed HM incorporates activities such as
visiting POIs, traveling between POIs, and minimizing wasted time to create more
comprehensive itineraries while ensuring a holistic and efficient travel plan.

. Overcoming limitations of existing methods: The proposed HM addresses the
shortcomings of current models by considering a wider range of factors that influence
traveler satisfaction, such as time management, connection preferences, and waiting
times.

The article is organized as follows: “Related Works” provides a review of related work.
“Item Constraints Data Model” introduces the Item Constraints Data Model (ICDM).
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“The Proposed Happiness Model” presents the proposed Happiness Model (HM),
including its mathematical formulation and integration with the ICDM. “Experiments”
and “Discussion” details the experimental setup and results. Finally, “Conclusion”
concludes the article, summarizing the key findings and discussing future research
directions.
Remark 1. The proposed happiness model introduces an innovative approach to assessing
travelers’ satisfaction levels. It addresses the limitations of existing models, which fail to
account for the value of connections and waiting times. Specifically, the HM optimizes tour
itineraries based on three key categories of actions: activities, connections, and waiting times.
Unlike traditional models that rely on aggregating scores from various points of interest
(POIs), the HM tackles the NP-hard orienteering problem (OP) by optimizing a diverse
range of trip activities. This approach adds complexity to the model but significantly
enhances its ability to generate personalized and efficient itineraries.

RELATED WORKS
In the realm of enhancing the traveler’s experience, the formulation and optimization of
appropriate objective functions are essential for addressing travel recommendation
challenges (Sarkar et al., 2023). In the domain of TRSs, and particularly within the tour trip
design problem (TTDP), a variety of methods and approaches have been advanced (e.g.,
Zaizi, Qassimi & Rakrak, 2023;Wan et al., 2018). Nonetheless, a notable limitation of prior
research is the emphasis on the selection of POIs without accounting for other significant
factors that affect traveler satisfaction (Asaithambi, Venkatraman & Venkatraman, 2023).
For example, existing models frequently overlook traveler preferences concerning travel
time between POIs and the effective utilization of the allocated trip duration. These models
predominantly construct routes based solely on the aggregated scores of visited locations,
thereby presenting considerable limitations in accurately capturing overall traveler
satisfaction (Chen et al., 2022).

Recommender systems (RSs) predominantly utilize data mining methodologies;
however, they frequently encounter difficulties in generating highly personalized
itineraries compared to those developed exclusively through optimization strategies
(Beraldi et al., 2021). Nevertheless, current models addressing the Tourist Trip Design
Problem (TTDP) exhibit deficiencies in meeting traveler requirements such as waiting
times, budgetary constraints, and the simplicity of the route (Yoon & Choi, 2023). A
notable variant of the TTDP is the orienteering problem (OP), which is categorized as NP-
hard. Furthermore, alterations to specific constraints within a model can profoundly
influence the efficacy of its algorithms, occasionally resulting in their incapacity to resolve
the OP (Mei, Salim & Li, 2016).

The primary limitation of the multi-objective orienteering problem (MOOP) is its
inability to support personalization, as it fails to incorporate waiting time into its model
(Dutta et al., 2020). In contrast, the proposed HM is specifically designed to integrate time
as a critical component in the construction of a tour itinerary. Furthermore, the HM
accounts for a broader array of decision-making parameters, including both multi-value
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Points of Interest (POIs) and connections, unlike the MOOP, which only considers
multi-value POIs. The HM is thus introduced to address the comprehensive set of
decision-making criteria for tourists, categorizing these parameters into three main
groups: (1) activities, (2) connections, and (3) waiting time. By encompassing all three of
these essential constraints, the HM extends the capabilities of existing models.

Comparison with previous work
To the best of our knowledge, all preceding models concentrate exclusively on the
cumulative scores of visited POIs, which constitutes a significant limitation. Table 1
provides a detailed comparison between the proposed Happiness Model (HM) and
existing approaches, highlighting the unique advantages of the HM. Firstly, the Happiness
Model (HM) and the Multi-Objective Orienteering Problem (MOOP) assign multiple
values (MVs) to each node. The HM is specifically developed to attribute multiple values to
various aspects of a trip, including points of interest, travel options, and time constraints.
Moreover, the Multi-Constraint Team Orienteering Problem with Multiple Time
Windows (MCTOPMTW) incorporates multi-attributes to enforce multi-constraints
(MC), ensuring that the trip remains within the bounds of these limitations. Furthermore,
the MOOP deals with distinct categories, each offering unique benefits, with the goal of
maximizing overall benefits across these categories. Additionally, the MCTOPMTW
accommodates tags, allowing each point of interest to have multiple attributes.

In contrast, the proposed HM has the ability to manage both categories and attributes
by leveraging the strengths of both types of models. Such innovative approach introduces
the consideration of multi-values (MVs) between each node, while other models
traditionally focus solely on distance. Specifically, the transition between points of interest
involves various values, such as time, journey length, and cost. Additionally, the HM
combines these values into a single metric that represents the traveler’s satisfaction level.
Moreover, travelers with reservations (e.g., flights, hotels, or trains) typically prefer using
the entire allocated time for a given trip. Therefore, the proposed HM is designed to
consider time inefficiency as a crucial factor that likely impacts the traveler’s satisfaction
level.

The comparative analysis is further expanded to include additional models, such as the
Genetic Algorithm-based Tour Recommendation System (GATRS) and the particle swarm
optimization-based approach (PSO). Table 1 demonstrates the superiority of the HM in
terms of personalization and the consideration of multiple factors such as time and waiting
times, which are not addressed by other models like GATRS and PSO.

In light of the preceding discussion, it is evident that the proposed HM addresses the
deficiencies inherent in extant models documented in the literature. In alignment with
prior research, the proposed model is structured to assess each discrete moment of a trip by
taking into account various trip-related actions. Moreover, the HM employs a temporal
framework, utilizing an algorithm to optimize activities at each individual moment rather
than relying on a cumulative aggregation of events.
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Advantages of the proposed solutions
The HM offers several advantages over existing models:

. Time-centric optimization: By focusing on maximizing satisfaction over time, the HM
provides more dynamic and personalized itineraries.

. Comprehensive consideration of factors: The model accounts for activities,
connections, and waiting times, addressing limitations of traditional POI-centric
approaches.

. Improved efficiency: The integration of the ICDM reduces computational complexity,
enabling faster and more scalable recommendations.

. Enhanced personalization: Experimental results demonstrate that the HM
outperforms existing models in terms of satisfaction scores, waiting time reduction,
and the number of recommended POIs.

ITEM CONSTRAINTS DATA MODEL
The item constraints data model (ICDM) has been specifically developed to address the
shortcomings identified in prior academic studies. This model is designed with precision to
manage data alongside constraints, catering to the needs and preferences of users for their
travel itineraries. The data is classified into two categories: (1) dynamic data and (2) static
data, facilitating the alignment of item information with user-imposed constraints. Static
data is defined by its unchanging nature over time, whereas dynamic data consists of
variables that fluctuate over time. User-imposed constraints are further categorized into
hard constraints (HCs) and soft constraints (SCs). The formal representation of ICDM is
as follows: Let u represent a user with n constraints, including both HC and SC. HC
comprises a set of hard constraints, each denoted as hcm 2 HC where m ¼ 1; 2; . . . ; jHCj,
and SC encompasses a set of soft constraints, each denoted as scv 2 SC where
v ¼ 1; 2; . . . ; jSCj. These constraints are mathematically described by the following
equations:

HCpti ¼
YjHCj
m¼1

hcmpti (1)

SCpti ¼ Aggregation methods (2)

Table 1 Comparison of HM with existing models.

Feature Happiness model (HM) MOOP MCTOPMTW GATRS PSO

Time-centric personalization Yes No Partial No No

Multi-value connection optimization Yes No No Partial Partial

Waiting time consideration Yes No Partial No No

Real-time data integration Planned No No No No
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XjSCj
v¼1

Wv ¼ 1 (3)

Equation (1) outlines the computation of hard constraints (HCs), represented as HCpti,
for a specific item i on day p at time t. It is crucial that all HCs are simultaneously satisfied;
the failure to meet even one HC results in the nullification of the aggregate value. In
contrast, soft constraints (SCs) exhibit varying levels of fulfillment, with compliance being
optional. Equation (2) explicates the determination of the user’s satisfaction degree based
on their SCs, denoted as SCpti, for item i on day p at time t. The closer the result of Eq. (2) is
to unity, the higher the satisfaction level, indicating the fulfillment of a greater number of
constraints. In Eq. (3), Wv represents the weight of SC #v, with the total sum equaling
unity. Subsequent formulations integrate these distinct equations into a comprehensive
evaluative metric.

Spti ¼ HCpti � SCpti: (4)

Equation (4) quantifies the satisfaction level of a user u concerning an item i on day p at
temporal coordinate t, under the constraints specified by the user.

The core innovation of the proposed model is the integration of various user-specific
constraints into a single metric, denoted as Spti, which is accomplished by combining
Eqs. (1) and (2). This method ensures that all user-imposed constraints are incorporated
within Spti, thereby facilitating data dimensionality reduction by merging the distinct
values of individual constraints into a cohesive representation. Furthermore, the
implementation of the ICDM model is expected to enhance the efficiency of the search
process due to the reduced necessity for constraint matching with the trip parameters.

THE PROPOSED HAPPINESS MODEL
The development of the HM has been undertaken to address traveler preferences with the
objective of optimizing user satisfaction (Alatiyyah, 2019). Initially, the mathematical
formulation of the model is delineated, followed by an integration of the HM with the
ICDM framework. The discussion section subsequently encapsulates the significance of
the HM in relation to its contemporary applications within the tourism sector.

Mathematical model
The proposed happiness model is formulated as follows:

. Directed weighted graph: A directed weighted graph G ¼ ðV; EÞ represents a city with
nodes i 2 I; i ¼ 1; . . . ; jIj (Points of Interest) and attributes k 2 K ; k ¼ 1; . . . ; jKj.
The edges in E connect these nodes and have values in r 2 R; r ¼ 1; . . . ; jRj.

. Travel time and time spent: The travel time between nodes i; j 2 I is denoted by TTij,
and the time spent at node i denoted by STi.

. Starting and ending points: Let s and t be a starting and terminal nodes, respectively,
where s ¼ 1 and t ¼ jIj, in which the trip duration can span multiple days. Hence,
p 2 P; p ¼ f1; . . . ; jPjg denotes the trip days. Furthermore, each trip encompasses a
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start and end time within the day p, where t 2 p; t ¼ 1; . . . ; jpj represents the set of
moments in day p.

. Time constraints: The daily time constraint is represented by Tmax, and Smax denotes
the maximum value for all actions, scaled from 0 to 1.

. Decision variables: Xpti represents whether the user remains at node i on day p at time
t, Yptij represents whether the user moves from node i to node j on day p at time t, and

Zpt represents whether the user is waiting on day p at time t.

. Score values: Spti denotes the score value of activities at node i on day p at time t. The
value of a connection from node i to node j based on attribute r on day p at time t is
denoted by Cptijr , and the value of the waiting time on day p at time t is denoted by
Wpt .

Objective function
The proposed happiness model is formulated as a multi-objective optimization problem
aimed at maximizing traveler satisfaction over time. The objective function of the model is
to maximize the total score derived from three actions: activity, connection, and waiting.
This is represented by Eq. (5), which includes three functions: f1ðaÞ, f2ðcÞ, and f3ðwÞ. The
HM is quantified on a scale from 0 to 1, with 1 indicating optimal user satisfaction during
the tour.

Max
f1ðaÞ þ f2ðcÞ þ f3ðwÞ
Tmax � Smax � jPj

� �
(5)

where f1ðaÞ, f2ðcÞ, and f3ðwÞ are defined in Eqs. (6)–(8), respectively. The function f1ðaÞ
represents the level of happiness associated with a given activity. It is normalized to a range
between 0 and 1 by dividing the raw value by Tmax � Smax � jPjð Þ.

f1ðaÞ ¼
XjPj
p¼1

Xjpj
t¼1

XjIj
i¼1

Xpti � Spti (6)

f2ðcÞ denotes the satisfaction metric for the connectivity activity. This metric ranges
from 0 to 1, achieved by normalizing the value through division by Tmax � Smax � jPjð Þ.

f2ðcÞ ¼
XjPj
p¼1

Xjpj
t¼1

XjIj
i¼1

XjIj
j¼1

Yptij �
XjRj
r¼1

Cptijr

 !
: (7)

The function f3ðwÞ denotes the level of satisfaction associated with waiting time, which
is computed by normalizing the value through division by Tmax � Smax � jPjð Þ.

f3ðwÞ ¼
XjPj
p¼1

Xjpj
t¼1

Zpt �Wpt
� �

: (8)
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Constraint functions
The following constraints ensure the feasibility of the solution. Equation (9) imposes a
restriction that permits only a single activity at any given moment. Furthermore, Eq. (10)
mandates that the journey on each day p commences from s, designated as the starting
point. Additionally, Eq. (11) guarantees that on each day p, the journey concludes at e,
which represents the terminal point.

XjIj
i¼1

Xpti þ
XjIj
i¼1

XjIj
j¼1

Yptij

 !
þ Zpt ¼ 1; 8t ¼ 1; . . . ; jpj;8p ¼ 1; . . . ; jPj (9)

XjIj
j¼1

Yp11j ¼ 1;8p ¼ 1; . . . ; jPj (10)

XjIj�1

i¼1

Pjpj
t¼1

YptijIj

TTijIj

0
BBB@

1
CCCA ¼ 1;8p ¼ 1; . . . ; jPj: (11)

Equation (12) serves as a constraint to ensure the connectivity of the tour trip,
guaranteeing that the travel time and visiting times correspond accurately to the given
data, denoted by TTi;j and STi, respectively. Furthermore, Eq. (12) aligns with the
corresponding equations in the OP model.Pt1¼nþTTs;r

t¼n Yt
p;s;r �

Pt2¼t1þSTr
t¼t1þ1 Xt

p;r

TTs;r þ STr
¼
Pt3¼t2þTTr;m

t¼t2þ1 Yt
p;r;m

TTr;m
� 1

8n 2 f1; . . . ; jp� 3jg; 8p ¼ 1; . . . ; jPj;m 2 I;8s;m ¼ 1; . . . ; jIj;8r ¼ 2; . . . ; jI � 1j:
(12)

Algorithm
The proposed HM can be solved using a variety of optimization algorithms, such as genetic
algorithms, ant colony optimization, or mixed-integer programming. In this article, an ant
colony optimization (ACO) algorithm is proposed to solve the HM.

An ant colony optimization
The ACO algorithm is employed to solve an NP-hard problem. The algorithm iteratively
constructs solutions by simulating the behavior of ants searching for optimal paths. At
each iteration, ants probabilistically select the next node (POI) based on pheromone levels
and heuristic information.

In ACO algorithm, two sequential pheromone update steps are employed to enhance its
efficacy. The initial update, termed as the local pheromone update, occurs during the
second step (refer to Fig. 2); after an ant is deployed, it evaluates whether it can identify an
improved score for the discovered path (refer to Eq. (15)). The subsequent update
transpires after all ants have been deployed (refer to Eq. (17)).
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Equation (13) computes the connection value (Cij) relative to distance (TTij) and rate of
activity value (Si) relative to distance (TTij). The parameter Eta signifies the user’s
preference for the POI. Furthermore, Equation 14 delineates the probability computation
for transitioning from POI i to j. Equation 15 illustrates the function that determines the
maximum total score achieved by Antx, while Equation 16 represents the local update (the
initial update). Additionally, Equation 17 depicts the global update (the subsequent
update).

gij ¼
Si
TTij

þ Cij

TTij
(13)

Pi;j ¼
si;j
� �a

gij
� �b

� si;j
� �a

gij
� �b� � (14)

di;j ¼ Maxðdi;j;Antxði; jÞÞ (15)

si;j ¼ 1� qð Þ � si;j þ di;j (16)

si;j ¼ q� si;j þ 1� qð Þ � di;j (17)

Overview of HM
A comprehensive overview of the HM is presented in this section by illustrating its design
to address certain limitations inherent in existing methodologies. Primarily, in classifying
the diverse actions associated with trips (such as activities, connections, and waiting
periods), time emerges as a critical component within the HM framework. The HM aims
to optimize the aggregate scores accrued from these three trip-related actions. assesses if
users are involved in an activity, moving between activities, or waiting. Subsequently, the
HM calculates the combined scores based on these different actions.

Figure 3 exemplifies the HM’s management of the distinct actions involved in a trip. In
this illustration, POIs #13 and #25 are associated with multi-scores. The chosen route from
the start point to #13, from #13 to #25, and from #25 to the end point is also attributed with

Figure 2 Flowchart of the ant colony optimization (ACO) algorithm. Full-size DOI: 10.7717/peerj-cs.2837/fig-2

Alatiyyah (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2837 11/35

http://dx.doi.org/10.7717/peerj-cs.2837/fig-2
http://dx.doi.org/10.7717/peerj-cs.2837
https://peerj.com/computer-science/


multiple scores. Waiting time is depicted as a yellow diamond, indicating periods where
travelers have additional time for extra activities, even though the recommendation
systems propose an itinerary shorter than the maximum available time (Tmax).
Furthermore, the value of each action is scaled by the duration required for its completion
(for instance, the transfer from POI#13 to POI#25 spans 19 min, thus calculated as 19 min
× Score13;25).

Overview of HM with ICDM
This section elucidates the integration of the ICDM with the HM. In essence, the ICDM is
engineered to address multi-item constraints, whereas the HM is tailored to manage
multiple values for POIs and connections. Figure 4 provides an overview of the HM and
illustrates the collaborative functioning of the HM and ICDM. This figure are segmented
into three main components: (1) data, (2) the HM, and (3) the ICDM.

Algorithm 1 Happiness model optimization.

1: Initialization:

Initialize pheromone levels si;j for all edges ði; jÞ 2 E.

Initialize ant positions randomly.

2. Construction phase:

for each ant do

Construct a solution by iteratively selecting the next node to visit based on a probability distribution that considers the pheromone levels and
heuristic information (Eq. (14)).

end for

3. Evaluation phase:

for each ant do

Evaluate the fitness of the ant’s solution based on the objective function (Eq. (5)).

end for

4. Pheromone update:

for each edge ði; jÞ 2 E do

Update pheromone level si;j based on the quality of the solutions found (Eq. (15)).

end for

5. Repeat steps 2–4 until a termination criterion is met.

Figure 3 An example for the calculation of the happiness model.
Full-size DOI: 10.7717/peerj-cs.2837/fig-3
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Figure 4 Overview of the HM and its integration with the ICDM. Full-size DOI: 10.7717/peerj-cs.2837/fig-4
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Primarily, the ICDM addresses POIs data, connections data, and user constraints.
Essentially, the user constraints are conditions applied to some or all POIs, considering
factors like location, entrance fee, or weather conditions. These constraints are presented
as a three-dimensional table (labeled as A in Fig. 4). The primary aspects of user
constraints are: (1) each constraint assigns a value to an item at a specific moment; (2) at
each moment, each constraint assigns a value to some items; and (3) each item is associated
with some constraints at every moment. The POIs data contains information about the
POIs, including their opening/closing times, locations, and categories, and is displayed in a
three-dimensional table (labeled as B in Fig. 4). Moreover, connections data refers to
travelers’ movements from one POI to another (labeled as C in Fig. 4). The ICDM takes
into account congestion levels, which are represented as layers of p tables, where each table
indicates the time consumed in traveling from one POI to another at time Tp.

Secondly, the core of the ICDM lies in its constraints, categorized into hard constraints
(HC) and soft constraints (SC): (1) HC (denoted as D in Fig. 4) and (2) SC (denoted as E in
Fig. 4). Equation (4) (denoted as G in Fig. 4) aggregates all constraints values into a single
value (Spti). The primary output of the model is a matrix that narrows down the search
space (denoted as H in Fig. 4).

Thirdly, the HM is designed to address user constraints utilizing the ICDM while taking
into account various connection values (represented as F in Fig. 4). The subsequent graph
demonstrates the intricate nature of connection data when multiple values are included.
Fig. 5 displays |R| tables based on the quantity of multi-values in the connections at a
specific moment, such as t1. It requires a set of aggregated tables, denoted as p, to
comprehensively address the entire multi-value issue. Finally, an algorithm, denoted as I in
Fig. 4, is devised to solve the HM problem.
Remark 2. As compared to our previously published study (Alatiyyah, 2024) where a flexible
travel recommender model (FTRM) was proposed, the happiness model proposed in this
study significantly advances the concepts established by the FTRM model by shifting the
focus from symmetry between user preferences and travel constraints to maximizing traveler
satisfaction throughout the trip. Unlike the FTRM’s POI centric approach, the HM employs
a novel time-centric framework for itinerary customization, optimizing user happiness
dynamically over time. Additionally, the HM incorporates a broader range of activities,
including travel between POIs and minimizing wasted time, allowing for a more
personalized and efficient travel experience. It also addresses data dimensionality and search
space size in conjunction with the item constraints data model (ICDM), facilitating quicker
recommendations tailored to individual needs. Thus, the proposed HM represents a
significant evolution in travel recommendation systems, enhancing personalization and
satisfaction compared to the FTRM.

EXPERIMENTS
Background of the experiment
The experiments were designed to evaluate the effectiveness of the proposed HM in
generating personalized tour recommendations. The primary goal was to demonstrate how
the HM optimizes traveler satisfaction by considering activities, connections, and waiting
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times, addressing the limitations of existing models. The experiments were conducted
using publicly available datasets, including the OPTW and TOPTW datasets, which
provide features such as time windows, visiting times, and POI attributes.
Remark 3. OPTW and TOPTW are standard datasets which are widely used in the research
community to simulate realistic travel scenarios, allowing for fair comparisons with existing
models. Moreover, such datasets provide a controlled environment to evaluate the HM’s core
functionality, such as optimizing activities, connections, and waiting times. Furthermore,
these datasets include a large number of POIs and scenarios, enabling us to test the HM’s
scalability and efficiency.

Method of the experiment
The experiments were conducted in two phases:

. Dataset preparation: The OPTW and TOPTW datasets were preprocessed to align
with the HM’s requirements. This included extracting POI attributes, travel times,
and user constraints.

Figure 5 Multi-value connections in the HM. Full-size DOI: 10.7717/peerj-cs.2837/fig-5
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. Model evaluation: The HM was implemented using the ACO algorithm to solve the
optimization problem. The performance of the HM was evaluated based on
satisfaction scores, waiting times, and the number of recommended POIs.

The eight experiments E1, E2,…, E8
To comprehensively evaluate the HM, eight experiments (E1 to E8) were conducted, each
with different configurations of connection and waiting time preferences. These
experiments were designed to test the HM’s ability to adapt to varying user preferences and
constraints. The details of each experiment are as follows:

. E1: Connection score = 1, Waiting time score = 0.

. E2: Connection score = 1, Waiting time score = 0.5.

. E3: Connection score = Random, Waiting time score = 0.

. E4: Connection score = Random/2, Waiting time score = 0.

. E5: Connection score = 1, Waiting time score = 0 (applied to Dataset 2).

. E6: Connection score = 1, Waiting time score = 0.5 (applied to Dataset 2).

. E7: Connection score = Random, Waiting time score = 0 (applied to Dataset 2).

. E8: Connection score = Random/2, Waiting time score = 0 (applied to Dataset 2).

These experiments allowed us to analyze how different configurations of connection
and waiting time preferences impact the HM’s performance.

Features of the original dataset
The experiments were conducted using two datasets:

. Dataset 1: Derived from the OPTW dataset, this dataset includes 48 to 288 POIs
across 10 scenarios. Each POI has attributes such as visiting time, time windows, and
satisfaction scores.

. Dataset 2: Derived from the TOPTW dataset, this dataset also includes 48 to 288 POIs
across 10 scenarios, with additional features such as travel times between POIs and
user constraints.

In our investigation, multiple experiments are conducted to evaluate the capabilities of
the HM model. At the outset, the HM model is applied to various pre-existing datasets
(refer to Table 2) to assess its effectiveness in constructing tour itineraries. Additionally, an
ACO algorithm is devised to generate results that are comparable to those produced by
existing models.

The datasets were selected based on the availability of public data, with a specific
emphasis on the OPTW and TOPTW datasets (KU Leuven, 2024). These datasets were
chosen for the HM experiment due to their provision of several pertinent features, such as
time windows and visiting times.

Multiple experiments are carried out to find the optimal ACO parameters. The initial
parameters for ACO are detailed in Table 3, and the variations in values based on different
parameter settings are illustrated in Figs. 6 and 7.
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A series of experiments are conducted to determine the best iteration number for the
algorithm. It is critical to recognize that the running time is a pivotal factor, particularly
when dealing with NP-hard problems. Figure 8 illustrates the average running time of the
ACO algorithm for different numbers of iterations. The results demonstrate that the
running time increases linearly with the number of iterations, ranging from 2.9 s for 10
iterations to 26.7 s for 100 iterations. This linear relationship highlights the scalability of
the ACO algorithm, making it suitable for solving the Happiness Model’s optimization
problem efficiently. For experimentation, ten different values are selected for the iteration
parameter.

Alpha and Beta denote the significance of the score and the rate of score relative to the
distance (refer to Equation (14)). Selecting the best values for such parameters is crucial as
the performance of the algorithm hinges on these parameters. Thus, a tuning method is
employed that iteratively adjusts these parameters from zero to the point of maximum
gain. Multiple experiments were conducted (each scenario within each dataset was
executed over 200 times for different values of the parameters) to identify the optimal
performance of the algorithm across all datasets. Figures 6 and 7 illustrate the normalized
total scores (where 1 represents the highest total scores across all datasets) for various
Alpha and Beta values in all scenarios.

As depicted in Figs. 6 and 7, only a subset of the results attained top scores, while the
others varied; no single pair of Alpha and Beta values consistently yielded uniform
algorithm performance (each distinct value for Alpha and Beta produced variant
outcomes). The best values for these parameters are found to be Alpha = 1 and Beta = 13,

Table 3 The parameters of the algorithm in the initial step.

Parameter Value Representation

a 15 Represents the importance of Tau

b 8 Represents the significance of Eta

q 0.1 Value of pheromone evaporation

Ant_No 200 # ants

Iterations 10 # iteration

NodeSize # nodes

gij Equation (13) Eta Indicates the rate of score to distance

si;j Allocate 1,000 value Representing the level of Pheromones from i to j

di;j Allocate 0 value Representing the maximum total path use i to j

Table 2 Datasets used in experiments.

Problem Dataset Study # Scenarios # items |I|

OPTW & TOPTW Dataset 1 Vansteenwegen et al. (2009) 10 48 to 288

Dataset 2 10 48 to 288
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Alpha = 15 and Beta = 8, and others, that consistently delivered excellent performance
across all datasets. You can see these values highlighted in dark red in Figs. 6 and 7 which
achieved the best results. Essentially, any values in dark red will consistently produce good
results across all datasets.

RESULTS
The outcomes obtained by the HM through experimental analysis are presented in this
section. Furthermore, the discussion elucidates the inherent challenges and distinctive
characteristics of the extant datasets.

The HM benchmark instances
The outcomes of the proposed HM with those derived from the TOPTW on Dataset 1 and
Dataset 2 are presented in this section (additional details are provided in Table 2). Broadly,

Figure 6 Overview of the ACO’s performance based on different values of Alpha and Beta.
Full-size DOI: 10.7717/peerj-cs.2837/fig-6

Figure 7 Overview of the ACO’s performance based on different values of Alpha and Beta.
Full-size DOI: 10.7717/peerj-cs.2837/fig-7
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the findings elucidate the influence of the HM in structuring a tour trip by tailoring the
itinerary according to user preferences. Specifically, the HM results indicate that a higher
degree of personalization in the trips is attainable, as the model integrates and optimizes
additional elements of trip itineraries like idle time and connectivity. Furthermore, the
metrics for activities score, waiting times and connections have been standardized to a
scale ranging from zero to one, with one denoting the maximal value.

Table 4 enumerates the 8 distinct experiments carried on the model. Initially, the values
for activities were based on the public dataset, following which various values for
connections and waiting times were generated in these experiments. Such experiments
encompass diverse scenarios to underscore the advantages conferred by the model.

Experiments E1 to E4 were conducted on Dataset 1, and the outcomes of these
experiments are detailed in Tables 5–8. Each experiment provides the code for the scenario
along with the number of POIs included in the recommended trip. Additionally, the
primary three activities of the trip are identified, with the corresponding durations for each
activity and the total scores assigned to each specific activity presented.

Table 5 presents the outcomes of E1, as specified by the parameters outlined in Table 4.
Each entry in the table corresponds to a distinct scenario in which the cumulative scores
for each action vary across scenarios, with the exception of the total waiting-time scores,
which are consistently zero (refer to Table 4). Furthermore, all action scores are
normalized to a range between 0 and 1, ensuring that the total score represents the sum of
individual moments, and the total score for any action is never greater than the total
number of moments in the activity.

The results of this table demonstrate the HM’s ability to generate itineraries with high
activity scores and efficient connections. For example, in scenario Pr02, the HM
recommends 19 POIs with a total activity score of 125 and a connection score of 384. The
absence of waiting time scores indicates that the HM prioritizes minimizing idle time,
aligning with the goal of maximizing traveler satisfaction.

Figure 8 Average running time for different iteration numbers in the ACO algorithm.
Full-size DOI: 10.7717/peerj-cs.2837/fig-8
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Table 6 shows the outcomes of Experiment 2 (E2), where the connection score remains
1, but the waiting time score is set to 0.5. The results are similar to E1, with the addition of
waiting time scores. For instance, in scenario Pr02, the waiting time score is 194, indicating
that the HM can incorporate waiting times when necessary. This flexibility allows the HM

Table 6 Result of E2 on the happiness model.

Code Activity Connection Waiting # POIs

Time (M) Scores Time (M) Scores Time (M) Scores

Pr02 227 125 384 384 389 194 19

Pr03 197 93 368 368 435 217 17

Pr04 223 120 382 382 395 197 19

Pr05 389 245 351 351 260 130 24

Pr06 304 145 371 371 325 162 24

Pr08 252 120 417 417 331 166 18

Pr09 222 120 464 464 314 157 20

Pr10 276 160 403 403 321 160 25

Table 4 Comparison results.

Experiment Connection Waiting Dataset

E1 1 0 Dataset 1

E2 1 0.5 Dataset 1

E3 Random 0 Dataset 1

E4 Random
2

0 Dataset 1

E5 1 0 Dataset 2

E6 1 0.5 Dataset 2

E7 Random 0 Dataset 2
Random

2
0 Dataset 2

Table 5 Result of E1 on the happiness model.

Code Activity Connection Waiting # POIs

Time (M) Scores Time (M) Scores Time (M) Scores

Pr02 227 125 384 384 389 0 19

Pr03 197 93 368 368 435 0 17

Pr04 223 120 382 382 395 0 19

Pr05 389 245 351 351 260 0 24

Pr06 304 145 371 371 325 0 24

Pr08 252 120 417 417 331 0 18

Pr09 222 120 464 464 314 0 20

Pr10 276 160 403 403 321 0 25
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to adapt to varying user preferences, addressing the limitations of traditional models that
treat waiting times as fixed costs.

Table 7 presents the outcomes of Experiment 3 (E3), where the connection score is
randomly assigned, and the waiting time score is set to 0. The results highlight the HM’s
ability to handle varying connection preferences. For example, in scenario Pr02, the
connection score drops to 214, but the HM still recommends 19 POIs, demonstrating its
robustness in optimizing itineraries under different conditions.

Table 8 shows the outcomes of Experiment 4 (E4), where the connection score is halved,
and the waiting time score is set to 0. The results indicate that the HM can generate
efficient itineraries even with reduced connection scores. For instance, in scenario Pr02,
the connection score is 110, but the HM still recommends 21 POIs, showcasing its ability
to balance multiple factors effectively.

Table 9 presents the outcomes of Experiment 5 (E5), applied to Dataset 2. The results
demonstrate the HM’s scalability and effectiveness across different datasets. For example,
in scenario Pr11, the HM recommends 19 POIs with a total activity score of 87 and a

Table 7 Result of E3 on the happiness model.

Code Activity Connection Waiting # POIs

Time (M) Scores Time (M) Scores Time (M) Scores

Pr02 227 125 413 214 360 0 19

Pr03 222 110 436 255 342 0 18

Pr04 220 117 396 292 384 0 18

Pr05 376 234 365 281 259 0 23

Pr06 298 141 468 294 234 0 23

Pr08 283 139 454 246 263 0 20

Pr09 268 150 415 295 317 0 23

Pr10 254 145 374 252 372 0 23

Table 8 Result of E4 on the happiness model.

Code Activity Connection Waiting # POIs

Time (M) Scores Time (M) Scores Time (M) Scores

Pr02 249 146 414 110 337 0 21

Pr03 197 93 443 110 360 0 17

Pr04 220 117 366 145 414 0 18

Pr05 376 234 367 108 257 0 23

Pr06 270 128 393 135 337 0 21

Pr08 252 120 446 133 302 0 18

Pr09 248 130 420 123 332 0 22

Pr10 254 145 457 143 289 0 23

Alatiyyah (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2837 21/35

http://dx.doi.org/10.7717/peerj-cs.2837
https://peerj.com/computer-science/


connection score of 394, highlighting its ability to handle larger and more complex
datasets.

Table 10 shows the outcomes of Experiment 6 (E6), applied to Dataset 2. The results are
similar to E5, with the addition of waiting time scores. For instance, in scenario Pr11, the
waiting time score is 200, indicating that the HM can incorporate waiting times even in
larger datasets.

Table 11 presents the outcomes of Experiment 7 (E7), applied to Dataset 2. The results
highlight the HM’s ability to adapt to random connection scores. For example, in scenario
Pr12, the HM recommends 5 POIs with a total activity score of 26 and a connection score
of 169, demonstrating its flexibility in handling diverse user preferences.

Table 12 shows the outcomes of Experiment 8 (E8), applied to Dataset 2. The results
indicate that the HM can generate efficient itineraries even with reduced connection
scores. For instance, in scenario Pr12, the connection score is 70, but the HM still
recommends 5 POIs, showcasing its ability to balance multiple factors effectively.

In this study, several simulated user scenarios have been conducted with diverse travel
preferences and experiences. The personalized itineraries generated by the HM for these
scenarios are checked based on the following aspects: How well did the itinerary align with
the provided preferences and interests? How well did the itinerary optimize the time and
resources and satisfy the overall travel experience? In fact, the obtained results were
overwhelmingly positive. The proposed HM generated highly relevant and personalized
itineraries that met the expectations. In addition, the proposed model has the ability to
optimize the time and resources, leading to a more efficient and enjoyable travel
experience. While the simulated user feedback provides valuable insights, it is important to
note that it does not replace real-world user studies. Further research is needed to gather
feedback from a larger and more diverse group of users to fully validate the HM’s
effectiveness in enhancing user satisfaction.

Table 9 Result of E5 on the happiness model.

Code Activity Connection Waiting #POIs

Time (M) Scores Time (M) Scores Time (M) Scores

Pr11 205 87 394 394 401 0 19

Pr12 82 41 201 201 717 0 7

Pr13 273 130 347 347 380 0 22

Pr14 309 173 259 259 432 0 24

Pr15 429 273 327 327 244 0 30

Pr16 324 162 345 345 331 0 26

Pr17 231 102 379 379 390 0 18

Pr18 287 141 350 350 363 0 21

Pr19 288 151 351 351 361 0 25

Pr20 324 184 313 313 363 0 29
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Remark 4. The ACO algorithm has a time complexity of OðN:M:KÞ, where N is the number
of ants, M is the number of iterations, and K is the number of POIs. On the other hand, the
space complexity is OðK2Þ, primarily due to the storage of pheromone levels and heuristic
values for all edges.

Summary of key findings
The results of experiments, presented in Tables 5–12, demonstrate that the proposed
Happiness Model effectively addresses the limitations of existing travel recommendation
systems by:

. Maximizing traveler satisfaction: The HM generates itineraries with high activity and
connection scores, ensuring a satisfying travel experience.

Table 11 Result of E7 on the happiness model.

Code Activity Connection Waiting #POIs

Time (M) Scores Time (M) Scores Time (M) Scores

Pr11 182 79 395 200 423 0 17

Pr12 51 26 268 169 681 0 5

Pr13 266 127 341 209 393 0 21

Pr14 292 160 340 241 368 0 23

Pr15 406 259 315 183 279 0 28

Pr16 298 141 377 227 325 0 23

Pr17 237 103 364 236 399 0 19

Pr18 290 144 330 216 380 0 22

Pr19 306 164 343 209 351 0 26

Pr20 324 184 351 205 325 0 29

Table 10 Result of E6 on the happiness model.

Code Activity Connection Waiting #POIs

Time (M) Scores Time (M) Scores Time (M) Scores

Pr11 205 87 394 394 401 200 19

Pr12 82 41 201 201 717 359 7

Pr13 273 130 347 347 380 190 22

Pr14 309 173 259 259 432 216 24

Pr15 429 273 327 327 244 122 30

Pr16 324 162 345 345 331 166 26

Pr17 231 102 379 379 390 195 18

Pr18 287 141 350 350 363 182 21

Pr19 288 151 351 351 361 180 25

Pr20 324 184 313 313 363 182 29
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. Minimizing waiting times: The HM incorporates waiting times as a key factor,
reducing idle time and improving efficiency.

. Adapting to user preferences: The HM can handle varying connection and waiting
time preferences, showcasing its flexibility and robustness.

. Scaling to larger datasets: The HM performs well on both Dataset 1 and Dataset 2,
demonstrating its scalability and applicability to real-world scenarios.

While many existing models, such as MOOP and MCTOPMTW, focus primarily on
optimizing the selection of POIs based on specific dimensions (e.g., total scores, distance),
the proposed model takes a broader approach. The proposed HM considers a wider range
of factors—such as multi-value (MV) connections, waiting times, and personalized travel
constraints—that are often overlooked in existing techniques. Thus, comparing these
models directly might be misleading as they address different aspects of travel planning.

Despite the differences in factors studied, the proposed HMmodel offers several distinct
advantages over existing approaches:

. Multi-value (MV) consideration for nodes and connections: Unlike models like
MOOP, which evaluate POIs based solely on scores or distances, HM incorporates
multiple attributes for each POI and the transitions between them (e.g., time, cost,
journey length). This multi-dimensional evaluation provides a more comprehensive
understanding of traveler satisfaction.

. Aggregation for traveler satisfaction: While MOOP focuses on maximizing benefits
within POI categories, HM aggregates multiple values into a single metric
representing the traveler’s overall satisfaction, factoring in elements such as time
spent at POIs, journey length, and costs.

. Personalization and waiting time consideration: One key limitation of models like
MOOP is the lack of support for personalization, such as waiting time, which is

Table 12 Result of E8 on the happiness model.

Code Activity Connection Waiting #POIs

Time (M) Scores Time (M) Scores Time (M) Scores

Pr11 195 81 355 94 450 0 18

Pr12 51 26 221 70 728 0 5

Pr13 266 127 371 113 363 0 21

Pr14 309 173 312 78 379 0 24

Pr15 397 251 331 112 272 0 27

Pr16 308 148 382 110 310 0 25

Pr17 231 102 401 111 368 0 18

Pr18 283 139 293 81 424 0 20

Pr19 306 164 363 96 331 0 26

Pr20 328 184 329 81 343 0 30
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crucial for travelers with reservations (e.g., flights, hotels). HM addresses this by
including waiting time as an essential factor, enhancing its suitability for real-world
travel scenarios.

. Handling multiple decision-making parameters: Unlike the more limited scope of
MOOP and MCTOPMTW, HM covers a comprehensive range of tourist
decision-making parameters by categorizing them into: Activities, Connections, and
Waiting Time.

This broader set of factors makes the proposed HM uniquely equipped to handle the
complexities of modern travel planning, unlike MOOP, which considers only multi-value
POIs without addressing connections or waiting time.

It is worth mentioning that the proposed HM differs from the existing models not only
in its handling of multiple values for POIs but also in its inclusion of transitions between
POIs and waiting time considerations. In contrast:

. HM provides a comprehensive approach by integrating multi-value POIs, multi-value
connections, and waiting time, offering a more comprehensive solution for travel
planning.

. MOOP lacks personalization and does not consider waiting time or multi-value
transitions, focusing only on maximizing benefits within POI categories.

. MCTOPMTW supports multiple constraints but lacks an effective aggregation
mechanism like HM’s traveler satisfaction metric, making it more complex and less
intuitive.

Although existing models such as MOOP and MCTOPMTW have certain strengths,
they are limited in scope. The proposed model provides a more comprehensive and
personalized approach by incorporating multi-value POIs, connections, and waiting time,
making it better suited to meet the needs of travelers in practical, real-world scenarios.

DISCUSSION
This section elaborates on the findings derived from the HM. It is important to note that
since no waiting option is provided for travelers between points of interest (POIs),
adjustments to the weighting of waiting time are unlikely to influence the outcomes.

In experiments E2 and E6, each instance of waiting has been assigned a value of 0:5.
Nevertheless, due to the algorithm’s omission of the waiting option, the outcomes are
primarily influenced by the activity and connection values. The trajectories of E2 and E6 are
identical to those in E1 and E5, with the primary distinction being the value assigned to
waiting time.

Tables 13 and 14 present a comparative analysis of varying preference values for waiting
times. Specifically, in scenarios E1 and E5, the waiting time is set to 0, whereas in scenarios
E2 and E6, the waiting time is set to 0:5. The primary conclusion drawn from these
comparisons is that differing waiting-time values do not influence the recommended
itinerary. This outcome is attributed to the assumption that travelers do not desire the
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option of waiting between activities. In other words, the model does not incorporate
waiting times between points of interest (POIs) for travelers. Nevertheless, the overall
waiting-time values fluctuate with varying waiting-time preferences. In conclusion, the
assumption that travelers do not prefer to wait between POIs implies that variations in
waiting-time preferences do not impact the suggested tour itinerary.

Table 15 presents a comparative analysis of the outcomes from various experimental
scenarios. Initially, it is observed that Experiment E1 includes at least 50% more POIs in
the recommended tour outcomes. This is attributed to the uniformity of connection values,
with all edges between POIs being assigned a value of 1, indicative of the highest
satisfaction level. Furthermore, the analysis reveals that Experiments E3 and E4 outperform
E1 with respect to minimizing waiting times. The underlying cause for E1’s relatively lower
performance compared to E3 and E4 is its incorporation of the longest paths between POIs,
as it accommodates user preferences for extended journeys between POIs. Additionally, E4
generates a tour characterized by a total connection time that is at least 50% longer, as it
selects shorter connection periods, thereby enabling the inclusion of more POIs within the
model.

Another salient aspect is that the HM is designed to customize tour itineraries in
accordance with user preferences. Empirical results indicate that the HM effectively fulfills
this objective. Figure 9 illustrates the comparative performance of the HM and the
TOPTW using an identical dataset (Dataset 2) and algorithm.

Table 13 Comparison results E1 and E2.

Experiment Code Activity Connection Waiting # POIs

Time (M) Score Time (M) Score Time (M) Score

E1 Pr02 227 125 384 384 389 0 19

E2 227 125 384 384 389 194 19

E1 Pr03 197 93 368 368 435 0 17

E2 197 93 368 368 435 217 17

E1 Pr04 223 120 382 382 395 0 19

E2 223 120 382 382 395 197 19

E1 Pr05 389 245 351 351 260 0 24

E2 389 245 351 351 260 130 24

E1 Pr06 304 145 371 371 325 0 24

E2 304 145 371 371 325 162 24

E1 Pr08 252 120 417 417 331 0 18

E2 252 120 417 417 331 166 18

E1 Pr09 222 120 464 464 314 0 20

E2 222 120 464 464 314 157 20

E1 Pr10 276 160 403 403 321 0 25

E2 276 160 403 403 321 160 25
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Figure 9 illustrates 4 trips based on several experiments (E5, E7, E8, and TOPTW). The
key difference among such experiments is the different preferences for the connections and
waiting scores. First, there are no intrinsically ‘good’ or ‘bad’ outcomes here (for E5, E7, E8,
and TOPTW) since each of these tours is tailored to individual user preferences (one user
may enjoy a certain tour while another may not). In general, the primary focus of RSs
(personalization) are addressed in which the proposed model assists users in receiving tour
recommendations that align with their specific preferences and needs.

Table 16 presents a comparative analysis of the outcomes of experiments E5, E7, E8, and
TOPTW. A key observation from the data is that the total number of Points of Interest
(POIs) included in each tour: E5 included 7 POIs, in which both E7 and E8 included 5 POIs.
Furthermore, the total connection time for E5 is notably lower than that of the other
experiments by a margin of at least 10%.

Table 17 delineates the recommended tour outcomes across various experimental
conditions. A particularly significant observation is that the results of E5 exhibit substantial
deviations from those of the other experiments, notably affecting the majority of the
suggested POIs. In contrast, E7, E8, and the TOPTW algorithm demonstrate a notable

Table 14 Comparison results E5 and E6.

Experiment Code Activity Connection Waiting # POIs

Time (M) Score Time (M) Score Time (M) Score

E5 Pr11 205 87 394 394 401 0 19

E6 205 87 394 394 401 200 19

E5 Pr12 82 41 201 201 717 0 7

E6 82 41 201 201 717 359 7

E5 Pr13 273 130 347 347 380 0 22

E6 273 130 347 347 380 190 22

E5 Pr14 309 173 259 259 432 0 24

E6 309 173 259 259 432 216 24

E5 Pr15 429 273 327 327 244 0 30

E6 429 273 327 327 244 122 30

E5 Pr16 324 162 345 345 331 0 26

E6 324 162 345 345 331 166 26

E5 Pr17 231 102 379 379 390 0 18

E6 231 102 379 379 390 195 18

E5 Pr18 287 141 350 350 363 0 21

E6 287 141 350 350 363 182 21

E5 Pr19 288 151 351 351 361 0 25

E6 288 151 351 351 361 180 25

E5 Pr20 324 184 313 313 363 0 29

E6 324 184 313 313 363 182 29
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degree of convergence, with E8 and TOPTW sharing approximately 66% similarity in their
recommended POIs.

Figure 9 provides line graph that visually compares the paths recommended by the
proposed happiness model and TOPTW for scenario Pr12 in Dataset 2. The figure
highlights the differences in the number of POIs visited, and demonstrates a superior
ability for the happiness model to personalize tour itineraries according to user preferences
when compared to TOPTW model.
Remark 5.While real-world user data is not currently available for this study, the proposed
HM is rigorously tested using publicly available datasets (e.g., OPTW and TOPTW). These
datasets include features such as time windows and visiting times, which simulate realistic
scenarios. Future studies will focus on validating the model with real-world data and user
feedback, ensuring its practical utility in real-life applications

Table 15 Comparing results for all experiments.

Code Experiment Activity Connection Waiting #POIs

Time (M) Score Time (M) Score Time (M) Score

Pr02 E1 227 125 384 384 389 0 19

E3 227 125 413 214 360 0 19

E4 249 146 414 110 337 0 21

Pr03 E1 197 93 368 368 435 0 17

E3 222 110 436 255 342 0 18

E4 197 93 443 110 360 0 17

Pr04 E1 223 120 382 382 395 0 19

E3 220 117 396 292 384 0 18

E4 220 117 366 145 414 0 18

Pr05 E1 389 245 351 351 260 0 24

E3 376 234 365 281 259 0 23

E4 376 234 367 108 257 0 23

Pr06 E1 304 145 371 371 325 0 24

E3 298 141 468 294 234 0 23

E4 270 128 393 135 337 0 21

Pr08 E1 252 120 417 417 331 0 18

E3 283 139 454 246 263 0 20

E4 252 120 446 133 302 0 18

Pr09 E1 222 120 464 464 314 0 20

E3 268 150 415 295 317 0 23

E4 248 130 420 123 332 0 22

Pr10 E1 276 160 403 403 321 0 25

E3 254 145 374 252 372 0 23

E4 254 145 457 143 289 0 23
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Figure 9 Comparison of HM and TOPTW paths based on Pr12 on Dataset 2.
Full-size DOI: 10.7717/peerj-cs.2837/fig-9

Table 16 Comparison results of scenario Pr12 in E5, E7, and E8.

Experiment Code Activity Connection Waiting # POIs

Time (M) Score Time (M) Score Time (M) Score

E5 Pr12 82 41 201 201 717 0 7

E7 Pr12 51 26 268 169 681 0 5

E8 Pr12 51 26 221 70 728 0 5

TOPTW Pr12 66 39 320 0 614 0 6
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Remark 6. The Happiness Model is designed to handle scalability through the integration of
the Item Constraints Data Model (ICDM) and use of an advanced optimization algorithms
such as Ant Colony Optimization (ACO). The ICDM model is employed to reduce data
dimensionality and search space. This can significantly improve the scalability of the model,
especially for large datasets. In addition, the ACO algorithm has been employed to handle
complex itineraries efficiently. As dataset size increases, the ACO algorithm adapts by
optimizing the search space through pheromone-based learning. The conducted experiments
show that the model scales effectively when applied to larger datasets such as those in the
TOPTW benchmark, with minimal loss in computational efficiency. For more complex
itineraries, where travelers wish to visit multiple POIs across multiple days, the model
maintains its efficiency by optimizing time and connection constraints simultaneously.
Future work will explore the use of parallel computing and cloud-based infrastructures to
further enhance scalability.
Remark 7. The Happiness Model (HM) faces several computational challenges, including
the complexity of the optimization problem and the computational demands for large
datasets or real-time applications. To address these challenges, an efficient ACO algorithm is
implemented and explored scalability improvements using the ICDM model. This
combination of strategies has made the HMmore practical and applicable for real-world use
cases.

CONCLUSION
A novel personalized happiness model has been proposed in this study to tailor
recommended trips based on individual traveler preferences. It is worth mentioning that
the proposed happiness model is the first dynamic model capable of successfully
customizing tour itineraries based on specific components of the trip, namely: activities,
connections, and waiting times. The experimental results indicate that the proposed model
significantly enhances the personalization of tour itineraries, outperforming existing
models in terms of both effectiveness and intuitiveness. Future works include extending
the proposed model to accommodate group travel preferences and dynamics, as well as
conducting extensive field experiments and user studies. Additionally, collecting
real-world user data and exploring alternative datasets are planned to be conducted to
further validate and improve the performance of the proposed model.

Table 17 Comparing the results of scenario Pr12 in E5, E7, and E8.

Experiment Scenario code Path

E5 Pr12 0 27 19 17 79 14 32 65 0

E7 Pr12 0 6 52 4 35 87 0

E8 Pr12 0 6 52 21 32 33 0

TOPTW Pr12 0 6 52 21 32 41 95 0

Alatiyyah (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2837 30/35

http://dx.doi.org/10.7717/peerj-cs.2837
https://peerj.com/computer-science/


APPENDIX
In this section, a detailed results for the recommended tour trips are provided. Tables A-1–
A-8 illustrate the full path for each experiments from experiment #1 to experiment #8 on
Dataset 1 and Dataset 2 as per the recommended trip.

Table A-1 The results of experiment #1 on Dataset 1; a full path for each scenario.

Code Path

Pr02 0>6>22>32>95>57>29>58>52>61>45>26>21>91>46>54>11>25>69>81>0

Pr03 0>69>62>139>5>104>29>82>59>93>33>128>123>18>22>25>43>63>0

Pr04 0>147>31>4>23>44>37>175>8>124>83>136>54>61>121>104>152>117>65>5>0

Pr05 0>44>80>29>81>211>4>154>75>157>193>11>91>203>142>235>187>20>55>35>197>181>28>9>32>0

Pr06 0>80>149>278>116>74>279>95>210>130>219>123>241>196>246>129>166>228>167>215>33>182>121>197>286>0

Pr08 0>117>87>108>68>125>77>132>106>133>127>109>102>140>10>42>23>28>19>0

Pr09 0>141>96>50>49>160>195>102>76>156>21>118>16>73>108>127>207>197>170>5>0

Pr10 0>19>103>206>246>263>108>251>22>277>92>201>192>100>179>233>17>177>173>144>129>274>157>118>14>54>0

Table A-2 The results of experiment #2 on Dataset 1; a full path for each scenario.

Code Path

Pr02 0>6>22>32>95>57>29>58>52>61>45>26>21>91>46>54>11>25>69>81>0

Pr03 0>69>62>139>5>104>29>82>59>93>33>128>123>18>22>25>43>63>0

Pr04 0>147>31>4>23>44>37>175>8>124>83>136>54>61>121>104>152>117>65>5>0

Pr05 0>44>80>29>81>211>4>154>75>157>193>11>91>203>142>235>187>20>55>35>197>181>28>9>32>0

Pr06 0>80>149>278>116>74>279>95>210>130>219>123>241>196>246>129>166>228>167>215>33>182>121>197>286>0

Pr08 0>117>87>108>68>125>77>132>106>133>127>109>102>140>10>42>23>28>19>0

Pr09 0>141>96>50>49>160>195>102>76>156>21>118>16>73>108>127>207>197>170>5>175>0

Pr10 0>19>103>206>246>263>108>251>22>277>92>201>192>100>179>233>17>177>173>144>129>274>157>118>14>54>0

Table A-3 The results of experiment #3 on Dataset 1; a full path for each scenario.

Code Path

Pr02 0>6>32>60>72>95>57>29>41>61>52>21>91>46>54>11>25>87>33>81>0

Pr03 0>69>39>62>17>5>104>29>82>59>93>33>128>123>18>22>25>4>12>0

Pr04 0>147>31>4>23>51>185>175>8>37>100>169>96>61>191>26>144>67>152>0

Pr05 0>44>8>24>116>29>102>188>183>105>165>18>132>79>85>182>30>198>64>225>121>28>9>32>0

Pr06 0>258>44>265>39>180>118>179>111>184>11>172>261>150>273>78>228>33>215>182>121>167>252>286>0

Pr08 0>117>87>125>77>139>108>134>132>65>24>92>1 >76>112>124>21>138>41>144>0

Pr09 0>171>180>59>105>42>138>113>204>179>65>108>16>121>127>73>207>5>170>51>116>181>74>175>0

Pr10 0>19>188>143>166>92>32>25>114>97>267>232>205>34>151>134>141>49>86>126>51>54>14>83>0
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Table A-4 The results of experiment #4 on Dataset 1; a full path for each scenario.

Code Path

Pr02 0>6>18>67>80>24>32>65>57>26>35>31>45>52>21>91>54>88>33>78>87>81>0

Pr03 0>69>39>87>17>139>52>88>80>26>71>107>43>22>123>18>25>4>0

Pr04 0>147>31>4>23>175>8>37>44>185>189>9>177>121>67>161>117>65>152>0

Pr05 0>44>80>29>81>231>115>59>102>188>183>105>132>85>182>212>30>64>198>136>108>9>32>103>0

Pr06 0>80>267>195>219>16>130>138>229>95>188>127>261>87>78>14>197>287>143>228>167>201>0

Pr08 0>117>87>108>68>77>125>56>135>54>123>24>92>81>144>71>111>28>101>0

Pr09 0>171>166>192>90>138>89>134>183>114>51>5>108>73>127>121>16>118>156>21>31>74>170>0

Pr10 0>19>263>108>181>115>253>158>243>27>2>258>72>155>242>71>59>101>285>156>208>6>152>128>0

Table A-5 The results of experiment #5 on Dataset 2; a full path for each scenario.

Code Path

Pr11 0>29>34>21>3>8>25>41>16>10>1>27>35>2>28>40>44>38>9>12>0

Pr12 0>27>19>17>79>14>32>65>0

Pr13 0>66>40>29>64>78>9>122>44>117>18>105>123>23>99>31>115>10>63>129>79>104>141>0

Pr14 0>114>96>60>35>179>174>26>88>76>178>180>9>168>120>139>84>91>95>138>184>25>85>147>183>0

Pr15 0>169>103>69>165>80>107>4>11>150>119>44>237>2>145>203>71>48>136>153>85>77>125>89>202>67>25>209>204>21>36>0

Pr16 0>124>149>230>128>121>30>33>215>228>106>139>81>167>182>122>143>197>287>34>159>116>78>137>261>216>69>0

Pr17 0>51>50>29>54>15>30>12>56>6>5>58>65>37>21>45>9>10>69>0

Pr18 0>118>75>70>9>133>7>89>63>41>138>11>36>88>116>115>8>14>93>48>50>82>0

Pr19 0>50>214>53>123>30>137>88>74>213>108>113>75>106>9>72>195>206>118>166>200>87>135>14>105>5>0

Pr20 0>58>246>205>27>101>114>105>277>220>144>173>20>8>208>196>279>2>256>159>124>89>85>138>179>228>56>12>241>181>0

Table A-6 The results of experiment #6 on Dataset 2; a full path for each scenario.

Code Path

Pr11 0>29>34>21>3>8>25>41>16>10>1>27>35>2>28>40>44>38>9>12>0

Pr12 0>27>19>17>79>14>32>65>0

Pr13 0>66>40>29>64>78>9>122>44>117>18>105>123>23>99>31>115>10>63>129>79>104>141>0

Pr14 0>114>96>60>35>179>174>26>88>76>178>180>9>168>120>139>84>91>95>138>184>25>85>147>183>0

Pr15 0>169>103>69>165>80>107>4>11>150>119>44>237>2>145>203>71>48>136>153>85>77>125>89>202>67>25>209>204>21>36>0

Pr16 0>124>149>230>128>121>30>33>215>228>106>139>81>167>182>122>143>197>287>34>159>116>78>137>261>216>69>0

Pr17 0>51>50>29>54>15>30>12>56>6>5>58>65>37>21>45>9>10>69>0

Pr18 0>118>75>70>9>133>7>89>63>41>138>11>36>88>116>115>8>14>93>48>50>82>0

Pr19 0>50>214>53>123>30>137>88>74>213>108>113>75>106>9>72>195>206>118>166>200>87>135>14>105>5>0

Pr20 0>58>246>205>27>101>114>105>277>220>144>173>20>8>208>196>279>2>256>159>124>89>85>138>179>228>56>12>241>181>0
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Table A-7 The results of experiment #7 on Dataset 2; a full path for each scenario.

Code Path

Pr11 0>20>8>21>3>42>45>24>23>46>26>10>1>13>7>38>22>28>0

Pr12 0>6>52>4>35>87>0

Pr13 0>82>118>53>29>64>33>49>105>125>44>117>18>4>2>95>81>15>48>16>70>74>0

Pr14 0>181>60>35>179>174>26>3>134>124>20>85>108>103>157>155>91>95>180>33>66>176>16>162>0

Pr15 0>216>53>117>230>135>218>11>80>123>78>192>48>120>150>119>24>49>125>40>193>176>2>25>209>204>154>174>179>0

Pr16 0>124>149>230>128>30>121>12>33>215>228>139>167>81>106>182>143>197>287>34>116>78>86>3>0

Pr17 0>43>51>50>29>23>54>22>32>30>36>35>37>15>60>61>45>9>10>69>0

Pr18 0>124>128>113>71>106>34>75>70>87>30>18>100>24>48>83>2>46>89>77>62>107>82>0

Pr19 0>50>214>53>123>27>63>192>166>80>83>74>213>108>13>148>203>201>186>49>175>8>9>72>149>14>23>0

Pr20 0>125>249>189>242>156>142>5>285>225>243>163>84>176>205>97>129>63>275>276>263>251>26>120>132>168>221>138>143>207>0

Table A-8 The results of experiment #8 on Dataset 2; a full path for each scenario.

Code Path

Pr11 0>20>8>21>3>42>27>35>2>29>43>37>7>30>9>26>33>22>28>0

Pr12 0>6>52>21>32>33>0

Pr13 0>134>29>24>111>107>26>13>82>4>2>95>44>117>18>7>130>61>86>58>70>74>0

Pr14 0>114>65>127>123>152>124>12>168>120>81>179>174>26>188>157>39>91>95>126>151>13>104>61>183>0

Pr15 0>216>211>150>215>120>184>80>117>231>11>182>163>165>62>74>107>49>88>75>119>77>36>79>142>61>149>193>0

Pr16 0>124>149>230>128>121>30>33>215>228>106>167>81>182>122>143>287>197>34>116>78>137>261>168>253>3>0

Pr17 0>5>47>44>43>63>35>1>22>32>30>62>15>60>61>45>9>10>69>0

Pr18 0>125>17>54>18>131>32>1>84>61>115>8>30>116>34>70>87>39>105>92>99>0

Pr19 0>131>107>88>117>184>76>80>35>50>214>116>96>195>206>137>49>8>9>72>165>105>5>68>58>21>93>0

Pr20 0>7>208>14>161>101>141>134>267>72>83>63>275>173>4>184>219>65>119>140>191>263>251>23>71>233>11>228>110>143>207>0
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