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ABSTRACT
In this article, we propose methods for simulating the detailed flow of dispersed
fire-flake particles in response to the movement of a flame, using chaotic advection
and various buoyant flow techniques. Furthermore, we utilize these techniques to
gather a synthetic dataset of detailed fire-flake particles and extend the solver to
represent the movement of fire-flake particles based on learning-based approaches.
Fire-flake particles not only exhibit unique and complex movements on their own,
but they are also significantly influenced by the movement of the flame and the
surrounding airflow. Modeling the flow of fire-flake particles realistically is
challenging due to their chaotic and constantly changing nature. Instead of explicitly
modeling the complex fire-flake particles in the flame based on fluid mechanics, this
article efficiently approximates the chaotic motion of fire-flake particles using two
approaches: 1) chaotic advection to simulate the flow and 2) controlled buoyant flow,
which varies based on the temperature and lifespan of the fire-flake particles.
Additionally, we collect a fire-flake dataset through this simulation and extends the
solver to learn the representation of fire-flake motion using neural networks. During
the advection process of fire-flake particles, a new stochastic solver is used to calculate
the subgrid interactions between them. In this article, not only we propose algorithms
that can express these techniques through numerical simulation, but we also extend
this solver using artificial intelligence techniques to enable learning representation.
By using the proposed technique, it is possible to efficiently simulate fire-flake
particles with various movements in chaotic regions, and it allows for more detailed
representation of fire-flake particles compared to existing methods. Unlike the typical
random walk approach that adds noise randomly to the movement, our method
considers the size and direction of the flame. This allows us to express fire-flake
particles stably in most scenes without the need for parameter adjustments.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation, Neural Networks
Keywords Fire simulation, Flame, Fire-flake particle, Chaotic advection, Buoyant flow, Learning
representation

INTRODUCTION
In various fire-related scenes, such as objects of different materials burning, engulfed by
flames, or leading to a bonfire, fire-flake particles appear. Particularly in movies,
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commercials, animations, and similar media, when flames rise upwards, numerous
fire-flake particles move in a complex and chaotic manner. Both flames and fire-flake
particles are the result of complex chemical reactions generated by combustion.
Macroscopically, the movement of fire-flake particles can be expressed based on fluid
mechanics, including buoyancy, air resistance, turbulence, and diffusion (see Fig. 1).

Recently, there has been a consistent emergence of techniques aiming to learn and
represent computationally expensive fluid simulations using neural networks (Li &
Farimani, 2022; Tumanov, Korobchenko & Chentanez, 2021; Ma et al., 2018). However,
not only fluid simulations, but also secondary effects such as air bubbles, splashes, foam,
and fire-flakes, which are represented by the movement of underlying fluids, become even
more computationally demanding and challenging to learn. The movement of underlying
fluids such as water and fire is typically represented using a grid-based Eulerian approach
as an approximation. However, training neural networks on a 3D grid requires a
significant amount of memory, making it challenging to generate high-resolution test
results.

Fire-flake particles, in general, exhibit complex and unpredictable dispersion or
movement at a microscopic level. This characteristic is also observed in air bubbles
represented within water. For air bubbles, they are represented by the flow within the water
and often focus on capturing the swirling motion that arises from the interaction between
the bubbles. On the other hand, fire-flake particles, being lighter than air and significantly
influenced by air resistance, exhibit relatively more chaotic and disorderly movement. The
complexity of fire-flake particle movement makes the simulation of dispersed fire-flake
flow even more challenging.

Methods combining the Eulerian surface tracking framework with multiphase fluid
solvers have been proposed to simulate the movement of particles. These techniques have
been utilized in the field of computer graphics to represent bubbles and fire-flake particles
(Hong & Kim, 2003, 2005; Song, Shin & Ko, 2005; Zheng, Yong & Paul, 2009). However, the
methods developed so far have represented the movement of fire-flake particles at a
relatively macroscopic level, mainly due to the numerical limitations of grid-based solvers.
To address this issue, a particle-particle interaction model based on smoothed particle
hydrodynamics (SPH) has been proposed (Müller et al., 2005; Cleary et al., 2007; Hong
et al., 2008;Mihalef, Metaxas & Sussman, 2009). Indeed, SPH involves direct computation
of particle-particle interactions, making it inefficient for simulating fire-flake particles that
are influenced by air resistance in chaotic regions. This problem not only affects
computational efficiency but also impacts the stability of the system, making it challenging
to utilize in high-quality real-time applications.

To reduce the computational burden, a multi-layer framework is sometimes employed
(Geiger et al., 2006). In this approach, multiple layers are added to represent effects such as
spray, mist, and foam. This technique is commonly utilized in real-time applications like
games and virtual reality (Qiu et al., 2017). However, since most of the approaches utilize
textures for each layer, the movement and rendering quality are limited, and it becomes
challenging to control them in a physically accurate manner. Moreover, the movement of
dispersed fire-flake particles is influenced by various interactions, such as particle-particle
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interactions, particle-flame interactions, air resistance, and movement within chaotic
regions. Thus, manually expressing these complexities is challenging for users.

In this article, we propose a novel framework to simulate the flow of dispersed fire-flake
particles in chaotic regions realistically and efficiently. Furthermore, we introduce a
learning component to the framework, enabling the system to learn the representation of
fire-flake particle movement. As mentioned earlier, the challenge in simulating such flows
lies in accurately representing the movement influenced by air resistance and the
disorderly motion observed in chaotic phenomena such as turbulence in multiphase fluids.
Additionally, calculating the interactions between fire-flake particles and integrating the
physical momentum from subgrid particles into the fluid solver is also a challenging
problem. There are approaches that model turbulence represented by the free surface
(Kim, Tessendorf & Thuerey, 2013; Mercier et al., 2015) or model the Rayleigh-Taylor
instability occurring when denser material penetrates into less dense material (Braileanu
et al., 2021). However, relying solely on these methods may not be sufficient to accurately
compute the detailed movement of fire-flake particles as observed in flames. Due to the
inherent difficulty in directly simulating and representing the movement of fire-flake
particles through governing equations, this article proposes a chaotic advection approach
utilizing various buoyant flows based on the temperature and lifespan of fire-flake
particles. In this article, instead of explicitly computing the boundary conditions between
different substances like flame and fire-flake particles, the average movement of dispersed
fire-flake flow is modeled using buoyancy based on a continuum approach. Our method
utilizes a grid-based solver that allows us to capture the interactions between fire-flakes as
well as the interactions between fire-flakes and the flame. Furthermore, to simulate the
complex interactions between fire-flake particles, we simulate the subgrid dynamics of the

Figure 1 An example of actual flames and fire-flakes. Full-size DOI: 10.7717/peerj-cs.2836/fig-1
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flame. We introduce a novel probabilistic approach specifically designed for this purpose.
In addition to the simulation approach, we extend the solver through the use of artificial
intelligence to learn and utilize the movement of fire-flake particles. By employing
machine learning techniques, the solver becomes more accessible, allowing users to easily
utilize it without needing in-depth knowledge of complex numerical analysis techniques.

The proposed method can be applied in real-time to detailed fire simulations for visual
effects (VFX) used in films, games, and metaverse content. Additionally, similar to how
previous methods applied flame simulation to wildfires, our approach can more accurately
model the propagation of wildfires due to fire-flakes (Hädrich et al., 2021; Kokosza et al.,
2024). Furthermore, as it can track the movement of flames and fire-flakes when human
intervention occurs during wildfire suppression, this method could potentially facilitate
analysis for predicting and combating wildfires more effectively.

In this article, the calculation of fire-flake particle movement is conducted through four
main processes: 1) To efficiently represent the global movement of fire-flake particles, we
utilize a continuum solver for the flame. 2) We employ a probabilistic chaotic advection
technique to represent the disorderly motion characterized by complex movements.
3) Based on the temperature and lifespan of fire-flake particles, we control the buoyant
flow to accurately capture the detailed scattering of fire-flake particles in the air. 4) To
facilitate learning, we construct a synthetic dataset using the new simulation approach and
extend the technique to encompass the generation, advection, removal of fire-flake
particles, allowing for a learning representation of their movement.

In previous approaches, fire-flakes were advected solely by the underlying flow of flame
motion. However, this approach alone is insufficient to reproduce the chaotic motion of
fire-flakes accurately. To address this limitation, external forces such as vorticity
confinement can be applied to particle interactions to artificially create vortex-like
behavior. However, this method merely simulates simple particle interactions and fails to
fully capture the irregular turbulence effects observed in real fire-flake motion.
Additionally, the movement of fire-flakes is influenced not only by flame motion but also
by the surrounding airflow, exhibiting a combination of buoyant rising motion and
dispersion in the air. This fundamental difference distinguishes fire-flake particles from air
bubbles commonly seen in water simulations. To effectively represent these characteristics,
this study introduces varying buoyant flows and chaotic advection techniques, proposing a
modeling approach that integrates numerical simulation with learning representation.

RELATED WORK
In this section, we explore the representation of various materials and fire simulations
using multiphase fluid simulations.

Multiphase fluid simulations
Hong & Kim (2003) introduced the Volume-of-Fluid (VOF) method to simulate bubble
dynamics. Following that, they utilized the ghost fluid method to capture the discontinuity
represented by physical properties at the bubble-liquid interface (Hong & Kim, 2005).
Song, Shin & Ko (2005) proposed a novel multiphase fluid solver to alleviate numerical
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dissipation issues that arise in gas-liquid simulations. Mihalef et al. (2006) applied the
Coupled Level-Set and Volume-of-Fluid (CLSVOF) method, initially proposed by
Sussman (2003) to simulate boiling water. Kim & Carlson (2007) also proposed a
framework for simulating boiling water in a simplified manner. Zheng, Yong & Paul (2009)
developed a regional level-set method to capture extremely thin bubble interfaces. Kim
et al. (2007) expanded on this research and proposed a volume control method for bubbles
and foam. Müller et al. (2005) developed a multiphase fluid solver based on the SPH
method. Cleary et al. (2007) proposed a technique for simulating bubbles and the liquid.
The aforementioned methods primarily focused on larger bubbles or dynamics related to
the bubble-liquid interface.

To capture the movement of smaller bubbles or fire-flake particles that are smaller than
the grid resolution, a hybrid approach can be employed, combining grid-based solvers with
the use of particles. Greenwood & House (2004) utilized the particle level-set method
(Enright, Marschner & Fedkiw, 2002) to handle escaped particles, which are particles
dispersed in the air. They converted these escaped particles into smaller bubbles. Hong
et al. (2008) extended the representation of escaped particles in a hybrid framework by
utilizing SPH method instead of discarding them. Similarly, Thürey et al. (2007) combined
SPH bubbles with a shallow water framework to simulate fluid behavior.Mihalef, Metaxas
& Sussman (2009) introduced a method for integrating a particle model into a grid-based
simulation using a marker level-set approach. Most existing methods have focused on
representing bubbles in water, and there has been relatively less research specifically
dedicated to modeling fire-flake particles represented by flames.

Fire simulations
In physics-based simulations, various methods have been proposed to represent realistic
flames. After the introduction of grid-based fluid simulations, similar approaches have
been proposed to compute the temperature field and represent flames (Melek & Keyser,
2002). Nguyen, Fedkiw & Jensen (2002) developed a novel modeling technique to represent
the velocity and pressure of flamesat the interface between combusted material and fuel.
Hong, Shinar & Fedkiw (2007) proposed a method to represent realistic flame patterns by
solving detonation shock dynamics based on curvature and coupling it with fluid
simulation.

Horvath & Geiger (2009) proposed a framework for fast representation of flame
simulations in screen space, leveraging the power of GPUs. Kim, Lee & Kim (2016)
proposed a method for controlling the movement of flames to achieve a target shape by
manipulating the temperature. There are studies that focus on representing visual
secondary effects resulting from explosions (Kawada & Kanai, 2011; Kwatra, Gretarsson &
Fedkiw, 2010). The methods mentioned earlier for simulating flames can generate velocity
and temperature fields that can be used for rendering, resulting in realistic visual effects.

Representing subgrid details in grid-based simulations is a critical research topic, and
the utilization of particles is an important approach to achieve this. Feldman, O’brien &
Arikan (2003) utilized particle-based methods to represent suspended particle explosions
resulting from detonations. Hong et al. (2008) proposed a particle-grid hybrid technique
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that can realistically represent the movement of air bubbles in water. In particular, they
introduced an SPH-based vorticity confinement technique, which enhances the realism of
air bubble movement (Hong et al., 2008). Zhao et al. (2009) implemented a fireworks
animation that moves according to a specified target shape using GPU-based techniques.
Kim et al. (2012) proposed a technique for controlling the path of moving air bubbles using
a sketch-based approach. Son et al. (2013) proposed a still-frame simulation technique for
representing fire effects as depicted in images. They focused on creating realistic fire effects
based on a given image but did not specifically address fire-flake effects. Kim et al. (2017)
aimed to model fire-flake particles that are influenced by the movement of the flame in a
manner similar to air bubbles. They simulated the movement of fire-flake particles using a
method similar to Hong et al.’s (2008) bubble dynamic. Despite the distinct differences in
the movement of fire-flake particles and bubbles, the results showed little disparity. Kim &
Lee (2019) proposed a framework that can analyze the flow of flame in a 2D image and
generate real-time fire-flake effects, which can be rendered in an interactive manner. Choi
et al. (2021) applied Kim et al.’s (2017)method to train an artificial intelligence model, but
the results showed fire-flake particles that were similar to a basic particle system rather
than capturing the complexity of actual fire-flake particles. These simulated fire-flake
particles were not sufficient for accurately depicting the intricate motion of fire-flake
particles dispersed in the air. Recently, Nielsen et al. (2019) proposed a physics-based
combustion simulation technique. While this method is comprehensive in modeling
various aspects of combustion, such as fuel combustion, chemical kinetics, radioactive
heating, flame propagation, soot formation, and oxidation, it does not explicitly address
the representation of fire-flake effects.

Recent studies have proposed several methods related to fire and flame simulation.
Nielsen et al. (2019, 2022) introduced a physics-based combustion simulation technique.
This method represents flames, temperature, and soot distribution more realistically than
previous approaches. It proposes a mathematical model for the thermodynamic properties
of real-world fuels, enabling predictions of adiabatic flame temperatures. Additionally, it
introduces a new heat transfer model that incorporates convection, conduction, as well as
radiative cooling and heating.

Hädrich et al. (2021) proposed a novel wildfire simulation approach aimed at
realistically representing the combustion process of individual trees and the resulting fire
propagation on a forest scale using flame simulation. They modeled each plant as a 3D
geometric model and suggested a combustion process for the plant considering effects like
heat transfer, char insulation, and mass loss. Kanyuk et al. (2023) presented a method to
control flame silhouettes using volumetric neural style transfer. Unlike traditional style
transfer, this method enhances the expressiveness of fire simulation for character
animation by exaggerating the visual appearance of flames. Kokosza et al. (2024)
introduced a novel approach to simulate the dynamic interactions among various
components of wildfires, including convection, combustion, and heat transfer processes
between vegetation, soil, and atmosphere. They also modeled fire ignition, generation, and
transport caused by embers, allowing for the simulation and rendering of ember transport
by wind, the impact of ground fires, and the effect of fire barriers.
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The methods mentioned above aim to represent natural flames or use style transfer to
exaggerate flame shapes for animation. While there have been studies utilizing flame
simulations to analyze and predict natural disasters caused by wildfires, there has been
little research focused specifically on the representation of fire-flakes. Since fire-flakes are
secondary effects that accompany fire simulations, they involve significant computational
demands. This article presents a framework that enhances visual detail and improves
efficiency through learning representation, focusing on the fire-flakes themselves.

PROPOSED FRAMEWORK
Underlying fluid solver
In this article, the flame is assumed to exhibit the characteristics of an incompressible
multiphase fluids flow, and the modeling is based on this assumption. The Incompressible
Navier-Stokes equations are expressed as equations of momentum conservation and mass
conservation (see Eqs. (1) and (2)).

ut þ u � rp=qð Þ ¼ r � lruð Þ=qþ f=q (1)

r � u ¼ 0; (2)

where u; p;q;l, and f represent velocity, pressure, density, viscosity, and external force,
respectively.

Furthermore, the radiational cooling rate, denoted as CTT4, is modeled as Nguyen,
Fedkiw & Jensen’s (2002) method, where CT is a user-selectable constant. This model
rapidly cools high-temperature regions but cools lower temperature regions relatively
slowly. Low-temperature regions should be cooled primarily through the temperature
diffusion term, represented as ~kr2T , where k is the thermal conductivity coefficient.
However, diffusion tends to smooth out temperature details, which may not be suitable for
applications aiming to preserve rich details in fire simulations. Therefore, for
low-temperature cooling, the Newton’s Law of cooling model is used, which also takes into
account the exponential decrease of the surrounding temperature in the vicinity (T = 0 in
our experiments). This is equivalent to replacing the temperature diffusion term ~kr2T
with an exponential decay term, denoted as �dTT , where dT is a user-controllable decay
coefficient. Taking all of these factors into account, the modified heat equation,
considering both heating and cooling effects, can be expressed as Eq. (3).

qT
qt
¼ �u � rT þ H

qCl
Fb � CTT

4 � dTT; (3)

where H represents the heating value of the fuel, indicating the amount of energy released
when a unit mass of the fuel is combusted. Gas fuel moves forward along the velocity field
and undergoes diffusion as it burns. The fuel behavior is modeled as Eq. (4).

qF
qt
¼ �Fb � u � rF þ lFr2F; (4)

where lF represents the fuel diffusion coefficient. If the temperature T is lower than
Tignition, the burn rate Fb becomes 0. In general, Fb is a function of stochastic air/fuel
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mixture, oxygen density, and burn rate of the fuel. In addition, Fb is assumed to be
constant, and this value is a user-defined constant used to control the combustion rate of
the fuel. In this article, the stable fluids method is employed to compute the above
equations (Stam, 1999) (see Fig. 2).

Fundamental force of fire-flake particles
In this article, the forces acting on fire-flake particles are modeled using four different types
(Kim et al., 2017): airflow force fair , drag force fdrag , lift force f lift , and buoyancy force fbuoy.
Each force is applied to each fire-flake particle to update its velocity (see Eq. (5)).

f ¼ fair þ fdrag þ f lift þ fbuoy: (5)

The most significant factor influencing the movement of fire-flake particles is airflow.
As defined in Eq. (5), the velocity field generated in the simulation space can realistically
represent the movement of fire-flake particles through vorticity control. Firstly, we
compute the airflow fair as follows, according to Eq. (6):

fairi ¼ kairvi; (6)

where kair is the coefficient related to the airflow velocity, and vi represents the interpolated
velocity obtained from the grid velocity, u. The interpolated position becomes the position
of a fire-flake particle.

Due to the very small mass of fire-flake particles, they exhibit chaotic movement in the
air. This kind of motion plays a crucial role in realistically representing fire-flakes and their
behavior. Hong et al. (2008) have utilized drag and lift forces to model the movement of
water droplets, and in this article, we adapt their method to suit the movement of fire-flake
particles (see Eq. (7)). In the air, the drag force acts as a resistance opposing the movement
of fire-flake particles, while the lift force is generated perpendicular to the surrounding

Figure 2 Underlying fluid simulations. Full-size DOI: 10.7717/peerj-cs.2836/fig-2
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airflow. This process is calculated using the velocity field and the temperature of the
fire-flake particles.

fdragi ¼ �kdragr2jvi � uijðvi � uiÞ; (7)

where kdrag represents the drag coefficient, vi is the velocity of the fire-flake particle, ui is
the grid velocity, and r is the radius of the fire-flake particle defined by the user.

The lift force is defined as Eq. (8).

f lifti ¼ �kliftViTiðvi � uiÞ � xi; (8)

where klift is the lift coefficient, Vi is the volume of the fire-flake particle, Ti is the
temperature of the fire-flake particle, and xi is the vorticity of the airflow around the
fire-flake particle: xi ¼ r� ui. The temperature of the fire-flake particle is obtained by
interpolating the grid temperature values.

The buoyancy force on the fire-flake particle is calculated considering the temperature,
as shown in Eq. (9).

fbuoyi ¼ kbuoyTifbuoy; (9)

where kbuoy is the buoyancy coefficient, and fbuoy represents the upward normalized vector.
Limitations of this approach. The above method is a modified algorithm based on

Hong et al.’s (2008) approach, Kim & Lee (2019), incorporating temperature
considerations. This method effectively represents fire-flake particles moving according to
the airflow. However, unlike air bubbles in water, near the flame, there are turbulent
interactions between fuel and air that give rise to chaotic movements. The above method
may not be sufficient to accurately represent these intricate details. The complex airflow
caused by the flame sometimes exhibits movements that are not fully captured by
buoyancy alone, as it also involves viscous behavior. Fire-flake particles, in addition to
being influenced by the air, exhibit various velocities and momenta, which can sometimes
result in a velocity field that appears to include viscosity-like effects.

Generating fire-flake particles
Generally, fire-flake particles are generated by external forces applied to carbon-based fuels
or through the injection of air. Small pieces that detach from carbon-based fuels are hot
enough to self-combust and light enough to float in the air, appearing as small red spots
known as fire-flake particles. In the boundary region where fire-flake particles are
generated, there is relatively high volatility due to changes in temperature and velocity. In
this article, an energy function is used to predict locations where the temperature is
sufficiently high and where there is a possibility of abrupt changes in velocity and
temperature (see Eq. (10a)).

Ei ¼ Et
i þ Ek

i (10a)

Et
i ¼ ktTi (10b)

Ek
i ¼

1
2
qv2i ; (10c)
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where Et represents thermal energy, kt is the heat capacity coefficient, Ek denotes kinetic
energy, and q stands for density. As a result, in regions where the temperature exceeds
kappat and the temporal energy change surpasses kappae, there is a higher likelihood of
fire-flake particle generation. To identify such regions, we utilize Eq. (11).

qE
qt

> je ^ Et > jt; (11)

where jt and je are user-specified threshold values, and in this article, we set them to 2.0
and 0.6, respectively, based on multiple experiments. All the regions identified through
Eq. (11) will generate fire-flake particles, but the ones that fall outside the specified
generation range need to be handled separately. By modifying jt;e, this problem can be
alleviated, and this approach uses a randomization method to avoid a monotonous
generation pattern. This approach is similar to the method proposed by Kim et al. (2017)
(see Eq. (12)).

C ¼ ði; j; kÞjCcons > d; ði; j; kÞ 2 RN�N� �
(12a)

Ccons ¼ R
EkEt

maxðEk
0;…Ek

N�1ÞmaxðEt
0…Et

N�1Þ
� �

; (12b)

where R is a uniformly distributed random number in the range [0,1], and d is a
user-specified threshold. In this article, delta is set to 0.15.

Varying buoyant flows to preserve detail
In this section, we aim to represent the influence of turbulence caused by the airflow, such
as multiphase fluids, by modeling a new form of buoyancy (see Eqs. (13) and (14)).

fbuoy
0

i ¼ kbuoyTifbuoyg (13)

gtþDt ¼ gt þ
1
2
m jvj jj2 � e; (14)

where g represents the lifespan of fire-flake particles, and e is the damping coefficient. g is
integrated with the buoyancy to model various forms of buoyancy fields. In this article, g is
set to 0.04. Generally, the lifespan of fire-flake particles is constant. However, in this article,
a different method for its calculation is employed: The design involves accumulating the
kinetic energy of fire-flake particles while subtracting by a threshold value e (more detailed
explanation is mentioned in “Proposed Framework”). In this article, buoyancy has been
adjusted to be proportional to the temperature and lifespan of fire-flake particles. By doing
so, the buoyancy was realistically modeled, resulting in more accurate movement
compared to the previous approach that treated buoyancy as a constant. In chaotic regions,
particles exhibit a wide range of velocities and momenta. Therefore, in this article, the
buoyancy magnitude is controlled through the temperature and lifespan to represent these
characteristics. As a result, fire-flake particles with low temperature and short lifespan have
minimal momentum and a high likelihood of disappearing. Therefore, their movement is
characterized by a minimal application of buoyancy.
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In addition, this article introduces the following forces to capture the motion of
fire-flake particles scattering in the air due to turbulence (see Eq. (15)).

fvorticityi;j ¼ e N� x
xj j

� �
qigiTi: (15)

The vorticity is calculated at the midpoint between two adjacent fire-flake particles:
x ¼ r� v. The position vector of the vorticity is calculated as follows: g ¼ mipiþmjpj

miþmj
� pi,

this value is normalized before being used: N ¼ g
gj j. As a result, the vorticity is expressed

more strongly when the temperature of fire-flake particle is high and its lifespan value is
large.

Chaotic advection for subgrid fire-flake dynamics
In this section, we propose a probabilistic solver to implement the chaotic advection of
fire-flake particles. Many natural phenomena, such as cloud motion, wave turbulence, ink
droplets diffusing in water, and the movement of fire-flake particles, exhibit chaotic
behavior. In this article, Gaussian random numbers are used to model the advection of
fire-flake particles, aiming to represent these chaotic movements and behaviors. Rising
fire-flake particles create waves and interact with other particles in the air, generating
chaotic fluid dynamics. In theory, accurately capturing the vortices and flow generated by
each fire-flake particle would be ideal. However, this approach can be computationally
inefficient due to the consideration of the diverse environmental factors and
high-resolution micro fire-flakes that occur in chaotic regions. Instead, we model this
phenomenon using a discrete random walk. As shown in Fig. 1, fire-flake particles are
scattered due to turbulence generated between the fuel and air. To model this process, a
probability function s is used to represent the likelihood of dispersed movement. This
function is defined as Eq. (16).

si ¼ uð1� TiÞvi þ dgi; (16)

where u is the user-specified dispersion coefficient which is set to 0.25, d is the weighting
coefficient for the random walk, and 1� Ti represents the gas fraction. After updating the
velocity for each fire-flake particle, the value of s is measured. Due to the individual
temperature of each fire-flake particle being relatively lower than the grid temperature, gi is
introduced to track the movement of fire-flake particles dispersed into the air. When
fire-flake particles disperse into the air, their velocity and temperature become very weak.
In this case, gi can be used to compute a new direction for their movement. This can be
represented as Eq. (17), which depicts a probabilistic random number based on Gaussian
random.

g:x ¼ grand
w� 1

; g:y ¼ grand
w� 1

: (17)

In general programming languages, there is a built-in pseudo-random number
generator that generates numbers at regular intervals. Most generators use the linear
congruential or power residual methods to represent pseudo-random numbers in the
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range between 0 and 1, and they are widely used in many researches. In this article, the
following steps are taken to calculate the probabilistic solver: 1) Seed initialization,
2) Generation of Gaussian random numbers, and 3) Calculation of probabilistic
movements.

In the seed initialization process, the variables required for Gaussian random number
generation are initialized using Eq. (18).

gaddition  
ffiffiffiffiffi
3f

p
; gfractal  2gaddition

fm
; (18)

where m represents RAND MAX, and f is the weight for the random number, which is set
to 4 in this article.

Gaussian random numbers are generated using Eq. (19).

grand ¼ gfractal
Xf
i¼0

randðÞ
 !

� gaddition; (19)

where f is the weight value for the previously set random number.
We utilize Eq. (16) to set different conditions for advecting fire-flake particles,

depending on the specific requirements. 1) If the magnitude of the velocity of fire-flake
particles is greater than the threshold value of 0.1, we set d to 50. 2) If the magnitude of the
acceleration of fire-flake particles is greater than the threshold value of 0.2, we set delta to 5.
Finally, si is added to vi, and we update the position through Euler integration.

Figure 3 shows the result of applying s when fire-flake particles move in the X-axis
direction due to external forces. The zigzag patterns of fire-flake particles representing
chaotic behavior are well-captured. The results of this method are similar to the air bubble
representation proposed by Kim, Song & Ko (2010). In the previous method, a probabilistic
approach was used to simulate the movement of micro-scale bubbles, but it resulted in an
excessive representation of zigzag motion, leading to noisy results. Our method better
represents the characteristics of fire-flake, such as the chaotic movement due to air
resistance, compared to the previous technique (see Fig. 3). When attempting to achieve a
more accurate numerical approximation of the complex movement of fire-flake particles,
not only does the computational workload increase significantly, but numerical instability
can also arise during the discretization process, leading to frequent cases of simulation
failure. In order to improve computational efficiency and numerical stability, this article
utilized a random-based probabilistic model.

SOLVER EXTENSIONS
In this section, we will describe several extension techniques to represent the simulation
algorithm we have discussed so far using artificial intelligence for learning. 1) The
generation of fire-flake particles, represented within the grid, is learned through a
classification model using artificial neural networks. 2) The movement of fire-flake
particles is predicted through learning based on a polynomial regression model. 3) By
training the deletion of fire-flake particles using a network-based approach, it becomes
easier to control the behavior of fire-flake particles in various scenes. As a result, by using
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the proposed simulation technique, we were able to construct a dataset for fire-flake
particles. This approach allowed us to represent fire-flake effects based on the movement of
the flame without the need for complex mathematical or physical theories. The
experimental results demonstrated the ease and effectiveness of our method in expressing
fire-flake effects. In the artificial neural network, the network for fire-flake generation and
the network for movement inference are trained independently. The training data
undergoes a preprocessing step to be suitable for training the network before being applied
to the network. After the training is completed, the test results for each model are
visualized.

Figure 3 The zigzag path of a fire-flake particle. Full-size DOI: 10.7717/peerj-cs.2836/fig-3
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Learning for fire-flake generation
In this article, the density, temperature, and velocity obtained from grid-based flame
simulation are used for network training to determine whether to generate fire-flake
particles. The resolution of the simulation grid for creating the dataset was set to 256 �
256, and for each node, the decision of whether to generate fire-flake particles or not was
indicated using a flag. The training is conducted over the entire grid, but in the end, only a
very small portion of the nodes actually have fire-flake particles generated compared to the
total number of nodes (see Fig. 4). Using such imbalanced data can lead to biased learning
and make it challenging to accurately infer the generation of fire-flake particles. To address
this issue, in this article, we refine the necessary data for classification training through the
ghost cell and 1:1 sampling process.

Ghost cell is a method where padding is added to the grid containing fire-flake particles,
and it sets the surrounding grid cells as valid values. However, as mentioned earlier, this
can lead to the problem of data asymmetry and ultimately become a hindrance to proper
learning. Although using ghost cells allows us to temporarily increase the number of valid
cells by acquiring additional surrounding cells, it is still insufficient compared to the total
number of nodes. Hence, in this article, we utilize the 1:1 sampling technique to address
this issue. By equalizing the number of data samples for each class in the classification
model through 1:1 sampling, we prevent biased learning caused by imbalanced data
distribution. For example, if there are 350 nodes with fire-flake particles and 900 nodes
without fire-flake particles, we use random sampling to adjust the number of nodes
without fire-flake particles to 350, achieving a 1:1 ratio between the two classes.

Figure 4 Regions where fire-flake particles are generated through simulations.
Full-size DOI: 10.7717/peerj-cs.2836/fig-4
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After the preprocessing and refinement process mentioned earlier, the data is used to
train the network for fire-flake generation. The fire-flake generation network model
consists of four layers, and the activation functions used are Leaky ReLU and Softmax (see
Fig. 5). The negative slope used in Leaky ReLU is 0.1, and the results were similar to those
obtained using ReLU and Tanh functions. As seen in Fig. 6, the results of the three
activation functions are similar. Therefore, in this article, Leaky ReLU and Softmax were
used as the activation functions. In Fig. 6, the sky-blue area represents the flame, and the
red area represents the inferred positions where fire-flake particles should be generated

Figure 5 Generator network of fire-flake particles. Full-size DOI: 10.7717/peerj-cs.2836/fig-5

Figure 6 Generation regions of fire-flake particles predicted using various activation functions (sky
blue: flame, red: generation region). This result is a filtered figure for a clearer visualization: (A) ReLU,
(B) Leaky ReLU, (C) Softmax. Full-size DOI: 10.7717/peerj-cs.2836/fig-6
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using the trained network. Adam was used as the optimizer, and optimization of 9,661
epochs was performed. During this process, the loss was measured to be 0.25.

Learning for fire-flake advection
In this section, we introduce a network that predicts the movement of fire-flake particles.
The proposed model doesn’t directly infer the current velocity of fire-flake particles, vi, for
the current frame. Instead, it predicts the change in velocity, Dv�i , for the fire-flake particles
using artificial intelligence. The input feature vector includes the flame velocity of the node
where the fire-flake particle exists, as well as the flame velocities of adjacent nodes.
Additionally, it incorporates the velocity of the corresponding fire-flake particle. In this
case, adjacent nodes refer to the nodes located in the 2D space directly above, below, to the
left, and to the right of the current node. The network for fire-flake particle advection has
one additional layer compared to the generator network. It employs ReLU as the activation
function and uses the least squared error (LSE) as the cost function for updating the
weights (see Eq. (20) and Fig. 7).

L ¼
X
i¼0
jDvi �Mij jj2; (20)

where Dvi is computed as follows: vtþDt � vt . Mi represents the output of the advection
network. The difference in velocity changes is applied to the cost function to update the
weights.

We determine the generation location of fire-flake particles through the fire-flake
generation network. After obtaining the velocity change of the fire-flake particle, Dv�,
through the advection network, we then update the position of the fire-flake particle using
Euler integration (see Eq. (21)).

vtþDt ¼ v�t þ Dv�Dt
ptþDt ¼ pt þ DvtþDtDt;

(21)

where v�t represents the interpolated velocity from u, and the interpolated position is p.
Adam was used as the optimizer, and optimization of 897 epochs was performed. During
this process, the loss was measured to be 0.19. Figure 8 represents the fire-flake particles
that have been modeled through the training of the two neural networks mentioned earlier.
The figure clearly depicts the generated positions and movements of fire-flake particles
that have been learned through the training process.

Learning for fire-flake removal
In the simulations conducted in this study, the lifespan of fire-flake particles was designed
by accumulating the particle’s kinetic energy while subtracting a threshold e (see Eq. (13)).
Fire-flake particles with a negative lifespan were removed, resulting in the elimination of
particles with low kinetic energy in the process.

The above process can also be controlled through network training. The lifespan of a
fire-flake particle is associated with its velocity, so we added a network that takes the
velocity and kinetic energy of the fire-flake particle as input vectors. The output of this
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network is used to infer the lifespan of the particle. The network architecture is similar to
the advection network. In this study, particles with a lifespan below 0 were removed, and
by controlling this threshold value, the number of fire-flake particles can be adjusted. In
the neural network designed to remove fire-flake particles, the input data includes the
velocity of the fire-flake particle (v) and the grid velocity (u), where the grid velocity

Figure 7 Advection network of fire-flake particles. Full-size DOI: 10.7717/peerj-cs.2836/fig-7

Figure 8 Generating fire-flake particles in rising smoke simulation with our method.
Full-size DOI: 10.7717/peerj-cs.2836/fig-8
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represents the velocity of the node to which the fire-flake particle belongs. The target data
for the neural network consists of the acceleration and lifespan of the fire-flake particles. In
this process, the dataset used to train the lifespan includes the same issue of inhomogeneity
that was present in the dataset from the generator network. In this article, similar to the
mentioned approach, the active fire-flake particle data and the deleted fire-flake particle
data are refined to maintain a 1:1 ratio for network training.

EXPERIMENT AND RESULTS
To produce the results of this study, we utilized a computer equipped with an Intel Core i7-
7700K CPU, 32 GB RAM, and a GeForce GTX 1080Ti GPU. In this article, we proposed a
stochastic-based chaotic advection method and various buoyancy flows to efficiently
represent the movement of dispersed fire-flake particles by the flame and the detailed
fire-flake flow. Furthermore, we extended the solver to enable the representation of these
methods through AI-based learning. In this article, we validate the efficiency and the
improved visual quality of the proposed method through experimentation and analysis
using several scenarios. The experimental results are analyzed from two perspectives:
simulation and artificial intelligence.

Simulation results
In this section, the results generated through the proposed simulation technique are
analyzed and compared with previous methods. Figure 9 compares the differences between
our method and the previous method in simulating the rising flame driven by buoyancy in
the simulation results. A grid resolution of 256� 256 was used to represent the flame, with
a time-step of 0.1. Additionally, vorticity confinement (Fedkiw, Stam & Jensen, 2001) was
applied in the simulation process.

Around the initial frames, approximately at the 37th frame of the simulation, fire-flake
particles are generated near the boundaries of the flame. In Kim et al.’s (2017)method, the
temperature of fire-flake particles gradually decreases, leading to the lack of dispersed
movement. These particles primarily follow the motion of the flame, resulting in the
limited representation of chaotic fire-flake behavior (see Fig. 9B). In our method, even in
regions with lower temperatures, the dispersed movement of fire-flake particles is relatively
distinct (see Fig. 9A).

Unlike air bubbles, fire-flake particles exhibit highly dynamic movements in chaotic
regions. For example, bubbles underwater rise due to buoyancy and can interact with each
other, leading to the merging or splitting of bubbles (Hong et al., 2008). However, these
phenomena often depend heavily on the underlying flow, as they occur underwater. In the
previous method as well, the movement of fire-flake particles depended on the flows of
underlying fluids, making it challenging to represent the dispersed movement of fire-flakes
in the air. Figure 10 illustrates the visualization of fire-flake particles being dispersed by the
air in the results generated using our method. The pink particles represent the fire-flake
particles dispersed by the air, and in this case, their movement is influenced more by g than
by v.
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Figure 11 visualizes the velocity of the fire-flake particles. The figure shows a mixture of
movements with varying velocities, and this diversity in velocities contributes to capturing
the intricate details of the fire-flake particles’ behavior. In the previous method, fire-flake
particles exhibited similar-sized and directional velocities in adjacent positions. However,
in our method, the presence of diverse sizes and directions allows for the representation of
chaotic movements, enabling a more realistic results.

Figure 12 illustrates the fire-flake effects generated from the flame’s lateral movement
when the fuel is not fixed but moves from side to side. The fire-flake particles were
generated in accordance with the sharp deformation of the flame’s shape due to lateral
movement. They effectively captured the upward dispersion as the flame rises. Figure 13
represents the dispersed particles as shown earlier, using colors to visualize their
distribution. Our method effectively captured the complexity of motion within the
dispersed fire-flake particles even in sharp and thin flame structures.

Figure 9 Comparison of rising-flame results (orange particle: fire-flake, frame number: 37, 65, 92):
(A) Our method, (B) Previous method. Full-size DOI: 10.7717/peerj-cs.2836/fig-9
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Figure 14 illustrates fire-flake particles generated from a burning flame fueled by a thin
layer of fuel, differing from the previous scenarios with thicker flames. In scenes like Figs. 9
and 12, the injected fuel is relatively thick, resulting in a prominent flame. Conversely,
Fig. 14 shows a flame that converges towards the center and rises weakly, leading to less

Figure 11 Visualizing the velocity of fire-flake particles. Full-size DOI: 10.7717/peerj-cs.2836/fig-11

Figure 10 Fire-flake particles with different movements in chaotic region. Full-size DOI: 10.7717/peerj-cs.2836/fig-10
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Figure 12 Moving box-shaped flame. Full-size DOI: 10.7717/peerj-cs.2836/fig-12

Figure 13 Fire-flake particles with different movements in chaotic region. Full-size DOI: 10.7717/peerj-cs.2836/fig-13
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turbulent motion and consequently causing the fire-flake particles to move with less
dispersion. The method proposed in this article does not unconditionally disperse fire-
flakes. Instead, it considers the shape of the flame. This characteristic enables the
generation of realistic fire-flake particle movements in various scenes.

Figure 15 depicts a rising flame interacting with obstacles. In this scene, we aim to
observe two key features: 1) The movement of fire-flake particles when the temperature
drops rapidly, and 2) the movement of fire-flake particles due to the interaction between
the flame and obstacles. After colliding with the rectangular obstacle, as the temperature
of the flame decreases, the movement of most fire-flake particles is significantly influenced
by the stochastic advection method g, which takes into account random walk behavior. In
this scene, most of the fire-flake particles are dispersed into the air without being strongly
influenced by the movement of the flame (see Fig. 15A). In the previous method, even
though it’s the same scene, fire-flake particles were hardly represented (see Fig. 15B). In the
previous method, fire-flake particles were generated at the collision points between the
flame and obstacles due to the impact, but they were subsequently confined to certain areas
due to the continuous inflow of the flame. This characteristic was evident in both the
movement and velocity of fire-flake particles (see Fig. 15B).

Figure 16 illustrates a scenario where flames are ignited from spherical-shaped fuel
injected at random positions. In this scenario, we aim to observe the movement of
fire-flake particles dispersing into the air as a result of the rapid injection of fuel over a
short period. When fuel is injected from various positions, turbulent flows are generated
not only in the area where the flame is located but also in its surroundings. As a result of
these turbulent interactions, distinct chaotic regions become apparent. Our method
demonstrated that even after the flame disappears, fire-flake particles maintain a dispersed
pattern in the air (see Fig. 16A). In contrast, the previous method exhibited a behavior
where fire-flake particles seemed to closely follow the flame, sticking to it (see Fig. 16B). In

Figure 14 Fire-flake particles from thin flame. Full-size DOI: 10.7717/peerj-cs.2836/fig-14
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the previous method, the movement of fire-flake particles relied solely on the movement of
the flame, resulting in a lack of representation of intricate details within the chaos regions.
Instead, the particles exhibited simplistic movements resembling a particle system. This
behavior was also evident in the velocity of fire-flake particles (see Fig. 17B). However, our
method captured the intricate movements of fire-flake particles using various buoyancy
flows and stochastic advection techniques (see Fig. 17A). This capability enabled the
representation of details that would be challenging to express solely through a simple
random walk approach.

Figure 15 Flames rising from interaction with obstacles (blue particle in inset image: fire-flake, line:
velocity of fire-flake particle, frame number: 32, 70). This figure has been subjected to contour filtering
for clearer visualization of the results: (A) Our method, (B) Previous method.

Full-size DOI: 10.7717/peerj-cs.2836/fig-15
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Figure 16 Spherically shaped flame injected from random positions: (A) Our method, (B) Previous method.
Full-size DOI: 10.7717/peerj-cs.2836/fig-16

Figure 17 Visualizing the velocity of fire-flake particles: (A) Our method, (B) Previous method.
Full-size DOI: 10.7717/peerj-cs.2836/fig-17
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Learning results
In this section, we present the results generated by extending the simulation technique’s
solver with neural networks. We examine whether the results obtained through learning
exhibit similar quality of representing fire-flake particles as the previously presented
results.

Figure 18 shows the movement of fire-flake particles generated from the rising flame,
learned through neural networks. Compared to the previous method where fire-flake
particles tended to move closely to the flame (see Fig. 9B), the results obtained through
AI-based learning effectively represented dispersed movement. When comparing the
results obtained through our proposed simulation technique for representing fire-flake
particles (see Fig. 9A) with the AI-based learning results, we can observe that the AI-based
results generally exhibited a somewhat stronger dispersed flow. However, overall, the
AI-based results closely resembled those achieved through the simulation technique.

Figure 19 illustrates the fire-flake flow learned through neural networks for the scene
depicted in Fig. 12. In this scene, the complex fire-flake flow that emerges while rising is
well represented, and it effectively captures the intricate movement of fire-flake particles in
chaotic regions, similar to what is seen in Fig. 13. As observed in the previous result, this
one also exhibits a more pronounced dispersed flow compared to the simulation
technique. The enhanced dispersed flow of fire-flake particles through learning is
attributed to the fact that the influence of g was strengthened, rather than simply
dispersing all particles. In the Fig. 19, it’s evident that there are fire-flake particles that are

Figure 18 The movement of fire-flake particles generated from the rising flame, learned through neural networks.
Full-size DOI: 10.7717/peerj-cs.2836/fig-18
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strongly influenced by the flame, while other particles are dispersed without such direct
influence. These results demonstrate that through learning, it’s possible to represent not
only fire-flake particles strongly influenced by the flame’s movement but also particles
dispersed in the air.

Figure 20 illustrates the fire-flake flow learned through neural networks for the scene
depicted in Fig. 14. The generated fire-flake particles align well with the shape of the
converging flame, accurately capturing both the fire-flake flow near the flame and the
dispersion of particles into the air. The results of deleting fire-flake particles through
learning with neural networks also appear to be handled naturally.

Figure 21 illustrates the fire-flake flow learned through neural networks for the scene
depicted in Fig. 15. The representation of fire-flake particles dispersing according to the
fire-flake flow, rather than clustering due to obstacles, is well captured in the results (see

Figure 19 The movement of fire-flake particles generated from moving box-shaped flame, learned
through neural networks. Full-size DOI: 10.7717/peerj-cs.2836/fig-19
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Fig. 15A). Unlike the previous method where fire-flake particles struggled to move
properly due to clustering (see Fig. 15B), our method through learning presents natural
movements similar to the simulation technique (see Fig. 21).

Figure 22 illustrates the fire-flake flow learned through neural networks for the scene
depicted in Fig. 16. The dispersed flow in chaotic regions, as well as the fire-flake flow
influenced by the shape of the flame, are both accurately and naturally represented in our
results.

Figure 20 The movement of fire-flake particles generated from blazing flame, learned through neural networks.
Full-size DOI: 10.7717/peerj-cs.2836/fig-20

Figure 21 The movement of fire-flake particles generated from blazing flame and solid interaction, learned through neural networks.
Full-size DOI: 10.7717/peerj-cs.2836/fig-21

Kim and Lee (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2836 27/44

http://dx.doi.org/10.7717/peerj-cs.2836/fig-20
http://dx.doi.org/10.7717/peerj-cs.2836/fig-21
http://dx.doi.org/10.7717/peerj-cs.2836
https://peerj.com/computer-science/


The generator network for fire-flake particle generation consists of three layers with 15,
5, and 2 nodes, respectively. In contrast, the advection network comprises four layers with
30, 24, 12, and 3 nodes. Both networks use the ReLU activation function and apply weight
decay. The ADAM optimizer was used, and each network was trained independently. The
learning rate was set to 10�5 for the generator network and 10�4 for the advection network.
Each network was trained with 50,000 batches, using 10,000 training steps for the
generator network and 300,000 training steps for the advection network.

The hyperparameters used in this study were not optimized through network training
but were empirically tuned. Additionally, the reason for proposing fire-flake particle
motion not only through numerical simulation but also via learning representation was to
demonstrate that our method can be easily used without requiring expertise in complex
numerical analysis.

DISCUSSION AND SCALABILITY
In this section, we perform a comprehensive comparative analysis of our proposed method
from various perspectives and assess its scalability and efficiency.

Comparative experiments
Subgrid dynamics for representing fire-flake flow
In terms of enhancing subgrid details through a stochastic solver, our method is similar to
the bubble dynamics proposed by Kim, Song & Ko (2010). In their approach, to express the
zigzag patterns of bubbles, they introduced a random walk-based motion influenced by
buoyancy for adding details. However, the trembling motion aimed at lively representation
of bubbles differs somewhat from the characteristics of fire-flake flow.

Figure 23 presents a comparison of the movement of dispersed bubble flow based on the
dynamics of previous research and the movement of fire-flake flow using our method. The

Figure 22 The movement of fire-flake particles influenced by the interaction between solid objects and the flame, learned through neural
networks. Full-size DOI: 10.7717/peerj-cs.2836/fig-22
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motion of particles was tracked under the assumption that they rise upward. In the
previous method, to represent the zigzag motion of a particle, a user-defined angle of h was
specified for its path to twist by, and this characteristic is also well evident in the particle
path (see Fig. 23A). Kim, Song & Ko (2010) utilized a stochastic solver instead of
considering interactions between bubbles, but to properly calculate this, it would have been
necessary to model forces related to bubble dynamics, such as drag force, lift force,
vorticity, attraction force, etc., as originally proposed by Hong et al. (2008). However, this
method involves a significant computational burden and requires a considerable amount
of time for parameter tuning to achieve stable simulations. Kim, Song & Ko (2010)
efficiently captured the zigzag pattern of bubbles by employing a stochastic solver alone to
address this issue (see Fig. 23A). However, applying this path to fire-flake flow results in a
noisy motion due to the inherent jittery sensation in the path. On the other hand, our
method effectively captures the dispersed fire-flake flow that naturally rises due to air
resistance (see Fig. 23B).

Movement of fire-flake particles through neural networks
In the previous method of Choi et al. (2021) that aimed to represent fire-flake particles
using artificial intelligence, the results resembled a simple particle system with vertical
ascension, considering only buoyancy. On the other hand, our method exhibits the
characteristics of dispersed fire-flake particles based on the movement, shape, and
momentum of the flame.

Figure 23 Comparison of the dispersed flow generated by the previous method and ours: (A) Our
method, (B) Previous method. Full-size DOI: 10.7717/peerj-cs.2836/fig-23
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Figure 24 shows the trajectories of several fire-flake particles generated using Choi
et al.’s (2021) method. This method was unable to capture the complex movements
occurring in chaotic regions of scenes where the flame rises or the emitter moves, as well as
the dispersed fire-flake flow patterns. Unlike our method, which represents both the
movements dependent on the flame and the dispersed movements in the air, their method
mostly depicted simple upward movements with a small-scale zigzag pattern in some
cases.

Viscous clustering appearing from fire-flake particles
In contrast to the previous approach, the fire-flake particles represented in this study
exhibit viscous clustering. These characteristics provide rich visual details when expressing
various movements in chaotic regions. Generally, it is known that temperature is
proportional to the vibrational activity of molecules constituting a substance. Similarly, hot
air is associated with more vigorous motion, while cold air tends to have relatively less
movement. In this study, these characteristics are considered by controlling buoyancy
based on the temperature and lifespan of fire-flake particles. As a result, the motion of
fire-flakes varies with changes in temperature, leading to distinct behaviors. The
experimental results show that at high temperatures, a viscous clustering pattern emerges,
while at relatively low temperatures, a dispersed flow pattern is observed. Although viscous
clustering is not based on a strict physical theory, it has proven helpful in enriching the
visual representation with intricate details.

Figure 24 Trajectories of fire-flake particles with previous method Choi et al. (2021): (A) Blazing
flame, (B) Moving box-shaped flame. Full-size DOI: 10.7717/peerj-cs.2836/fig-24
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Figure 25 captures a portion of fire-flake particles represented by randomly injected
flames. In the low-temperature region, the momentum of the flame weakened, leading to a
dispersed flow that is more influenced by air resistance rather than flame motion. As seen
in Fig. 25A, the pattern of dispersed fire-flake particles is well represented even in the
filtered results. On the other hand, at high temperatures, the relatively vigorous
momentum of the flame affects the fire-flake particles, causing them to be advected around
the flame. The fire-flake particles depicted in this vicinity are significantly influenced by the
flame, resulting in a viscous clustering formation rather than dispersion. They exhibit
relatively fast movement due to the strong advection by the flame (see Fig. 25B).

Integration with fire-flake texture method
One of the prominent methods to efficiently represent fire-flake particles is by analyzing
the flow from videos to generate fire-flake particle textures. By using this approach, even
without extensive knowledge of complex numerical analysis, it’s relatively easy to express
fire-flake effects effectively. The method proposed in this article can also be integrated into
the image-based framework suggested by Kim & Lee (2019). In their method, they
computed a feature vector Fv� using a DoG (Difference of Gaussian) filter-based approach
to determine the direction in which the flame was burning and the direction of
buoyancy-induced upward motion from the images. Furthermore, they used these
calculated values as inputs to compute the fluid flow using the 2D Navier-Stokes equation,
thereby representing the fluid flow. By integrating our method into this process, it becomes
possible to easily represent individual fire-flake particles using neural networks, without
the need for individual advection of each particle.

Figure 26 represents fire-flake particles that have been expressed by combining our
method with the previous method. Our method not only introduces simulation techniques
but also incorporates learning techniques to represent fire-flake particles. Furthermore, it

Figure 25 Comparison of fire-flake particle movements based on temperature differences (blue: fire-
flake particles, cyan: flame). This figure has been subjected to contour filtering for clearer visualization of
the results: (A) Dispersed flow (low temperature), (B) Flame-dependent flow (high temperature).

Full-size DOI: 10.7717/peerj-cs.2836/fig-25
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can be easily integrated with previously proposed fire-flake texture methods, making it
highly versatile and applicable. Figure 27 shows results obtained from experiments
conducted in more dynamic scenario. The fire-flake particles are well represented in scenes
where the actor emits flames, as well as in scenes where the camera is rotated,
demonstrating a natural and smooth motion. The conditions for generating fire-flake

Figure 26 Synthesized fire-flake particles by integrating our method with Kim and Lee’s method Kim
& Lee (2019): (A) Input data, (B) Synthesized fire-flake particles.

Full-size DOI: 10.7717/peerj-cs.2836/fig-26

Figure 27 Synthesized fire-flake particles by integrating our method with Kim & Lee’s (2019) method.
Full-size DOI: 10.7717/peerj-cs.2836/fig-27
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particles in Figs. 26 and 27 were based on the previous method, but their motion was
represented using our method’s neural networks for learning.

The generated fire-flake particles produce high-quality motion from the video input.
However, in cases where there is a noticeable difference in color between the input data
and the fire-flake particles, the synthesized result can sometimes appear unnatural (see
Fig. 28A). In this article, to mitigate such discrepancies, the color of particles is calculated
during rendering as follows:

1� &ð ÞI� við Þ þ &Io pið Þ; (22)

where Io represents the color at the location where pi is situated in the input data, and I� is
the interpolated color value based on vi a predefined RGB color table: (0,0,0),
(1.0,0.82,0.54), (0.88,0.62,0.4), RGB (0.98,0.68,0.3). Moreover, & serves as both an
interpolation weight and a representation of the lifespan of the fire-flake particle. Its range
has been refined to lie between 0 and 1 for effective utilization. Consequently, the above

Figure 28 Comparison of colors between fire-flake particles generated from the previous method and
our method: (A) Previous method, (B) Our method. Full-size DOI: 10.7717/peerj-cs.2836/fig-28
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equation efficiently renders fire-flake particles without temperature attributes by retrieving
colors from the color table for particles with shorter lifespans and from the input data for
particles with longer lifespans (see Fig. 28B).

Reasons for representing fire-flake particles in 2D simulations
This article introduces a novel method to enhance the movement of fire-flake particles.
Our method offers the capability to represent fire-flake particles not only through
simulation but also through learning, allowing for potential applications in various fields.
Especially, it can be utilized in areas such as games, VR/AR, and the metaverse to model
realistic environments. As previously mentioned, we have integrated techniques that are
more efficient for real-time content utilization rather than 3D simulations, and
demonstrated the results of this integration. Since we have compared and analyzed the
improved movement of fire-flake particles in 2D, we anticipate that these advantages will
also be effectively represented in 3D scenarios.

Accuracy of the generated positions of fire-flake particles
In reality, most fire-flakes are a type of byproduct that has been ejected due to the
interaction between fire and solid objects. However, in this study, fire-flake particles were
generated in conjunction with the momentum of the flame, which results in some
differences from the actual phenomenon. While the design of fire-flake generation
conditions wasn’t based on direct physical phenomena, the intention was to enhance visual
quality, making it applicable to various real-time performance-oriented content industries.

Results analysis
Parameters and configurations used in this article are summarized in Tables 1 and 2,
respectively. The configuration for the results obtained by integrating the fire-flake texture
method with our method is summarized in the Table 3.

Table 1 Experimental scenes (simulation and learning results).

Figure Grid res. Avg. number of fire-flake particles Time-step

Fig. 9A 256 � 256 960 0.1

Fig. 9B 256 � 256 738 0.1

Fig. 12 256 � 256 1,421 0.1

Fig. 14 256 � 256 733 0.1

Fig. 15A 256 � 256 148 0.1

Fig. 15B 256 � 256 198 0.1

Fig. 16A 256 � 256 4,103 0.1

Fig. 16B 256 � 256 2,494 0.1

Fig. 18 256 � 256 960 0.1

Fig. 19 256 � 256 1,421 0.1

Fig. 20 256 � 256 733 0.1

Fig. 21 256 � 256 148 0.1

Fig. 22 256 � 256 4,103 0.1
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As shown in Table 1, there was a slight difference in motion between simulation results
and learning results, but there was not a significant difference in the number of generated
fire-flake particles (see Fig. 30). In most of the results, it was observed that in the initial
stages of the scenario, the number of fire-flake particles increased gradually in response to
the generation of the flame. Figure 16 depicts the fire-flake particles represented in the
scene with the interaction between the obstacle and the flame. Particularly in this scene,
interesting patterns related to particle numbers have emerged. In our method, the trend of
increasing fire-flake particles due to collisions was shown, whereas in the previous method,
a repetitive pattern of fluctuation was observed (Kim et al., 2017). In our method, collisions

Table 2 The result of integrating the previous method Kim & Lee (2019) with our method.

Figure Grid res. Num. of input images Avg. number of fire-flake particles Avg. computation time (frame/sec)

Fig. 26 100 � 100 18 2,714 0.2

Fig. 27 100 � 100 54 2,908 0.2

Table 3 List of symbols used in the article.

Name Description

p; v; f Position/Velocity/Force of fire-flake particle

m;T Mass/Temperature of fire-flake particle

u; p; q Velocity/Pressure/Density of the grid (flame)

l; f Viscosity/Force of the grid (flame)

fair;drag;lift;buoy Airflow/Drag/Lift/Buoyancy force

fbuoy0 New buoyancy model

kair Airflow coefficient

kdrag Drag coefficient

klift Lift coefficient

kbuoy Buoyancy coefficient

fbuoyancy Upward normal vector

Et Thermal energy

kt Heat capacity factor

Ek Kinetic energy

kt Thresholds for temperature

ke Thresholds for energy change

C Generating region of fire-flake particles

g Lifespan of fire-flake particle

e Lifespan of fire-flake particle

fvorticity Particle-based vortex forces

s Probability function for fire-flake distribution

g Probabilistic constant based on Gaussian random number
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led to a natural coupling and advection of fire-flake particles, whereas the previous
technique resulted in particles being trapped around the obstacle (see Fig. 15B).

Figure 29 compared trapped fire-flake particles due to the interaction between the
obstacle and the flame. Overall, it was observed that the fire-flake particles were generated
and then quickly deleted as they became trapped, resulting in a decrease in their
momentum. This phenomenon repeated cyclically. Examining the number of fire-flake
particles, we can observe this pattern. For this reason, the chart shows a pattern where the
number of particles doesn’t simply increase but alternates between increases and decreases
(see Fig. 16B chart in Fig. 30).

The fire-flake generation method proposed in this article can be applied not only to
visual effects (VFX) expressing flames but also to various fields such as games and
physics-based metaverse environment design. It is anticipated that this method can also be
applied to small particles such as lightweight sand or dust that exhibit turbulent motion
due to buoyancy or wind, as well as to air bubbles, foam, splashes, and other phenomena,
which are lighter than air.

As observed from the presented results, our method consistently demonstrates visually
improved outcomes when compared to previous methods. While our method does not rely
on physical laws, it surpasses the limitations of previous methods by capturing the chaotic
movement of fire-flake particles in a visually natural yet efficient manner. In contrast to
previous methods where particle movement solely relied on underlying fluids, the
proposed method effectively captures the intricate details of chaotic movement. This is
achieved by accurately representing the dispersed fire-flake flow as it scatters through the
air. Furthermore, in regions where the velocity field experiences abrupt changes due to
obstacles, previous methods often resulted in fire-flake particles becoming trapped near
objects. However, our method overcomes this issue and consistently represents these
scenarios without particles getting trapped, ensuring stability and accuracy in the
simulation. Moreover, our method offers visually improved simulation techniques while
maintaining nearly identical computation times compared to the previous approaches.

Figure 29 Comparison areas where a fire-flake particle’s movement becomes unstable (unstable area:
red arrow): (A) Our method, (B) Previous method. Full-size DOI: 10.7717/peerj-cs.2836/fig-29
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Computational complexity
To the best of our knowledge, there is currently no precise method for calculating the
chaotic motion of fire-flakes originating from flames. Even in the Navier-Stokes equations
used to represent flames, fire-flake particles are depicted by generating turbulent flow
based on advection, vorticity, or vortex particles corresponding to flame changes. The
same approach applies to bubbles. As a result, the turbulent flow that should be
represented by fire-flakes becomes dependent solely on the flame, making it insufficient for
capturing complex chaotic motion. In particular, due to temperature variations caused by
the flame, air resistance, and the extremely lightweight nature of fire-flakes, our method
aims to efficiently represent the resulting chaotic motion and dispersed patterns under air
resistance. This approach avoids traditional methods, such as using linear systems or
iterative Gauss-Seidel calculations.

The proposed method’s advantages include producing visually detailed fire-flake
motion at a level close to visual simulation, and through extending the solver using
learning representation, bypassing the complex computation processes to quickly generate

Figure 30 A chart representing the number of flame particles. Full-size DOI: 10.7717/peerj-cs.2836/fig-30
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fire-flake particles. In this study, we used an Eulerian grid-based simulation to represent
the flame, which results in a time complexity of Oðn2Þ, due to the need to iterate over each
grid cell and calculate interactions with neighboring cells. The spatial complexity depends
on grid resolution and is typicallyOðn2Þ. With the addition of particle-based fire-flakes, the
time complexity can range from Oðn2Þ to OðnlognÞ, depending on the number of particles
and the grid resolution, considering the computations necessary for interactions among
fire-flake particles and fluid flow simulation. The spatial complexity also depends on the
grid resolution and the number of fire-flake particles, generally ranging from Oðn2Þ to
OðnÞ.

Comparison with previous methods
In this section, we compare and analyze the proposed method with recent previous
methods for simulating fire-flakes, which are secondary effects expressed by fire/flame
simulation. The method by Kim et al. (2017) represents fire-flake particles within the flame
using the dynamics of bubble simulation. They proposed advection influenced by flame
and temperature by internally applying drag force, attraction force, lift force, and
SPH-based vorticity confinement. However, it fails to capture the chaotic motion or
dispersed patterns of fire-flakes, which is evident from comparisons in Figs. 9, 15–17,
where our method demonstrates improved fire-flake motion in terms of visual simulation.

The method by Choi et al. (2021) extends Kim et al.’s (2017) approach using learning
representation. They employed a simple structure that learns fire-flake particles through a
neural network, but did not consider the number and proportion of fire-flake particles,
which limited their ability to handle complex chaotic motion. Consequently, their results
mainly show upward buoyant motion, lacking essential fire-flake characteristics. In
contrast, our research shows complex and rich motions of fire-flake particles, especially in
regions where chaotic motion and dispersed patterns should occur, making our method
applicable across a wider range of fields.

The proposed method can be applied to VFX and visual simulation fields where detailed
fire simulation is required. Kim & Lee (2019) introduced a framework that uses video or
image sequence files as input data to infer the underlying flow and generate fire-flake
effects. Combining our method with this approach would not only enhance the realism of
fire-flake effects but also optimize the learning representation process. Additionally, since
this approach relies on video or image input rather than 3D simulation, it eliminates the
need for prior knowledge of complex numerical models, expanding its applicability.
Furthermore, our method can be integrated with the still-frame simulation proposed by
Son et al. (2013). This technique simulates flame propagation along image boundaries but
is limited to flame representation and does not account for secondary effects such as fire-
flakes. By incorporating our approach, more dynamic and visually engaging image effects
can be achieved.

Compared to existing fire-flake particle representation methods, our method showed
minimal increase in computation time. This is because the number of fire-flake particles is
relatively small compared to the underlying flame simulation, and no additional matrix
operations are required. However, when using learning representation for fire-flake
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particle modeling, the dispersed motion appeared more pronounced than in the
simulation-based approach. This suggests the need for further refinement of the network
design, highlighting an important research challenge for future work.

Limitation
The proposed method approximates fire-flake motion based on a stochastic solver, which
offers computational efficiency. However, it has several limitations. Since the fire-flakes are
not generated from solid-flame interaction, their movement lacks physical accuracy.
Consequently, the method cannot fully depict the detailed behavior of burning fragments
being ejected from the solid, nor can it capture the vortices formed during the volume-loss
process. Although adding a condition that assumes that fire flakes will be generated from
the burning solid might allow for a similar representation, it complicates the procedure
and still does not provide a physical approach. Furthermore, although the motion is
chaotic, it depends on the flame and is insufficient to consider the multiphase flow induced
by air.

In this study, we employed Stam’s (1999) method to approximate the Navier-Stokes
equations for representing the underlying fluid flow. Internally, the Conjugate Gradient
method was applied for pressure computation, while all momentum calculations,
excluding fire-flake particles, were handled using the Staggered Marker-and-Cell method
(Harlow & Welch, 1965). Additionally, flame-solid interaction was modeled using a
variational framework (Batty, Bertails & Bridson, 2007), which enables fast and stable
coupling. Since flames are generally represented as gases, we designed the underlying flow
based on Eulerian fluid simulation using density and temperature. In particular, leveraging
the fire effects proposed by Son et al. (2013) allows for efficient modeling of flame effects
influenced by airflow while reducing computational costs. This approach is especially
useful when detailed flame motion is required.

The proposed method is not a fully 3D simulation approach. While it is technically
possible to extend the 2D Eulerian approach to 3D, the computational cost would increase
exponentially, leading us to adopt an alternative approach in this study. Kim & Lee (2019)
proposed a framework that infers the underlying flow from video or image sequence files
and generates fire-flake effects based on this information. By integrating our method with
this approach, we can achieve more realistic fire-flake effects while also reducing the
computational load of the learning representation process. Additionally, since 3D
simulation results can be converted into video data for input, we did not design our
algorithm as a fully 3D simulation method. However, if a 3D simulation is essential, we
recommend optimizing the learning representation process. Otherwise, a 3D CNN
structure would be required, which is computationally inefficient. Instead, employing an
adaptive octree-based CNN approach would be a more suitable alternative (Wang et al.,
2018). Furthermore, this study does not consider interactions resulting from collisions
between fire-flake particles. When fire-flake particles collide, they may exhibit sudden
bouncing motions or unstable behaviors. To avoid such instabilities, we deliberately
excluded collision-based interactions from our model.
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CONCLUSIONS AND FUTURE WORK
In this article, we have proposed an efficient technique to simulate dispersed fire-flake
particles that respond to the movement of a flame, capturing chaotic fire-flake flow
patterns in regions of chaos. Furthermore, we extended this approach to incorporate
learning through neural networks. Unlike the previous approach that solely relied on the
movement of the flame, our method improves the visual quality by introducing various
forms of buoyancy and a novel advection method. This enhancement provides finer details
and realism in the simulation. Unlike the typical random walk approach that adds noise
randomly to the movement, our method takes into consideration the size and direction of
the flame. This allows us to express fire-flake particles stably in most scenes without the
need for parameter adjustments.

However, despite these advantages, there are several limitations in our study. We did
not consider the interaction between fire-flake particles or the turbulence resulting from it,
making it difficult to represent micro-level details or a large number of fire-flake particles.
For example, aspects like collision, merging, shape deformation, and overlapping of
fire-flake particles were not taken into account in this study. To represent such
phenomena, implementing proximity tests or collision detection among a large number of
fire-flake particles would be necessary. In this article, since direct interactions between
fire-flake particles were not considered, there might be some unnatural aspects. However,
since we are not dealing with phenomena where objects undergo significant shape
deformations, such as the merging of air bubbles, this issue is not considered a critical
concern. Indeed, calculating interactions between individual fire-flake particles could lead
to a performance degradation in the algorithm, making it challenging to represent
real-time content. Hence, in this article, we approximated the interactions by applying
buoyancy and advection based on particle attributes, allowing for more efficient
computation without sacrificing real-time rendering capabilities.

Typically, fire-flake particles are generated when solid fuel (carbon) is expelled from the
body due to internal or external impacts on the fuel, causing it to become buoyant and float
away. Therefore, strictly speaking, the location where fire-flake is generated should be at
the boundary of the fuel, rather than at the interface between the flame and the air. The
proposed method in this article aims to realistically represent the movement of fire-flake
particles, and as mentioned earlier, the generation conditions are not entirely based on
physics. Therefore, applying our method to techniques that represent fire-flakes detaching
from solid surfaces could potentially enhance the realism of the fire-flake effect. Moreover,
our method offers a framework that can be easily integrated with other techniques, further
enhancing its versatility and applicability. In the future, we plan to not only address the
aforementioned challenges but also explore methods to efficiently compute fire-flake
particles using the temperature of the flame and its geometric characteristics, without the
need for explicit simulation.
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