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ABSTRACT
Background: Coronary heart disease (CHD) is a major cause of mortality worldwide,
with an increasing trend of affecting younger populations. The asymptomatic early
stages and rapid progression of CHD make diagnosis challenging, necessitating
efficient diagnostic approaches.
Methods:We propose a novel algorithm that focuses on accumulating soft path costs
to discern crucial indicators from extensive diagnostic tests, aiming to improve early
CHD identification. Our approach emphasizes feature interaction using an
interaction accumulation evaluation function to identify features with maximal
interaction and minimal redundancy. A new stopping criterion based on information
gain ratio is also introduced.
Results: Experimental outcomes demonstrate that our algorithm outperforms several
classical algorithms in terms of classification accuracy and feature dimension
reduction, while also identifying highly correlated feature subsets.
Conclusion: The proposed approach offers an efficient solution for early detection of
CHD by identifying critical indicators, reducing diagnostic complexity, and
improving predictive accuracy, thus potentially leading to more effective CHD
management.

Subjects Cardiology, Public Health, Data Mining and Machine Learning, Data Science
Keywords Coronary artery disease, Feature selection, Feature redundancy, Interaction information,
Feature relevance

INTRODUCTION
Coronary heart disease (CHD) presents a significant global health challenge, accounting for
approximately 17.9 million deaths annually. Myocardial infarctions and cerebrovascular
accidents are primary contributors to CHD mortality, affecting individuals often without
apparent symptoms in the early stages (World Health Organization, 2024). Increasing
stress, unhealthy habits such as obesity, hypercholesterolemia, hypertension, and smoking
have exacerbated the prevalence of CHD in younger populations (Gonçalves et al., 2022).
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Early identification of CHD risk is crucial to prevent severe outcomes. However,
conventional diagnostic methods, which rely on numerous overlapping markers, can be
resource-intensive and inefficient (Shahid et al., 2020). Feature selection techniques offer
promising approaches by reducing diagnostic markers, leading to improved screening
models (Li et al., 2020).

Related work
Recent advancements in machine learning have made it a powerful tool for the early
diagnosis and prediction of CHD, particularly in handling high-dimensional medical
datasets. Machine learning models, such as decision trees, random forests, and support
vector machines, have been widely applied in feature selection for CHD prediction, as they
are capable of capturing complex, non-linear relationships within the data.

Feature selection methodologies can be broadly categorized into filter, wrapper, and
embedded approaches (Zeng et al., 2015). In early CHD prediction, wrapper and
embedded methods have gained prominence. Lin et al. (2022) employed a combination of
gradient boosting tree feature selection and recursive feature elimination to predict acute
coronary syndrome risk, successfully extracting 25 key variables from 430 complex
medical features, culminating in an impressive 98.8% accuracy in ACS risk prediction.
Similarly, Javeed et al. (2019) integrated a random search algorithm (RSA) with an
optimized random forest (RF) model, achieving a commendable 93.33% accuracy on the
Cleveland datase. Mohamed et al. (2020) developed a novel Parasite-Predator Algorithm
(PPA) by amalgamating the strengths of Cat Swarm Optimization (CSO), Cuckoo Search
(CS), and Crow Search Algorithm (CSA). After PPA, fitness is used to select the feature
subset that maximizes the accuracy and minimizes the number of selected features. This
approach achieved an 86.17% accuracy on the Statlog dataset, ultimately selecting only
four key features (Mohamed et al., 2020).

Fitness ¼ maximize Accþ wf � 1� Lf
Lt

� �� �
(1)

where Acc is the classification accuracy, Lf is the length of the selected feature subset, and
Lt is the total number of features.

Additionally, Bharti et al. (2021) conducted experiments on the UCI Heart dataset and
found that combining feature selection with outlier detection yielded the best results. They
applied LASSO for feature selection and trained models using machine learning and deep
learning techniques. In the end, the deep learning model achieved an accuracy of 94.2%,
while the KNNmodel achieved 84.8% (Bharti et al., 2021). Fajri, Wiharto & Suryani (2023)
proposed a hybrid feature selection method combining Bee Swarm Optimization (BSO)
and Q-learning (QBSO-FS), which improved heart disease detection accuracy, achieving
84.86% accuracy under the KNeighbors model, with faster convergence and better
performance than traditional methods.

FCs ¼ Fs � hCs (2)
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where FCs is the evaluation value of feature selection, Fs is the accuracy of feature selection,
Cs is the cost of feature subset, and h is the adjustment coefficient.

Despite their targeted nature, wrapper and embedded methods have obvious
limitations. Particularly, wrapper methods require extensive model training and evaluation
in the search for an optimal feature subset, a process that becomes especially laborious in
scenarios involving large datasets or an abundance of features. Conversely, embedded
methods heavily rely on specific models, which may limit their generalizability.

In contrast, filter methods, which rapidly identify features related to the target variable
through statistical theory and are computationally simple and independent of any machine
classifier model, have emerged as a practical and efficient alternative for managing
complex medical datasets, such as those used in early screening prediction for CHD.
Muhammad et al. (2020) introduced a machine learning-based CHD detection model,
employing four feature selection techniques with ten classification algorithms, significantly
improving classification accuracy. Reddy et al. (2023) enhanced the performance of various
classifiers in cardiac risk prediction by combining the Cleveland and Statlog heart datasets
and employing principal component analysis (PCA) and correlation-based feature
selection (CFS). Peng, Long & Ding (2005) proposed the mRMR method based on
information theory, aimed at using mutual information between features to discern
relevant and redundant features. Yu & Liu (2003) introduced a FCBF method, focusing on
selecting main features and eliminating highly redundant features through the
computation of SU and Markov blankets.

However, these filter methods primarily evaluate the association of individual features
with classification, disregarding the synergistic impact of combined features on the
prediction. This oversight could potentially lead to the erroneous exclusion of important
features or the retention of irrelevant ones, particularly in complex applications like CHD
risk prediction. To address this challenge, Fleuret (2004), Bennasar, Hicks & Setchi (2015),
Zeng et al. (2015), and Wang, Jiang & Jiang (2021) introduced various feature selection
criteria (CMIM, JMIM, NJMIM, IWFS, MRMI), focusing on enhancing feature relevance,
interaction, and redundancy removal, significantly improving the quality of feature
selection and prediction accuracy. These advancements have collectively enhanced the
quality of feature selection and prediction accuracy to a considerable extent.
Notwithstanding the success of the above methods, they do not fully consider the
relationships among all existing features and candidate features, potentially leading to the
exclusion of relevant features or the inclusion of too many redundant features.

Contribution
Existing early screening predictive models for coronary heart disease (CHD) often struggle
with managing the intricate relationships between existing and candidate features. This
issue may lead to the omission of important features or the inclusion of unnecessary
redundancies. To address this issue, this article introduces an early screening predictive
model based on a novel CHD feature selection algorithm. Our model emphasizes the
interactions among multiple diagnostic markers and their linkage to CHD. Further, it
selects a feature subset where the strong associations between features yield more valuable
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information combinations, overcoming the above limitations and laying the groundwork
for developing more sophisticated and effective CHD screening models. The main
contributions are as follows:

1) We propose a feature selection approach based on soft path accumulative cost. This
approach identifies the feature with the highest interaction by calculating the interaction
of each current feature with all previous features. The final outcome is a subset of
features with the strongest interrelationships, which best represent CHD.

2) To comprehensively evaluate the interactions among multiple features, we propose a
novel interaction metric, Rel, and an accumulative interaction evaluation function SPA
that measures the relationships between all existing features and the current candidate
feature.

3) We introduce a novel stop criterion evaluation function to balance model evaluation
performance and feature subset size. This function determines when to halt feature
selection by measuring the increase in information gain and setting hyperparameters to
balance the number of features with the final model evaluation performance.

The article is structured as follows: “Prior Knowledge of Feature Selection” introduces
the background theoretical knowledge relevant to our discussion; “Methods” outlines the
development process of our proposed early screening predictive model; “Results” describes
the experimental setup and analyzes the findings. Finally, in “Discussion and Conclusion”
we examines the implications of our study for improving CHD early screening and
proposes directions for future advancements.

PRIOR KNOWLEDGE OF FEATURE SELECTION
Before introducing the algorithm, we define the relevant formulas.

For a pair of discrete features Fi; Fj, the relationship between features is defined by
Mutual Information (MI) IðFi; FjÞ:

IðFi; FjÞ ¼
X
Fi

X
Fj

pðFi; FjÞ log
pðFi; FjÞ
pðFiÞpðFjÞ
� �

(3)

where pðFi; FjÞ, pðFiÞ, and pðFjÞ are the probability density functions of Fi, Fj, Fi and Fj,
respectively.

Normalizing MI results in Symmetrical Uncertainty (SU), which is given by the
following formula:

SUðFi; FjÞ ¼ 2 � IðFi; FjÞ
HðFiÞ þ HðFjÞ (4)

where HðFiÞ and HðFjÞ are the entropies of Fi and Fj, respectively.
Given that our proposed algorithm is based on feature interaction, we use the three-way

interaction mutual information IðFi; Fj;CÞ to measure the relationship between a pair of
discrete features fFi; Fjg and the label C (Tang, Dai & Xiang, 2019).
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IðFi; Fj;CÞ ¼
XX

pðFi; Fj;CÞ log
pðFi; FjÞpðFi;CÞpðFj;CÞ
pðFiÞpðFjÞpðCÞpðFi; Fj;CÞ
� �

: (5)

For IðFi; Fj;CÞ, the selected feature Fj should meet the condition of being relevant to the
label C and, in combination with the already selected feature Fi, providing more effective
information (Wang, Jiang & Jiang, 2021), that is,

IðFi; Fj;CÞ > IðFi;CÞ þ IðFj;CÞ or IðFi; Fj;CÞ > 0: (6)

Markov Blanket is a criterion for judging the redundancy of a given feature Fi in a
feature set F ¼ fF1; F2; F3; . . . ; Fmg, defined as Mi 2 FðFi =2 MiÞ. Mi is called the Markov
Blanket of Fi if and only if

PðF �Mi � fFig;C j Fi;MÞ ¼ PðF �Mi � fFig;C j MiÞ: (7)

If a given feature Fi in the current feature set F has its corresponding Markov Blanket
Mi, it is considered redundant to the remaining features in the set.

For MI and SU, solely using mutual information IðFi; FjÞ to assess the relationships
between features can inadvertently bias the algorithm towards selecting features with
higher entropy, which indicates more significant variability or complexity in their
distribution. Although features with high entropy are information-rich, this does not
inherently mean they share the closest relationship with the target variable. The
normalization of MI through symmetrical uncertainty (SU) accounts for the entropies of
both variables involved, thus ensuring that the metric no longer depends on the intrinsic
information content of the variables themselves. By applying SU to normalize MI, the
inherent bias associated with selecting features based on MI is rectified, shifting the focus
towards the relative importance of features in relation to the target (Yu & Liu, 2003).
Additionally, this normalization introduces an increased amount of feature information
into the selection process.

On the other hand, unlike MI, the IðFi; Fj;CÞ does not need to be positive. If Fi; Fj have a
strong positive interaction, this means they can provide more information for the label C
than Fi; Fj can each provide on their own. Moreover, for Fi; Fj, missing any one of the
features would reduce the accuracy of the final classification result. If the interaction is
negative or zero, it implies that Fi and Fj may offer redundant information or information
irrelevant to the label C. Hence, an effective interaction between features should be where
IðFi; Fj;CÞ is greater than zero and at its maximum.

An information-theoretic perspective on feature selection
The fundamental goal of feature selection is to extract a key subset from the original feature
set such that a classifier trained on this subset achieves classification performance
comparable to, or even better than, that obtained using the full feature set. This goal can be
formalized by the following conceptual function: under the constraint of classification
performance, one seeks the smallest feature subset. That is,
min
S�F
jSj subject to fðSÞ � fðFÞ�e; (8)
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where f ðSÞ denotes the accuracy of a classifier trained on the subset S and e
represents the permissible degradation in performance. This formulation not only
encapsulates the requirement to maintain performance close to that of the full feature set
but also underscores the objectives of dimensionality reduction and redundancy
minimization.

Filter-based feature selection methods grounded in information theory assess two key
aspects: the redundancy among features and the relevance of each feature to the target
labels. Traditionally, mutual information (MI) is used for both purposes, with IðFi; FjÞ
measuring the redundancy between features Fi and Fj, and IðFi;CÞ quantifying the
relevance between a feature Fi and the target C. However, MI’s inherent limitations in scale
and normalization have led to the adoption of symmetric uncertainty (SU) as a
normalization tool, thereby enabling more consistent comparisons. Despite these
improvements, the use of bivariate MI remains insufficient when trying to capture the
additional joint gain achieved by combining a candidate feature with an already selected
feature to explain the target. This deficiency motivates the introduction of three-way
interaction mutual information, which is designed to account for the cooperative
contribution of feature pairs in relation to the target.

The three-way interaction mutual information, denoted by IðFi; Fj;CÞ, quantifies the
additional information provided by the candidate feature Fj in the presence of a selected
feature Fi when explaining the target C. Nevertheless, directly using this three-variable
measure presents two issues. On one hand, it does not distinguish the redundancy that
may exist between Fi and Fj. On the other hand, the candidate feature Fj might already
exhibit high direct relevance to the target C, leading to potential double counting of its
contribution.

To address these issues, we introduce two modulation terms based on symmetric
uncertainty. The first modulation term is

IðFi; Fj;CÞ
SUðFi; FjÞ ; (9)

which adjusts for the redundancy between Fi and Fj. A high value of SUðFi; FjÞ indicates
substantial redundancy between the two features, thereby reducing the value of this term
and reflecting that a large portion of the joint information is redundant.

The second modulation term is

IðFi; Fj;CÞ
SUðFj;CÞ ; (10)

which accounts for the direct relevance of the candidate feature Fj to the target C. When Fj
is highly correlated with C, the high value of SUðFj;CÞ implies that much of the joint
information is already captured by Fj’s individual relevance, and this contribution should
not be overemphasized in assessing its unique gain.

Compared to conventional methods that rely solely on bivariate MI or SU to evaluate
feature relevance and redundancy, this approach—employing three-way interaction
mutual information modulated by SU offers a more comprehensive framework. It enables
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a refined assessment of a candidate feature’s joint gain, facilitating the selection of a
compact feature subset that both preserves or enhances classification performance and
reduces redundancy.

METHODS
We proposed a feature selection algorithm based on feature correlation, redundancy, and
interaction. We named this algorithm Soft Path Feature Selection (SPFS), which iteratively
selects features with the highest interaction through path accumulation cost while
minimizing redundancy as much as possible.

As illustrated in Fig. 1, the SPFS algorithm introduces an interaction metric,
RelðFi; Fj;CÞ, which quantifies the interactions between features to balance their

redundancy and relevance. Furthermore, the algorithm introduces an evaluation function
called soft path accumulation (SPA). While ensuring the relevance of candidate features to
the class label, it comprehensively considers relationships between all the selected features
and each candidate feature, aiming to find the optimal balance between feature count and
information.

The algorithm inputs a subset of candidate features and utilizes the Rel and the SPA to
comprehensively assess each candidate feature’s interaction with the previously selected
best feature subset. It then selects the candidate with the strongest interaction to add to the
current best subset. The feature selection process is iterative. At each step, the algorithm
uses the selection stop scoring function score to determine whether to continue or stop. If a
negative score appears, the algorithm records the current best feature subset and begins a
count. If this count exceeds the predefined threshold, k_stale, the algorithm stops iteration
and selects the subset with the highest score from the recorded best subsets as the final best
feature subset.

Quantitative evaluation of feature interactions and SPA evaluation
function
From Eq. (4), it is evident that a newly added feature Fj, when combined with a previously
selected best feature, should provide more information than each feature individually.
However, as described in the section An Information-Theoretic Perspective on Feature
Selection, highly correlated overlapping features might introduce excessive redundancy,
which can be mitigated using symmetrical uncertainty (SU) to balance redundancy and
relevance. Specifically, for a candidate feature Fj and an already selected feature Fi, if
SUðFj;CÞ < SUðFi; FjÞ, this indicates that the relationship between Fj and Fi is stronger

than that between Fj and the label C. In such cases, Fj and Fi are considered to be highly
redundant, indicating an overlap of information between Fj and Fi.

Building on the characteristics of SU, we further propose an interaction metric,
RelðFi; Fj;CÞ. RelðFi; Fj;CÞ is defined as:

RelðFi; Fj;CÞ ¼
IðFi; Fj;CÞ
SUðFi; FjÞ �

IðFi; Fj;CÞ
SUðFj;CÞ : (11)
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This metric evaluates the interactions between features by considering the three-way
mutual information IðFi; Fj;CÞ and their symmetrical uncertainty SU, aiding in identifying
feature combinations that may contribute limited predictive efficacy due to high
redundancy.

Through RelðFi; Fj;CÞ, we can identify features Fj that are highly related to Fi yet exhibit
low redundancy. However, focusing solely on RelðFi; Fj;CÞ may lead to an overemphasis
on the relationships among features without adequately considering the direct relevance of
the candidate feature Fj to the label C. Neglecting the direct association between candidate
features and the label may result in a selected feature set that fails to establish effective
predictive relationships, thereby impacting the model’s predictive performance.

To address this issue, the SPA evaluation function is designed to consider both the
interactions among features and their direct information contributions to the label.
Specifically, the SPA scoring criterion incorporates the interaction measure RelðFi; Fj;CÞ
and explicitly includes the information contribution measure between the candidate
feature Fj and the label C. The SPA function evaluates the composite effect of a candidate
feature on the entire best feature subset by cumulatively calculating the weighted

Figure 1 Flowchart of the proposed method. This flowchart illustrates the SPFS algorithm, which uses
interaction metrics and soft path accumulation (SPA) to iteratively select features, balancing redundancy,
relevance, and information to optimize the feature subset. Full-size DOI: 10.7717/peerj-cs.2834/fig-1

Jiang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2834 8/22

http://dx.doi.org/10.7717/peerj-cs.2834/fig-1
http://dx.doi.org/10.7717/peerj-cs.2834
https://peerj.com/computer-science/


interactions between the candidate feature and all the features already selected in the best
subset. The SPA scoring criterion is defined as:

SPA ¼
X
Fi2best

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SUðFj;CÞ

q
� RelðFi; Fj;CÞ (12)

where best is the subset of already selected best features, Fj is the candidate feature, and Fi
is a previously selected best feature.

Based on the SPA evaluation function, we defined the SPFS selection strategy as follows:

SPFS ¼ arg max
Fj2candidate

X
Fi2best

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SUðFj;CÞ

q
� RelðFi; Fj;CÞ

 !
(13)

where candidate is the subset of candidate features. Through the SPFS scoring criterion, by
considering the relevance of the current candidate feature Fj to the label C (weighted by
SUðFj;CÞ), we accumulate the interactive effects between the candidate feature and all

previously selected features to select the candidate feature with the highest interaction with
any feature in the best subset. This means that for the selected best features, the chosen
candidate feature must demonstrate an unparalleled interaction with at least one feature in
the best subset.

Stop scoring function
Given the endless process of finding the highest interacting features, a reasonable stop
scoring function is needed to identify an optimal feature subset that balances the number
of features and prediction accuracy. We proposed that a feature should be included in the
best subset if its addition significantly increased the information gain of the subset. The
information gain ratio is extensively used to differentiate the contributions of features,
because it reflects both the feature’s entropy and the information gain contribution to the
target variable, allowing us to precisely evaluate the effectiveness of different feature
subsets.

The score is defined in Eq. (9), where gRðD; bestÞ and gRðD; best beforeÞ are the
information gain ratios of the current best feature subset and the previous best feature
subset for the entire dataset D, respectively.

score ¼ gRðD; bestÞ � gRðD; best beforeÞ

¼ gðD; bestÞ
HbestðDÞ �

gðD; best beforeÞ
Hbest beforeðDÞ :

(14)

The score is calculated to determine whether the current best feature subset provides a
more significant information gain boost compared to the previous best feature subset. The
conditions are as follows:

score ) The newly selected feature brings useless information; if score < 0;
The newly selected feature brings beneficial information; if score > 0:

�
(15)

More precisely, Eq. (12) is explained in detail as follows:
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. If score < 0, it indicates that the newly selected feature does not aid in the prediction
accuracy and only increases the feature complexity.

. If score > 0, it suggests that the newly selected feature brings more beneficial
information, aiding the model in making accurate predictions.

However, in some cases, the newly selected feature may not initially provide a significant
boost in information gain, but as subsequent features are combined, it may produce better
effects. To address this, we introduced a hyperparameter k_stale to delay the stop. When
the number of times score < 0 reaches the threshold specified by k_stale, the selection of
new features will be stopped. This approach allows for more flexible handling of early
stopping issues caused by local minima in information gain.

Procedures of soft path feature selection
As illustrated in Algorithm 1, given a dataset D containing n samples, m features, and a
class feature C, the SPFS algorithm identifies the best feature subset best. The SPFS feature
selection process involves four primary stages: initialization, k_stale tuning, pre-
computation, and feature selection.

In the initialization stage, the candidate feature subset, the best feature subset, and
relevant algorithm parameters are initialized. During the pre-computation stage, the SU
values for each feature and the mutual interaction Rel table between every pair of features
and the label are calculated. The features are then ranked in descending order of their SU
values to form the candidate feature subset.

The third stage focuses on tuning the hyperparameter k stale. Each k stale value in
k range is applied during the feature selection phase, and the performance of each is
evaluated to select the best k stale for the final feature selection stage.

The fourth stage is a key step in the SPFS algorithm, and it’s divided into two steps:

a. Select individual features: First, when the best feature subset is empty, the top-ranked
feature from the sorted candidate feature subset is selected as the first feature of the best
feature subset. In each iteration, the SPA evaluation function accumulates the
interaction score of each candidate feature Fi with the selected subset. Then, by using the
SPFS selection strategy, the highest-scoring Fbest feature is chosen as the new feature in
the best subset.

b. Select the final best feature subset:After each feature selection, the score is calculated; if
the score is positive, iteration continues. When a negative score first appears, iteration
continues, but it enters a delayed stopping step, counting the number of times the score
is below zero and recording the best subset selected. When the number of times the
score is below zero exceeds k stale, the addition of new features stops, and the algorithm
selects the highest-scoring feature subset from these k stale candidate best subsets as the
final determined best subset.

Moreover, our algorithm also focuses on the stability of features. By observing whether
the selected features remain consistent across multiple iterations and different data
partitions, the stability of the feature selection process is assessed. A highly stable feature
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Algorithm 1 Feature selection algorithm.

1: Input: Dataset D with a full feature set F, the class C, F ¼ fF1; F2; � � � ; Fmg, and the range of k stale
(k_range)

2: Output: Selected feature subset

3: Initialization

4: candidate F; best  [; count  0; score �1; best_score  �1;

5: SSU  [; SRel  [; gain_least  ½�;
6: k_stale Tuning

7: for each k stale value in k range do

8: Perform the Feature-selection step using current k stale value;

9: Update best k stale if performance improves

10: end for

11: Pre-computation

12: for each Fi; Fj 2 F and Fi 6¼ Fj do

13: Calculate SSU½i� ¼ SUðFi;CÞ;
14: if IðFi; Fj;CÞ � 0 then

15: Set SRel½i; j� ¼ RelðFi; Fj;CÞ
16: else

17: Set SRel½i; j� ¼ �1
18: end if

19: end for

20: Order candidate by SSU in descending order

21: Feature-selection

22: while candidate is not empty and count <k stale do

23: Fi  getFirstElement(candidate)

24: Remove Fi from candidate

25: best ← best [fFig
26: for each Fj 2 candidate do

27: Calculate SPA for Fj considering current best

28: Select the feature Fbest with the SPFS selection strategy, and best ← best [fFbestg
29: Remove Fbest from candidate

30: Calculate score for current best

31: if score <0 then

32: count ← count + 1

33: end if

34: if count >k stale then

(Continued)
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selection process indicates that the selected features have a genuine and reliable association
with the target variable.

Ultimately, the SPFS algorithm identifies an optimal feature subset best that is not overly
complex but can effectively predict the class feature C, derived after considering feature
importance, interaction, and feature stability. Through this approach, the algorithm not
only enhances the prediction accuracy of the model but also avoids unnecessary model
complexity, thereby providing an efficient and reliable feature selection solution for
practical applications.

RESULTS
In this section, we first design some experiments to evaluate the performance of the SPFS
algorithm by making a contrast with other representative feature selection algorithms and
then report the empirical results.

Experiment setup
This research is dedicated to the development of an early screening and prediction model
for coronary heart disease (CHD) that is particularly tailored for the young and
middle-aged demographic, aiming to minimize the number of diagnostic markers needed.
For this purpose, we analyzed four datasets associated with cardiac health and CHD. The
first dataset, Heart, from the UCI Machine Learning Repository, features simplified binary
classification of heart disease severity and excludes records with missing values. The
Z-Alizadeh Sani dataset contains data from 303 patients at the Shaheed Rajaei
Cardiovascular Center (Alizadehsani et al., 2013). Following this, Cardiovascular (Lin
et al., 2022), from a tertiary hospital in Fujian, China, includes 2,702 patient records and
focuses on predicting all-cause mortality, with all data anonymized. Lastly, CHD (Cao
et al., 2022), approved by the ethics committee and anonymized, contains records from
715 patients at a tertiary hospital in Anhui, China. For both the Cardiovascular and
Coronary Heart Disease datasets, they are open-source datasets from published articles
that have already undergone ethical review in the original studies, and thus, this research
does not require additional ethical approval.

Table 1 details the datasets used, including the number of features, cases, and categories.
In the data preprocessing stage, since the obtained datasets had already undergone certain
preprocessing steps by their original authors, we only implemented discretization to the
datasets. Discretization aims to convert continuous numerical variables into discrete

Algorithm 1 (continued)

35: Select the best feature subset best with the largest score

36: end if

37: end for

38: end while

39: End with the best feature subset best
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categorical values (such as 0 and 1), facilitating subsequent feature selection and
classification prediction. Specifically, we utilized the Minimum Description Length
Principle (MDLP), a widely recognized discretization method proposed by Fayyad & Irani
(1993), to discretize all continuous numerical features. Additionally, for the imbalanced
Cardiovascular dataset, the SMOTE technique was applied to address data imbalance
issues during the classification stage, consistent with the methodology described in the
original article. The implementation code for SPFS can be found at https://github.com/
YUkiJiang559/SPFS.

To validate the efficacy of the proposed method, this study compared various widely
used supervised feature selection algorithms, including FCBF (Yu & Liu, 2003),
Consistency (Dash & Liu, 2003), mRMR (Peng, Long & Ding, 2005), CFS (Hall, 2000),
Relief-F (Urbanowicz et al., 2018), CMIM (Fleuret, 2004), JMIM (Bennasar, Hicks & Setchi,
2015), IWFS (Zeng et al., 2015), and MRMI (Wang, Jiang & Jiang, 2021). These algorithms
aim to identify the most relevant features, eliminate redundancies, and consider
interactions among features to obtain a best feature subset. If the original articles of the
datasets provided related feature selection results, these were also included for
comparison. Among them, the CFS, FCBF, and mRMR algorithms obtain the best
feature subset by finding the most relevant features and removing redundant features; the
CMIM, JMIM, and IWFS algorithms focus more on the interaction between features to
obtain the best feature subset, while MRMI uses the interaction between features while
considering the relevance and redundancy of the features. Specifically, to ensure a fair
comparison with the SPFS algorithm, CFS, Consistency, FCBF, and Relief-F were
implemented using Weka’s built-in library with default parameters (Eibe Frank & Witten,
2016). Similarly, CMIM, JMIM, and IWFS were implemented through the ITMO-FS
library with default parameter settings (Computer Technologies Laboratory, 2024). It
should be noted that the feature selection methods chosen for this study represent a set of
well-established, conventional techniques that have been widely adopted in high-quality
research publications as standard benchmarks for comparing feature selection
performance.

Empirical results
In line with the experimental design outlined earlier, we evaluated the performance of
feature selection algorithms by examining the number of selected features and their
classification accuracy. This evaluation involved classifying the best feature subsets with

Table 1 Summary of benchmark datasets.

Dataset Features Samples Positive Negative Classes

Heart 13 297 137 160 2

Z-Alizadeh Sani 54 303 216 87 2

Cardiovascular 87 2,702 121 2,582 2

Coronary heart disease 43 725 262 453 2
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XgBoost, naive Bayes, Linear-SVM, and random forest algorithms, all configured with
default parameter settings (Chen & Guestrin, 2016; Cervantes et al., 2020; Antoniadis,
Lambert-Lacroix & Poggi, 2021; van de Schoot et al., 2021). To ensure the stability and
accuracy of the prediction results, ten-fold cross-validation was applied across all models.
And two metrics were used to quantitative evaluation of feature selection algorithms: the
algorithm’s classification accuracy and its effectiveness in reducing feature dimensionality.
Ideally, an algorithm that significantly surpasses others in classification accuracy is
considered to have the best performance. However, when the difference in classification
accuracy among algorithms is not significant, those that more effectively reduce feature
dimensionality are deemed superior.

Among the involved algorithms, mRMR, Relief-F, CMIM, JMIM, and IWFS use a
ranking procedure to select features, while others select the best feature subset based on
their specific stopping criteria. Therefore, this study’s experimental design aims to
compare feature selection algorithms in two directions: firstly, for those algorithms
determining the best feature subset based on their stopping criteria (CFS, Consistency, and
FCBF), we compare their performance in reducing feature dimensions and the
classification accuracy of their selected feature subset; secondly, for rank-based algorithms
(mRMR, Relief-F, CMIM, JMIM, and IWFS), we evaluate the incremental gain in
classification prediction accuracy for each feature selected in rank order. Considering the
MRMI algorithm and the SPFS algorithm include both feature ranking and specific
stopping criteria, this study evaluates their performance in both directions.

Performance comparison with CFS, consistency, FCBF, and MRMI

Table 2 showcases the reduced number of features after applying the CFS, Consistency,
FCBF, MRMI, and SPFS algorithms, with the columns for MRMI and SPFS specifically
indicating the best feature subsets arranged in ranking order.

The experimental outcomes from Table 2 reveal that all feature selection algorithms
achieved varying degrees of feature dimensionality reduction compared to the original
datasets, with SPFS achieving the most significant reduction. This is particularly notable in
the Cardiovascular dataset, where SPFS’s reduction effect was the most pronounced. This
suggests that SPFS can efficiently identify key features that improve the model’s ability to
distinguish between high-risk and low-risk patients, which is crucial in clinical
decision-making for cardiovascular disease.

Subsequent tables (Tables 3, 4) detail the performance evaluation results of four
classification models for the Heart, Z-Alizadeh Sani, Cardiovascular and Coronary Heart
Disease, respectively. These results are presented as the average classification accuracy �
standard deviation from ten-fold cross-validation. The term ”Full set features” in the first
column denotes the performance results when all features of the original dataset are used
for classification prediction, with the best feature selection algorithm results being
highlighted in bold.

In this experimental section, Tables 3 and 4 highlight the effectiveness of the SPFS
algorithm on four datasets. Similarly, in Heart and Z-Alizadeh Sani, SPFS consistently
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recorded the highest average accuracy and, in most instances, achieved the highest
classification accuracy. On the Heart dataset, SPFS achieved an average accuracy of
79.00%, surpassing CFS (76.60%), Consistency (74.20%), FCBF (75.00%), and MRMI
(76.20%). Moreover, SPFS exhibited a remarkable capability for dimensionality reduction,
achieving the highest reduction at 76.92%. This finding demonstrates that SPFS not only
enhances accuracy but also helps streamline diagnostic processes, a significant advantage

Table 2 Number of features selected with different algorithms.

Dataset Full set features CFS Consistency FCBF MRMI SPFS

Heart 13 7 8 5 6 (13,9,12,8,3,10) 3 (13,9,12)

Z-Alizadeh Sani 54 11 11 10 5 (25,53,39,14,15) 3 (25,53,1)

Cardiovascular 87 19 18 9 5 (74,6,26,45,29) 4 (74,6,18,71)

Coronary heart disease 43 11 13 11 5 (41,1,30,28,29) 5 (41,1,22,9,28)

Table 3 Classification accuracy (%) of heart and Z-Alizadeh Sani with selected features.

Algorithm Dataset Full set features CFS Consistency FCBF MRMI SPFS

Xgboost Heart 75.20 ± 4.75 76.60 ± 4.65 74.20 ± 3.52 75.00 ± 4.58 76.20 ± 4.85 79.00 ± 3.71

Z-Alizadeh Sani 81.37 ± 6.15 85.49 ± 4.98 88.04 ± 4.76 85.88 ± 4.37 75.88 ± 2.64 84.51 ± 4.84

Naive Bayes Heart 74.40 ± 4.96 75.00 ± 5.88 74.60 ± 5.14 75.80 ± 5.02 76.00 ± 5.73 75.80 ± 5.02

Z-Alizadeh Sani 41.18 ± 6.44 49.80 ± 6.46 45.88 ± 7.19 49.41 ± 6.84 42.35 ± 21.36 77.84 ± 2.91

Linear SVM Heart 76.60 ± 4.74 76.80 ± 4.40 77.80 ± 4.24 80.40 ± 3.67 79.00 ± 4.02 80.40 ± 3.67

Z-Alizadeh Sani 86.08 ± 5.07 83.92 ± 4.94 84.12 ± 4.15 84.31 ± 4.64 76.47 ± 2.77 87.06 ± 4.74

Random Forest Heart 78.00 ± 4.47 76.00 ± 4.10 76.20 ± 3.94 73.80 ± 5.90 76.40 ± 4.36 79.20 ± 3.82

Z-Alizadeh Sani 81.76 ± 4.48 83.92 ± 5.87 88.04 ± 4.15 85.29 ± 5.42 75.49 ± 3.19 84.51 ± 4.84

Average Heart 76.05 ± 4.73 76.10 ± 4.76 75.70 ± 4.21 76.25 ± 4.79 76.90 ± 4.74 78.60 ± 4.05

Z-Alizadeh Sani 72.60 ± 5.54 75.78 ± 5.56 76.52 ± 5.06 76.23 ± 5.32 67.55 ± 7.49 83.48 ± 4.33

Note:
The best results will be shown in bold.

Table 4 Classification accuracy (%) of cardiovascular and coronary heart disease with selected features.

Algorithm Dataset Full set features CFS Consistency FCBF MRMI SPFS

Xgboost Cardiovascular 95.68 ± 0.61 91.71 ± 0.96 91.84 ± 1.23 85.83 ± 1.86 86.90 ± 2.63 94.32 ± 0.64

Coronary heart disease 95.75 ± 2.25 92.92 ± 1.46 93.25 ± 1.80 92.92 ± 1.46 81.67 ± 2.01 93.50 ± 2.52

Naive Bayes Cardiovascular 93.75 ± 1.39 95.57 ± 0.47 95.45 ± 0.60 95.19 ± 0.79 96.85 ± 0.46 95.45 ± 0.91

Coronary heart disease 84.58 ± 2.39 83.50 ± 2.13 82.25 ± 2.77 83.50 ± 2.13 81.25 ± 2.18 80.42 ± 2.02

Linear SVM Cardiovascular 92.35 ± 0.41 88.38 ± 0.90 88.31 ± 1.47 79.67 ± 1.96 83.48 ± 3.16 94.28 ± 0.63

Coronary heart disease 84.50 ± 2.56 83.17 ± 1.86 82.42 ± 1.99 83.17 ± 1.86 81.25 ± 2.18 80.42 ± 2.02

Random Forest Cardiovascular 96.34 ± 0.44 90.84 ± 1.40 92.35 ± 0.90 85.43 ± 1.80 87.27 ± 2.71 94.32 ± 0.64

Coronary heart disease 94.25 ± 2.12 92.83 ± 1.40 93.33 ± 2.36 92.92 ± 1.13 81.83 ± 2.13 93.42 ± 2.40

Average Cardiovascular 94.53 ± 0.71 91.62 ± 0.93 91.99 ± 1.05 86.53 ± 1.60 88.63 ± 2.24 94.60 ± 0.71

Coronary heart disease 89.77 ± 2.33 88.10 ± 1.71 87.81 ± 2.23 88.13 ± 1.64 81.50 ± 2.13 86.94 ± 2.24

Note:
The best results will be shown in bold.
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in the clinical setting where fewer but more informative features can lead to faster decision-
making. Remarkably, in the Z-Alizadeh Sani dataset, SPFS achieved significantly higher
classification accuracy in the Naive Bayes evaluation than other methods, with p-values all
less than 0.001. Analysis of the feature subsets selected by the feature selection algorithms
revealed that CFS, Consistency, FCBF, andMRMI inevitably included features less relevant
or not recommended by the dataset’s original study (e.g., features 14, 29, 28). Additionally,
the performance of the feature subset from the original Z-Alizadeh Sani study in Xgboost,
Naive_bayes, and Linear-svm models was inferior to SPFS, with a similar outcome in
Random-forest. (Performance of the feature subset from the original study: Xgboost:
83.14%, Naive_bayes: 44.51%, Linear-svm: 83.92%, Random-forest: 85.10%) This further
supports the notion that SPFS selects the most appropriate features that directly contribute
to the accurate classification of patients, which is particularly beneficial in predicting
coronary heart disease risk.

On the Cardiovascular dataset, SPFS outperformed the feature subsets selected in the
original article across all evaluated models. Additionally, SPFS demonstrated p-values less
than 0.001 for all models except naive Bayes. (Performance of the feature subset from the
original study: Xgboost: 93.33%, Naive_bayes: 58.56%, Linear-svm: 87.83%, Random-
forest: 93.37%) This highlights SPFS’s capability in managing large, complex datasets while
still retaining essential predictive information, making it a useful tool for clinical diagnosis.

Finally, for the Coronary Heart Disease dataset, the SPFS algorithm achieved a
classification accuracy of 93.50% using the Xgboost classifier, highlighting its notable
advantage in feature selection, with p-values all less than 0.01 compared to other methods.
The SPFS showed exceptional performance in models handling complex data
relationships, such as XGBoost and Random Forest. However, models which assume
independence between features (naive Bayes) and are designed to handle linear
relationships (Linear SVM) generated reduced performance, which means that the SPFS
emphasized feature interactions and nonlinear relationships rather than selecting bad
features. Unlike other algorithms, which did not account for interactions between multiple
features, SPFS’s consideration of feature interactions contributed to its superior
performance. While SPFS may not have achieved the highest average accuracy, its ability to
effectively reduce dimensionality and select the most relevant features underscores the
critical role of feature selection strategies in enhancing model performance. The original
article utilized 24 features, whereas SPFS opted for only 5, showcasing SPFS’s excellence in
reducing feature count while preserving high performance. (Performance of the feature
subset from the original study: Xgboost: 94.58%, Naive_bayes: 83.17%, Linear-svm:
83.83%, Random-forest: 93.50%) This demonstrates that SPFS can identify the core
features crucial for diagnosing coronary heart disease while eliminating unnecessary ones,
which is crucial for improving clinical efficiency. Furthermore, when compared to using all
features in model predictions, SPFS consistently demonstrated superior accuracy across all
datasets, except for the Coronary Heart Disease dataset.
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Performance comparison of mRMR, Relief-F, CMIM, JMIM, IWFS, and MRMI
For algorithms that select features based on a ranking procedure, by specifying a required
number of features N, the feature selection algorithm outputs the top N best features to
form the final most important feature ranking subset. For the four datasets covered in the
experiment, the required number of features N was set to 10. For these datasets, each
algorithm ranked the features by importance and provided the corresponding most
important feature ranking subset. Table 5 lists the different algorithms selected features in
order of importance. We can observe that although the ranking orders vary, certain key
features consistently appear at the top across the subsets of different algorithms. These
commonly deemed important features form the core of the SPFS algorithm’s selection.
This indicates that while each feature selection algorithm can capture the most important
information among many features, it may also capture incorrect information or noise.
Meanwhile, the SPFS algorithm exhibits significant efficiency in feature selection, adeptly
identifying the most crucial features within complex information while disregarding
irrelevant ones. This underscores the SPFS algorithm’s effectiveness in capturing essential
data within datasets.

The experimental results displayed in Fig. 2 indicate that the accuracy of almost all
feature selection algorithms improves with an increase in the number of features. However,
after a certain point, the performance improvement of the algorithms plateaus or even
declines, highlighting the importance of selecting an optimal number of feature subsets to
enhance model performance.

Comparing with algorithms that select features based on a ranking procedure, it can be
seen that the results obtained using the SPFS method are very close or similar to those
obtained with mRMR, Relief-F, CMIM, JMIM, IWFS, andMRMImethods, and sometimes
even better.

In the Heart and Cardiovascular datasets, SPFS was almost the best-performing
algorithm. Besides SPFS, other algorithms exhibited significant performance drops or
sharp declines after initial improvements. The sudden decline and subsequent
improvement in the performance of the SPFS algorithm on the Heart dataset may be
because the second feature alone did not contribute much information. However, it has a
strong mutual correlation with the third feature, leading to a significant increase in

Table 5 Top-10 ranked features by different algorithms.

Methods Heart Z-Alizadeh Sani Cardiovascular Coronary heart disease

mRMR 13, 12, 3, 11, 9, 2, 8, 10, 1, 4 25, 54, 1, 35, 53, 6, 28, 18, 24, 32 75, 49, 69, 29, 45, 72, 26, 81, 56, 74 9, 41, 22, 28, 16, 43, 29, 1, 23, 33

Relief-F 13, 2, 9, 12, 8, 3, 11, 10, 6, 1 25, 28, 7, 53, 26, 8, 1, 35, 4, 6 10, 56, 57, 40, 5, 4, 6, 8, 3, 2 22, 41, 1, 12, 28, 43, 16, 18, 38, 11

CMIM 13, 12, 3, 9, 11, 2, 10, 8, 7, 6 25, 54, 35, 53, 18, 6, 1, 55, 32, 38 75, 49, 45, 20, 29, 69, 26, 57, 44, 21 9, 41, 22, 28, 17, 16, 1, 33, 27, 18

JMIM 13, 12, 3, 9, 11, 2, 10, 8, 1, 7 25, 54, 28, 7, 53, 55, 35, 1, 29, 6 75, 49, 69, 45, 81, 71, 76, 70, 20, 29 9, 41, 22, 28, 43, 17, 23, 27, 16, 29

IWFS 13, 12, 3, 9, 10, 11, 2, 8, 1, 7 25, 54, 28, 53, 24, 35, 1, 29, 6, 32 74, 81, 32, 72, 75, 69, 80, 38, 22, 77 41, 22, 28, 9, 43, 29, 23, 33, 17, 16

MRMI 13, 9, 12, 8, 3, 10 25, 53, 39, 14, 15 74, 6, 26, 45, 29 41, 1, 30, 28, 29

SPFS 13, 9, 12 25, 53, 1 74, 6, 18, 71 41, 1, 22, 9, 28
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accuracy performance once the third feature was included. This can be attributed to the
effectiveness of the k stale parameter, which prevents premature stopping, allowing the
algorithm to continue selecting features that provide additional useful information when
combined with previous ones. As can be seen by the SPFS without k stale in the line graph,
Heart will stop at the second feature without k stale. In the Z-Alizadeh Sani dataset, SPFS’s
steady improvement was second only to the MRMR algorithm, while other algorithms
required more features to achieve comparable or higher accuracy levels, contrary to our
objective of reducing feature dimensions. In the Coronary Heart Disease dataset, the SPFS
algorithm’s performance steadily increased with the addition of features. Although the
final result was not the best, it was similar to the performances of other superior
algorithms, which did not show much improvement or even deteriorated with additional
features. In the Cardiovascular dataset, the k stale parameter effectively stopped the feature
selection before accuracy declined sharply, ensuring that the selected feature subset
remained highly effective.

Figure 2 Average classification accuracy vs. number of top-ranked features. (A)–(D) represent different data sets, and the label is followed by the
name of the corresponding data set. Figure shows that SPFS achieves competitive or superior performance with fewer features, while other algo-
rithms’ accuracy plateaus or declines after a certain point. Full-size DOI: 10.7717/peerj-cs.2834/fig-2
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In summary, the SPFS algorithm can select the most important and accurate features
with a lower required number of features, achieving rapid improvements in accuracy while
balancing high accuracy and low feature dimensionality. Comparisons with the other six
feature selection methods show that SPFS can achieve better or similar performance with
fewer features, proving its superiority.

DISCUSSION AND CONCLUSION
In our study, we introduced SPFS, a pioneering approach to feature selection that
intricately assesses the relevance, redundancy, and interactivity among features. By
computing the path cumulative cost, SPFS adeptly minimizes redundancy while
pinpointing the most interactively significant features, demonstrating exceptional efficacy
across diverse datasets. One notable finding emerged when applying SPFS to large-scale,
highly imbalanced cardiac datasets, where the algorithm not only maintained classification
accuracy but also enhanced it by selecting a smaller subset of features. This success is likely
due to SPFS’s unique ability to account for the complex interactions between features,
ensuring that even in the presence of extreme class imbalances, the selected features retain
predictive power. This finding highlights a gap in current medical data analytics, where
methods for handling imbalanced datasets are often insufficient or underdeveloped.
Despite the significant prevalence of class imbalances in medical datasets, many existing
techniques are not well-suited to address this challenge. SPFS, however, demonstrates its
potential by successfully handling such imbalances.

However, SPFS is not without its limitations, notably its dependence on precise
parameterization. Its performance is markedly influenced by the critical parameter, k stale,
underscoring the importance of accurate parameter configuration for achieving the best
feature subset selection. The parameter tuning process, often reliant on exhaustive search
techniques, demands an in-depth understanding of the dataset, which can be daunting for
users with limited domain expertise. Additionally, the algorithm’s sensitivity to parameter
changes might hinder its broad applicability.

Looking ahead, we aim to expand the use of SPFS to a wider range of medical health
datasets, especially those with extreme class imbalances. Furthermore, we plan to improve
SPFS’s handling of such imbalances by explicitly incorporating information about the
differences between positive and negative class distributions in the training data. This
could involve developing strategies that adaptively select features based on these class
disparities, further improving its performance in large-scale, imbalanced datasets.
Additionally, we will integrate SPFS with cutting-edge machine learning techniques to
enhance its potential for high-dimensional and complex data structure recognition and
feature extraction. Future developments will focus on improving algorithm adaptability by
automating parameter adjustments, potentially using reinforcement learning or
meta-learning approaches. Structural improvements will also be made to more effectively
process large-scale, complex datasets, allowing SPFS to better handle the diverse challenges
posed by real-world medical data.
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