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ABSTRACT
This article proposes a hybrid model to assist insurance companies accurately assess
the risk of increasing claims for their premiums. The model integrates long
short-term memory (LSTM) networks and convolutional neural networks (CNN) to
analyze historical claim data and identify emerging risk trends. We analyzed data
obtained from insurance companies and found that the hybrid CNN-LSTM model
outperforms standalone models in accurately assessing and categorizing risk levels.
The proposed CNN-LSTM model achieved an accuracy of 98.5%, outperforming the
standalone CNN (95.8%) and LSTM (92.6%). We implemented 10-fold
cross-validation to ensure robustness, confirming consistent performance across
different data splits. Furthermore, we validated the model on an external dataset to
assess its generalizability. The results demonstrate that the model effectively classifies
insurance risks in different market environments, highlighting its potential for
real-world applications. Our study contributes to the insurance industry by providing
valuable insights for effective risk management strategies and highlights the model’s
broader applicability in global insurance markets.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Neural Networks
Keywords Machine learning, Deep learning, CNN-LSTM, Claims, Premiums, Measuring risk,
Insurance

INTRODUCTION
The increase in insurance claims is a critical concern for insurance companies. Precisely
predicting claims is not only a challenge but a necessity. The foundation of insurance
operations relies on balancing risk assessment with financial stability. However, the
potential for a rise in claims poses a significant threat, causing uncertainty about the ability
of insurance companies to sustain their resilience and stability. The rapid and exponential
growth of claims presents a considerable challenge, endangering the delicate balance
between effectively managing risks and maintaining financial stability.
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Studying the impact of premium collections and claim payouts by insurance companies
is a crucial factor that affects decision-making. Insurance companies meticulously
determine insurance service prices, fulfilling specific criteria. These include ensuring that
premiums are sufficient to cover expected losses and extra expenses, that pricing is
profitable to allow for a margin to cover the costs of maintaining capital reserves for
expected losses, and that pricing is fair to promote competition (Parodi, 2023). In recent
years, various approaches have been proposed to improve the accuracy of risk prediction
and premium estimation in the insurance industry. One notable example is the adaptive
mean (ADM) method, which combines the strengths of trimming and winsorization to
minimize mean square error (MSE) and enhance premium accuracy. This method
significantly contributes to mitigating risk exposure caused by inaccurate premium
estimations by offering a more reliable and robust model for credibility premium
estimation (Attayyib et al., 2024).

Guaranteeing the restoration of the insured amounts to their initial state without any
increase or decrease is the main principle behind the claims process. According to the
insurance policy’s provisions, the insurance company is responsible for providing the
policyholder with enough money for compensation, repairs, replacements, or other
appropriate solutions. The claim payment aims to help policyholders recover from
unexpected setbacks and restore their financial stability, per the insurance coverage’s
purpose. Insurance claim prediction is crucial for insurers to decide which insurance plans
to provide to policyholders. Insurance companies may suffer financial losses due to
overpricing or underpricing resulting from inaccurate claim estimations. We need to
create reliable predictive models and methodologies for anticipating claims to enhance the
effectiveness and productivity of insurance operations (Fauzan & Murfi, 2018).

Several significant studies have explored the application of machine learning methods to
predicting insurance claims. Abdelhadi, Elbahnasy & Abdelsalam (2020) developed an
insurance claim prediction model using XGBoost, Naive Bayes classifiers, decision trees,
and artificial neural networks. Their findings indicated that decision trees and XGBoost
achieved the highest prediction accuracy at 92.22% and 92.53%, respectively. Pesantez-
Narvaez, Guillen & Alcañiz (2019) compared the predictive capabilities of XGBoost and
logistic regression for accident claims prediction with limited training data. Their study
highlighted the interpretability of logistic regression over XGBoost, which requires
extensive effort to interpret complex relationships.

Additionally, Goundar et al. (2020) developed an artificial neural network model for
forecasting medical insurance claims, demonstrating the superiority of recurrent networks
over traditional feed-forward architectures. While these models are effective, they
primarily focus on static feature relationships and fail to capture insurance claims data’s
temporal and spatial complexities. These traditional models do not effectively model the
sequential and time-dependent nature of claims, which is crucial for accurate risk
prediction.

A growing body of research has leveraged deep learning techniques for insurance risk
assessment, particularly convolutional neural networks (CNN) and long short-term
memory (LSTM) networks. Abakarim, Lahby & Attioui (2023) proposed a CNN-based
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fraud detection model with ensemble bagging that achieved 98% accuracy. Similarly,
Saputro, Murfi & Nurrohmah (2019) demonstrated that combining deep neural networks
with LSTM outperformed traditional feed-forward networks for auto insurance prediction.
Reddy et al. (2023) utilized a multi-contextual modeling approach integrating CNN and
bidirectional LSTM for financial fraud detection, effectively capturing spatial and
sequential dependencies. Furthermore, Lai et al. (2022) employed LSTM to analyze
brain injury insurance claims. It has achieved a notable accuracy of 74.33%. Xia, Zhou &
Zhang (2022) introduced a joint model that combines the strengths of LSTM and CNN by
extracting enhanced abstract representations, significantly improving risk assessment
while reducing the reliance on domain expertise for feature engineering.

Despite these advancements, existing models exhibit notable limitations. Standalone
CNNs effectively capture spatial relationships but struggle with sequential dependencies,
making them inadequate for analyzing time-dependent claim patterns. Conversely, LSTM
networks excel in processing sequential data but cannot capture spatial correlations
inherent in insurance datasets. Traditional machine learning models, such as random
forest and XGBoost, efficiently identify complex relationships but are not designed to
model the temporal dependencies and intricate sequential patterns in time-series
insurance data. Consequently, these methods fail to address the full complexity of
insurance claims, particularly in understanding the evolving risk dynamics and spatial
dependencies between different features.

To bridge this research gap, we propose a hybrid CNN-LSTM model that integrates the
strengths of both architectures. By leveraging CNNs for spatial feature extraction and
LSTMs for capturing temporal dependencies, our model provides a comprehensive
solution for risk assessment in insurance claims. This hybrid approach enables a more
robust and accurate prediction framework by effectively handling the multifaceted nature
of insurance data. The proposed model outperforms conventional techniques by offering a
unified solution that accommodates both spatial and temporal complexities, ultimately
enhancing the reliability and accuracy of insurance risk evaluation.

Generally, insurance companies face a pressing issue with increased claims, demanding
immediate attention. When the number of claims exceeds the premium revenues, it leads
to financial deterioration and impairs the company’s capacity to fulfill its financial
responsibilities; furthermore, growing costs can reduce total profitability, necessitating
additional cash through borrowing or exploring alternative financing solutions. As a result,
this can affect the company’s capital structure and financial liquidity. To tackle this issue, it
is essential to integrate skilled risk management and meticulously adjust prices and policies
to guarantee the organization’s long-term sustainability and profitability.

In response to these strong reasons, this study proposes a novel method for predicting
insurance claims and assessing the risk of increasing claims for premiums. Our risk model
predicts claims using an innovative approach that combines LSTM and CNN capabilities.
Our risk model integrates LSTM and CNN architectures to create a complete framework
that appropriately evaluates the likelihood of insurance claims escalation. This technique
improves our understanding of the elements that increase the possibility of insurance
claims. Our method effectively analyzes the data for complex patterns and relationships,
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allowing a more accurate risk assessment. It uses the temporal dependencies that LSTM
networks collect and the spatial information that CNN recovers. By combining LSTM and
CNN networks, our model can effectively capture the temporal and geographical
characteristics of the data, making it ideal for studying the temporal evolution of insurance
claims.

We select CNNs for their autonomous acquisition of spatial hierarchies and local
features from data. This is especially beneficial in time series analysis, where localized
patterns may signify important trends. We choose LSTM for its ability to retain
information over extended durations, thereby mitigating the vanishing gradient issue
prevalent in recurrent neural networks. This is essential for comprehending sequences in
time-series data. We implement dropout regularization to alleviate overfitting, a prevalent
challenge in deep learning models, particularly when utilizing limited datasets.

Our goal is to offer insurance companies a powerful tool for evaluating and making
decisions about risk. This tool will assist them in managing and mitigating the adverse
effects of increasing claims on their financial stability and profitability. Our approach
enables insurance companies to make well-informed decisions about pricing, policy
revisions, and risk management strategies by correctly predicting and evaluating the
likelihood of an increase in insurance claims. This helps protect the organization’s
long-term profitability and financial stability amid increasing claims-related issues.

The main contributions of this article are as follows: (i) Create a new, useful risk model
that evaluates and rates the risk factors connected with increased claims; (ii) Use a hybrid
CNN-LSTM to improve the precision and dependability of risk evaluation; and (iii) By
spotting patterns in historical data, our model predicts possible increases in claims, giving
us useful information. Furthermore, our framework provides practical insights to improve
profitability and long-term financial stability, optimize pricing frameworks, and refine
underwriting procedures.

The remainder of this article is as follows. “Problem description” provides a problem
description. “Methodology” provides a detailed explanation of the methodology and the
proposed model. “Results and Discussions” presents the outcomes of numerical examples,
illustrating how the suggested model assesses the risk of insurance companies’ claims
surpassing premiums and employs the optimization model to identify the optimal claims.
The article concludes in “Conclusions”, summarizing the essential findings and
emphasizing the practical implications of our research for the insurance industry,
particularly in improving profitability and long-term financial stability, optimizing pricing
frameworks, and refining underwriting procedures.

PROBLEM DESCRIPTION
Risk classification is not just a task; it is a mission-critical function in the insurance
industry. It is pivotal in evaluating and controlling various risks, including the likelihood of
claims exceeding premiums. We aim to categorize insurance risk into predetermined
categories, such as low, normal, and high. We use historical data on insurance premiums,
claims, loss rates, commission rates, administrative spending rates, and other relevant
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variables. This categorization empowers insurance companies to make informed choices
about risk assessment, pricing, and management, safeguarding their financial health.

To establish a precise definition of the problem, we use the following notation to
develop a predictive model that effectively measures the risk of claims exceeding
premiums. These models will use cutting-edge machine learning methods, like CNN and
LSTM networks, to look for patterns in the time series data and find possible risk factors
that affect the trends seen. X represents the input feature matrix, where each row
corresponds to an observation of a time series, and each column represents a distinct
feature.

The dependent variable, y, represents evaluating the potential risk associated with
increased claims compared to premiums. We can classify the variable as low, medium, or
high risk.

n represents the dataset’s overall count of insurance companies. m denotes the number
of features, which is six. t Denotes the total number of time points in the time series data.

To address this crucial problem, we propose using a hybrid model that combines the
strengths of CNNs, which excel in spatial analysis, with LSTM networks, which are adept
at temporal modeling. This powerful combination allows the model to capture and analyze
intricate patterns and correlations in claims data over time, significantly enhancing our
ability to manage and mitigate insurance risks.

The hybrid CNN-LSTM model is a game-changer, revolutionizing pricing decisions,
underwriting processes, and risk assessment and management. It provides a practical
solution to the challenges associated with rising claims, enhancing insurers’ understanding
of the risk landscape by capturing claims data’s short- and long-term relationships. With
this model, insurers can adjust premium rates and allocate reserves precisely, ensuring
profitability while maintaining financial stability and sustainability in the insurance sector.

METHODOLOGY
This section discusses the research method used to develop the prediction models. Our
process is significant because it allows us to accurately predict future trends in the
insurance industry, which is crucial for making informed decisions and implementing
strategies to ensure the financial stability and sustainability of the insurance market.

Data collection
We have carefully collected data from the Financial Regulatory Authority’s annual reports
covering the Egyptian insurance sector. This data includes details about the performance
of insurance companies. This data provides accurate and comprehensive information
about the performance of insurance companies, including the development of insurance
premiums and claims over the past years. The data is not just numbers; rather, it carries
vital insights that reflect the insurance industry’s dynamics and the changes that have
occurred in it. It highlights the importance of monitoring and analyzing premium and
claim trends to assess insurance companies’ financial performance and risk exposure.

Gamaleldin et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2830 5/25

http://dx.doi.org/10.7717/peerj-cs.2830
https://peerj.com/computer-science/


This study includes a set of variables, including:
1. Insurance premiums ðX1): refer to the total amounts policyholders pay to insurance

companies.

X1 ¼ x11; x12; . . . ; x1nf g: (1)

2. Claims ðX2): refer to the total sum insurance companies have paid to cover the
submitted claims, indicating the potential financial risk they may face.

X2 ¼ x21; x22; . . . ; x2nf g: (2)

3. Loss ratio ðX3): Calculated as the ratio of claims paid to premiums written, it is
considered a key measure of financial performance.

X3 ¼ x31; x32; . . . ; x3nf g: (3)

4. Commission rate ðX4): reflect the percentage of commissions paid to agents
compared to total premiums written.

X4 ¼ x41; x42; . . . ; x4nf g: (4)

5. Production costs ðX5): include operating costs associated with underwriting and
issuing documents.

X5 ¼ x51; x52; . . . ; x5nf g: (5)

6. General and administrative expenses rate ðX6): expresses the ratio of administrative
expenses to the total subscribed premiums.

X6 ¼ x61; x62; . . . ; x6nf g: (6)

7. Level of risk ðY): classifies the level of risk into three categories: low, normal, and
high.

Y ¼ y1; y2; . . . ; ynf g: (7)

Figure S1 presents data on premiums and claims in the insurance industry over several
years, from 1994 to 2022. From the data, several observations can be made. Firstly, a
general upward trend in premiums and claims over the years indicates growth in the
insurance market. However, it is important to note that the growth rates vary yearly.
Between 1994 and 2022, premiums increased steadily, with a notable surge in growth in
certain years, such as 2000, 2002, 2005, and 2012. These surges could be attributed to
increased policy sales, expanded coverage, or changes in market conditions during those
periods, providing insights into the insurance market dynamics.

Similarly, claims also experienced fluctuations, with both positive and negative growth
rates. Several factors, such as changes in the number and severity of covered events and
changes in the general state of the economy, might impact claim growth.
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Notably, there are instances where the growth rates of premiums and claims diverge.
For example, in certain years like 2001, 2004, and 2013, while premiums continued to rise,
claims experienced negative growth rates. This suggests implementing effective risk
management practices or relatively fewer covered losses during those periods, which could
result from strategic decisions made by insurance companies.

The loss ratio, a crucial metric in evaluating an insurance company’s performance, is
calculated by comparing claims paid over a specific period to premiums collected during
the same period. A low loss ratio indicates strong performance, while a high loss ratio
suggests higher risks and may necessitate improved management and assessment
procedures to control claims and enhance the company’s financial sustainability.

Figure S2 represents the insurance industry’s loss ratio from 1994 to 2022. The loss ratio
varied between 0.40 and 0.87 during the study period. Noteworthy peaks in the loss ratio
were observed in 2002, 2006, and 2012, indicating periods of relatively higher claims than
premiums collected. The lowest loss ratio was recorded in 2020 at 0.40. These findings
suggest fluctuations in risk exposure and the potential challenges insurance companies face
in managing and covering claims over time.

Data description
The dataset, a crucial foundation of our article, is a comprehensive information collection
from 36 insurance companies. It considers each company’s unique factors. The input
variables considered are premiums (x1), claims (x2), loss rate (x3), commission rate (x4),
production costs (x5), and general and administrative expenses rate (x6). The output
variable (y) classifies the level of risk into three categories: low, normal, and high.

We use a fusion process to select the ultimate fusion value from the pooled data with the
highest prediction rate. This method ensures that the fusion output captures either
classifier’s most reliable predictions. Our technique combines LSTM and CNN models to
enhance classification performance and provide more precise and reliable results across
various tasks. The goal is to accurately classify new risk classifications into one of three
categories: low, normal, or high. Next, let’s look at a collection of claims inputs.

X ¼
x11 � � � xt1
..
. � � � ..

.

x136 � � � xt36

0
B@

1
CA ¼ x1; . . . ; xi . . . ; xt

� �
; (8)

where the vector xi ¼ xi1; . . . ; x
i
36

� �T
represents the input from a set of 36 companies at a

particular time i, each comprising t samples.

Data preprocessing and model architecture
This section describes the steps taken to prepare the input data in detail. These steps were
essential in ensuring the incoming data would work with the CNN and LSTM model,
which is an integral part of our research. The data preprocessing phase is not just a
formality but a vital step that directly influences the performance and accuracy of the
selected model architecture. Data preprocessing involves preparing and cleaning raw data
before using it for analysis or modeling.
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We meticulously and methodically divided the data into two distinct components:
features (X) and target labels (y). The features encompass a variety of factors, including
premiums, claims, loss rates, commission rates, production costs, and general and
administrative expenses rates. These features serve as the basis for our model’s predictions.
On the other hand, the target outputs classify the level of risk into three categories: low,
normal, and high. This categorization is crucial for the model’s learning process.

Before applying preprocessing techniques, all personally identifiable information was
removed to maintain data privacy and compliance with ethical guidelines. Additionally, we
incorporated an external dataset (Health Insurance Dataset India) to reduce potential
biases for model validation, ensuring its applicability beyond the Egyptian insurance
sector.

In addition to ensuring data privacy, we applied rigorous preprocessing techniques to
enhance data quality and reliability. Missing values were handled using multiple
imputation methods, ensuring data completeness across all features. We also detected and
addressed outliers using the Interquartile Range (IQR) method and Mahalanobis distance.
Identified outliers were either transformed or removed based on statistical thresholds to
prevent distortions in model training. These steps improved the dataset’s quality,
improving model stability and robustness.

A critical aspect of evaluating model performance is identifying potential biases in the
dataset. The FRA dataset primarily represents the Egyptian insurance sector, where
underwriting and claims settlement practices may differ from those in other markets.
Additionally, variations in premium structures, claims patterns, and expense ratios across
different companies could introduce biases in model predictions.

To mitigate these biases, we applied data normalization and scaling techniques to
standardize input variables, ensuring that no single feature dominates the learning process.
Furthermore, we incorporated an external dataset to assess the model’s generalizability
beyond the FRA dataset (Health Insurance Dataset India). This additional validation helps
determine whether the proposed model can effectively classify risks in different market
environments, reducing the likelihood of overfitting to a single dataset.

The dataset was then divided into training and testing sets using a 90–10 split, ensuring
a reliable assessment of model performance. To further validate model robustness, we
applied 10-fold cross-validation, which systematically tests performance across different
data splits, confirming the model’s consistency and reliability.

Before inputting the data into the CNN-LSTM model, we conducted preprocessing
procedures to ensure compatibility with the selected architecture. We transformed the data
to align with the CNN input structure, treating each feature as an independent channel.
We converted the input data into a three-dimensional tensor with dimensions (batch_size,
num_features, num_samples). Here, batch_size refers to the number of samples,
num_features represents the number of features, and num_samples indicates the number
of time steps.

We can summarize the most crucial steps for implementing the proposed model as
follows.
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I. Data preparation: Collect historical data regarding claims and premiums from the
insurance companies and partition the data into training and testing sets.

II. Feature extraction: Identify and extract relevant aspects from the data to aid in
predicting future claim risk. Variables may encompass the general and
administrative expenses rate (GAE), commission rates (CR), production costs (PC),
and loss rate (LR).

III. Data preprocessing: Normalize or scale the input features to standardize their scale.
This stage is crucial for the model to learn efficiently.

IV. Model architecture: Create the architecture for the CNN-LSTM model. CNN layers
extract spatial information from incoming data, while LSTM layers capture
temporal dependencies and patterns.

V. Train the CNN-LSTM model with the provided training data. We analyze the input
features to forecast future claim risk and optimize the model’s performance by
adjusting hyperparameters such as learning rate, activation function, loss function,
dropout, epoch, batch size, and optimizer.

VI. Evaluate the trained model using the testing data. To evaluate the model’s
performance, compute key metrics like accuracy, precision, recall, mean squared
error, and the F1 score to ensure effectiveness in measuring the risk of increasing
claims.

VII. Risk assessment: After training and evaluating the model, we can use it to forecast the
likelihood of increasing claims for premiums in real-world situations. Input the
necessary features, and the model will generate a risk score or probability
representing the chance of future claims.

VIII. Monitor and improve the model’s performance continuously, as necessary, by
periodically retraining the model with new data to maintain its accuracy and
relevance.

Proposed model
It is crucial to develop a model that predicts claims risk. To build this model, we use
historical data that serves as a reference for past claims. We use this data as training data to
classify claim risk, uncovering patterns and trends that facilitate predicting future claims.
To increase prediction accuracy, we use both CNN and LSTM approaches. We use CNN
for deep feature extraction and LSTM for sequence prediction based on the retrieved
features. Below is a brief explanation of each model.

CNN model

One of the most effective deep learning tools is CNN, extensively utilized in image and
video recognition, natural language processing, pattern recognition, and feature extraction
(Cui, Chen & Chen, 2016; Shrestha & Mahmood, 2019). The main idea of CNN is
that it can take inputs at the top layer and extract local features, then transport those
elements down to deeper levels to create more complex features (Islam, Islam &
Asraf, 2020). Regarding structure, CNN is a feed-forward neural network design
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combining deep structures, such as convolution, pooling, and fully connected layers
(Moradzadeh et al., 2021) (See Fig. S3). Each layer in the CNN framework serves the
following purposes.

I. The convolutional layer uses a few filters built into its structure to perform the
feature extraction process. Convolutional layers possess a multitude of kernels and
parameters. Every kernel corresponds to the entire input depth and has its
permissible fields. These filters can recognize regional patterns and characteristics
(LeCun, Bengio & Hinton, 2015; Lundervold & Lundervold, 2019). The Rectified Linear
Unit (ReLU) activation function is used to execute the convolution operation on each
layer as follows

f xð Þ ¼ 1 if x . 0;
0 otherwise:

�
(9)

The available filters create the feature map using an activation function procedure in the
manner described below

zlj ¼ f
X
i�Mj

xl�1
i � wl

ij þ blj

0
@

1
A; (10)

where zlj is the output of the l-th filter in the convolutional layer j; f shows a nonlinear
function, operator � presents convolution; wl

ij is the convolutional kernel in the l-th
layers between the i-th input and the j-th output maps; Mj Denotes the collection of
interconnected indices corresponding to the neurons in the preceding layer; and blj is
bias.

II. The pooling layer efficiently handles the issue of creating a new feature map. The dense
packing of these feature maps makes them too large for computational processing. The
pooling layer uses a downsampling procedure to calculate feature map, reducing
duplicate features while maintaining noticeable characteristics (Scherer, Müller &
Behnke, 2010; LeCun, Bengio & Hinton, 2015; Moradzadeh et al., 2021), as follows

z0lj ¼ f
X
i�Mj

down xl�1
j

� �
þ blj

0
@

1
A; (11)

where downsampling down () can be a max pooling operation.

III. A fully connected layer is a feedforward neural network with interconnected neurons.
The features that the convolution and pooling layers extract are input to fully
connected layers. Fully connected layers then compute the weights and biases for the
features, classifying them in the final layer of CNN. Each neuron in a fully connected
layer receives input values and translates them into a single output value as per the
following equation (Yamashita et al., 2018; Shrestha & Mahmood, 2019)

z ¼ f
Xn
i¼1

kixi � b

 !
; (12)
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where z represents the out value, ki is the neuron’s sensitivity to input values, and b is
the bias.

LSTM model
LSTM is a powerful deep learning method that stands out for its ability to store
information in both the short and long-term (Tang et al., 2023). It was created to address
the vanishing gradient problem of traditional RNNs and enhance the capture of long-range
dependencies in sequential data. Storing and retrieving information over extended periods
enables the network to identify and learn patterns in the input sequence (Zhao et al., 2016).
Three key components, the forget gate, input gate, and output gate, form the foundation of
the LSTM design (Graves, Mohamed & Hinton, 2013) (see Fig. S4).

The forget gate, a key element in the overall LSTM design, is crucial in determining what
needs to be removed from the current storage block and what can be kept for future
transfers. It also plays a role in managing data from the previous storage block.
Feed-forward and sigmoid layers implement the ‘forget gate’ function. Using the sigmoid
function, the forget gate generates an output ranging from 0 to 1 based on the current unit
input lt and the previous unit output ht�1:A value of ft indicates the degree of information
retention. A value of 0 indicates “all forgotten,” while a value of 1 indicates “all retained.”
This role of the forget gate makes LSTM a unique and powerful deep learning method. The
particular calculation formula is as follows

ft ¼ � Wfl lt þWfh ht�1 þ bf
� �

; (13)

where t is the time step, � is the sigmoid function, W is the weight matrix, and bf is the
vectors’ bias matrices.

The input gate, a critical memory cell component, controls how data from the current
input can reach the memory cell. This enables the network to selectively update the cell
state based on the relevance of the input and the current state. It comprises two key
functions: the sigmoid function and the tanh function. The sigmoid function is responsible
for controlling the flow of information. In contrast, the tanh function generates a vector
based on the input data, including the output of the previous unit ht�1 and the current
input lt . Then, this vector is used to update the memory cell

it ¼ � Willt þWihht�1 þ bið Þ (14)

and

at ¼ tanh Wallt þWahht�1 þ bað Þ; (15)

where it and at are the input gate’s outputs, tanh denotes the tanh function, and the
meanings of the other symbols are as previously explained. Based on this, the forget gate
and input gate can be combined to update the cell’s state

at ¼ ft � at�1 þ it � at; (16)

where at�1 denotes the previous cell state and at current cell state, � denotes the
element-wise product of the vectors.
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The output gate, another key component of the LSTM, plays a crucial role in controlling
the exposure of the internal memory cells. It does this by receiving as inputs from the
output of the previous cell ht�1 and the current cell input lt , then using the sigmoid
function to return the output. The output of the output gate ot and the cell state at scaled
by the tanh function are fully considered in the final current cell output ht . To illustrate
this, let’s walk through the calculation

ot ¼ � Wollt þWohht�1 þ boð Þ (17)

and

ht ¼ ot � tanh atð Þ: (18)

Hybrid CNN-LSTM model
We designed our model to handle the intricacies and subtleties inherent in insurance data.
Its objective is to categorize risk levels into low, normal, and high. We used the dataset’s
information to create a model structure that matches the data and outperforms other
methods. This introduction provides an overview of the reasoning behind the creation of
our suggested model, emphasizing its main characteristics and benefits.

After thoroughly examining the dataset, we have determined that a strong and flexible
model is required to handle the complexities of insurance data effectively. Conventional
machine learning methods frequently fail to capture insurance datasets’ intricate
connections and time-based patterns. Previous models, such as standalone CNNs, LSTMs,
and traditional machine learning techniques like random forest or XGBoost, have
demonstrated effectiveness in insurance claim prediction. However, these methods have
significant limitations in addressing the spatiotemporal complexities inherent in insurance
data. Standalone CNNs are excellent at detecting spatial patterns but struggle to capture
temporal dependencies in sequential data. Similarly, LSTM models are adept at handling
time-based data but often fail to consider spatial features crucial in insurance claims. While
efficient in capturing complex relationships, traditional machine learning models like
Random Forest and XGBoost are not designed to handle the temporal dependencies and

Algorithm 1 LSTM forward propagation algorithm.

1. inputs: Feature matrix l tð Þ and target matrix h tð Þ.
2. Initialize: Randomly initialize the weight matrix W and bias vectors b.

3. Forget gate: f t ¼ σ Wfl lt þWfh ht�1 þ bf
� �

:

4. Input gate: it ¼ σ Willt þWihht�1 þ bið Þ:
5. Candidate value: at ¼ tanh Wallt þWahht�1 þ bað Þ:
6. Update the cell state: at ¼ f t � at�1 þ it � at :

7. Update the output of the LSTM:

ot ¼ σ Wollt þWohht�1 þ boð Þ,
ht ¼ ot � tanh atð Þ:

8. Outputs: The estimation value h(t).
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intricate patterns in time-series insurance data. As a result, these methods fail to address
the full scope of the complexities in insurance data, particularly in understanding the
dynamics over time and the spatial dependencies between various features. To address
these gaps, our proposed hybrid CNN-LSTM model combines the strengths of both
architectures, effectively capturing both spatial and temporal patterns. Doing so offers a
more robust and accurate approach to insurance risk assessment, providing a
comprehensive solution that outperforms conventional models in handling the
multifaceted nature of insurance claim data. Hence, we developed an innovative model
structure that integrates the advantages of CNN and LSTM networks, referred to as the
CNN-LSTM model.

We specifically tailor the suggested model to incorporate the distinctive attributes of
insurance data, such as temporal dynamics, spatial interdependence, and sequential
patterns. Our superior alternative model combines CNN to extract spatial features and
LSTM to capture temporal relationships (Islam, Islam & Asraf, 2020). This integration
creates a comprehensive framework for risk categorization that surpasses traditional
methods. By conducting thorough experimentation and evaluating performance, we
provide evidence of the usefulness and superiority of our suggested approach for
appropriately categorizing risk levels (Chen, 2016). Figure 1 shows the broad form of the
hybrid CNN-LSTM model intended for insurance claims prediction.

Our model’s architecture is a fusion of CNN and LSTM layers, commonly known as the
CNN-LSTM model. The CNN module of the model is not just a component but a crucial
element responsible for analyzing the spatial characteristics derived from the input data.
We used a Conv1D layer with a kernel size of 3 to extract these characteristics, followed by
a MaxPooling1D layer to reduce dimensionality. We then transform the CNN model’s
output into a one-dimensional array and feed it into a fully connected layer, a crucial step
in the model’s learning process.

Figure 1 Proposed architecture of a hybrid CNN-LSTM. Full-size DOI: 10.7717/peerj-cs.2830/fig-1
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Next, we changed the CNN model’s output to work with the LSTM layer’s inputs. The
LSTM layer is in charge of handling the data’s sequential properties and capturing
temporal relationships. To achieve this, we used an LSTM layer with 64 units and a
rectified linear unit (ReLU) activation function. We also used a dropout layer to reduce
overfitting with a rate of 0.5.

The model uses a tensor structure to represent the input data, organized as a
three-dimensional tensor. Each dimension of the tensor corresponds to distinct features of
the data. The first dimension represents the batch size, the second defines the number of
features (channels), and the third represents the number of time steps (samples).

To ensure the robustness and reliability of the proposed CNN-LSTM model, K-fold
cross-validation with 10 folds was implemented. This method systematically partitions the
dataset into training and validation subsets, enabling multiple evaluations across various
data splits. The model’s performance was assessed in each fold using accuracy, precision,
recall, and F1-score metrics, ensuring that results are not biased due to a single train-test
split. The cross-validation results confirm the model’s stability across different subsets of
the dataset.

The chosen model structure and the data preprocessing steps are compatible and
meticulously designed to be consistent. This design choice makes it easier to accurately
group risk levels into low, normal, and high levels, providing a solid foundation for our
research.

The following sections present a comprehensive analysis of the structure, execution, and
assessment of the suggested CNN-LSTMmodel. We give empirical findings demonstrating
the model’s performance metrics, encompassing accuracy, precision, recall, F1 score, and
other pertinent indicators. In addition, we analyze the consequences of our discoveries and
emphasize the possible uses and advantages of the suggested model in practical insurance
situations.

Hyperparameters and model performance

This section focuses on the essential elements of hyperparameter tuning and model
performance evaluation within the framework of our proposed CNN-LSTMmodel for risk
categorization in insurance companies. Hyperparameters are crucial in defining the
effectiveness and efficiency of machine learning models. They significantly impact the
models’ ability to generalize to new data and attain optimal performance. Similarly, model
performance indicators offer vital insights into the effectiveness and dependability of the
suggested approach, influencing decision-making and providing information for future
enhancements.

Hyperparameters refer to a wide range of configuration options that determine the
behavior and structure of the model. These settings include the learning rate, batch size,
number of layers, activation functions, and regularization approaches. The process of
choosing and adjusting hyperparameters is crucial. It necessitates thoughtful analysis and
experimentation to find the right balance between the complexity of the model and its
capacity to generalize. This section investigates the influence of various hyperparameter
configurations on the performance of our CNN-LSTM model. The objective is to
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determine the ideal settings that maximize predicted accuracy and resilience. The values
displayed in Table S1 are the basis for using the hyperparameters for the model.

The sensitivity of model performance to hyperparameter choices has been observed,
where slight changes in parameters such as learning rate or batch size can lead to
significant variations in model outcomes. This highlights the importance of careful
hyperparameter tuning in optimizing model performance and preventing overfitting. A
detailed sensitivity analysis will explore these effects across different settings and datasets
in the following sections.

In the following sections, we thoroughly examine the model’s effectiveness on several
datasets and experimental scenarios, emphasizing significant discoveries and their
relevance to practical use in the insurance sector. This section provides a fundamental
framework for comprehending the complexities of hyperparameter tuning and evaluating
model performance. It sets the stage for future progress and improvements in risk
classification approaches.

Integrated model
We use historical data to create an integrated model for evaluating the potential risk
associated with increasing claims for premiums from insurance companies. This data
includes information on claims (C), premiums (P), general and administrative expenses
(GAE), loss rates (LR), commission rates (CR), and production costs (PC). The model
design combines a convolutional neural network (CNN) and long short-term memory
(LSTM) for predictive modeling. Additionally, the model utilizes the Weibull distribution
for risk assessment. First, we preprocess the historical data, applying normalization to
standardize the variables. Next, we conduct feature engineering to transform the time
series data into sequences suitable for modeling with the CNN-LSTM architecture. We
train the CNN-LSTM model to predict future claims (Ĉtþ1) using historical data on
premiums, general and administrative expenses, loss rates, commission rates, and
production costs

Ĉtþ1 ¼ CNN � LSTM Pt; LRt;CRt;PCt;GAEtð Þ; (19)

subsequently, a Weibull distribution is employed to analyze the historical claims data and
establish a mathematical representation of the likelihood of different claims amounts. For
various claims amounts (x), the Weibull distribution gives the probability density function
(PDF) (Chaurasiya, Ahmed &Warudkar, 2018; Yousefi, Tsianikas & Coit, 2022) as follows

f xð Þ ¼ b
a

x
a

� �b�1
exp � x

a

� �b� �
; (20)

after that, we evaluate the risk by comparing the difference between predicted and actual
claims, considering the possibility that claims exceed predetermined limits. We can
calculate the risk by adding up the difference between the expected (Ĉt) and actual (Ct)
claims and weighting it according to the probability density function (PDF) of the Weibull
distribution, as presented in the following equation
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Risk ¼
Xr
t¼1

Ĉt � Ct
� � � f Ĉt

� �
; t ¼ 1; . . . ; r: (21)

This comprehensive approach offers a robust framework for evaluating and mitigating
the risk associated with claims adjustments within insurance companies.

RESULTS AND DISCUSSIONS
Dataset preparation
The experiments use the dataset from the Financial Regulatory Authority’s annual reports
for the Egyptian insurance sector (FRA) (https://fra.gov.eg/%d8%a7%d9%84%d8%aa%
d9%82%d8%a7%d8%b1%d9%8a%d8%b1-%d8%a7%d9%84%d8%b3%d9%86%d9%88%
d9%8a%d8%a9/) for training and testing. We include the dataset to illustrate the evolution
of premiums and claims data in insurance companies. Before inputting the data into the
model, we conducted preprocessing procedures to ensure compatibility with the selected
architecture. We transformed the data to align with the CNN input structure, treating each
feature as an independent channel.

We used an additional dataset, the Health Insurance Dataset India, for external
validation to address potential concerns regarding the proposed model’s generalizability.
This dataset, sourced from Kaggle (https://www.kaggle.com/datasets/balajiadithya/health-
insurance-dataset-india-2022), represents a different insurance market, allowing us to
evaluate the model’s robustness across diverse demographic and economic conditions.

Implementation details
We use the PyTorch framework to train the proposed model. The training epochs are set to
100. The Adam optimizer is used for network parameter optimization with Beta1 = 0.9 and
Beta2 = 0.999. The initial learning rate, weight decay, and optimizer momentum are set to
0.001, 0.0005, and 0.937, respectively. The batch size is set to 64.

The experiments are conducted on a Windows operating system equipped with an
NVIDIA GTX 3090 GPU. All methods are tested under the same hardware setup to ensure
experimental fairness.

Evaluation metrics
To assess the model’s efficacy, we use a set of metrics specifically designed to measure
classification accuracy, precision, recall, F1-score, and other vital indicators. These
measurements offer a comprehensive viewpoint on the model’s capacity to accurately
categorize risk levels as low, normal, and high. This, in turn, aids in making well-informed
decisions and developing risk management strategies inside insurance companies.

To ensure that our CNN-LSTM model does not suffer from overfitting, we applied
dropout regularization to reduce model complexity and prevent excessive reliance on
specific features. However, to further validate the effectiveness of dropout regularization,
we conducted additional tests across multiple datasets, including the Financial Regulatory
Authority (FRA) dataset and the Health Insurance Dataset India.
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Additionally, to ensure the robustness and reliability of our results, we implemented
10-fold cross-validation, which systematically partitions the dataset into multiple training
and validation subsets. This method helps confirm that the model’s high accuracy is not
due to overfitting a specific data split but reflects its genuine predictive ability across
different data partitions.

Furthermore, we validated the model on an external dataset (Health Insurance Dataset
India) to assess its generalizability beyond the Egyptian insurance market. The consistent
classification performance across both datasets demonstrates the model’s adaptability to
different market environments, mitigating concerns about dataset-specific biases.

The results demonstrated that dropout regularization, in combination with cross-
validation, significantly improved the model’s robustness. Specifically, we observed that
the model maintained stable accuracy across different validation folds, and the variance in
performance metrics (e.g., accuracy, F1-score) between training and validation sets was
minimal.

Furthermore, when applying the model to the additional dataset, the CNN-LSTM
framework exhibited consistent predictive performance, reinforcing its ability to generalize
beyond the original training data. This confirms that the implemented dropout strategy
effectively mitigated overfitting and enhanced model reliability.

Through extensive experimentation, we highlight both the strengths and limitations of
the proposed model, offering valuable insights into areas for improvement and proposing
potential avenues for future research. The performance of the suggested system is assessed
using the metrics listed below (Xie et al., 2021).

Confusion matrix. The performance of classification on a set of test data when the true
values are known is displayed in Table S2.

a) Accuracy. It is the ratio of correctly categorized samples by the model to the total
number of samples for a particular test dataset.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

: (22)

b) Precision. Is the number of samples the model predicts as positive and positive samples.

Precision ¼ TP
FP þ TP

: (23)

c) Recall. The recall rate represents the proportion of correctly anticipated positive samples
in the dataset.

Recall ¼ TP
FN þ TP

: (24)

d) F1-score. The F1-score is consistently close to the lower precision or recall
value. It represents the harmonic mean (in percentile) of precision and recall. The
F1-Score performs best when the costs of false positives and false negatives vary
significantly.
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F1� Score ¼ 2 � Precision � Recall
Precisionþ Recall

(25)

where TP is true positive, TN is true negative, FN is false negative, and FP is false positive.

Numerical results
This section comprehensively analyzes the numerical findings obtained from testing and
evaluating our proposed CNN-LSTMmodel for risk classification in insurance companies.
Numerical findings are crucial for evaluating machine learning models’ efficiency,
dependability, and efficacy. They offer practical insights and empirical proof to enhance
decision-making. Within the scope of our work, numerical results provide valuable
quantitative measures to assess the predicted accuracy, reliability, and ability to apply the
suggested model to various experimental circumstances and datasets.

The numerical findings reported here cover various performance indicators designed to
assess different elements of the model’s effectiveness and efficiency. The measures
encompassed in this list are accuracy, precision, recall, and F1-score. Every indicator
provides unique perspectives on various aspects of model performance, from classification
accuracy to the model’s ability to grasp the diversity and subtleties within the data.

The purpose of the testing dataset is validation and to get an objective evaluation of
accuracy during the learning process. The CNN-LSTM model’s confusion matrix result
based on the dataset is displayed in Fig. S5. Table 1 compares the claims prediction for
several approaches, clearly demonstrating the effectiveness of the hybrid CNN-LSTM
method. The performance comparison presented in the table highlights the superior
capability of the hybrid CNN-LSTM model in accurately classifying insurance risk levels.
The model achieves the highest accuracy (98.4%) across all evaluation metrics on the
original dataset. While other models, such as LSTM (92.2%) and CNN (95.3%), perform
reasonably well, they fall short of the hybrid model’s accuracy. Traditional machine
learning models, such as logistic regression, Gaussian naive Bayes (NB), SVC, and
k nearest neighbors (K-NN), exhibit significantly lower performance, with K-NN
achieving the lowest accuracy of 65.6%. These findings underscore the importance of using
advanced hybrid models like CNN-LSTM for tackling the complexities of insurance risk
classification, particularly in scenarios involving diverse datasets.

The comparative analysis of hybrid deep learning models, including CNN-GRU and
CNN-bidirectional long short-term memory (BiLSTM), demonstrates that CNN-LSTM
remains the most effective architecture, achieving an accuracy of 98.4%, outperforming
CNN-GRU (94.4%) and CNN-BiLSTM (93.0%). While CNN-GRU exhibited competitive

Table 1 Comparison of claims prediction with other methods on Financial Regulatory Authority (FRA) dataset.

DL methods CNN-LSTM LSTM CNN LogisticReg GaussianNB SVC K-NN CNN-GRU CNN-BiLSTM

Accuracy 98.4 92.2 95.3 96.8 81.2 87.5 65.6 94.4 93

Precision 98.5 92.5 95.7 96.9 83.8 87.5 66.8 95.8 93.2

Recall 98.4 92.2 95.3 96.8 81.2 87.5 65.6 94.4 93

F1-score 98.4 92.2 95.2 96.8 80 87.5 65.9 94.7 92.6
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performance due to its simplified gating mechanism, it did not surpass CNN-LSTM in
handling long-term dependencies. Similarly, CNN-BiLSTM, despite its bidirectional
processing capability, did not yield significant improvements, likely due to increased
computational complexity. These results reinforce the robustness of CNN-LSTM in
predicting insurance risk volatility, further validating its superiority over traditional
machine learning methods and alternative hybrid architectures.

The model’s robustness is evaluated beyond conventional metrics by incorporating
calibration analysis and cost-sensitive evaluation. Calibration analysis uses the Brier score,
which measures the mean squared error between predicted probabilities and actual
outcomes. The Brier scores for each class are as follows: Class 0 achieves a score of 0.0177,
Class 1 scores 0.0517, and Class 2 records a score of 0.0382. The reliability diagram
(Fig. S6) visually represents the alignment between predicted probabilities and observed
frequencies, reinforcing the model’s reliability.

Additionally, a cost analysis is performed to assess the financial impact of classification
errors in the context of insurance risk. This analysis, shown in Fig. S7, evaluates the total
costs associated with different decision thresholds. It highlights the trade-offs between
accepting risks and minimizing potential losses, providing essential insights for
decision-making in insurance risk assessment. These results affirm the hybrid model’s
ability to balance prediction accuracy and financial risk, providing a comprehensive
approach to efficiently managing insurance risks.

While the CNN-LSTM model achieved 98.5% accuracy on the FRA dataset, testing its
generalizability on external data was crucial. When evaluated on the Health Insurance
Dataset India (Table S3), the model demonstrated comparable performance, confirming its
robustness in different insurance market conditions. However, slight variations in accuracy
suggest the presence of market-specific factors that may impact prediction reliability.

The model also showed efficient execution times, with training durations ranging from a
few seconds to minutes, indicating its feasibility for practical deployment in diverse
computational environments. These results underline the model’s potential to enhance
risk classification processes and contribute to more effective risk management strategies in
insurance companies.

The proposed CNN-LSTM model can be integrated into insurance companies’ risk
management processes in several ways. First, it can automate risk classification during the
underwriting process, enabling insurers to make faster and more data-driven decisions.
Second, it can enhance fraud detection by identifying suspicious claim patterns that
require further investigation. Third, insurers can leverage the model’s predictive insights to
optimize premium pricing strategies based on risk levels. Lastly, insurers can proactively
manage their risk portfolios and develop mitigation strategies by analyzing aggregate claim
trends. These applications highlight the model’s potential impact on improving
decision-making efficiency and financial stability in the insurance sector.

Through our rigorous testing and analysis, we aim to clarify the capabilities and
constraints of our proposed CNN-LSTM model. This comprehensive approach provides
vital insights into how well the model performs in various risk categories, datasets, and
experimental conditions. By thoroughly analyzing the numerical outcomes, we can

Gamaleldin et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2830 19/25

http://dx.doi.org/10.7717/peerj-cs.2830/supp-1
http://dx.doi.org/10.7717/peerj-cs.2830/supp-1
http://dx.doi.org/10.7717/peerj-cs.2830/supp-1
http://dx.doi.org/10.7717/peerj-cs.2830
https://peerj.com/computer-science/


identify consistent patterns, trends, and correlations that provide insight into the model’s
behavior and efficacy in real-world situations. Furthermore, this thoroughness in our
analysis instills confidence in the model’s performance and its potential to deliver reliable
results.

In the following sections, we present a thorough summary of the numerical outcomes
derived from our experimentation, examining significant discoveries, observations, and
practical implications for the insurance sector. We aim to provide stakeholders, legislators,
and industry professionals with valuable information through numerical data, enabling
them to make informed decisions, enhance risk management techniques, and boost
operational efficiency in insurance businesses.

Model-based approach
The statistical technique most appropriate for use with the dataset is the Weibull
distribution, which displays the Weibull density function f xð Þ and its two parameters, the
scale parameter a and the shape parameter b.

Many methods can be used to estimate the parameters of the Weibull distribution;
however, because of its numerical stability, the maximum likelihood estimator is the most
widely used (Cohen, 1965). Using the previously described approach, we have obtained
b = 316,341 and a = 0.56 for our dataset’s shape and scale parameters, respectively.

Sensitivity analysis
We explore the complexities of sensitivity analysis and its importance in assessing machine
learning models’ strength, consistency, and dependability, specifically about risk
classification in insurance firms. Sensitivity analysis is a robust method to assess the impact
of changes in input parameters, assumptions, and conditions on a model’s outputs. This
study provides significant information about how the model behaves and performs in
diverse scenarios.

Sensitivity analysis serves a dual purpose: firstly, it uncovers pivotal elements or
variables that exert a significant influence on model predictions, and secondly, it quantifies
the magnitude of their impact on the desired outcomes. Sensitivity analysis enables
academics and practitioners to gain a deeper understanding of the underlying mechanisms
that shape a model’s behavior by systematically adjusting input parameters and analyzing
the resulting changes in model outputs.

Sensitivity analysis plays a pivotal role in insurance risk categorization. It aids in
evaluating the robustness and reliability of prediction models employed for risk assessment
and management. Through sensitivity analysis, insurance firms can identify critical risk
factors, gauge their impact on the overall risk exposure, and devise proactive strategies to
mitigate potential risks and uncertainties.

In this section, we do a thorough sensitivity analysis of our proposed CNN-LSTM
model. Our goal is to understand how sensitive the model’s predictions are to changes in
input parameters, hyperparameters, and other essential elements. It allows us to
understand how various factors, such as commission rates (CR) and production costs
(PC), affect our proposed model’s performance. This analysis also underscores the
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superiority of the CNN-LSTM model over the LSTM model. We conducted the sensitivity
analysis by varying these parameters by 5%, 10%, and 15% of their initial values.

Table S4 illustrates a comprehensive sensitivity analysis of CR and PC of the LSTM and
CNN-LSTM models. Notably, the CNN-LSTMmodel consistently outperforms the LSTM
model in various scenarios. For instance, with a 15% decrease in commission rates, the
LSTM model shows a sensitivity score of 0.0761. In contrast, the CNN-LSTM model
demonstrates a significantly lower sensitivity score of 0.0298, indicating its resilience to
changes in commission rates. Similarly, with a 10% decrease, the CNN-LSTM model
consistently exhibits a lower sensitivity score, further highlighting its stability and
resilience. As the parameters grow by 5%, the LSTM model’s sensitivity declines to 0.0241.
In contrast, the CNN-LSTM model’s sensitivity declines to 0.0119, showcasing its
reliability and ability to deal with even minor changes.

Notably, the CNN-LSTM model demonstrates enhanced stability compared to the
LSTM model, as evidenced by sensitivity scores for production costs, indicating its
superior performance under these circumstances. These analyses demonstrate the
increased effectiveness and durability of the CNN-LSTM model in operational situations.
The improved stability of the CNN-LSTM model highlights its ability to manage complex
and ever-changing datasets effectively. This makes it an attractive option for tasks that
require strong performance and dependability. Our results consistently show that the
CNN-LSTM model is more resistant to parameter changes than the LSTM model, as it
consistently has lower sensitivity ratings. Furthermore, as the size of parameter
fluctuations increases, the CNN-LSTM model’s superiority becomes even more evident,
showcasing its stability and efficacy in managing uncertainty. As shown in Figs. S8 and S9,
these results support the CNN-LSTM model as a possible choice for predictive modeling
tasks, highlighting its adaptability in real-life situations where parameters are likely to
change.

This sensitivity analysis highlights the importance of careful hyperparameter tuning, as
changes in input parameters like commission rates and production costs significantly
affect model performance. The CNN-LSTM model’s superior performance under various
conditions demonstrates its ability to maintain stable predictions, even with fluctuations in
key input parameters. However, this also reinforces the need for careful management of
hyperparameters to ensure the model avoids overfitting or underperformance due to
sensitivity to these parameters. Sensitivity analysis is an essential part of model validation
and verification. It helps insurance business stakeholders make well-informed judgments,
evaluate risks, and optimize risk management and decision-making strategies.

CONCLUSIONS
This study presents an advanced hybrid deep learning framework that integrates CNN
with LSTM networks to enhance the accuracy and reliability of insurance claims risk
assessment. This approach effectively anticipates future claims escalation by leveraging
spatial and temporal patterns within claim data, enabling insurance companies to
implement proactive risk management strategies.
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Grounded in real-world data from Egyptian insurance companies, our CNN-LSTM
model has demonstrated its practical applicability in identifying and mitigating claim
volatility risks. Through extensive benchmarking and validation, including datasets from
the Financial Regulatory Authority (FRA) and the Health Insurance Dataset India, the
model has outperformed traditional predictive techniques, including standalone LSTM
and statistical-based approaches. The sensitivity analysis further confirmed the model’s
robustness across different scenarios.

The integration of CNN for feature extraction and LSTM for sequential modeling has
provided a competitive advantage by enhancing pattern recognition and long-term
dependency modeling in claims data. This methodological innovation represents a
significant step toward data-driven decision-making in the insurance sector, facilitating
improved financial stability and long-term sustainability.

While the proposed model demonstrates promising results, the successful adoption of
this model in real-world insurance companies depends on overcoming challenges related
to computational resources and data preprocessing. To address these challenges, we
recommend integrating automated tools for data preprocessing and leveraging
cloud-based platforms such as AWS, Google Cloud, or Microsoft Azure. These platforms
provide scalable computational power, reducing the need for complex in-house
infrastructure. Additionally, investing in training programs for technical staff will ensure
smooth implementation and long-term success of the model.

The CNN-LSTM model was comprehensively evaluated using the FRA dataset and the
Health Insurance India dataset. While the model effectively classifies insurance risks,
further research is needed to enhance its adaptability across diverse markets. Despite its
strong predictive capabilities, the CNN-LSTM model has limitations that must be
acknowledged. A key limitation is potential data bias, as the FRA dataset may not fully
capture global risk patterns. Although external validation was conducted, additional
studies with diverse datasets are necessary. Model interpretability also remains
challenging, requiring future exploration of techniques like SHapley Additive exPlanations
(SHAP) and local interpretable model-agnostic explanations (LIME) to enhance
transparency. Moreover, model performance is influenced by data quality, including
missing values and class imbalance, necessitating advanced preprocessing methods.
Finally, the model’s computational complexity and hyperparameter sensitivity present
accessibility challenges, particularly for smaller insurance companies with limited
resources. Reducing the model’s complexity and exploring optimization strategies will
enhance its practical application and scalability.
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