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ABSTRACT

As a central participant and important leader in the global climate governance
system, China is facing the urgent need to predict and regulate the price of carbon
emissions to promote the sound development of its carbon market. In this article, a
rolling prediction model based on Least Absolute Shrinkage and Selection Operator-
cheetah optimization algorithm-extreme gradient boosting (Lasso-COA-XGBoost)
carbon price decomposition integration is proposed to address the defects of low
prediction accuracy and insufficient model stability of a single machine learning
model in the carbon price prediction problem. During the modeling process, the
adaptive Lasso method is first employed to select factors from 15 primary indicators
of carbon prices, identifying the most important influencing factors. Next, the
COA-XGBoost model is built and the parameters of the XGBoost model are
optimized using the COA algorithm. Finally, the complete ensemble empirical Mode
Decomposition with adaptive noise (CEEMDAM) method is utilized to decompose
the residual sequence of the COA-XGBoost model and reconstruct it into
high-frequency and low-frequency components. Appropriate frequency models are
applied to achieve error correction, thereby constructing the combined Lasso-COA-
XGBoost-CEEMDAN model. To further enhance the predictive accuracy and
practicality of the model, a rolling time window is introduced for forecasting in the
Hubei and Guangzhou carbon emission trading markets, ensuring that the
forecasting model can adapt to market changes in real-time. The experimental results
show that, taking the carbon price prediction in Hubei as an example, the proposed
hybrid model has a significant improvement in prediction accuracy compared with
the comparison model (XGBoost model): the RMSE is improved by 99.9987%, the
MAE is improved by 99.9039%, the MAPE is improved by 99.9960%, and the R* is
improved by 0.2004%, and the advantages of this hybrid model are also verified in
other experiments. The results provide an effective experimental method for future
carbon price prediction.
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INTRODUCTION

In recent years, the world has reached an unprecedented historical juncture characterized
by severe environmental degradation, with the urgent challenges posed by climate change
being particularly pronounced (Qin et al., 2022). Currently, more than 70 countries have
committed to achieving net-zero carbon emissions by 2050. The Chinese government is
vigorously implementing the Paris Agreement in the meantime, aiming to attain carbon
neutrality by 2060 and peak carbon emissions by 2030. To promote low-carbon pathways,
China launched seven nationally unified carbon emission trading markets in 2017. In this
context, building and enhancing the carbon emission trading market and putting in place a
sensible carbon pricing system have emerged as key tactics and essential avenues for China
to move closer to these important strategic objectives. At present, the construction of
China’s carbon market is still in the primary stage, and the role of the pricing mechanism
has not yet been fully realized. Carbon trading prices directly reflect the effectiveness of the
carbon market’s design and management systems, while fluctuations in carbon prices are a
significant indicator of market risk. Significant price volatility may lead to instability in the
carbon market, thereby affecting the market’s adjustment efficiency and the ultimate
effectiveness of emission reductions (Sun & Li, 2020). As a result, increasing the
forecasting accuracy of carbon prices has gained popularity and importance in
contemporary academic study.

Currently, carbon price forecasting has become an important topic of research among
scholars both domestically and internationally. This article will provide a review of the
relevant literature on this subject:

Firstly, the research of carbon price prediction methods: at present, there are more
carbon price prediction methods, which are summarized into three main categories:
statistical models, artificial intelligence models, and combination models. Regression
analysis (Du, 2023), the autoregressive integral moving average (ARIMA) model (Wang
et al., 2024), the autoregressive moving average (ARMA) model (Wen ¢ Zhibin, 2021), and
others are common statistical model techniques. The advantage of this model is that it is
easy to calculate and intuitive to understand, but they tend to ignore the nonlinear
characteristics in the data and have certain assumptions about the data distribution, which
are influenced by subjective factors, and their prediction accuracy is not high. In contrast,
artificial intelligence models with strong adaptive and nonlinear processing capabilities
perform better in capturing complex changes in carbon price series. For this reason, some
scholars have introduced artificial intelligence models into carbon price prediction, and the
prediction accuracy has been improved. For example, Ling ¢» Cao (2024) extracted the long
and short-term memory features of the carbon price series for prediction by the long short-
term memory (LSTM) model, which proved the unique advantage of this method in
improving computational efficiency and accuracy. However, to overcome this limitation,
researchers have begun to explore combined models and optimization algorithms have
been applied in several applications, as a single model may not be sufficient to fully reflect
the multi-dimensional characteristics of the carbon price. For example, Feng et al. (2023)
established the Gray Wolf Optimization Algorithm Optimized Extreme Gradient Boosting
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(GWO-XGBoost) prediction model to predict three carbon emission trading prices in
Guangdong, Hubei, and Fujian. Yang et al. (2020) used the Improved Whale Optimization
Algorithm (IWOA) to optimize LSTM to predict the carbon emissions trading prices in
Beijing, Fujian, and Shanghai, and the indicators representing the predictive ability were
significantly improved compared with LSTM. Duan et al. (2024) used the Whale
Optimization Algorithm (WOA) to determine the optimal parameters of extreme gradient
boosting (XGBoost) to predict the price of two carbon trading markets in Hubei and
Guangzhou, and the proposed hybrid model always outperforms the comparison model in
terms of prediction accuracy. Wang, Zhuang ¢ Gao (2023) propose an extreme learning
machine model based on the improved cheetah optimization algorithm (SCO-ELM),
which significantly improves the accuracy and computational efficiency of lithium-ion
battery remaining service life prediction by optimizing the input weights and bias
parameters, reduces the root mean square error (RMSE) by more than 40% compared with
the original ELM on NASA and Oxford datasets, and outperforms the optimization model
of genetic algorithms in terms of generalization performance. Although the Crayfish
Optimization Algorithm (COA) has shown significant advantages in complex
optimization problems in machine learning parameter optimization, engineering
scheduling and other fields, its application to carbon emissions trading price prediction is
still in the blank stage. However, the general combination model’s ability to portray the
nonlinearity, non-stationarity, and multi-scale of the carbon price series is still unable to
meet the high demand for prediction accuracy, and to improve the prediction effect, it is
especially important to decompose the historical carbon price data for noise reduction.
Commonly used carbon price decomposition methods include empirical mode
decomposition (EMD) (Yang et al., 2020; Zhu, 2012), variational mode decomposition
(VMD) (Wu et al., 2023; Liu et al., 2023; Xu ¢ Niu, 2022), and complete ensemble
empirical mode decomposition (CEEMDAN) (Deng et al., 2024; Ke et al., 2023; Zhao &
Chen, 2021), etc. After comparing several decomposition methods, Jiang, Yu ¢ Alam
(2023) used CEEMDAN to decompose the original carbon price sequence into multiple
intrinsic modal function (IMF) components and showed that the proposed model has the
best performance; Li, Zheng ¢» Yang (2022) constructed an integrated carbon price
prediction model based on the variational mode decomposition (VMD), and the results
show that the integrated model variational mode decomposition-Generalized
AutoRegressive Conditional Heteroskedasticity (VMD-GARCH) can predict the carbon
price of the European Union efficiently, and the prediction is the most stable in the stage of
the carbon price increase in particular.

Secondly, factors affecting carbon price prediction: in their study of EU carbon market
prices, Tsai ¢» Kuo (2014) note the impact of coal, oil, and gas prices on carbon prices.
Similarly, Keppler ¢» Mansanet-Bataller (2010) used the Granger causality test combined
with OLS regression analysis to demonstrate that coal and natural gas have a significant
impact on EUA futures prices. Luo et al. (2022) focused on the Beijing carbon market and
revealed a negative correlation between the carbon price and the natural gas price by using
wavelet analysis. Price has a negative correlation and shows an unstable dependence on oil
prices. This suggests that within the same market, the prices of different energy

Duan et al. (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2827 3/36


http://dx.doi.org/10.7717/peerj-cs.2827
https://peerj.com/computer-science/

PeerJ Computer Science

commodities may have different impacts on the carbon price. On the other hand, Zhang ¢
Xu (2020) used a GARCH model to illustrate the volatility characteristics of carbon prices
under different economic backgrounds when analyzing data from the Shenzhen Carbon
Exchange and confirmed that climate uncertainty is an important factor affecting carbon
prices; Wang et al. (2018) showed that there is a significant correlation between air quality
index (AQI) and carbon trading price in China’s carbon market, which suggests that the
potential impact of air quality conditions on carbon price deserves further attention.
Meanwhile, Han et al. (2019) extended the scope of research in this area by introducing
environmental factors other than energy, economic, and weather conditions into the
indicator system. Together, these studies show that the factors affecting the carbon price
are multifaceted, including, but not limited to, energy price changes, macroeconomic
conditions, climate change trends, and local environmental quality levels.

In summary, although the existing carbon price forecasting studies have made
significant progress, they still have the following limitations. First, after decomposing the
forecasting errors, the existing studies usually use a single forecasting model to forecast
each subsequence, failing to fully consider the heterogeneity of different subsequences. For
example, Li, Zheng ¢» Yang (2022), after decomposing the historical price of carbon price
by VMD, use the same model to forecast all residual series, ignoring the unique fluctuation
patterns of different frequency band subsequences; second, when dividing the dataset, the
existing studies usually directly divide the original time series into training and testing sets
proportionally, which implicitly assumes that the future data are available, which may lead
to data leakage and affect the the practical application effect of the model (Qian et al., 2019;
Du, Zhao ¢ Lei, 2017); third, existing studies are less likely to incorporate public attention
(e.g., Baidu index) into the prediction model. Although some studies have confirmed the
influence of exogenous factors on carbon prices (Li & Lei, 2018; Zhou ¢ Li, 2019), these
studies mainly focus on the direct relationship between energy prices, macroeconomic and
environmental factors and carbon prices, and ignore the market expectations and risk
preferences that may be reflected by public attention.

To overcome the above limitations, this article proposes a new hybrid model for carbon
price prediction, the Lasso-COA-XGBoost-CEEMDAN model, based on previous
research. The model incorporates the adaptive Lasso method, the cheetah optimization
algorithm (COA), extreme gradient boosting (XGBoost), and complete ensemble empirical
mode decomposition with adaptive noise (CEEMDAN) techniques. First, the adaptive
Lasso method is used to screen the key factors affecting the carbon price; second, the
COA-XGBoost model is constructed and the parameters of the XGBoost model are
optimized using the COA algorithm; then, the residual sequences of the COA-XGBoost
model are decomposed using the CEEMDAN method, and the differentiated prediction
model is constructed for the subsequences with different frequencies to perform error
correction; finally, the predicted values are added with the corrected residuals to obtain the
final carbon price prediction results.

The main contributions of this article are as follows: (1) a differentiated forecasting
method for different frequency residual series is proposed, which improves the accuracy of
error correction; (2) an integrated forecasting framework for dynamic carbon price
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decomposition based on rolling time windows is constructed, which avoids the data
leakage problem that may be caused by the traditional static model; and (3) the Baidu
index is incorporated into the forecasting model, which provides a more comprehensive
source of information for the prediction of the carbon price and helps to capture the
impact of market sentiment and expectations on carbon price.

ALGORITHM INTRODUCTION

Feature selection

Feature selection becomes a critical tool when dealing with large, high-dimensional
datasets. It helps identify the key features that most significantly influence prediction
outcomes, effectively reducing redundancy in the model and enhancing predictive
accuracy (Hao ¢ Tian, 2020). Additionally, feature selection contributes to improving the
interpretability of the model, providing a more solid foundation and support for data
analysis and decision-making. This study employs the partial autocorrelation function
(PACEF) to determine the optimal historical carbon price data and utilizes the Lasso
regression (LASSO) method to select the most relevant external influencing factors.

PACF

Partial Autocorrelation Function (PACF) is a tool used in time series analysis to measure
the partial correlation between a time series and its own lagged values, specifically the
correlation between the current time point and a specified lagged time point after
removing the influence of other lagged factors. More specifically, represents the
conditional correlation between and after removing the effects of the intervention variable,
which is the partial autocorrelation between and Hao ¢ Tian (2020).

The values of PACF are typically calculated using the Yule-Walker equations, and these
computed values are used to plot the PACF graph. In the PACF graph, lag orders that
exceed the confidence interval may have a significant impact on the target variable, while
the partial autocorrelation coefficients for other lag orders approach zero, suggesting that
these lag orders may not significantly influence the prediction of the target variable (Li
et al., 2021). Additionally, to correctly interpret the results of the PACF graph, it is essential
to ensure the stationarity of the time series.

Lasso
Lasso regression, first proposed by British Robert Tibshirani, is to prevent overfitting and
solve the problem of severe covariance by generating a penalty function that is a
compression of variable coefficients in the regression model, which is currently used very
widely in forecasting and prediction models. modeling is very widely used, and its principle
is as follows (Li et al., 2023).

Let x be the independent variable and y the dependent variable, with standardized
values of the observed data obtained from m samples represented as (x, y), where x is an
m X k matrix (with m > k), and y is an m x 1 matrix. The i-th observation of x is given by

xXi = (Xi1, Xizy v, xik)T, where i € [1,2,...,m| and all observations are independent. The
regression model of on is expressed as Eq. (1).
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Vi = a+ZBinj+81~ (1)
In the equation g; — N (0,0?) ; a— = y, the standardized data indicates that, y = 0.
After rearranging Eqs. (1), (2) is obtained.

y =PBx+e. (2)
In the equation, &; — N (0, 6?); B — n represents the parameter vector, and e— the

random disturbance term. To select the significant influencing variables, we need to add a
constraint to Eq. (2), as expressed in Eq. (3).

2 B
arg  min [y = Bx] StZZBO (3)

In the equation, s—is equal to a value within the range [0, 1]; the t—1 harmonic
parameters are > 0.

Lasso regression works by continuously adjusting the ¢ value to reduce the overall
regression coefficients of the model, systematically shrinking the coefficients of
insignificant variables until they reach 0.

Cheetah optimization algorithm

COA is a new type of group intelligence optimization algorithm, which is proposed by
Amin et al. (2022) in 2022 as a new type of group intelligence optimization algorithm
inspired by cheetah hunting in nature, which achieves the position updating by simulating
the three strategies of cheetahs’ searching, sitting and waiting, and attacking in the process
of hunting, and it has the strong ability of searching for the optimal, and the quick speed of
convergence and other characteristics.

Research indicates that cheetahs typically succeed in capturing their prey within 30 s,
earning them the title of the “fastest land animal.” In 2022, Amin et al. (2022) introduced a
nature-inspired meta-heuristic algorithm for large-scale optimization problems known as
the COA. This algorithm simulates the hunting mechanism of cheetahs, with its
mathematical model encompassing three strategies: search, wait, and attack.

Search strategy

xf}rl —X +r tJ (4)

t+1
ij
position and current position of cheetah i (where i = 1,2, ..., N) in arrangement j (where

In the expression, t represents the current hunting time; x; " and x,{j denote the updated
j=1,2,..., D), with N being the number of cheetahs in the population and D
representlng the dimensionality of the optimization problem. 7;; and oc - are the
randomization parameter and step size for the cheetah i in the arrangement j» respectively,
where och- > 0, is typically set to 0.001 X %, and T is the maximum duration of the hunting
time.
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Waiting strategy

In this mode, to avoid alerting the prey to their presence, cheetahs maintain their position

and wait for the prey to approach. This behavior can be modeled as follows:

xitjl = Xj;- (5)
In the equation, the meanings of the parameters remain the same as previously

described. This strategy helps prevent the COA from converging too early.

Attack strategy

At this stage, cheetahs utilize their speed and agility to capture prey. In group hunting, each

cheetah can adjust its position based on the fleeing prey and the status of the leader or

nearby cheetahs. These attack strategies are mathematically defined as follows:

XIT b= X%,j + 0 Bit,j‘ (6)
In the equation, B represents the prey; ng. denotes the current position of the prey in

arrangement j; 0;; and are the f; ; turning factor and interaction factor related to cheetah i

in arrangement j, respectively. Here, 0; is a random number equal to

‘bi _J-}exP COLY) sin(27b;;), and b;; is a random number following a standard normal
distribution.

In the study by Amin et al. (2022) 14 CEC-2005 benchmark functions were thoroughly
tested. The set of benchmark functions covers a wide range of optimization problems with
different characteristics, which can effectively test the performance of the algorithm in
different scenarios. The results show that the COA algorithm outperforms the classical
state-of-the-art algorithms such as Differential Evolutionary algorithm (DE), Gray Wolf
Optimization algorithm (GWO), genetic algorithm (GA), and particle swarm optimization
algorithm (PSO) in nine of them in terms of both the mean and the standard deviation.
Further, when dealing with multiple classical optimization problems as well as large-scale
optimization problems, the COA algorithm also outperforms other competing algorithms
in all key performance metrics. This demonstrates the powerful optimization capability,
efficient convergence speed and good stability of COA algorithm in complex optimization
tasks. In view of this, it shows great potential in optimizing complex models. The XGBoost
model in this study, as a widely used and high-performance machine learning model, still
has room for further optimization when facing specific complex tasks. Therefore,
considering the advantages of the COA algorithm and the optimization requirements of
the XGBoost model, this article decides to choose the COA algorithm to optimize
XGBoost.

COA-XGBoost model

XGBoost is a boosting-type model developed by Chen ¢ Guestrin (2016) in 2016, which
combines linear solvers with learning algorithms for classification and regression trees.
The fundamental idea of this model is to combine multiple decision tree models with lower
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predictive accuracy using a specific strategy to create a more accurate ensemble model.
During the model training process, XGBoost iteratively optimizes the model through
gradient boosting, generating a new decision tree in each iteration to fit the residuals
produced in the previous iteration. Through this iterative optimization approach, XGBoost
can continuously enhance the model’s predictive accuracy and generalization capability.
The traditional gradient boosting decision tree (GBDT) method only utilizes the first
derivative, while XGBoost performs a second-order Taylor expansion of the loss function,
incorporating a regularization term to control model complexity and mitigate overfitting.
Additionally, XGBoost employs a more refined evaluation method at the split nodes,
enabling it to better capture the nonlinear relationships between features. In recent years,
the XGBoost model has demonstrated strong performance in various fields, including
financial risk control, healthcare, and natural language processing. The mathematical
principles of this model are as follows:

Define the ensemble model of trees as follows:

M

$i = fm(x:),fm € F. (7)

m=1

In the equation, y; represents the predicted value; M is the number of decision trees;
F denotes the space of tree selections; and x; is the i-th input feature.
The loss function of the XGBoost model is given by:

n M
L= gl(yi,?i) +Z::1e(fm). (8)

In this equation, the first part of the function represents the prediction error between
the XGBoost model’s predicted values and the actual training values, while the second part
reflects the complexity of the trees. The main purpose of this second part is to serve as
regularization to control the model’s complexity:

1
Ofm) = YT+ 7] 0. ©

In the equation, y and 7 are penalty factors. During the process of minimizing the loss
function, incorporating the incremental function f; (x;) in Eq. (9) can minimize the value of
the loss function to the greatest extent. Thus, the objective function for the t-th iteration is
given by:

n M n
LY = ;l(m) - Z 0(fr) = ;l(yi,?i—l +fi(x)) + 0(F,). (10)
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At this point, a second-order Taylor expansion of Eq. (11) is performed to approximate
the objective function, and the sample set in each leaf of the j-th tree is defined as
I; = {i|lg(x; = j)}. The approximation can be represented as follows:

n n

1
L0 o [gifxxl) L hf? (XJ} +0(F) 2 Y [gifi(x) + 1/2hiff (x)] + T + 70
c i=1

(11)

In this equation, g, = ai,rll(yi, 9i7") represents the first derivative of the loss function,
and h; = 6;;711()/,-, 7:71) denotes the second derivative of the loss function. Defining
G; = > g and H; = ) h;, the following is obtained:

icl; i€l
T
b Z[G ] + )wf + ~T. (12)

Taking the partial derivative with respect to w, the following is obtained:

G:
Hj +7

Substituting the weights into the objective function, the following is obtained:

2

T
Z J + ’YT (14)

o~

l\)l»—n

In the training process of the XGBoost model, the choice of different parameters can
significantly impact the prediction results; thus, the model’s performance is largely
determined by the selection of parameters. There are a total of 23 hyperparameters in the
XGBoost algorithm, which are primarily divided into general parameters for controlling
the overall function, booster parameters for managing the details of the booster and
learning objective parameters that control the training objectives. The COA-XGBoost
combined model uses the five hyperparameters that most significantly affect performance
in XGBoost (namely, learning_rate, subsample, colsample_bytree, max_depth, and alpha)
as the position vector « of the cheetah in the COA algorithm. Through iterative updates via
the COA algorithm, these parameters are continuously optimized until the global optimal
position is output as the final parameters for the XGBoost model.

CEEMDAN model

The CEEMDAN algorithm, proposed by Torres et al. (2011) in 2011, is a data-driven
algorithm used for signal processing and analyzing nonlinear and adaptive signals. The
basic idea is that the original signal is decomposed into a series of IMF and the algorithm
parameters are adjusted using adaptive noise, which improves the quality and stability of
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the decomposition. Compared to the traditional EMD algorithm, the decomposition steps
of CEEMDAN are more stable and can reduce randomness in the decomposition process
by integrating the results of multiple decompositions. In contrast to the ensemble
empirical mode decomposition (EEMD) algorithm, CEEMDAN adds adaptive white noise
at each stage, overcoming the significant reconstruction error associated with the EEMD
method. CEEMDAN performs exceptionally well in handling complex signals and
reducing data fluctuations, making it suitable for addressing the issue of carbon trading
price prediction.

The steps of the CEEMDAN decomposition can be summarized as follows:

Step 1: Add an adaptive Gaussian white noise sequence on;(t) to the original sequence
y(t) to obtain a new sequence ¥;(t) with noise:

7i(t) = y(t) + ony(t),i=1,2,---N (15)

where 7;(t) represents the added white noise, and the intensity of the noise sequence is
determined by parameter o.

Step 2: Perform a complete EMD on the noisy original signal to obtain a set of IMFs and
a residual component:

N

imf, (t) = %Z imfi(t) (16)

i=1
At this point, the calculation formula for the residual component R (t) is:
Ry(1) = y;(t) — imf, (1) (17)

Step 3: The residual is taken as the new input data, and the adaptive white noise
sequence on;(t) is added to R;(t) to obtain new input data R, (t) + oE;(n;(t)). Here, E;(-)
is the j-th intrinsic mode function obtained after EMD decomposition. At this point, the
new sequence undergoes EMD decomposition and averaging to obtain the second mode
component and the residual component:

imfy(t) — % > Eu(R(1) + 01Es ((1) (18)
R, (t) = Ry (t) — imf,(t) (19)

Step 4: Repeat Steps 1, 2, and 3 to ultimately obtain the j 4+ 1-th mode component and
the j-th residual component:

imf, . (t) = %Z Ey (R (1) + o,E; (ni(1)) (20)

Rj(t) = Rj_y(t) — imf(t) (21)
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Step 5: The above steps are repeated until the residual component can no longer be
subjected to the EMD decomposition. Finally, the original sequence will be resolved into
several intrinsic mode functions and a trend component.

y(t) = > imf(t) + Res(t). (22)

After the CEEMDAN has completed the decomposition of the original sequence,
appropriate predictive models are applied to each intrinsic mode function component for
individual predictions, and the results of each component are aggregated to obtain the final
residual prediction results.

COA-XGBoost-CEEMDAN model

This study aims to improve the prediction accuracy of carbon trading prices by proposing
a hybrid algorithm based on CEEMDAN, COA, and XGBoost. The main steps of the
experiment are as follows:

First, the COA algorithm is used to optimize the parameters in the XGBoost model, and
the optimized model is used for the initial forecast. Next, CEEMDAN is used to decompose
the residual carbon price series, which helps to understand the characteristics and variation
patterns of the signal. The decomposed IMFs are then split into high-frequency and
low-frequency components, with the COA-XGBoost model and the SVR model used to
predict the different frequency components, respectively. Finally, the predicted values of
the different mode components are summed with the initial predicted values to obtain the
final prediction results of the model. The flowchart is shown in Fig. 1.

In the entire prediction process, COA-XGBoost is used for predictions at two different
stages. The considerations for its application at each stage are as follows: first, in the first
stage, complex and high-dimensional datasets need to be processed, which puts higher
requirements on the robustness and computational efficiency of the model. Based on this,
the COA-optimized XGBoost algorithm is selected as the prediction model for the first
stage due to its strong fitting ability to high-dimensional nonlinear data. Second, the
prediction task in the second stage is relatively straightforward, as the residual sequence
obtained from the decomposition of the original data has effectively removed noise and
irregular fluctuations, providing a more solid and precise data foundation for subsequent
predictions. At this stage, these residuals can be further differentiated into high-and low-
frequency components, and the most suitable prediction model can be selected for
different frequency data. Since the high-frequency residuals still contain rich and valuable
information, and to maintain the overall coherence of the research, this article uses the
COA-XGBoost method to handle the prediction of the high-frequency part.

EXPERIMENTAL DATA AND EVALUATION STANDARDS
Establishment of primary indicator system

Carbon market and its trading prices

The carbon emissions trading market is a market that combines total control with market
trading, characterized by a clear policy orientation. It aims to promote emissions reduction
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Figure 1 The framework of the carbon price forecasting based on COA-XGBoost-CEEMDAN.
Full-size K&l DOT: 10.7717/peerj-cs.2827/fig-1

through economic incentive mechanisms, helping to achieve greenhouse gas reduction
targets. Governments or regulatory agencies set an overall emissions cap and allocate this
cap to various emitting units. These units can meet their emissions requirements through
voluntary reductions, purchasing carbon credits, or engaging in carbon offsets. After years
of practice and development, the total transaction volume of the eight pilot markets in
China has generally shown a steady growth trend, except for a decline in 2020 due to the
pandemic. Under the guidance of the “dual carbon” goals, these markets have gradually
formed trading mechanisms that align with their development characteristics. In terms of
quota setting and allocation, a gradually decreasing control coefficient has been
introduced, and efforts are being made to explore a compensated quota trading
mechanism to enhance the carbon market’s price discovery function.

In Table 1 it can be seen that Hubei and Guangzhou carbon emission rights exchanges
have significant advantages in terms of trading volume, trading turnover, market
mechanism, and innovative initiatives, reflecting their important position and influence in
China’s carbon market (Liu, Jiang ¢» Ye, 20205 Liu, Ma ¢ Wang, 2015). Therefore, this
article collects Hubei and Guangzhou carbon market data from CHOICE Financial
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Table 1 Comparative data of eight major carbon emission rights exchanges in China.

Carbon Area Established Annual trading Annual trading  Main traded Trading Policy Innovative
exchange year volume amount varieties mechanism support  measures
(10,000 tons) (100 million
yuan)
Beijing North 2013 500 50 Carbon Spot trading  Strong Few
China emissions rights
Shanghai East China 2013 600 60 Carbon Spot trading  Strong Few
emissions rights
Tianjin North 2013 550 55 Carbon Spot trading  Strong Few
China emissions rights
Chongging  South- 2013 450 45 Carbon Spot trading ~ Medium  Few
west emissions rights
Shenzhen South 2013 700 70 Carbon Spot trading  Strong Few
China emissions rights
Fujian East China 2016 300 30 Carbon Spot trading ~ Medium  Few
emissions rights
Guangzhou South 2013 800 80 Carbon emissions Spot, forward Strong Many
China rights,
carbon forwards
Hubei Central 2014 750 75 Carbon emissions Spot, auction Strong Many
China rights
Note:

Data source: annual reports of the exchanges (2023). Results with significant advantages are shown in bold.
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Figure 2 Closing price of carbon emission rights in Hubei and Guangzhou carbon markets from
Full-size K&l DOT: 10.7717/peerj-cs.2827/fig-2

2018 to 2024.
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Terminal (Fig. 2), which helps to comprehensively understand and analyze the carbon
emission right trading price and its influencing factors.

Carbon market and its trading prices

The volatility of carbon prices is complex and is influenced by both internal and external
factors. The internal factors are the historical trend of the carbon price, and the external
influences are the external factors that are closely related to the carbon price. Concerning
previous literature and following the principles of comprehensiveness, objectivity, and data
availability, this article selects a total of 16 indicators to build a primary indicator model of
carbon price influencing factors (as shown in Table 2) from six dimensions, namely,
international carbon price, macroeconomics, energy price, climatic conditions, macro-
policy, and emerging media indexes, with the specific choices and bases as follows:

International carbon price: The EU carbon market is recognized as one of the most
mature carbon markets in the world, while China’s carbon market, despite its rapid
development in recent years, still has a certain gap with the EU carbon market in terms of
market maturity (Yi ef al., 2022). Therefore, in terms of institutional design, China usually
draws on the experience of the EU carbon market (Li ¢ Song, 2022). In this study, the EUA
futures settlement price (Huang ¢» He, 2020; Wang, Cheng ¢ Sun, 2022) (denoted as V1) of
the EU carbon market is chosen as a representative indicator of the international carbon
price, to reflect the price dynamics of the international carbon market.

Macroeconomics: There is an interaction mechanism between the output of different
industries and the overall economic situation, while the arbitrage between the domestic
and international carbon markets also causes fluctuations in the price of carbon emissions
(Sun, Hao & Li, 2022). As a large industrialized country, China is in the process of
transitioning from traditional industry to green and sustainable development. As a result,
its demand for carbon emissions is still high (Qin et al., 2018). Therefore, in this article, the
SSE Composite Index (denoted as V2) is selected to represent China’s industrial
development, and the CSI 300 Index (denoted as V3) is selected to represent China’s
macroeconomic situation. In addition, the stock index of Germany, the largest economy in
the European Union, i.e., Frankfurt DAX (denoted as V4) is selected to represent the
economic situation of the European Union, and the Standard & Poor’s 500 Index (denoted
as V5) is selected to represent the economic situation of the United States.

Energy prices: Coal, crude oil, and natural gas are known as the world’s three major
energy sources, and changes in energy prices will have a direct impact on the production
costs of the relevant enterprises, but also may prompt enterprises to shift to lower-cost
energy options or adopt more efficient emission reduction technologies, which in turn
affects the demand for carbon emissions from these enterprises and ultimately affects the
changes in carbon prices (Xie et al., 2022). In recent years, several studies have
demonstrated the influence of energy prices on carbon trading prices (Xu et al., 2022;
Alberola, Chevallier & Chéze, 2008; Chevallier, Nguyen & Reboredo, 2019; Christiansen et
al., 2011; Ji, Zhang & Geng 2018; Mansanet-Bataller, Pardo ¢ Valor, 2007). In this article,
the coking coal (V6) and power coal (V7) futures settlement prices are selected to represent
the coal price in China, the Brent crude oil futures settlement price (V8) represents the
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Table 2 Primary index model of carbon price influencing factors.

Indicator layer Serial number Sources of data
Primary indicators Secondary indicators
International carbon price EU Emission Allowances (EUA) Vi1 Choice
Macro-economic SSE (Shanghai Stock Exchange) Composite Index V2 Choice
CSI 300 index (stock market index) V3 Choice
DAX Frankfurt, Germany V4 Choice
Standard and Poor’s 500 index (S&P 500) V5 Choice
Energy price Coking Coal Futures Settlement Price % Choice
Power Coal Futures Settlement Price V7 Choice
Brent crude oil futures settlement price V8 Choice
NYMEX Natural Gas Futures Close V9 Choice
Climatic conditions Air Quality Index (AQI) V1o Choice
Macroeconomic policy USD/CNY Mid Price (USDCNY) Vi1 Choice
EUR/CNY Mid Price (EURCNY) V12 Choice
Emerging Media Index Baidu Search Index-Carbon Neutral V13 Choice
Baidu Search Index-Carbon Trading V14 Choice
Baidu Search Index-Carbon Peak V15 Choice
Baidu Search Index-Carbon Sink V16 Choice

international crude oil market price, and the NYMEX natural gas futures closing price
(V9) represents the international natural gas market price.

Natural environment: The occurrence of extreme weather events usually leads to an
increase in energy consumption, such as the need for more cooling or heating, which can
increase carbon emissions and thus push up the price of carbon credits (Alberola,
Chevallier ¢ Cheze, 2009; Considine, 2000). In addition, deteriorating air quality may
prompt the government to strengthen the regulation of carbon emissions (Ji et al., 2021;
Zheng, Song ¢ Shen, 2021). Therefore, in this article, the air quality index (AQI) (Creti,
Jouvet ¢» Mignon, 2012; Han et al., 2019) (V10) of Wuhan and Guangzhou, the locations of
the carbon markets in Hubei and Guangzhou, respectively, are selected as variables of the
natural environment to be included in the model.

Macro policy: Exchange rate fluctuations will have a direct impact on international
trade, which in turn will affect companies’ production activities. Therefore, this article
selects the dollar (V11) and the euro (V12) against the yuan median price represents the
exchange rate.

Emerging media indicators: Considering that Baidu is a website that people often use to
get information, the Baidu index is also selected as an influential factor for research. After
searching and screening, four keywords, namely “carbon neutral”, “carbon trading”,
“carbon peak” and “carbon sink”, were finally identified to represent the emerging media
index. The keywords “carbon neutral”, “carbon trading”, “carbon peak” and “carbon sink”
represent the emerging media index.
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Variable selection and data sources

In this article, the carbon market price of Hubei Province and Guangzhou City is selected
as the dependent variable, and the historical carbon price as well as a variety of domestic
and international influencing factors are used as independent variables for empirical
analysis. The data used covers the daily data from January 1, 2018, to March 31, 2024,
which are all derived from the Choice Financial Terminal database. In the process of data
selection, the effects of domestic and international public holidays, differences in trading
hours, and missing values of variables are especially considered. In addition, to extract the
time series characteristics of the carbon price data, this article converts the raw data into a
stacked data type and incorporates the sliding window method for forecasting. Specifically,
assuming that the target of prediction is the carbon price at the t+3th moment, the input
data will include continuous observations from the t-10th moment to the t-th moment
(Li, Liang & Zhou, 2016). In this study, the size of the sliding window is set to five quarters,
i.e., data from the first five quarters (January 1, 2018, to March 31, 2019) are used as the
training set to predict the carbon price in the sixth quarter (April 1, 2019, to June 30, 2019).
A series of overlapping sample datasets are created by moving the data backward quarter
by quarter, with each move having a step size of one quarter. The exact structure of the
sliding window is shown in Fig. 3.

Data pre-processing

There are different magnitudes and units between the collected data on the impact factors,
to make the data more comparable, the data need to be linearly normalized to convert the
data to the same magnitude or unit, so that it can be easily compared and analyzed and also
can improve the accuracy and effectiveness of the machine learning algorithms. The
expression for normalization is as follows:

X — Xpni
Xmax — Xmin
Among them, x* represents the normalized value; x is the original data, X, is the
minimum value in the dataset, and X, is the maximum value in the dataset. After
normalization, the data falls within the range of [0, 1].

Establishment of the ultimate indicator system

The economists David Dickey and Wayne Fuller proposed the Augmented Dickey-Fuller
(ADF) test in 1979. The test is a statistical method used to test whether the time series data
has a unit root, i.e. to verify whether the data is smooth. Through the ADF test, it can be
obtained that the p-value of Hubei is 0.252318 and the p-value of Guangzhou is 0.766068,
both of which are larger than the usually chosen significance level (e.g., 0.05 or 0.01), and
therefore the original hypothesis cannot be rejected, i.e., neither of the two carbon markets’
historical carbon price data has smoothness. After one difference was performed
separately, the data had all been smooth, and partial autocorrelation analysis was
subsequently introduced to select the input historical characteristics for the prediction
method. Figure 4 demonstrates the PACF results, and it can be seen that both Hubei and
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Full data
Figure 3 Sliding window structure diagram. Full-size K&l DOT: 10.7717/peerj-cs.2827/fig-3

Guangzhou carbon price data have significant third-order autocorrelation. x; is the output
feature, and {x;_1, Xj_¢, X;_g} is determined as the input historical variable of Hubei carbon
price. {Xi_1, Xi_4, X;_s} is identified as the input historical variable of Guangzhou carbon
price.

More input features may reduce the prediction accuracy due to redundancy. Identifying
and screening out the most effective variables can not only achieve the goal of
dimensionality reduction but also effectively avoid the problem of multicollinearity among
data, thus improving the prediction performance of the model. Therefore, to identify the
main external influences affecting carbon prices in Hubei and Guangzhou, this article
adopts the Lasso regression algorithm for feature selection.

After normalizing all the data, Lasso regression analysis was carried out with the 16
external influences listed in Table 2 as independent variables and carbon emissions as
dependent variables, with the parameter K value taken as 0.01. The correlation analysis
shows that the top 10 variables in terms of carbon price correlation in Hubei Province are
the S&P 500, Baidu index-Carbon Neutral, Coking Coal Futures Clearing Price, Power
Coal Futures settlement price, EURCNY, Brent crude oil futures settlement price, NYMEX
natural gas futures closing price, AQI, Baidu index-carbon trading, CSI 300 index, and the
top 10 carbon price-related variables in Guangzhou are EUA, Brent crude oil futures
settlement price, USDCNY, Power Coal Futures Settlement Price, Baidu index-Carbon
Peak, S&P 500 Index, SSE Composite Index, EURCNY, Coking Coal Futures Settlement
Price, and Baidu search index-Carbon Sinks, as shown in Fig. 5, whereby they are identified
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Figure 4 PACEF results of carbon price data in Hubei and Guangzhou.
Full-size K&l DOT: 10.7717/peerj-cs.2827/fig-4
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Figure 5 Lasso results of external factors in Hubei and Guangzhou.
Full-size 4] DOT: 10.7717/peerj-cs.2827/fig-5

as the 10 key influencing factors affecting the carbon price in Hubei Province and
Guangzhou City, respectively.

Evaluation indicators

In this article, mean square error (MSE), mean absolute error (MAE), mean absolute
percentage error (MAPE) and coefficient of determination (R-squared or R?) are used as
indicators to assess the prediction performance of the model. The MSE is the average of the
square of the differences between the predicted values and the actual values, while the
MAE measures the average size of the absolute size of the differences between the predicted
values and the actual observations, visualizing the average level of prediction error. The
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Table 3 Assessment indicator system.

Indicators Definition Formula
MSE Mean square error 1< 2 (24)
MSE =25 (i = ¥)
i=1
MAE Mean absolute error 18 R (25)
MAE = _Z lyi — Vil
)
MAPE Mean absolute percentage error 1< - (26)
P 8 MAPE:—Z'u £100%
R £
2 ~ 2
R Mean absolute percentage error R? S wi( - ) (27)
—\2
D1 Wi (Yi - Yi)

MAE visualizes the average level of prediction error by measuring the average size of the
absolute difference between the predicted value and the actual observed value. On the
other hand, the R* metric quantifies the goodness of fit or correlation between the model’s
predictions and observations. The formula for each indicator is shown in Table 3.

EXPERIMENTAL RESULTS AND ANALYSIS

Model parameter setting

To verify the prediction accuracy of the COA-XGBoost-CEEMDAN model, various
comparison algorithms are used to analyze the prediction effect. For the base model
prediction, GBDT, support vector machine (SVR), and XGBoost models are selected to
compare and analyze the prediction effect of COA-XGBoost; for the residual correction
combination model prediction, the residual sequences generated by GWO-XGBoost are
compared and decomposed using VMD and CEEMDAN methods. The parameter settings
and optimal parameters of each model are shown in Table 4, and the rest of the parameters
are set using Python default parameters.

Experiment 1: Results of carbon price prediction in Hubei Province
The evaluation metrics of the established prediction framework and other prediction
models are shown in Table 5 and Fig. 6, and the comparison of the predicted values of
different models is shown in Fig. 7. The values with the best results in Table 5 will be
bolded, and Fig. 6 visualizes the prediction performance of each model in the form of bar
charts. The experimental data show that the model proposed in this article outperforms the
other compared models in all cases. The following conclusions can be drawn.

(1) The prediction model proposed in this article outperforms other models in any
comparison of evaluation metrics. According to the results listed in Table 5, the MSE,
MAE, MAPE, and R® of the designed forecasting framework are 2.0573e-06, 0.000268,
0.00003, and 0.9999, respectively.

(2) When comparing the single model XGBoost and XGBoost with the cheetah
optimization algorithm added, it is found that the model with the Cheetah optimization
algorithm added is more accurate. The four evaluation metrics of MSE, MAE, MAPE, and
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Table 4 Model parameter setting.

Models Parameterization Hubei optimized parameters Guangzhou optimized parameters
GBDT (n_estimators, learning_rate, max_depth, (1,000, 0.1, 6, 0.6) (1,000, 0.1, 6, 0.8)
subsample)
SVR (Kernel, C, epsilon) (‘rbf, 1.0, 0.01) (‘rbf, 1.0, 0.01)
COA Ib/ub= learning_rate, subsample, Ib = [0.01, 0.5, 0.5, 3, 0] Ib = [0.01, 0.5, 0.5, 3, 0]
colsample_bytree, max_depth, Alpha) ub =[0.3, 1, 1, 10, 1] ub =[0.3, 1, 1, 10, 1]
XGBoost (learning_rate, subsample, colsample_bytree, (0.1, 0.8, 0.8, 5, 0) (0.1, 0.8, 0.4, 5, 0)
max_depth, Alpha)
COA- (learning_rate, subsample, colsample_bytree, (0.29996261, 0.9667642, 0.89935618, (0.2929408, 0.98066281, 0.94465118,
XGBoost max_depth, Alpha) 9.12183629, 0.01051329) 9.50070627, 0.02067619)

Table 5 The forecasting results for theHubei dataset.

Models MSE MAE MAPE R?

GBDT 0.3337 0.3846 1.0519 0.9953
SVR 0.2492 0.3680 1.0050 0.9965
XGBoost 0.1536 0.2788 0.7580 0.9979
WOA-XGBoost 0.0882 0.2150 0.5862 0.9987
COA-XGBoost 2.4996¢-06 0.0011 0.0029 0.9999
COA-XGBoost-VMD 2.4879¢-06 0.0011 0.00003 0.9999
COA-XGBoost-CEEMDAN 2.0573e-06 0.000268 0.00003 0.9999

Note:

The best result is shown in bold.

R? for the XGBoost model are 0.1536, 0.2788, 0.7580 and 0.9979, respectively. The values
of COA-The values of the four evaluation metrics of XGBoost are 2.4796e—06, 0.0011,

0.0029, and 0.9999, which are 99.9%, 99.6%, 99.6%, and 0.2% respectively, compared to the
metrics of XGBoost. It can be seen that the accuracy of the model with the addition of the

optimization algorithm has been improved to some extent.

(3) The single model without the decomposition algorithm added is compared with the

model incorporating the decomposition algorithm, which has better prediction results.

The COA-XGBoost model with the CEEMDAN decomposition algorithm incorporated
has values of 2.0573e—06, 0.000268, 0.00003, 0.9999, and the percentage improvement of
the four metrics are 17.0%, 75.6%, 99.0%, and 0.000001%, which is a substantial
improvement in accuracy. The contribution of the CEEMDAN algorithm to the prediction
results is shown.

Experiment 2: Results of carbon price prediction in guangzhou

To prove the robustness of the model, a further carbon market in Guangzhou will be
selected for an experimental study. Taking the relevant data of the Guangzhou carbon
market as a sample, the prediction results of each model are shown in Table 6 and Fig. 8,
and the line graph comparing the predicted values of different models is shown in Fig. 9. It
can be summarized from numeral charts that Experiment 2 has the same conclusion as
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Figure 6 Performance of different models on the Hubei test set predictions.
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Figure 7 Performance of different models on the Guangzhou test set predictions.
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Table 6 The forecasting results for theGuangzhou dataset.

Models MSE MAE MAPE R?

GBDT 0.2231 0.3200 0.6436 0.9996
SVR 0.1960 0.3073 0.5964 0.9996
XGBoost 0.1259 0.2666 0.5743 0.9996
WOA-XGBoost 0.0371 0.1147 0.2238 0.9999
COA-XGBoost 3.6450e-06 0.0013 0.0031 0.9999
COA-XGBoost-VMD 3.6351e-06 0.0013 0.00003 0.9999
COA-XGBoost-CEEMDAN 1.4476e-10 0.000009 0.0000002 0.9999

Note:

The best result is shown in bold.
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Figure 8 Feature importance histogram.
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Experiment 1. It shows that the model proposed in this article combines the advantages of
optimization algorithm, decomposition algorithm, and feature selection, and performs
well in all aspects.

Importance analysis of carbon price characteristics

Characteristic importance analysis can help the government to make scientific decisions in
various aspects such as an in-depth understanding of the energy market, optimizing policy
design, and formulating cross-cutting policies by identifying the factors that have an
important impact on the target value of the forecast (Chang ¢ Park, 2023). In this article,
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the Lasso regression model is used for feature importance analysis. The results of the
feature importance ranking of each model are shown in Fig. 10 and Table 7. Analyzing the
feature ranking in Table 7, it is found that the historical carbon price is the best data source
for predicting the carbon price in these two carbon markets, which is because the price
time series is a comprehensive external manifestation of the intrinsic complexity of the
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Table 7 Ranking of importance of carbon price features.

Hubei Guangzhou

Feature Score Feature Score
X1 0214 X1 0213
Xi—¢6 0.093 Xj—4 0.161
Xi_g 0.09 Xj_5 0.097
S&P 500 0.078 EUA 0.069
Baidu Search Index-Carbon Neutral 0.073 S&P 500 0.068
AQI 0.064 SSE 0.067
BRENT 0.062 BRENT 0.063
COAL 0.061 COAL 0.056
Baidu Search Index-Carbon Trading 0.059 Baidu Search Index-Carbon Peak 0.055
DCOAL 0.058 Baidu Search Index-Carbon Sink 0.048
CSI 300 0.057 DCOAL 0.042
NYMEX 0.05 EURCNY 0.035
EURCNY 0.04 USDCNY 0.027

market, which contains important information about the past market performance and
price fluctuations, and can help researchers to analyze and predict through these historical
price data. Additionally, it can be observed that the settlement price of Brent crude oil
futures in the energy factors and the S&P 500 index in the macroeconomic factors rank
among the top in both datasets, making them key external factors in carbon price
prediction.

DISCUSSION

Experiments on the application of the model

EU carbon price forecasts

To explore the generalization ability of the proposed model and the generalizability of the
study, price forecasts for the EU carbon market are added. An indicator system is
established by considering international carbon prices, macroeconomics, energy prices,
climatic conditions, macro-policy and emerging media indices, and historical prices. The
daily trading data of EUA from January 1, 2018 to March 31, 2024, is selected for
forecasting. There are 1,577 data in total. As shown in Fig. 11, the carbon price experienced
a typical price change pattern during the training period, including the three stages of rise,
fall, and oscillation. The results of the metric calculations for each of the models are shown
in Table 8, with the best data in the table shown in bold.

According to Table 8, the following conclusions can be obtained. First, COA-XGBoost
with optimization algorithm added has an excellent performance in a single machine
learning model, and the evaluation indexes are improved by 99.99%, 99.39%, 99.34%, and
0.05% respectively compared with XGBoost without optimization algorithm added. From
this, it can be concluded that using COA to optimize the parameters of XGBoost can
improve the prediction accuracy. Secondly, the accuracy of the hybrid algorithm with the
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Table 8 The forecasting results for the EU dataset.

Models MSE MAE MAPE R’

GBDT 0.8679 0.5725 1.0009 0.9986
SVR 0.5923 0.5087 0.9065 0.9991
XGBoost 0.3620 0.4593 0.9585 0.9994
WOA-XGBoost 0.2370 0.3284 0.5833 0.9996
COA-XGBoost 1.6563e-05 0.0028 0.0063 0.9999
COA-XGBoost-VMD 1.6417e-05 0.0028 0.00006 0.9999
COA-XGBoost-CEEMDAN 1.2653e-07 0.0003 0.000006 0.9999

Note:
The best result is shown in bold.

addition of VMD and CEEMDAN is significantly improved, CEEMDAN presents a small
increase compared to the VMD basis, and the evaluation indexes of COA-XGBoost-
CEEMDAN reach 1.2653e—07, 0.0003, 0.000006, and 0.9999, respectively. Through the
preliminary decomposition of the predicted residual sequences, effective information is

extracted, which further improves the accuracy of prediction.
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In summary, the model proposed in this article shows the same excellent results in the
prediction of the EU carbon trading market compared with several other models, which
proves the generalization ability of this model and can be better applied to new data,
indicating its universality and reliability.

Oil price forecasts

To further verify the generalization performance of this model in heterogeneous energy
markets, this study extends the prediction scenario to the international crude oil market.
Based on the multi-scale coupling characteristics of the global energy market, a system of
indicators covering commodity attributes, economic factors, alternative energy sources
and geopolitical factors, as well as its own historical prices, is constructed. All indicators
are based on monthly data with the time interval from January 1997 to December 2022,
totaling 212 data, as shown in Fig. 12. The Lasso-COA-XGBoost-CEEMDAN model
proposed in this article is used to predict the forecast of Brent oil price, and the model
performance is quantified by a quadratic evaluation system: MSE = 0.1553, MAE = 0.3544,
MAPE = 0.0058 and R? = 0.9997. The results show that the model also exhibits excellent
predictive performance in crude oil price forecasting.

Comparison between the proposed model and other models

In recent years, there have been numerous studies on carbon prices. To prove the validity
of the proposed model, this article compares other hybrid models for carbon price
forecasting. The comparison models are described as follows:

Ke et al. (2023) proposed multi-decomposition-XGBoost model. It combines the results
of the first and second decompositions based on sample entropy, then performs another
round of decomposition and uses the XGBoost prediction model to make predictions, and
finally, summarizes the results to obtain the carbon price combination prediction.

Hu ¢ Cheng (2023) developed the SD-RE-MIC-SSA-HKELM-Ensemble model to
forecast carbon price. It utilizes variational mode decomposition (VMD) to decompose the
carbon price into several modes and then reconstructs these modes using polar entropy.
The multifactor HKELM optimized by the sparrow search algorithm is used to forecast the
reconstructed subsequences, and the main external factors and the historical time series
data of carbon price innovatively selected by the information coefficient maximization
method are used as the input variables of the forecasting model. Finally, a nonlinear
integrated learning method is introduced to determine the residual term and the predicted
value of the final carbon price.

The above hybrid models present innovative approaches in the field of carbon price
forecasting research and advance the field of carbon price forecasting. By comparing with
these models, the performance of the proposed model in predicting carbon price can be
evaluated. The proposed model and the compared models are compared by three
evaluation indexes, RMSE, MAE, and MAPE, and the results are shown in Table 9, with
the optimal results shown in bold. Meanwhile, to ensure the rigor of the comparison, the
time horizon of the prediction is adjusted to be consistent. The time range of the Hubei
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Table 9 Comparison of prediction results between this model and other mixed models.

Carbon market Model RMSE MAE MAPE
Hubei Multi-decomposition-XGBoost 0.748 0.505 1.745%
Lasso-COA-XGBoost-CEEMDAN 0.002 0.0004 0.16%
Guangzhou SD-RE-MIC-SSA-HKELM-Ensemble 0.1716 0.1218 0.26%
Lasso-COA-XGBoost-CEEMDAN 0.004 0.0027 0.18%
Note:

The best results are shown in bold.

carbon market is from August 1, 2018 to November 13, 2020, and the time range of the
dataset of the Guangzhou carbon market is from January 3, 2017 to February 28, 2022.
After comparative analysis with other models, it is found that the model proposed in
this study presents superior performance performance. As can be seen from Table 9,
hybrid models have been widely used and highly matured in the field of carbon price
forecasting, by combining different types of forecasting models to better integrate the
advantages of the models and improve the forecasting accuracy. In the comparison of
forecasting in the Hubei carbon market, the RMSE, MAE, and MAPE of the model
proposed in this article reach 0.002%, 0.0004%, and 0.16%, respectively, and the values of
all evaluation indexes are better than those of the comparison model. In the comparison
experiment of the Guangzhou carbon market, the comparative model’s indicators are
0.1716%, 0.1218%, and 0.26%, and the RMSE and MAE performance is not as good as the
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performance of the model proposed in this article, though. None of the above comparative
models have made split-frequency predictions of the residual series or considered the
influence of extreme events, which are possible reasons why the prediction accuracy
cannot be improved. None of the above comparative models performs split-frequency
prediction on the residual series, ignoring the rich information contained in the residuals,
and does not take into account the impact of extreme events, which makes the model lack
of adaptability and robustness in the face of such special cases, and these are the reasons
that may lead to the failure to improve the prediction accuracy.

Limitations and future directions of work

In this article, a novel carbon price prediction method is proposed, which significantly
improves the prediction accuracy and thus assists governments, enterprises, and investors
in making more accurate decisions. Although the results of the study show good prediction
results, there are still some limitations. In terms of the model: (1) The heuristic
optimization algorithm used is more complicated in terms of parameter configuration.
Determining the appropriate parameters not only requires a lot of time and computational
resources, but also this complex parameter adjustment process restricts the enhancement
of the model’s intelligence level to a certain extent, which reduces the convenience and
efficiency of the model application. (2) Although the CEEMDAN method is used to
decompose the residual series, it is limited to a single decomposition, which may not be
able to fully capture the deeper nonlinear features. In the study of the carbon price
problem: (1) This study only realizes a single-step forecast and fails to comprehensively
analyze the future carbon price trend from a more macroscopic perspective. (2) The
characteristics of carbon price influencing factors over time are neglected.

Based on the above limitations, future research work can be carried out in the following
directions: firstly, in-depth research should be carried out on the optimization algorithm
and model streamlining, a more intelligent and convenient prediction model should be
constructed, the automation of the parameter setting of the heuristic optimization
algorithm should be realized, and the complexity of the experimental steps should be
reduced, so as to improve the operation efficiency and application popularization of the
model. Secondly, the introduction quadratic decomposition in the residual sequence
processing should be attempted to fully reveal the deep nonlinear relationship and make
the model prediction more accurate. Finally, the carbon price prediction method in this
study can be extended and applied to other related fields, such as energy market prediction
and climate change risk management, which will verify the generalizability and application
value of the research results.

Policy recommendations
As one of the world’s largest carbon emitters, establishing a robust carbon market in China
will have a positive impact on reducing global carbon emissions. The following related
policy recommendations are proposed based on the research findings of this article:

(1) As a key indicator for predicting future carbon prices, historical carbon prices
provide extremely valuable information about their trends and patterns. Therefore, the
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government should first set up a carbon market reserve mechanism to put in or recover

carbon quotas at the right time according to the market condition, to ensure the stability of
carbon market prices and prevent drastic fluctuations. In addition, the government should
also build a complete carbon market database, including historical prices, trading volume,
and emission data of various carbon markets, to facilitate researchers” access to relevant

information for in-depth analysis and research.

(2) Fluctuations in energy prices are directly related to the production costs and energy
choices of enterprises, which have a complex impact on carbon prices. For the Hubei
carbon market, coal prices and power coal prices have a high impact score on carbon price
forecasts. For the Guangzhou carbon market, crude oil prices and power coal prices have
higher impact scores on carbon price forecasts. The government should take several
measures to reduce the burden of production costs on enterprises when energy prices rise.
Firstly, the government should support companies in improving energy efficiency and
technology upgrades through financial subsidies and soft loans. Second, it should actively
promote the development of clean energy, increase the supply of clean energy, and reduce
reliance on coal and oil, thereby reducing the volatility of carbon prices and their impact
on traditional energy prices. When energy prices fall, the government needs to review and
adjust the carbon quota allocation mechanism to ensure that the carbon market still
incentivizes companies to adopt low-carbon production and business strategies. For the
Guangzhou carbon market in particular, to ensure the accuracy of carbon price forecasts
and promote sustainable economic development, the government needs to pay close
attention to the price movements of natural gas and coal.

(3) On the economic front, the Hubei carbon market should monitor the price
movements of the S&P 500, the EUR-RMB exchange rate, and the CSI 300, and the
Guangzhou carbon market should pay attention to the price movements of the USD-RMB
exchange rate, the S&P 500, the SSE Composite Index and the EUR-RMB exchange rate,
which are of reference value in accurately forecasting carbon market prices. When these
indices rise, it indicates optimism in the stock market and expansion of economic activity,
which may increase demand for the carbon market. The government should capitalize on
periods of economic prosperity to strengthen training and education efforts related to the
carbon market, raise awareness of the carbon market among enterprises and investors, and
promote active trading in the market. Additionally, when indicators are falling, the
government should take measures to stimulate economic growth and promote the
sustainable development of a low-carbon economy. To lessen the detrimental effects of
exchange rate swings on the economy and the energy market, the government must also
keep the currency rate reasonably constant.

(4) To better grasp the public’s concern and the trend of public opinion on the carbon
market and related issues, the government should make full use of big data tools such as
the Baidu index. The Hubei carbon market should monitor the trends of the keywords
“carbon neutral” and “carbon trading”, and the Guangzhou carbon market should pay
attention to the trends of the keywords “carbon peak” and “carbon sink”. The Guangzhou
carbon market should focus on the trends of the keywords “carbon peak” and “carbon
sink”, which have reference values for accurate prediction of carbon market price. By
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monitoring the trend of keyword searches related to the carbon market, the government
can keep abreast of changes in the public’s interest in carbon emissions and carbon trading,
and provide a basis for developing more targeted publicity and education programs. In
addition, changes in the Baidu index can also reflect market expectations and public
sentiment, helping to warn of potential market fluctuations in advance and assisting
policymakers in making more scientific and rational decisions.

CONCLUSION

Maintaining the robust growth of China’s carbon trading market requires the development
of a high-precision prediction model that can reliably forecast the price of carbon trading
in China. In this study, the CEEMDAN decomposition method is introduced into the
problem of correction of residual series, and further individual prediction of the
eigenmode function generated by CEEMDAN is performed, and finally, the COA-
XGBoost-CEEMDAN integrated learning combination prediction model is established. In
this study, seven prediction models are utilized to study the carbon price prediction
problem in the Hubei and Guangzhou carbon markets, and four evaluation indexes are
introduced to discuss the prediction accuracy and stability of each model in different
datasets. The empirical analysis leads to the following conclusions:

(1) Out of all the benchmark models, the forecasting framework suggested in this
research performs the best. Taking the carbon price prediction in Hubei as an example, the
MSE, MAE, MAPE, and R? of the model are 2.0573e—06, 0.000268, 0.00003, and 0.9999,
respectively. And verified in other experiments, which demonstrates the superiority and
universality of the model in carbon price prediction.

(2) The models applicable to different frequencies are used for the next prediction of the
decomposed carbon price residuals. Firstly the introduction of the decomposition
algorithm can greatly reduce the volatility and randomness of the data, thus improving the
performance of the prediction model. Meanwhile, it can be concluded through
experiments that the decomposition effect of CEEMDAN is better than that of VMD.
Secondly, the residual terms are reconstructed into high frequency and low frequency, and
the COA-XGBoost model and SVR model applicable to each frequency are selected to
predict the reconstructed high frequency and low frequency for the sharp fluctuation of the
high-frequency sequence and the smaller fluctuation and randomness of the
low-frequency sequence, respectively.

(3) An integrated prediction method for dynamic carbon price decomposition based on
a rolling time window should be constructed, avoiding the data leakage problem while
ensuring the timeliness and effectiveness of the prediction model.

(4) Considering the index system of the Baidu index makes a significant contribution to
the research of carbon price prediction. Carbon price is complex, and there are many
factors affecting its price fluctuation and a wide range of factors. Considering only the
historical carbon price data is not enough to accurately predict the carbon price; therefore,
this article constructs a hybrid prediction framework that integrates multiple influencing
factors of feature selection and preprocesses all input data to improve the prediction
performance.
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The model proposed in this article improves the prediction accuracy and has significant
value and prospect to provide strong support for the stable development of the carbon
market, sustainable economic growth and the realization of global climate goals. However,
there are still limitations in the study. Firstly, in the study of the carbon price problem, only
a single-step prediction is realized, and the future trend is not comprehensively analyzed;
also, the time-varying characteristics of the factors affecting the carbon price are ignored,
and its complexity and numerous parameter options lead to the fact that the model
requires a longer period of time to run, even though it performs better in the prediction.
Future work needs to strengthen the research on model streamlining, reduce the
complexity of experimental steps, improve the model prediction accuracy, and also extend
the prediction model to other fields to further prove the value of the research results.
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