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ABSTRACT
Extracting buildings from high-resolution remote sensing images is currently a
research hotspot in the field of remote sensing applications. Deep learning methods
have significantly improved the accuracy of building extraction, but there are still
deficiencies such as blurred edges, incomplete structures and loss of details in the
extraction results. To obtain accurate contours and clear boundaries of buildings, this
article proposes a novel building extraction method utilizing multi-scale attention
gate and enhanced positional information. By employing U-Net as the main
framework, this article introduces a multi-scale attention gate module in the encoder,
which effectively improves the ability to capture multi-scale information, and designs
a module in the decoder to enhance the positional information of the features,
allowing for more precise localization and extraction of the shape and edge
information of buildings. To validate the effectiveness of the proposed method,
comprehensive evaluations were conducted on three benchmark datasets,
Massachusetts, WHU, and Inria. The comparative analysis with six state-of-the-art
models (SegNet, DeepLabv3+, U-Net, DSATNet, SDSC-Unet, and BuildFormer)
demonstrates consistent performance improvements in intersection over union
(IoU) metrics. Specifically, the proposed method achieves IoU increments of 2.19%,
3.31%, 3.10%, 2.00%, 3.35%, and 3.48% respectively on Massachusetts dataset, 1.26%,
4.18%, 1.18%, 2.01%, 2.03%, and 2.29% on WHU dataset, and 0.87%, 5.25%, 2.02%,
5.55%, 4.39%, and 1.18% on Inria dataset. The experimental results indicate that the
proposed method can effectively integrate multi-scale features and optimize the
extracted building edges, achieving superior performance compared to existing
methodologies in building extraction tasks.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning, Neural Networks
Keywords Deep learning, Attention mechanism, Gating mechanism, Positional information
enhancement, Semantic segmentation

INTRODUCTION
With the rapid development of high-resolution sensor technology, the spectral and spatial
resolution of images has been greatly improved, which makes high-resolution remote
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sensing images easily accessible and provides new possibilities for the application of
remote sensing technology. Extracting real-time and accurate building information from
remote sensing images provides essential data for urban planning (Fan et al., 2022),
ecological monitoring (He et al., 2022), map production (Vo et al., 2013) and so on. An
increasing number of high-resolution remote sensing images provide richer information
about the Earth’s features (Shao et al., 2020), but also pose unprecedented challenges for
the effective use of remote sensing data (Huang et al., 2024). Many factors can lead to
missed and false detections in the extraction results, such as the diversity in building
structures and shapes, spectral characteristics, numerous surrounding disturbances and
complex image backgrounds. How to accurately and effectively extract buildings from
remote sensing images remains an urgent challenge that needs to be addressed.

Traditional building extraction methods mainly include edge feature method, region
segmentation method, semantic classification method, and prior knowledge model
method, etc. The edge feature method (Lu et al., 2018) identifies building contours by
detecting edge continuity. While effective in simple environments, its heavy reliance on
edge information makes it susceptible to errors in complex image backgrounds. The region
segmentation method (Müller & Zaum, 2005) identifies buildings by segmenting areas
based on pixel similarity, which is effective for images with distinct color and texture
differences, but performs poorly when the spectral characteristics of the buildings do not
significantly differ from the background. The semantic classification method (Li et al.,
2015) uses machine learning for semantic classification of pixels or regions, which can
handle complex scenes but requires a large amount of annotated data. The prior
knowledge model method (Shi et al., 2016) constructs a model based on the characteristics
of known buildings, which is effective in specific image scenarios but has limited
generalization capability. The afore-mentioned building extraction methods mainly map
the low-level features of images to semantic features, relying on researchers’ understanding
and experience of low-level features. While demonstrating satisfactory performance in
controlled environments, these methods frequently exhibit critical limitations when
processing images containing intricate background interference, manifesting as
fragmented building outlines, false positives, omissions, and incomplete feature extraction
in heterogeneous landscapes.

In recent years, deep learning methods have attracted increasing attention and have
been widely applied in areas such as object detection (Chen et al., 2024), image
classification (Zheng, 2024), and semantic segmentation (Wu et al., 2024). Long, Shelhamer
& Darrell (2015) applied convolutional neural networks (CNNs) to building extraction,
which significantly improved the extraction accuracy compared to traditional methods.
The fully convolutional networks (FCNs) designed by Long, Shelhamer & Darrell (2015)
achieved end-to-end pixel-level segmentation by replacing fully connected layers with
convolutional layers. Since then, a series of network models based on the encoder-decoder
structure have been proposed, such as Segnet (Badrinarayanan, Kendall & Cipolla, 2017),
Pspnet (Zhao et al., 2017), ResNet (He et al., 2016), Deeplab (Chen et al., 2018), U-Net
(Peng et al., 2021), all of which have revealed both technical innovations and inherent
limitations. Abdollahi, Pradhan & Alamri (2022) used Segnet for building extraction,
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where the decoder performs non-linear upsampling using indices calculated at the
max-pooling layer of the encoder, enhancing the effect of building boundary segmentation.
However, the decoder’s architectural constraints exhibit significant limitations in
reconstructing intricate structural details when processing geometrically complex
buildings or scenes with dynamic environmental variations, particularly under multi-scale
spatial configurations. Chen et al. (2021) combined dense connections with residual
networks in Deeplabv3+ to alleviate the incomplete integration of high and low-level
features of buildings and improve the accuracy of building extraction, but excessive feature
fusion may lead to overfitting of the model, thereby affecting its generalization ability and
robustness. To better model long-distance dependencies (Liu et al., 2021), the
self-attention mechanism has been introduced into image segmentation (Pu et al., 2024).
Wang et al. (2022) designed a building extraction network Buildformer, which employs a
multi-head self-attention mechanism and a global context path module to capture global
dependencies. While excelling in global dependency modeling, the framework’s
prioritization of global features compromises local feature resolution, particularly affecting
precision on small-scale structures and boundary-indistinct buildings. Wan et al. (2023)
designed a feature refinement module in the channel of DSAT-Net to fuse low-level and
high-level features. These asymmetric structure networks usually adopt a simplified design
in the decoder to reduce the computational cost associated with the complex results from
the encoder, but the simplified design may lead to the decoder’s inability to effectively
restore detailed information when restoring spatial resolution.

The U-Net network is a symmetric encoder-decoder structure (Peng et al., 2021), which
directly transmits the features of each layer of the encoder to the corresponding layer of the
decoder through skip connections, enabling the decoder to effectively utilize the low-level
detail information from the encoder. Due to its advantages, such as its simplicity,
flexibility, fewer parameters, and strong detail-capturing ability, the U-Net network has
been applied into building extraction and improved its performance. For example, Yu et al.
(2023) introduced recursive, residual deformable convolution units into the U-Net
structure, enhancing the model’s ability to learn complex details of buildings. Xu et al.
(2023) used a feature pyramid in the decoder of U-Net to fuse feature maps of different
scales in order to extract more building features from images. Jin et al. (2021) integrated
dense spatial pyramid pooling (Yang et al., 2018) into the U-Net structure to refine the
boundaries perception of large building, enhancing the integrity of large building
segmentation. Zhang, Zhang & Zhang (2023) introduced a novel branching transformer in
SDSC-UNet, enabling the model to capture multi-scale information internally while fully
establishing global dependency relationships.

The afore-mentioned U-shaped methods with symmetric encoder-decoder structures
have achieved good extraction results. However, they still have shortcomings in accurately
capturing image features and contextual information of buildings at different scales.
Especially when extracting buildings from remote sensing images with complex
backgrounds, these methods often encounter issues such as false positives, missed
detections, and incomplete edges. Their main deficiencies can be summarized in two
aspects. First, the convolution and pooling operations during the upsampling process can
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lead to the loss of spatial feature information. Second, these network structures lack the
ability to capture building location information during the fusion of high-level and
low-level features, resulting in poor extraction of building detail information by the model.
To overcome these shortcomings, this article designs a novel method for building
extraction based on the U-Net framework, which improves the network at both the
encoding and decoding stages.

In the encoding stage, a multi-scale attention gate module is introduced which
effectively integrates contextual information by fusing building features of different scales,
while suppressing background noise interference.

In the decoding stage, the traditional U-Net upsampling method is improved by adding
a dual-path upsampling which retains more high-level semantic information in feature
maps of different scales. During the upsampling process, positional information is
embedded into channel attention to enhance the positional information of features. The
improved network not only captures cross-channel information but also incorporates
directional and position-aware information, allowing for more accurate localization and
extraction of building shapes and edge details. This optimization helps refine building
boundaries and corner details in complex background images, thereby enhancing the
model’s performance.

METHOD
Network structure
UNet extracts and decodes features from a single dimension, which limits its ability to
capture the spatial and positional characteristics of multi-scale information and prevents it
from effectively utilizing multi-scale features across different levels of abstraction.
Therefore, this article designs a network model enhanced with multi-scale attention gate
and positional information.

The network structure is shown in Fig. 1. The network accepts an input image with a
height of H, a width of W, and three channels. The stage is the invariant phrase in U-Net.
After passing through the first five stages, the image’s width and height are reduced by half,
while the number of channels increases. The multi-scale attention gate mechanism
captures multi-scale information during the downsampling process, extracting multi-scale
information to be fed into the next downsampling and skip layer connections. In the
decoder part, improved upsampling is used to obtain information between different
feature layers, standardizing the size of feature maps at different scales. Then, through skip
layer connections, the upsampled feature maps are fused with the feature maps processed
by the multi-scale attention gate mechanism, enhancing the positional information, and
progressively decoding the predicted feature maps to achieve the final segmentation
results.

Multi-scale attention gate module
The overall structure of the multi-scale attention gate is shown in Fig. 2. Three types of
convolutions with different receptive fields are introduced to extract features: pointwise
convolution (Sandler et al., 2018), regular convolution (i.e., kernel size of 3 × 3, stride of 1,
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and padding of 1), and dilated convolution (i.e., kernel size of 3 × 3, stride of 1, padding of
2, and dilation rate of 2) (Li et al., 2022). The convolutions in the three parallel branches
provide different receptive fields, effectively extracting features from buildings at different
scales, thereby enabling the model to capture multi-scale features (Nguyen & Nguyen,
2023). Among them, pointwise convolution uses 1 × 1 convolutional kernels to fuse
features across channels, which can finely extract detailed textures in buildings and
effectively focus on small-scale buildings. Ordinary convolution obtains information about
buildings at regular scales. A padding of 1 means adding additional pixels to the edges of
the input feature map which allows the convolution kernel to fully cover the input image’s
edge regions. After convolution, the spatial size of the output feature map remains
unchanged, preserving the edge information. A stride of 1 means that the convolution
kernel moves 1 pixel each time for convolution operation, enabling detailed feature
extraction. The dilated convolution has a dilation rate of 2. By adding holes to expand the
receptive field of the convolution, the convolution operation can cover a larger area. Due to
its larger receptive field, the network can capture building information at a larger scale.

Figure 1 Network structure. Full-size DOI: 10.7717/peerj-cs.2826/fig-1
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The gating mechanism (Dong et al., 2022) is a mature adjustment strategy, which was
originally designed to control the flow of information to measure the importance of each
feature vector. This article concatenates and fuses the feature maps of the original image
after being processed by three different scales of convolution, and then the fused result is
input in a gating unit for adaptive adjustment of multi-scale information, enhancing the
model’s final feature representation capability. The feature maps processed by multi-scale
convolution are denoted as, Mn which serve as the input for feature fusion. The fusion
formula is as follows:

Mn ¼ concat Convp Cnð Þ þ Convo Cnð Þ þ Convd Cnð Þ� �
(1)

Hn ¼ Conv1�1 relu Mnð Þð Þ (2)

Gn ¼ Sigmoid Bn2d Hnð Þð Þ (3)

Pn ¼ Cn � Gn þ 1ð Þ: (4)

Considering the specific definition of convolution kernel size in the formula, the
relevant symbol interpretation table is listed in Table 1. In the formula, n represents the
current feature level (n ∈ {1, …,l}) and l represents the model hierarchy. Cn is the feature
map from the encoding layer. Convp refers to the pointwise convolution, Convo is the
regular convolution, and Convd is the dilated convolution. Hn is the mixed feature map.
Gn ∈ (0, 1) represents the gating output. Conv1×1 is the regular convolution with a kernel
size of 1 × 1, and Pn is the fusion result. According to Eqs. (1) and (2), the encoding layer
feature map Cn undergoes convolutions through three parallel branches and is then
concatenated into a multi-scale feature map Mn, which is then input into the gating unit.
Mn is processed through ReLU activation and a 1 × 1 convolution, resulting in the initial
fusion of multi-scale features and generating the mixed feature map Hn. As indicated by
Eq. (3), Gn is obtained by normalizing Hn using batch normalization and applying the
sigmoid activation function, mapping the output weights between (0, 1). According to

Figure 2 Multi-scale attention gate module. Full-size DOI: 10.7717/peerj-cs.2826/fig-2
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Eq. (4),Gn is multiplied element-wise with Cn enhancing the multi-scale features. Finally, it
is added to the original image Cn to retain the detailed features from the original image,
resulting in the output feature image Pn with multi-scale information guidance. The
multi-scale attention gate module captures the multi-scale features of buildings by
adaptively learning the weights at each spatial position, thereby improving the accuracy of
the extraction.

Positional information enhancement module
In the process of decoding the multi-scale feature maps, single-layer upsampling can lead
to the loss of spatial feature information, making it difficult to retain a large amount of
high-level semantic information. Skip connections simply concatenate all channel features
without focusing on different channels, resulting in insufficient contextual information. In
this module, a dual-path upsampling approach is used to obtain detailed features and
high-level semantic information from different feature layers. Then, the acquired features
undergo positional attention processing to enhance their positional information.

The overall structure is shown in Fig. 3. The input end accepts the fMSAG processed by
the multi-scale attention gate module from the encoding layer and the fup from the
dual-path upsampling, which are input to the positional information module for
processing after concatenation and convolution. Positional information is embedded along
the horizontal X-axis and the vertical Y-axis. Finally, the processed feature map is
superimposed on the original image to obtain the final output fout.

Dual path upsampling

The structure of the dual-path upsampling module is shown in Fig. 4. This module
performs a two-fold upsampling on the feature map fi of the decoding layer at level i and a
four-fold upsampling on the feature map fi-1 at level i-1, using bilinear interpolation.
Convolutional normalization is performed separately, with a convolution kernel size of
3 × 3, to restore the feature maps to the same size. Finally, the feature maps are added
together to produce the output feature map.

Table 1 Explanation table of related symbols.

Symbol Explain

n Current feature level, n ∈ {1,…,l}, representing the level number

Cn Encoding layer feature map, representing the feature map of the nth layer

Convp Pointwise convolution, kernel_size = 1, padding = 0

Convo Ordinary convolution, kernel_size = 3, padding = 1, stride = 1

Convd Dilation convolution, kernel_size = 3, padding = 2, stride = 1, dilation = 2

Conv1×1 1 × 1 convolution, kernel_size = (1, 1), used for dimensionality reduction

Hn Mixed feature map after dimensionality reduction

Bn2d Batch Normalization 2D, methods for standardizing input

Gn Gate controlled output, Gn ∈ (0, 1)

Pn The final processed feature image
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Positional information attention
To enable the model to obtain sufficient spatial location information, positional
information attention is used to further process the features obtained by upsampling.
Regular convolution has difficulty modeling channel relationships, while pooling helps the
model capture global information, which perfectly compensates for the shortcomings of

Figure 3 Position information enhancement module. Full-size DOI: 10.7717/peerj-cs.2826/fig-3

Figure 4 Dual path upsampling. Full-size DOI: 10.7717/peerj-cs.2826/fig-4
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convolution. As shown in Fig. 5A, the SE attention mechanism (Hu, Shen & Sun, 2018)
directly applies global average pooling to the feature maps to obtain a C × 1 × 1
dimensional vector, compressing the spatial information into one dimension. It only
considers re-evaluating the importance of each channel by modeling channel relationships,
but ignores positional information. As shown in Fig. 5B, the CBAM attention mechanism
(Woo et al., 2018) sequentially processes through channel attention and spatial attention,
multiplying the output of the channel attention (1D convolution) element-wise with the
spatial attention (2D convolution). This allows it to learn local relationships, but it is
difficult to learn long-range dependencies.

Therefore, in this article, positional information is embedded into the channel attention
mechanism, enabling the network to focus on positional information over a larger area. To
mitigate the loss of positional information caused by two-dimensional global pooling, the
channel attention is decomposed into multiple parallel one-dimensional feature encoding
processes. Global average pooling and max pooling are performed using two kernels of
sizes (H, 1) and (1, W). The processing steps are shown in Eqs. (5)–(8), where x represents
the input features, represents the output after average pooling, andm represents the output
after max pooling.

Equations (5) and (6) represent the average pooling and max pooling, respectively, for
the c-th channel at height h:

ahc hð Þ ¼ 1
w

X

i < w

xc n; ið Þ (5)

mh
c hð Þ ¼ max

X

i < w

xc n; ið Þ: (6)

Equations (7) and (8) represent the average pooling and max pooling, respectively, for
the c-th channel at width w:

awc wð Þ ¼ 1
h

X

i < h

xc n; ið Þ (7)

mw
c wð Þ ¼ max

X

i < h

xc n; ið Þ: (8)

Then, the feature maps embedded with specific directional information are fused
through concatenation, 1 × 1 convolution, normalization, and activation processing
sequentially. F1 represents the 1 × 1 convolution process, as shown in Eq. (9):

f ¼ ReLu Bn2dðF1 ah;mh; aw;mw
� �Þ� �

: (9)

Finally, the output features f are split along the X and Y axes for convolution and
activation. Each element in the two resulting attention maps reflects whether a building
exists in the corresponding row and column. Two 1 × 1 convolutions, Fh and Fw, are used
to transform the output f into tensors of C × H × 1 and C × 1 × W, respectively, with
outputs Fh and Fw shown in Eq. (10):
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fh ¼ ReLu Fh fð Þð Þ; fw ¼ ReLu Fw fð Þð Þ: (10)

EXPERIMENT
Training environment
The experiments in this article are based on the Linux Ubuntu system environment, with
one 2080Ti 11GB graphics card used on the platform. On this basis, the Pytorch deep
learning framework is adopted for the design and construction of the model, using the
GPU computing platform with CUDA version 11.7.

The Adammethod from the adaptive learning rate gradient descent algorithm is used to
optimize the loss function, with an initial learning rate of 1e−4 and minimun learning rate
of 1e−6. The cosine strategy were employed. To ensure training stability and model
convergence, the training batch size of the network is set to 2, and the number of training
iterations is set to 100 rounds. As shown in Fig. 6, the loss decreases rapidly during the first
20 rounds of training. As the number of iterations increases, the loss gradually stabilizes,
reaching near-convergence within 100 rounds.

Figure 5 Comparison of attention modules; (A) SE attention; (B) CBAM attention; (C) Position information attention.
Full-size DOI: 10.7717/peerj-cs.2826/fig-5
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DATASET
This article employs three public datasets for experimental validation, the Massachusetts
Building Dataset (https://www.cs.toronto.edu/~vmnih/data/, accessed on 10 December
2023), the WHU Building Dataset from Wuhan University (http://gpcv.whu.edu.cn/data/
building_dataset.html, accessed on 15 January 2024), and the Inria Aerial Image Labeling
Datase (https://project.inria.fr/aerialimagelabeling/, accessed on 12 January 2024).

The Massachusetts Building Dataset covers various types of buildings in urban and
suburban areas of Boston, USA, such as office buildings, residential homes, and garages.
The dataset includes 151 high-resolution remote sensing images sized at 1,500 pixels ×
1,500 pixels with a resolution of 1.0 m, covering an area of approximately 340 km2 on the
ground. The images were uniformly cropped to a size of 256 × 256, resulting in 5,796
images. Out of these, 4,060 images were selected for the training set, 360 images for the
validation set, and 1,376 images for the test set.

The WHU Building Dataset from Wuhan University is a large dataset composed of
multi-source remote sensing images, primarily including aerial and satellite remote sensing
imagery, with each image sized at 512 × 512. There are a total of 8,189 aerial images with a
spatial resolution of approximately 0.3 meters, covering a ground area of about 450 km2.
The images are pixel-wise annotated as buildings and non-buildings.

Inria Aerial Image Labeling Dataset is a remote sensing image dataset of urban building
scenes, including high-density metropolitan financial districts and low-density alpine
resorts, with a variety of building types. The dataset consists of 360 color orthoimages
(3-band RGB), covering urban residential areas in the United States and Austria. The
spatial resolution is 0.3 m2, with the training area of 337.5 km2, a validation area of
67.5 km2, a testing area is 405 km2, and a total coverage area of 810 km2. This article uses

Figure 6 Loss convergence plot. Full-size DOI: 10.7717/peerj-cs.2826/fig-6
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remote sensing images of Austin from the Inria Aerial Image Labeling Dataset for training,
where buildings are more densely located.

To adapt to the size of the memory space, the images from the WHU and Inria datasets
are uniformly cropped to a size of 512 × 512 before being fed into the model for training.
The ratio for the training set, validation set, and test set is 6:1:3.

To enhance model generalization, data augmentation techniques are applied to the
images in the training set. The augmentation methods include random rotations,
horizontal flips, vertical flips, and HSV color space transformation. There is a 50%
probability that the input image will undergo rotation, horizontal flipping, and vertical
flipping. In the HSV space, random perturbations are introduced to simulate variations in
lighting conditions. Specifically, hue adjustment involves applying a random relative shift
of ±10% to the original hue values, thereby simulating changes in light source color
temperature and improving the model’s adaptability to different lighting colors. Saturation
is adjusted by randomly selecting a scaling factor between 0.3 and 1.7, covering extreme
situations from grayscale (low saturation) to supersaturation (high saturation). Brightness
adjustment is performed using a multiplication factor between 0.7 and 1.3 to simulate
natural variations in light intensity, thereby improving the model’s robustness to both
bright and dark scenes. Data augmentation uses dynamic augmentation, which is only
enabled during training and generates different augmentation samples for each round of
training. As illustrated in Fig. 7, the first row displays augmented samples from the
Massachusetts dataset, the second row from the WHU dataset, and the third row from the
Inria dataset.

Evaluation metrics
This article employs five mainstream evaluation metrics to quantitatively assess the
model’s extraction results, namely, accuracy, precision, recall, intersection over union
(IoU) and F1 score. TP represents the number of building pixels predicted as true positives.
TN represents the number of non-building pixels predicted as true negatives. FP represents
the number of non-building pixels predicted as building pixels. FN represents the number
of building pixels predicted as non-building pixels. F1 score is a widely adopted evaluation
metric in machine learning for assessing classification model performance. It is especially
valuable for imbalanced datasets, as it harmonizes precision and recall, thereby mitigating
the limitations of relying on a single metric. The definitions of the five evaluation metrics
are provided in Eqs. (11) to (15):

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

(11)

Precision ¼ TP
TP þ FP

(12)

Recall ¼ TP
TP þ FN

(13)

IoU ¼ TP
TP þ FP þ FN

(14)

Xu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2826 12/25

http://dx.doi.org/10.7717/peerj-cs.2826
https://peerj.com/computer-science/


F1 ¼ 2� Precision� Recall
Precisionþ Recall

: (15)

Building extraction is a pixel-level classification in which the cross-entropy loss function
is typically used. This article selects the sigmoid cross-entropy loss as the loss function, as
shown in Eqs. (16) and (17), where (i, j) represents the sample point coordinates, yij
indicating the true value of the sample point, pij representing the probability of the true
value of the sample point and logits representing the prediction results.

pij ¼ Sigmoid logitsij
� � ¼ 1

1þ e�logits
ij

(16)

Lossij ¼ � ½yijlogðpijgÞ þ 1 � yij
� �

logð1 � pijgÞ�: (17)

RESULT
Results of the Massachusetts building dataset
To validate the feasibility and robustness of the method designed in this article,
comparisons are made under the same configuration environment among six mainstream
networks: SegNet (Weng et al., 2020), Deeplabv3+ (Chen et al., 2021), U-Net (Peng et al.,
2021), Buildformer (Wang et al., 2022), SDSC-Unet (Zhang, Zhang & Zhang, 2023),
DSATnet (Wan et al., 2023). To enhance the visualization effects, the extracted results are
highlighted with red for false negatives (missed detections) and blue for false positives
(unwarranted detections).

As shown in Fig. 8, in Scene one, due to the different spectral characteristics caused by
different materials on the roofs of buildings, networks such as Segnet and Deeplabv3+
produce internal void areas in the extracted buildings, while the method proposed in this
article can effectively identify buildings with different spectral characteristics. In scene two,
when extracting buildings of different shapes, networks like Segnet, BuildFormer, and

Figure 7 Sample image of data augmentation visualization.
Full-size DOI: 10.7717/peerj-cs.2826/fig-7
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SDSC-Unet show a certain degree of missed detection for buildings with complex shapes.
The proposed method achieves more complete boundary extraction, which is due to the
introduction of multi-scale attention gate that has a larger receptive field. In scene three,
where adjacent buildings have similar grayscale to the surrounding ground, all other
models have severe missed detections. In scene four, where buildings of different scales
arranged densely, all other models exhibit adhesion phenomena when extracting
small-scale buildings. In contrast, the proposed method extracts relatively complete
boundaries for buildings in both scene three and scene four, with minimal missed
detection areas.

The quantitative comparison results are shown in Table 2. From the comparison, it can
be observed that the proposed method demonstrates significant improvements in all
evaluation metrics compared to SegNet and DeepLabv3+. Additionally, when compared to
Unet, SDSC-Unet, DSATnet, and BuildFormer, the proposed method also shows
improvements in all evaluation metrics, with IoU increasing by 3.1%, 3.48%, 2% and
3.35%, F1 score increasing by 2.24%, 2.51%, 1.45%, and 2.42%, respectively. Overall, the
proposed method achieves the highest performance metrics among all the compared
networks.

Results of the WHU building dataset
Figure 9 shows the extraction results for the WHU building dataset. In scene one, when the
building roofs are similar to the surrounding features, Deeplabv3+ and BuildFormer fail to
identify the buildings, resulting in large areas of missed detection. In scene two, the spectral
and shape similarities between the buildings and roads lead to serious false detections or
missed detections by other models, while the proposed method can better identify the

Figure 8 Extraction of Massachusetts building dataset (A) Original image; (B) Ground truth;
(C) Segnet; (D) Deeplabv3+; (E) U-Net; (F) BuildFormer; (G) SDSC-Unet; (H) DSATnet; (I) Ours.
The red indicates missed detections, the blue false positive detection.

Full-size DOI: 10.7717/peerj-cs.2826/fig-8

Xu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2826 14/25

http://dx.doi.org/10.7717/peerj-cs.2826/fig-8
http://dx.doi.org/10.7717/peerj-cs.2826
https://peerj.com/computer-science/


buildings in this scene. In scene three, small buildings are similar to surrounding
containers, causing U-Net to misidentify the containers as buildings, and Segnet,
Deeplabv3+, BuildFormer, and SDSC-Unet all fail to recognize buildings that resemble
containers. In scene four, models such as Segnet and Deeplabv3+ misidentify small patches
of open land as buildings. In all the above scenarios, the proposed method identifies the
subtle differences between buildings and similar objects more effectively, enabling a more
complete extraction of the buildings.

Table 3 presents the quantitative analysis results of the WHU dataset. The overall
performance of the extraction results from the WHU dataset is higher than that of the
Massachusetts dataset, mainly because the remote sensing images in the WHU dataset are
clearer and have less interference from tree shadows. The method proposed in this article
achieved scores of 93.91%, 96.42%, 97.19%, 98.53% and 96.8% for IoU, precision, recall,
accuracy, and F1 score, respectively, outperforming other models across all five

Table 2 Performance evaluation results of Massachusetts building dataset.

Method IoU Precision Recall Acc F1

Segnet 77.78 87.38 85.87 94.19 86.61

Deeplabv3+ 76.66 86.58 85.04 93.84 85.80

U-Net 76.87 86.07 85.84 93.80 85.95

BuildFormer 76.62 86.37 85.18 93.81 85.77

SDSC-Unet 76.49 86.68 84.71 93.83 85.68

DSATnet 77.97 87.67 85.83 94.28 86.74

Ours 79.97 87.72 88.67 94.71 88.19

Note:
Bold values represent the best performance indicators.

Figure 9 Extraction of WHU building dataset (A) Original image; (B) Ground truth; (C) Segnet;
(D) Deeplabv3+; (E) U-Net; (F) BuildFormer; (G) SDSC-Unet; (H) DSATnet; (I) Ours. The red indi-
cates missed detections, the blue false positive detections. Full-size DOI: 10.7717/peerj-cs.2826/fig-9
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performance evaluation metrics. Additionally, when compared to BuildFormer, SDSC-
Unet, U-Net, and DSATnet, the proposed method demonstrates superior performance,
achieving higher IoU by 2.29%, 2.03%,1.18%, and 2.01%, respectively.

Results of the Inria building dataset
Figure 10 shows the results extracted from the Inria building dataset. In scene one and
scene two, some buildings are severely obscured by trees, and other models fail to fully
recognize these buildings. The proposed method effectively perceives the location of
buildings by enhancing positional information and strengthening the details of the
location, thereby identifying the obstructed buildings more accurately. In scene three,
compared with other models, the proposed method has the smallest false detection area
and extracts the building boundaries the most accurately. In scene four, Segnet, U-Net,
SDSC-Unet, and DSATnet show incomplete extraction of large buildings with severe
internal voids. However, Deeplabv3+, BuildFormer, and the proposed method can
effectively alleviate the internal voids, indicating that the multi-scale attention gate module
of this article has a larger receptive field and can extract large buildings more completely.

Table 4 presents the quantitative comparison results for the Inria building dataset.
Compared to the WHU building dataset, the Inria building dataset contains a richer
variety of buildings with more diverse spectral features, which leads to a decrease in overall
extraction results compared to the WHU building dataset. Additionally, the Inria building
dataset has severe tree and shadow occlusions, demanding a higher generalization
capability of the network. As shown in Table 4, the proposed method can still achieve
scores of 84.83%, 89.71%, 93.23%, 96.65%, and 91.43%, for the IoU, precision, recall,
accuracy and F1 score, respectively. The proposed method outperforms BuildFormer,
SDSC-Unet, U-Net, and DSATnet, with IoU improvements of 1.18%, 3.04%, 2.02%, and
5.53%, and F1 score enhancements of 0.8%, 3.04%, 1.21%, and 3.71%, respectively.

We further investigate the relationship between model complexity and computational
efficiency. As summarized in Table 5, our model maintains comparable parameter counts
to DSATnet and Builder while requiring less memory space than both Deeplabv3+ and
DSATnet. Although the proposed model exhibits relatively lower FPS (Frames Per Second)
and longer processing time per sample, this trade-off is strategically designed to achieve an

Table 3 Performance evaluation results of WHU building dataset.

Method IoU Precision Recall Acc F1

Segnet 92.65 96.55 95.67 98.24 96.11

Deeplabv3+ 89.73 94.51 94.34 97.46 94.42

U-Net 92.73 95.72 96.59 98.22 96.15

BuildFormer 91.62 95.10 95.96 97.93 95.53

SDSC-Unet 91.88 95.83 95.54 98.03 96.08

DSATnet 91.90 96.09 95.29 98.04 95.68

Ours 93.91 96.42 97.19 98.53 96.80

Note:
Bold values represent the best performance indicators.
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Figure 10 Extraction of Inria building dataset (A) Original image; (B) Ground truth; (C) Segnet;
(D) Deeplabv3+; (E) U-Net; (F) BuildFormer; (G) SDSC-Unet; (H) DSATnet; (I) Ours. The red
indicates missed detections, the blue false positive detections.

Full-size DOI: 10.7717/peerj-cs.2826/fig-10

Table 4 Performance evaluation results of Inria building dataset.

Method IoU Precision Recall Acc F1

Segnet 83.95 90.25 91.35 96.54 90.79

Deeplabv3+ 79.57 86.06 89.82 95.24 87.89

U-Net 82.80 87.56 93.05 96.04 90.22

BuildFormer 83.64 89.22 92.10 96.38 90.63

SDSC-Unet 80.43 88.16 88.64 95.67 88.39

DSATnet 79.29 85.79 89.73 95.15 87.72

Ours 84.82 89.71 93.23 96.65 91.43

Note:
Bold values represent the best performance indicators.

Table 5 Comparison chart of parameter quantity and time efficiency.

Method Paramete (M) Fps Inference tim (ms)

Segnet 29.44 37.33 26.79

Deeplabv3+ 54.71 42.48 23.54

U-Net 34.53 25.49 39.24

BuildFormer 40.52 49.04 20.39

SDSC-Unet 21.32 24.33 41.11

DSATnet 48.37 33.91 29.49

Ours 45.36 10.56 94.72
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optimal balance among accuracy, robustness, and generalization capability. It is worth
noting that while models with higher FPS demonstrate faster inference speeds, they
typically compromise either accuracy or performance, particularly in complex scenarios.

ABLATION STUDY
To validate the effectiveness of the proposed method, ablation comparison experiments
were conducted on the Massachusetts dataset under the same computer software,
hardware, and parameter settings as described. The experiments compared the extraction
effects of the basic model without any mechanism (U-Net), the model with Enhanced
Positional Information (EPI), the model with Multi-Scale Attention Gate (MSAG), and the
full method proposed in this article (U-Net +MSAG + EPI). The results of the experiments
are shown in Fig. 11. The quantitative results of the ablation study are presented in Table 6.

As shown in Fig. 11, in scene one, the small-area square buildings and slender buildings
within the yellow box are located around the large-scale buildings. The U-Net cannot
recognize either type of building within the box. The U-Net+MSAG can recognize the
small-area square buildings but cannot recognize the other slender buildings. The U-Net
+EPI model, on the other hand, can recognize the slender buildings but cannot recognize
the small-area square buildings. The proposed method can accurately extract both types of
buildings. In scene two, the buildings within the yellow box are interfered with by trees,
shadows, vehicles, and other disturbances. U-Net shows significant adhesion issues in the
extracted buildings, while U-Net+EPI fails to suppress the afore-mentioned noise, leading
to an increase in the false detection rate. U-Net+MSAG, with its gating units for
adjustment, can effectively reduce interference and significantly decrease the area of false
detections, but the details of the extracted building edges remain incomplete. The proposed
method can effectively suppress noise interference and completely extract the edge details
of the buildings, resulting in more complete building extractions. In scene three, the two
buildings within the yellow box are elongated and narrow, with spectral features similar to
the background of the image. As a result, they cannot be fully recognized by the U-Net,
U-Net+MASG, and U-Net+EPI models. The method of this article fully leverages the
advantages of both mechanisms and can accurately identify the two buildings that the
other three methods fail to recognize.

From the quantitative comparison results in Table 6, it can be seen that U-Net+GASM
shows a more significant improvement in recall compared to U-Net, which is attributed to
its ability to capture buildings at multiple scales, thereby increasing recall. U-Net+EPI
exhibits a more notable enhancement in IoU, which is due to the model’s capacity to learn
more positional information and spatial features, resulting in a higher degree of overlap
with the ground truth. The proposed method combines the advantages of the two
afore-mentioned approaches, demonstrating better overall performance. Compared to
U-Net, the five performance metrics are improved by 3.1%, 1.65%, 2.83%, 0.91% and
2.24%, respectively.

To verify the impact of each module on all layers of the network, the ablation study was
improved by increasing the parameters of all layers. As shown in Table 7, the MSAG and
EPI modules are gradually added between different layers. In groups 2-5, the performance
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Figure 11 Results of ablation experiment extraction. The red areas indicate missed detections, while
the blue areas represent false positive detections. Full-size DOI: 10.7717/peerj-cs.2826/fig-11

Table 6 Performance evaluation results of ablation experiments.

Method IoU Precision Recall Acc F1

U-Net 76.87 86.07 85.84 93.80 85.95

U-Net+MSAG 79.34 87.10 88.43 94.48 87.75

U-Net+ EPI 79.61 87.41 88.30 94.58 87.85

Ours 79.97 87.72 88.67 94.71 88.19

Note:
Bold values represent the best performance indicators.

Table 7 Table of ablation studies with different layer parameters.

Group Different layers Module Evaluation

Layer1 Layer2 Layer3 Layer4 MSAG EPI Iou Precision Recall Acc F1

1 76.87 86.07 85.84 93.80 85.95

2 √ √ 76.96 87.03 85.05 93.97 86.02

3 √ √ √ 77.56 87.57 85.40 94.17 86.47

4 √ √ √ √ 78.06 87.62 86.05 94.29 86.82

5 √ √ √ √ √ 79.34 87.10 88.43 94.48 87.75

6 √ √ 75.05 87.07 82.44 93.58 84.69

7 √ √ √ 79.35 87.67 87.81 94.56 87.73

8 √ √ √ √ 79.61 87.41 88.30 94.58 87.85
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of the model gradually improves as the MSAG module is incrementally added to the base
architecture. Compared with Group1, Group 5 demonstrates significant improvements,
with the IoU, recall, and F1 scores increasing by 2.47%, 2.59%, and 1.8%, respectively.
Group 6 only adds the EPI module in a single level, with only precision higher than U-Net
at 87.07%, indicating that the EPI module improves the discriminative power of positive
samples, but its IoU decreased by 1.82% and recall decreased by 2.61%, indicating that the
model retains more details while being affected by some noise interference. In Group 7, the
addition of EPI modules to Layer 2 and Layer 3 leads to a notable enhancement in
performance compared to Group 6, with the IoU, Recall, and F1 Score reaching 79.35%,
87.81%, and 87.73%, respectively. Further extending this configuration, Group 8
incorporates EPI modules into Layer 2, Layer 3, and Layer 4, achieving even higher
performance metrics, with IoU, recall, and F1 scores of 79.61%, 88.47%, and 87.93%,
respectively. The results indicate that the EPI modules collaborate with each other at every
layer of the network, and adding only EPI modules in a single layer cannot fully utilize the
functions of the modules. It is necessary to add EPI modules in more layers to better
enhance the feature extraction ability of the model.

To validate the effectiveness of the multi-scale attention gate module in enhancing the
model’s receptive field, we performed ablation studies using images from three datasets.
The resulting heatmaps are presented in Fig. 12, where panels (a), (b), and (c) display
samples from the Massachusetts, WHU, and Inria datasets, respectively. The “Encoding
stage” represents the heatmap output by the U-Net during the downsampling encoder
stage, “MSAG” refers to the attention-enhanced encoding layer outputs. It can be observed
that integrating the attention mechanism increases global information weights in heat
maps. Unlike standard downsampling U-net convolutions limited to local information
extraction, our multi-scale attention gate has a larger receptive field, which can effectively
establish global dependencies and have better perception for multi-scale structures.

DISCUSSION
By comparing with mainstream network models, the proposed method demonstrates
higher accuracy and stability, reflecting the superiority of the approach. The introduced
multi-scale attention gate module effectively expands the receptive field, thereby enabling a
more comprehensive extraction of multi-scale features from the image. The added
positional information enhancement module reduces the loss of multi-scale information in
the traditional upsampling method during the decoding process. Meanwhile, during the
fusion of high and low-level features, it effectively captures the positional information of
buildings, further strengthening the positional information of the features. Combining the
relative advantages of these two modules, the proposed method can significantly improve
the extraction capability of multi-scale buildings. Especially when processing remote
sensing images with complex backgrounds, the improvements of the proposed method
optimize the details such as building boundaries and corners, allowing for more accurate
localization and extraction of building shapes and edges.
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CONCLUSION
To address issues such as edge blurring, incomplete structure, and loss of detail in building
extraction with traditional U-shaped networks, this article proposes a novel method
integrating multi-scale attention gates and enhanced positional information. The method
is validated on three public datasets (Massachusetts, WHU, and Inria) and compared with
six state-of-the-art approaches. Experimental results demonstrate that the proposed
method effectively integrates multi-scale features, achieving superior accuracy and
preserving more complete building edges and details. Ablation experiments are conducted
to analyze module performance, revealing that the proposed modules significantly
improve localization accuracy and edge information extraction by leveraging
comprehensive multi-scale feature integration. The proposed method demonstrates
excellent performance across multiple datasets, exhibiting strong generalization
capabilities and practical applicability under diverse geographical conditions. It provides
reliable technical support for digital urban planning, urban expansion analysis, and map
production by effectively handling building extraction in complex scenarios. However, the
proposed method involves a large number of parameters, which leaves room for further
optimization in terms of computational efficiency. Furthermore, while validated on public
datasets, its generalizability to real-world engineering scenarios requires further
verification. Future work will explore multi-source data fusion strategies (e.g., light
detection and ranging (LiDAR) point clouds, infrared bands, and OpenStreetMap vector

Figure 12 Heat map comparison. Full-size DOI: 10.7717/peerj-cs.2826/fig-12
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data) to establish cross-modal feature complementation mechanisms, thereby enhancing
segmentation robustness in building-background ambiguous regions. Additionally, future
work will carry out lightweight design, such as using depthwise separable convolutions, to
achieve deployment on mobile devices and real-time systems, meeting practical
application needs.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Scientific Research Startup Foundation of Fujian
University of Technology (No. GY-Z24009) and the Open Project of Fujian Key
Laboratory of Spatial Information Perception and Intelligent Processing (Yango
University, No. FKLSIPIP1020). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Scientific Research Startup Foundation of Fujian University of Technology: GY-Z24009.
Open Project of Fujian Key Laboratory of Spatial Information Perception and Intelligent
Processing (Yango University): FKLSIPIP1020.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Rui Xu conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

. Renzhong Mao conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Zhenxing Zhuang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.

. Fenghua Huang analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

. Yihui Yang analyzed the data, prepared figures and/or tables, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The raw data is available at Building Image Dataset and Zenodo:
- https://pan.fjut.edu.cn/s/JkNXYFs686QpsaT

Xu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2826 22/25

https://pan.fjut.edu.cn/s/JkNXYFs686QpsaT
http://dx.doi.org/10.7717/peerj-cs.2826
https://peerj.com/computer-science/


- mao, . renzhong. (2025). Inria, WHU, Massachesetts Building Dataset [Data set].
Zenodo. https://doi.org/10.5281/zenodo.15089910.

Third-party datasets:
- https://www.cs.toronto.edu/%7Evmnih/data/
- http://gpcv.whu.edu.cn/data/building_dataset.html
- https://project.inria.fr/aerialimagelabeling/
The code is available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2826#supplemental-information.

REFERENCES
Abdollahi A, Pradhan B, Alamri AM. 2022. An ensemble architecture of deep convolutional

Segnet and Unet networks for building semantic segmentation from high-resolution aerial
images. Geocarto International 37(12):3355–3370 DOI 10.1080/10106049.2020.1856199.

Badrinarayanan V, Kendall A, Cipolla R. 2017. SegNet: a deep convolutional encoder-decoder
architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 39(12):2481–2495 DOI 10.1109/TPAMI.2016.2644615.

Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2018. DeepLab: semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE
Transactions on Pattern Analysis and Machine Intelligence 40(4):834–848
DOI 10.1109/TPAMI.2017.2699184.

Chen S, Wang H, Shen Z, Zhang G, Ning C, Zhang X. 2024. A feature enhancement and
augmentation-based infrared small target detection network. IEEE Geoscience and Remote
Sensing Letters 21:1–5 DOI 10.1109/lgrs.2024.3432629.

Chen M, Wu J, Liu L, Zhao W, Tian F, Shen Q, Zhao B, Du R. 2021. DR-Net: an improved
network for building extraction from high resolution remote sensing image. Remote Sensing
13(2):294 DOI 10.3390/rs13020294.

Dong X, Qin Y, Fu R, Gao Y, Liu S, Ye Y. 2022. Remote sensing object detection based on gated
context-aware module. IEEE Geoscience and Remote Sensing Letters 19:1–5
DOI 10.1109/LGRS.2022.3223069.

Fan R, Li F, HanW, Yan J, Li J, Wang L. 2022. Fine-scale urban informal settlements mapping by
fusing remote sensing images and building data via a transformer-based multimodal fusion
network. IEEE Transactions on Geoscience and Remote Sensing 60:1–16
DOI 10.1109/TGRS.2022.3204345.

He D, Shi Q, Liu X, Zhong Y, Zhang L. 2022. Generating 2m fine-scale urban tree cover product
over 34 metropolises in China based on deep context-aware sub-pixel mapping network.
International Journal of Applied Earth Observation and Geoinformation 106(6):102667
DOI 10.1016/j.jag.2021.102667.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 770–778.

Hu J, Shen L, Sun G. 2018. Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. Piscataway: IEEE, 7132–7141.

Huang S, Dong K, Chen H, Yao W, Li B, Cheng L. 2024. Semantic segmentation of ultra-high-
resolution remote sensing images based on global-local branch asynchronous feature interaction

Xu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2826 23/25

https://doi.org/10.5281/zenodo.15089910
https://www.cs.toronto.edu/%7Evmnih/data/
http://gpcv.whu.edu.cn/data/building_dataset.html
https://project.inria.fr/aerialimagelabeling/
http://dx.doi.org/10.7717/peerj-cs.2826#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2826#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2826#supplemental-information
http://dx.doi.org/10.1080/10106049.2020.1856199
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.1109/lgrs.2024.3432629
http://dx.doi.org/10.3390/rs13020294
http://dx.doi.org/10.1109/LGRS.2022.3223069
http://dx.doi.org/10.1109/TGRS.2022.3204345
http://dx.doi.org/10.1016/j.jag.2021.102667
http://dx.doi.org/10.7717/peerj-cs.2826
https://peerj.com/computer-science/


structure. In: 2024 39th Youth Academic Annual Conference of Chinese Association of
Automation (YAC). Piscataway: IEEE, 659–663.

Jin Y, Xu W, Zhang C, Luo X, Jia H. 2021. Boundary-aware refined network for automatic
building extraction in very high-resolution urban aerial images. Remote Sensing 13(4):629
DOI 10.3390/rs13040692.

Li E, Femiani J, Xu S, Zhang X, Wonka P. 2015. Robust rooftop extraction from visible band
images using higher order CRF. IEEE Transactions on Geoscience and Remote Sensing
53(8):4483–4495 DOI 10.1109/TGRS.2015.2400462.

Li B, Sun K, Lang Y, Guan L, Lu F, Zhu Y. 2022. Application of CSGE-PSPnet remote sensing
image semantic segmentation technology in transmission and transformation engineering
design. In: 2022 Asian Conference on Frontiers of Power and Energy (ACFPE). Piscataway: IEEE,
85–89.

Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B. 2021. Swin transformer: hierarchical
vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on
Computer Vision (ICCV). Piscataway: IEEE, 9992–10002.

Long J, Shelhamer E, Darrell T. 2015. Fully convolutional networks for semantic segmentation. In:
Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition. Piscataway:
IEEE, 3431–3440.

Lu T, Ming D, Lin X, Hong Z, Bai X, Fang J. 2018. Detecting building edges from high spatial
resolution remote sensing imagery using richer convolution features network. Remote Sensing
10(9):1496 DOI 10.3390/rs10091496.

Müller S, Zaum DW. 2005. Robust building detection in aerial images. International Archives of
Photogrammetry and Remote Sensing 36(B2/W24):143–148.

Nguyen TT, Nguyen TP. 2023. Assembling extra features with grouped pointwise convolutions for
mobileNets. In: 2023 International Conference on Digital Image Computing: Techniques and
Applications (DICTA). Piscataway: IEEE, 265–272.

Peng L, Chen D-Y, Li W-C, Wang Y-D. 2021. Building extraction and number statistics in WUI
areas based on UNet structure and ensemble learning. Remote Sensing 13(6):1172
DOI 10.3390/rs13061172.

Pu Q, Xi Z, Yin S, Zhao Z, Zhao L. 2024. Advantages of transformer and its application for
medical image segmentation: a survey. BioMedical Engineering OnLine 23(1):14
DOI 10.1186/s12938-024-01212-4.

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. 2018. Mobilenetv2: inverted residuals
and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 4510–4520.

Shao Z, Tang P, Wang Z, Saleem N, Yam S, Sommai C. 2020. BRRNet: a fully convolutional
neural network for automatic building extraction from high-resolution remote sensing images.
Remote Sensing 12(6):1050 DOI 10.3390/rs12061050.

Shi Y, Wang J, Wang J, Qu Y. 2016. A prior knowledge-based method to derivate high-resolution
leaf area index maps with limited field measurements. Remote Sensing 9(1):13
DOI 10.3390/rs9010013.

Vo QT, Oppelt N, Leinenkugel P, Kuenzer C. 2013. Remote sensing in mapping mangrove
ecosystems—an object-based approach. Remote Sensing 5(1):183–201 DOI 10.3390/rs5010183.

Wan Z, Zhang R, Zhang Q, Zhang G. 2023. DSAT-Net: dual spatial attention transformer for
building extraction from aerial images. IEEE Geoscience and Remote Sensing Letters 20:1–5
DOI 10.1109/LGRS.2023.3304377.

Xu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2826 24/25

http://dx.doi.org/10.3390/rs13040692
http://dx.doi.org/10.1109/TGRS.2015.2400462
http://dx.doi.org/10.3390/rs10091496
http://dx.doi.org/10.3390/rs13061172
http://dx.doi.org/10.1186/s12938-024-01212-4
http://dx.doi.org/10.3390/rs12061050
http://dx.doi.org/10.3390/rs9010013
http://dx.doi.org/10.3390/rs5010183
http://dx.doi.org/10.1109/LGRS.2023.3304377
http://dx.doi.org/10.7717/peerj-cs.2826
https://peerj.com/computer-science/


Wang L, Fang S, Meng X, Li R. 2022. Building extraction with vision transformer. IEEE
Transactions on Geoscience and Remote Sensing 60:1–11 DOI 10.1109/TGRS.2022.3186634.

Weng L, Xu Y, Xia M, Zhang Y, Liu J, Xu Y. 2020.Water areas segmentation from remote sensing
images using a separable residual segnet network. ISPRS International Journal of Geo-
Information 9(4):256 DOI 10.3390/ijgi9040256.

Woo S, Park J, Lee J-Y, Kweon IS. 2018. CBAM: convolutional block attention module. In:
Proceedings of the European Conference on Computer Vision (ECCV), 3–19.

Wu J, Wu C, Lin Y, Yoshinaga T, Zhong L, Chen X, Ji Y. 2024. Semantic segmentation-based
semantic communication system for image transmission. Digital Communications and Networks
10(3):519–527 DOI 10.1016/j.dcan.2023.02.006.

Xu X, Zhang H, Ran Y, Tan Z. 2023. High-precision segmentation of buildings with small sample
sizes based on transfer learning and multi-scale fusion. Remote Sensing 15(9):2436
DOI 10.3390/rs15092436.

Yang M, Yu K, Zhang C, Li Z, Yang K. 2018. DenseASPP for semantic segmentation in street
scenes. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:
IEEE, 3684–3692.

Yu W, Liu B, Liu H, Gou G. 2023. Recurrent residual deformable conv unit and multi-head with
channel self-attention based on U-Net for building extraction from remote sensing images.
Remote Sensing 15(20):5048 DOI 10.3390/rs15205048.

Zhang R, Zhang Q, Zhang G. 2023. SDSC-UNet: dual skip connection ViT-Based U-shaped
model for building extraction. IEEE Geoscience and Remote Sensing Letters 20:1–5
DOI 10.1109/LGRS.2023.3270303.

Zhao H, Shi J, Qi X, Wang X, Jia J. 2017. Pyramid scene parsing network. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2881–2890.

Zheng J. 2024. ConvNeXt-Mask2Former: a semantic segmentation model for land classification in
remote sensing images. In: 2024 5th International Conference on Computer Vision, Image and
Deep Learning (CVIDL). Piscataway: IEEE, 676–682.

Xu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2826 25/25

http://dx.doi.org/10.1109/TGRS.2022.3186634
http://dx.doi.org/10.3390/ijgi9040256
http://dx.doi.org/10.1016/j.dcan.2023.02.006
http://dx.doi.org/10.3390/rs15092436
http://dx.doi.org/10.3390/rs15205048
http://dx.doi.org/10.1109/LGRS.2023.3270303
http://dx.doi.org/10.7717/peerj-cs.2826
https://peerj.com/computer-science/

	Building extraction from remote sensing images based on multi-scale attention gate and enhanced positional information
	Introduction
	Method
	Experiment
	Dataset
	Result
	Ablation study
	Discussion
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


