
Comparative evaluation of approaches &
tools for effective security testing of Web
applications
Sana Qadir1, Eman Waheed1, Aisha Khanum1 and Seema Jehan2

1 Faculty of Computing, National University of Sciences & Technology, Islamabad, Pakistan
2 Department of Computer Science, University of York, York, United Kingdom

ABSTRACT
It is generally accepted that adopting both static application security testing (SAST)
and dynamic application security testing (DAST) approaches is vital for thorough
and effective security testing. However, this suggestion has not been comprehensively
evaluated, especially with regard to the individual risk categories mentioned in Open
Web Application Security Project (OWASP) Top 10:2021 and common weakness
enumeration (CWE) Top 25:2023 lists. Also, it is rare to find any evidence-based
recommendations for effective tools for detecting vulnerabilities from a specific risk
category or severity level. These shortcomings increase both the time and cost of
systematic security testing when its need is heightened by increasingly frequent and
preventable incidents. This study aims to fill these gaps by empirically testing
seventy-five real-world Web applications using four SAST and five DAST tools. Only
popular, free, and open-source tools were selected and each Web application was
scanned using these nine tools. From the report generated by these tools, we
considered two parameters to measure effectiveness: count and severity of the
vulnerability found. We also mapped the vulnerabilities to OWASP Top 10:2021 and
CWE Top 25:2023 lists. Our results show that using only DAST tools is the preferred
option for four OWASP Top 10:2021 risk categories while using only SAST tools is
preferred for only three risk categories. Either approach is effective for two of the
OWASP Top 10:2021 risk categories. For CWE Top 25:2023 list, all three approaches
were equally effective and found vulnerabilities belonging to three risk categories
each. We also found that none of the tools were able to detect any vulnerability in one
OWASP Top 10:2021 risk category and in eight CWE Top 25:2023 categories. This
highlights a critical limitation of popular tools. The most effective DAST tool was
OWASP Zed Attack Proxy (ZAP), especially for detecting vulnerabilities in broken
access control, insecure design, and security misconfiguration risk categories. Yasca
was the best-performing SAST tool, and outperformed all other tools at finding
high-severity vulnerabilities. For medium-severity and low-severity levels, the DAST
tools Iron Web application Advanced Security testing Platform (WASP) and Vega
performed better than all the other tools. These findings reveal key insights, such as,
the superiority of DAST tools for detecting certain types of vulnerabilities and the
indispensability of SAST tools for detecting high-severity issues (due to detailed static
code analysis). This study also addresses significant limitations in previous research
by testing multiple real-world Web applications across diverse domains (technology,
health, and education), enhancing generalization of the findings. Unlike studies that

How to cite this article Qadir S, Waheed E, Khanum A, Jehan S. 2025. Comparative evaluation of approaches & tools for effective security
testing of Web applications. PeerJ Comput. Sci. 11:e2821 DOI 10.7717/peerj-cs.2821

Submitted 22 July 2024
Accepted 20 March 2025
Published 30 April 2025

Corresponding author
Sana Qadir, sana.qadir@seecs.edu.pk

Academic editor
Maurice ter Beek

Additional Information and
Declarations can be found on
page 39

DOI 10.7717/peerj-cs.2821

Copyright
2025 Qadir et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2821
mailto:sana.�qadir@�seecs.�edu.�pk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2821
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

rely primarily on proprietary tools, our use of open-source SAST and DAST tools
ensures better reproducibility and accessibility for organizations with limited budget.

Subjects Security and Privacy, World Wide Web and Web Science, Software Engineering
Keywords Static application security testing (SAST), Dynamic application security testing (DAST),
Vulnerability assessment, OWASP top 10:2021, CWE top 25:2023, Security testing

INTRODUCTION
Background and motivation
Ensuring the security of software and Web applications is paramount in today’s digital
landscape. There are numerous incidents reported where exploitation of a well-known
vulnerability led to serious consequences. For example, in February 2024, a major data
breach was reported in which over 54 million user profiles were exposed due to a
misconfiguration that resulted in the compromise of sensitive data (Hughes, 2024). In
October 2023, a medical diagnostic company, Redcliffe Labs, faced a 7 TB data breach of
medical records because no password was being used to protect their database (Ford,
2023). According to Verizon’s 2023 Data Breach Investigations Report, Web application
attacks accounting for nearly 40% of data breaches and high-profile incidents, such as the
SolarWinds and Equifax breaches, underscore the need for robust security testing
(Verizon, 2023).

Despite the severity and scale of these incidents, current Web application security
practices remain inadequate primarily due to limited budgets, time constraints, and
insufficient training of development and testing teams (RedEdgeSecurity, 2024). These
constraints often prevent organizations from conducting comprehensive security testing
during development or after release. This is obvious from the observation made by Touseef
et al. (2019) that the most frequently occurring risks are based on injection, cross-site
scripting, and sensitive data exposure and these vulnerabilities are not particularly
challenging to detect. While automated tools and different approaches exist to streamline
the vulnerability assessment process, their effectiveness, scope, and coverage are limited or
poorly understood. This is a significant research gap and the need for empirically
evaluating the effectiveness and efficiency of available web application security testing
approaches was also identified by Aydos et al. (2022). Moreover, it makes sense that the
effectiveness of tools and approaches should be assessed by aligning the findings with
widely-accepted industry frameworks.

The key novelty of this work lies in its multifaceted assessment of automated security
testing tools, which has not been explored comprehensively or with real-world Web
applications in prior studies. Our study categorizes the detected vulnerabilities according
to the latest industry benchmarks, namely the OWASP Top 10: 2021 and CWE Top 25:
2023 list. This is to ensure actionable insights can be obtained for practitioners through the
remediation steps provided by the maintainers of these benchmarks, such as the Web
Security Testing Guide (WSTG) (https://github.com/OWASP/wstg). Furthermore, we
compare the performance of these tools in detecting vulnerabilities, offering critical

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 2/42

https://github.com/OWASP/wstg
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

recommendations that can be used for improving security practices and mitigating risks
early in the development lifecycle. By bridging this gap, our study contributes to a deeper
understanding of security testing approaches and provides a practical framework for
enhancing Web application security.

Evaluating multiple security testing approaches and tools is essential because no single
tool or method can comprehensively detect vulnerabilities across different stages of the
software development lifecycle. Using a static application security testing (SAST) approach
allows for early detection and remediation of a broader range of vulnerabilities within the
development process, minimizing risks before deployment. Essentially, SAST is a
white-box testing method, meaning it requires access to the source code of the application
being tested. On the other hand, dynamic application security testing (DAST) approach is
a black-box testing method, in which a tool has no access to an application’s source code. It
examines an application, while it is running, to find vulnerabilities in the same way an
actual attacker would. This approach is crucial for identifying vulnerabilities in live
applications, where different risks may surface. Together, these two approaches maximize
coverage and strengthen security, underscoring the necessity of multifaceted evaluation.

There are two widely-accepted, community-led initiatives that aim to assist developers
with security testing. The first one, from MITRE Corporation, is called common weakness
enumeration (CWE); it lists hardware and software weaknesses that can become
vulnerabilities (MITRE, 2023). The CWE database is compiled as a result of extensive
research, analysis, and consensus-building among experts in the field (Dimitrov, 2022;
MITRE, 2023). Its top 25 list enumerates vulnerabilities that pose the greatest risk to
software integrity and security. The second initiative is called the Open Web Application
Security Project (OWASP) and it maintains a top 10 list containing the most critical
security risks to Web applications (OWASP, 2021). OWASP top 10 is list a
community-driven compilation that categorizes vulnerabilities according to their severity
and prevalence in Web applications (OWASP, 2021). Together, the latest versions of these
lists (i.e., the OWASP Top 10:2021 and CWE Top 25:2023), serve as a valuable resource for
addressing prevalent Web application security concerns. Tables A1–A3 provide a
description of each risk category and links to the official Web page for each risk category
for more information.

The relevance and impact of the OWASP Top 10:2021 and CWE Top 25:2023 lists are
underscored by their widespread use in multiple research studies, such as Chaleshtari et al.
(2023), Shahid et al. (2022), Li (2020), and Priyawati, Rokhmah & Utomo (2022). However,
these studies primarily focus on individual tools or specific vulnerability categories and
lack a systematic and comparative evaluation of multiple automated tools that utilise SAST
and DAST methodologies. Additionally, none of these works have comprehensively
mapped detected vulnerabilities to both OWASP Top 10:2021 and CWE Top 25:2023
benchmarks. This leaves a critical research gap where no alignment of empirical findings
with widely accepted standards has been made.

Similarly, the prior work by Khanum, Qadir & Jehan (2023) laid an important
foundation by empirically investigating the effectiveness of OWASP ZAP—a single DAST
tool—for detecting OWASP Top 10:2021 vulnerabilities across seventy different Web

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 3/42

http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

applications. While their findings highlighted certain strengths and limitations of OWASP
ZAP, the study relied on a single testing tool and it also did not explore vulnerabilities in
the context of CWE Top 25:2023 list. Furthermore, this work did not provide a
comparative analysis of how multiple tools (both SAST and DAST) perform across diverse
vulnerability categories, limiting its generalizability and practical application in broader
contexts.

This research addresses the gaps and limitations mentioned above and significantly
expands the scope of prior studies by evaluating multiple SAST and DAST tools using a
diverse set of real-world Web applications. Unlike previous works, this study adopts a
dual-mapping methodology that categorizes findings according to both OWASP Top
10:2021 and CWE Top 25:2023 lists, thereby offering a more comprehensive view of
vulnerabilities. This is a novel contribution to the field, as no prior research has
systematically assessed the combined effectiveness of SAST and DAST tools, while aligning
results with these two widely-used lists. We aim to expand the scope of Khanum, Qadir &
Jehan (2023) by using multiple SAST and DAST tools, and assess a diverse set of real-world
target Web applications. Also, we will map the results to OWASP Top 10:2021 and CWE
Top 25:2023 lists. By addressing these gaps, this study will not only improves our
understanding of automated security testing tools but also provides actionable insights for
developers and security practitioners, ultimately enhancing Web application security
practices.

In summary, this work evaluates the effectiveness of SAST and DAST approaches (by
utilising multiple SAST and DAST tools) for finding vulnerabilities in real-world Web
applications that can be mapped to risk categories included in the OWASP Top 10:2021
and CWE Top 25:2023 lists. The main contributions of this work are:

1. Security testing of seventy-five Web applications using nine popular, free, and open
source vulnerability assessment tools and the availability of the results for the
research community.

2. Investigation of DAST and SAST approaches (via multiple tools) for security testing
with respect to finding vulnerabilities that can be mapped to risk categories included
in the OWASP Top 10:2021 and CWE Top 25:2023 lists. Our results show that using
only DAST approach is recommended for detecting four risk categories from OWASP
Top 10:2021 list and three risk categories from CWE Top 25:2023 list. The SAST only
approach is best for three OWASP Top 10:2021 risk categories and three CWE Top
25:2023 risk categories. Both approaches were equally effective for two OWASP Top
10:2021 risk categories and three CWE Top 25:2023 risk categories. Our results also
identify OWASP ZAP as the performing DAST tool and Yasca as the best performing
SAST tool.

3. A detailed validation of the suitability of OWASP ZAP tool for detection of OWASP
Top 10:2021 vulnerabilities. Our research shows that OWASP ZAP performs
consistently well and is particularly suited to finding vulnerabilities that belong to
A01:2021 Broken Access Control and A05:2021 Security Misconfiguration risk categories.

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 4/42

http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

RELATED WORK
Multiple studies have assessed the security of existing government or university Web sites
using OWASP Top 10:2017 list or the OWASP ZAP tools. Examples range from countries
such as Indonesia (Helmiawan et al., 2020), Libya (Murah & Ali, 2018), Türkiye (Akgul,
2016), Pakistan (Ghazanfar et al., 2021), and Nigeria (Idris et al., 2017). These studies
compared the security of live Web sites, based on the count and severity of the
vulnerabilities discovered. This is the established method for DAST or post-release security
testing.

Shahid et al. (2022) compared the effectiveness of eleven commercial and open-source
DAST tools (Acunetix, Nessus, Netsparker, Appscan, HP WebInspect, OWASP ZAP,
Wapiti, Arachni, Nikto, Burp Suite, and W3af) for Web application security testing. They
compared the precision (true positive and false positive rates) for detecting Cross-Site
Scripting (XSS) and Structured Query Language injection (SQLi) vulnerabilities and found
that the commercial tool Acunetix and the open-source tool OWASP ZAP both achieved
100% precision. These tests were carried out using the well-known Damn Vulnerable Web
Application (DVWA), meaning that it is not possible to extrapolate their findings to
real-world Web applications.

In Lachkov, Tawalbeh & Bhatt (2022), a testbed environment was used to assess the
effectiveness of two DAST tools, Nessus and OpenVAS. The objective of this study was to
enhance a company’s security posture by securing its network, firewall, servers, clients, and
applications. Their findings demonstrated the importance of DAST tools for post-release
security testing. Likewise, Kunda & Alsmadi (2022) used five open-source DAST tools
(OWASP ZAP, SoapUI, Jok3r, SQLMap, and Nikto) to test the security of their
custom-built transportation Web application. Although their findings are beneficial, the
fact that they used only one target Web application means that it is not possible to
generalise the effectiveness of these tools to other Web applications.

In contrast to the DAST approach, the number of recent studies that use only SAST
tools is very limited. Croft et al. (2021) utilised the SAST approach and the Software
Vulnerability Prediction (SVP) method for identifying vulnerabilities in C/C++
open-source projects. They compared three SAST tools, namely Flawfinder, Cppcheck,
and RATS with a SVP model. They found that SAST tools have a high false positive
rate, are best for supporting manual inspection, and recommended for a reduced
code range.

Li (2020) is one of the few studies to use the SAST approach and to map identified
vulnerabilities to OWASP Top 10:2017 and CWE Top 25:2019 lists. The researchers
scanned the source code of a malware detection mobile app using the commercial tool
Checkmarx. They also remediated the identified vulnerabilities using the
recommendations from Checkmarx. This scanning and remediation process was repeated
three times and eventually terminated when only one low severity vulnerability remained.
Although this study demonstrated the effectiveness of Checkmarx, it should be noted that
Checkmarx is a commercial tool and the use of only one target application makes it hard to
generalise the findings.

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 5/42

http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

It is because of these shortcomings (in utilising only SAST or only DAST approach) that
more recent studies examine multiple tools that implement different approaches. For
example, Cruz, Almeida & Oliveira, 2023 compared SAST, DAST, and SCA (Software
Composition Analysis) approaches for application security using multiple SAST tools
(including ESLint, Semgrep, Bandit, Codacy, Deepsource, Flake8, Horusec, Prospector,
Radon, and SonarQube) and multiple DAST tools (such as OWASP ZAP, Nikto, Arachni,
Beef, Detectify, Golismero, Invicti, Nogotifail, Stackhawk, Vega, Wapiti, and Wfuzz). The
comparison was carried out in terms of the programming languages supported, budget
requirements, ease of setup, and format of generated report. Based on their findings, the
authors recommended OWASP ZAP and Bandit as the best tools. However, they did not
specify the vulnerabilities found, their impact, or the target Web applications.

Tudela et al. (2020) explored three security testing techniques for Web applications:
Interactive Application Security Testing (IAST), SAST, and DAST. They use Contrast and
CxIAST tools for IAST, Fortify and FindSecurityBugs tools for SAST, and OWASP ZAP
and Arachni for DAST. These tools, a mix of open-source and commercial, were evaluated
based on the OWASP Top 10 List using seven metrics (including precision and true
positive detection rate). The researchers concluded that IAST tools achieved the best
results when combined with DAST tools. One important limitation of this study is that it
relied on 320 test cases from the exploitable OWASP Benchmark (https://github.com/
OWASP-Benchmark) project instead of real-world Web applications.

Setiawan, Erlangga & Baskoro (2020) employed the IAST, SAST, and DAST approaches
for analyzing vulnerabilities in Government X’s Web sites based on the OWASP Top
10:2017 list using tools like Jenkins, OWASP ZAP, and SonarQube. They identified 81
high-risk vulnerabilities detected using SAST methodology, 94 using IAST methodology,
and 13 using DAST approach. Although these results are very informative, the use of Web
applications from only one domain is a significant limitation.

In a systematic review, Alazmi & De Leon (2022) evaluated 12 out of 30 most popular
Web application scanners, in terms of their detection rates and accuracy. The efficacy for
detecting OWASP Top 10 vulnerability types was compared for each tool. Their findings
showed that SQLi and XSS vulnerability types were the most common and that the other
types of vulnerabilities were rarely tested. Also, they reported that Burp Suite Pro exhibits
superior performance for detecting XSS vulnerabilities with a detection rate of 88.9% while
OWASP ZAP achieved detection rate of only 80%. These findings are a source of
motivation for selecting multiple tools that use different approaches and also for validating
the finding of each tool across a wide range of Web applications. The focus on a limited
number of OWASP Top 10 vulnerabilities can also be noted in Priyawati, Rokhmah &
Utomo (2022). These researchers used OWASP ZAP to identify a total of 12 vulnerabilities
that belonged to only four OWASP Top 10 risk categories (A01:2021 Broken Access
Control, A03:2021 Injection, A05:2021 Security Misconfiguration, and A08:2021 Software
and Data Integrity Failures).

Table 1 represents a summary of the important studies discussed in this section. It can
be easily observed that using multiple real-world Web applications as targets is rare. We
address this limitation by using multiple real-world Web applications (from diverse

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 6/42

https://github.com/OWASP-Benchmark
https://github.com/OWASP-Benchmark
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

domains) in order to enhance the generalizability of our results. Also, unlike studies that
relied primarily on proprietary tools, we use open-source SAST and DAST tools to
improve reproducibility and accessibility for organizations with limited budgets.
Additionally, we map the detected vulnerabilities to the latest versions of both the OWASP
Top 10:2021 and CWE Top 25:2023 risk categories, which is entirely omitted in earlier
studies. The importance of SAST tools should not be underestimated as they are vital for a
‘shift left’ in the development process where vulnerabilities are found early in the life
cycle when they are less costly to mediate (Dawoud et al., 2024). These tools can also be
used to promote the adoption of Secure Software Development Life Cycle (S-SDLC) and
facilitate use of automated testing via continuous integration and deployment (CI/CD)
pipelines.

METHODS
Research questions
The overall objective is to gauge the effectiveness of various Web application security
testing approaches and tools in terms of finding OWASP Top 10 and CWE Top 25
vulnerabilities in real-worldWeb applications. This objective can be achieved by answering
the following four research questions:

. RQ1: Which approach, SAST or DAST, is more effective for assessing Web application
security (in terms of finding OWASP Top 10:2021 vulnerabilities and CWE Top 25:2023
vulnerabilities)?

Table 1 Comparison of related work.

Source Approach Tools Mapping to OWASP or
CWE list

Target web app.

Tudela et al. (2020) SAST FindSecurityBugs, Fortify95 OWASP Top 10:2017 OWASP
Benchmark
project

DAST Arachni, OWASP ZAP

IAST CxIAST

Setiawan, Erlangga &
Baskoro (2020)

SAST SonarQube OWASP Top 10:2017 Government X
Web sites

DAST API ZAP

IAST Jenkins

Li (2020) SAST Checkmarx OWASP Top 10:2017 &
CWE Top 25:2019

Mobile malware
detection app

Cruz, Almeida &
Oliveira (2023)

SAST Bandit, Codacy, Deepsource, ESLint, Flake8, Horusec, Prospector,
Pylint, Radon, Semgrep, SonarQube

OWASP Top 10:2021 Not mentioned

DAST Arachni, Beef, Dtectify, Golismero, Invicti, Nikto, Nogotifail,
OWASP ZAP, Stackhawk, Vega, Wapiti, Wfuzz

SCA Back Duck, FOSSA, Npm audit, OWASP D.C, Safety,
SourceClear, Steady, Yarn Audit

Khanum, Qadir &
Jehan (2023)

DAST OWASP ZAP OWASP Top 10:2021 70 Web apps

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 7/42

http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

. RQ2: Which tool is most effective at assessing Web application security (in terms of
finding OWASP Top 10:2021 vulnerabilities and CWE Top 25:2023 vulnerabilities)?

. RQ3: Which tool is most effective at finding high-severity, medium-severity, and
low-severity vulnerabilities in Web applications?

. RQ4: Is OWASP ZAP consistently effective in finding vulnerabilities when used to test a
large set of real-world Web applications from different domains?

METHODOLOGY
Figure 1 presents an outline of steps used in this research. Phase-I, conducted earlier by
Khanum, Qadir & Jehan (2023) focused on finding OWASP Top 10:2021 vulnerabilities in
Web applications using the OWASP ZAP tool. Phase-II, which is carried out in this work,
aims to find OWASP Top 10:2021 vulnerabilities and CWE Top 25:2023 weaknesses using
multiple SAST and DAST tools. Although using multiple tools is generally the
recommended approach for vulnerability assessment, the aim is to determine which tool is
most suitable for finding which type of vulnerability. This would ensure that tool selection
is effective.

Overall, Phase II consists of seven main steps. At the end of these steps, each research
question is addressed.

Steps 1, 2, and 3 were applied across all research questions (RQ1, RQ2, and RQ3).
Initially, 75 target web applications from three popular domains were selected (Step 1).
A set of static application security testing (SAST) tools and dynamic application security
testing (DAST) tools were chosen (Step 2), and each web application was deployed locally
(Step 3). Each tool was used to scan the web applications (Step 4), generating and saving
detailed reports (Step 5). The findings from these reports were then categorized based on
the identified vulnerabilities, following the OWASP Top 10: 2021 and CWE Top 25: 2023
standards (Step 6). For RQ4, the categorized data from Step 6 were further analysed in Step
7, where the findings were tabulated to address the all of the four research questions.

This systematic process ensured a clear understanding of vulnerabilities and their
classifications to effectively address the research questions. It provides a more
comprehensive security evaluation hence validating results from our semi-automated
workflow. The details of each step in Phase-II is described below:

1. Select 4 SAST and 5 DAST Tools-A total of nine (9) security tools were selected as
follows:

○ SAST tools: Yasca, Progpilot, Snyk, and SonarQube.

○ DAST tools: OWASP ZAP, Wapiti, Vega, Iron WASP, and Burp Suite.

The tools listed above were selected based on their effectiveness, ease of use, and ability to
identify vulnerabilities. Tools that were not free (e.g., Acunetix, Netsparker) or restricted to
finding only one type of vulnerability (e.g., SQLi, XSSFuzz) were excluded from this
research. Table 2 provides a detailed comparison of the selected tools, including features

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 8/42

http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

such as the ability to automatically generate a report containing all the findings (see
‘Report’ column) at the end of a scan. Another useful feature is ‘Est. Time’. It represents an
estimate of the time taken by the tool to scan a single Web application. For SAST tools, the
supported languages are listed in the final column.

Figure 1 Methodology. Full-size DOI: 10.7717/peerj-cs.2821/fig-1

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 9/42

http://dx.doi.org/10.7717/peerj-cs.2821/fig-1
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

Vega, Wapati, OWASP ZAP, and Iron WASP are tools recommended by Altulaihan,
Alismail & Frikha, 2023. Also, Albahar, Alansari & Jurcut, 2022 recommended Burp Suite
and OWASP ZAP as the best DAST tools for detecting Web application vulnerabilities.
These two tools were identified as the most popular tools by Aydos et al. (2022).
Additionally, Amankwah et al. (2022) showed that Yasca had a high precision rate between
83% and 90.7% for detecting security bugs in Java. In terms of supporting developers’
workflow, Snyk reports are very informative and the tool integrates well with GitHub
(i.e., new vulnerabilities introduced through pull requests are automatically checked)
(Anupam et al., 2020). SonarQube, provides excellent automation and generates
suggestions for handling vendor branches (Andrade, 2019). Lastly, Progpilot is a popular
tool endorsed by the OWASP community for detecting vulnerabilities in PHP code
(OWASP, 2024).

2. Select 75 target web apps from three popular domains-A total of seventy-five (75)
Web apps from three key domains were selected using convenient sampling. Also,
only those Web apps whose source code was available were used. This is a requirement
for static analysis. The domains and the number of Web apps selected is as follows:

○ Seven Web apps from healthcare domain

○ 11 Web apps from education domain

○ 57 Web apps from technology domain

These domains were chosen due to their increased vulnerability to cyberattacks, as
highlighted in a 2023 report (WEF, 2023). To ensure transparency, the names and links of
some of these Web apps is provided in Tables A4–A6 (in Appendix A). A complete list is
available on GitHub (https://github.com/devNowRO/WebAppSecurity/blob/main/Web
apps sources.xlsx).

Table 2 Important characteristics of selected tools.

No. Tool Approach Interface Report Est. time Language

1 Yasca SAST CLI Yes 5 min PHP, Java, C/C++,

Python, JS, Perl, NET

2 Progpilot SAST CLI No 15 min PHP

3 Snyk SAST CLI No 10 min PHP, Java, Golang,

Python, JS, Swift, NET

4 SonarQube SAST GUI Yes 10 min PHP, C/C++, Python,

C#, NET, Java, JS,

Kotlin, Ruby, Swift

5 OWASP ZAP DAST GUI Yes 1 h –

6 Wapiti DAST CLI Yes 10 min –

7 Vega DAST GUI No 6 h –

8 Iron WASP DAST GUI Yes 6 h –

9 Burp suite DAST GUI Yes 6 h –

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 10/42

https://github.com/devNowRO/WebAppSecurity/blob/main/Web%20apps%20sources.xlsx
https://github.com/devNowRO/WebAppSecurity/blob/main/Web%20apps%20sources.xlsx
https://github.com/scovetta/yasca
https://github.com/designsecurity/progpilot
https://snyk.io/platform/snyk-cli/
https://www.sonarsource.com/open-source-editions/sonarqube-community-edition/
https://www.zaproxy.org/download/
https://github.com/wapiti-scanner/wapiti
https://subgraph.com/vega/download.html
https://github.com/swatv3nub/IronWASP
https://portswigger.net/burp/communitydownload
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

3. Deploy each web app locally-Each of the 75 Web apps was deployed locally on a
Windows operating system environment using the XAMPP Web server and MySQL
database.

4. Use tool to scan web app-Fig. 2 shows how each tool was deployed including the
machine and platform used. The version and other details of each tool is available on
GitHub (https://github.com/devNowRO/WebAppSecurity/blob/main/README.md).
Essentially, seven tools were deployed on Windows while two tools were deployed on
Linux. These two tools, namelyWapiti and Progpilot, are available exclusively on Linux.
The use of both operating systems demonstrates the flexibility and adaptability of our
testing environment and underscores the versatility of the tools. It also shows that our
methodology can be applied in varied environments, which is particularly relevant for
diverse organizational setups.

Each target Web app deployed in Step 3 was scanned using all nine tools. For
example, the target Web app Employee Record Management System was deployed and
scanned by Yasca, Progpilot, Snyk, SonarQube, OWASP ZAP, Wapiti, Vega, Iron WASP,
and finally Burp Suite. After this, the next target Web app was deployed and scanned (by
each of the nine tools) and so on. Each SAST tool used static code analysis to identify
vulnerabilities in the source code. Each DAST tool performed runtime analysis to detect
vulnerabilities.

5. Generate and save report-After each scan, each tool automatically generated detailed
vulnerability reports. In some cases, these reports also included suggestions for fixing

Figure 2 Tools and setup. Full-size DOI: 10.7717/peerj-cs.2821/fig-2

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 11/42

https://github.com/devNowRO/WebAppSecurity/blob/main/README.md
http://dx.doi.org/10.7717/peerj-cs.2821/fig-2
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

the vulnerabilities. The reports were saved and were made publicly available at GitHub
(https://github.com/devNowRO/WebAppSecurity/blob/main/README.md).

6. Categorization of vulnerabilities according to OWASP Top 10:2021, CWE Top
25:2023, and severity level-The vulnerabilities listed in each report were categorized
according to OWASP Top 10:2021 and CWE Top 25:2023 risk categories. Some of the
tools (namely Progpilot, OWASP ZAP, Wapiti, and Yasca) provided automatic
OWASP and CWE categorizations. For the remaining tools (namely Vega, Iron WASP,
Burp Suite, Snyk, and SonarQube), the descriptions of the identified vulnerabilities were
manually reviewed and then a suitable category was identified by the authors.

Also, the authors used the information at the Web sites of both these lists to determine
mapping of the risk categories. The outcome of this mapping is shown in Table 3 (MITRE,
2023; OWASP, 2021). For example, it can been seen that the eighth risk category in the
OWASP Top 10:2021 list (A08:2021 Software and Data Integrity Failures) is mapped to the
fifteenth risk category in the CWE Top 25:2023 list, namely CWE-502: Deserialization of
Untrusted Data. It is also obvious that some risk categories have no equivalent risk
categories in the other list. It should be noted that whenever there was a difference in the
automatic category identified by the tool and that shown in Table 3, the one provided by
the tool was used. This makes sense as the tool is scanning the actual Web app in real-time,
while the information provided on the Web site is generic.

Furthermore, all tools (except Wapiti) automatically categorized vulnerabilities in terms
of severity (low, medium, high, or critical). For Wapiti, the severity level was identified by
the authors with help from the level assigned to similar vulnerabilities by another tool.

As an example, we demonstrate the categorisation process for one sample Web app i.e.,
Employee Record Management System. The reports generated for this Web app by one
static analysis tool (i.e., Yasca) and one dynamic analysis tool (i.e., OWASP ZAP) are
analysed as described below:

○ Analysis of Yasca report-Fig. 3 shows a part of this report that lists the first six
vulnerabilities found in the Employee Record Management System. As an example,
vulnerability #2 is identified as a ‘Cross-Site Scripting (XSS)’ vulnerability and
clicking on its ‘Details’ button leads to a detailed description of this vulnerability as
shown in Fig. 4. The severity label for this vulnerability is provided in column 2 of the
report as shown in Fig. 3.
This vulnerability is mapped to the A03:2021 Injection risk category of OWASP Top
10:2021 list and to the CWE-79 Injection Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting’) risk category of CWE Top 25:2023 list
using the information provided on the respective Web pages of these vulnerabilities.
The risk category A03:2021 Injection in the OWASP Top 10:2021 refers to
vulnerabilities where malicious data is sent to an interpreter, leading to attacks like
SQL injection. Meanwhile CWE-79 Injection Improper Neutralization of Input
During Web Page Generation (‘Cross-site Scripting’) is a specific weakness where
missing custom error pages in J2EE (JavaTM 2 Platform, Enterprise Edition)

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 12/42

https://github.com/devNowRO/WebAppSecurity/blob/main/README.md
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

Table 3 Mapping of OWASP Top 10:2021 to CWE Top 25:2023 risk categories.

OWASP
rank

OWASP Top 10:2021 name of risk
category

CWE Top 25:2023 name of risk category CWE
rank

1 A01:2021 Broken Access Control CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path
Traversal’)

8

CWE-276: Incorrect Default Permissions 25

CWE-352: Cross-Site Request Forgery (CSRF) 9

CWE-862: Missing Authorization 11

CWE-863: Incorrect Authorization 24

2 A02:2021 Cryptographic Failures – –

3 A03:2021 Injection CWE-20: Improper Input Validation 6

CWE-77: Improper Neutralization of Special Elements used in a Command
(‘Command Injection’)

16

CWE-78: Improper Neutralization of Special Elements used in an OS Command
(‘OS Command Injection’)

5

CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-
site Scripting’)

2

CWE-89: Improper Neutralization of Special Elements used in an SQL Command
(‘SQL Injection’)

3

CWE-94: Improper Control of Generation of Code (‘Code Injection’) 23

4 A04:2021 Insecure Design CWE-269: Improper Privilege Management 22

CWE-434: Unrestricted Upload of File with Dangerous Type 10

5 A05:2021 Security Misconfiguration – –

6 A06:2021 Vulnerable and Outdated
Components

– –

7 A07:2021 Identification and
Authentication Failures

CWE-287: Improper Authentication 13

CWE-306: Missing Authentication for Critical Function 20

CWE-798: Use of Hard-coded Credentials 18

8 A08:2021 Software and Data Integrity
Failures

CWE-502: Deserialization of Untrusted Data 15

9 A09:2021 Security Logging and
Monitoring Failures

– –

10 A10:2021 Server-Side Request Forgery
(SSRF)

CWE-918: Server-Side Request Forgery (SSRF) 19

– – CWE-787 Out-of-bounds Write 1

– – CWE-416 Use After Free 4

– – CWE-125: Out-of-bounds Read 7

– – CWE-476: NULL Pointer Dereference 12

– – CWE-190: Integer Overflow or Wraparound 13

– – CWE-119: Improper Restriction of Operations within the Bounds of a Memory
Buffer

17

– – CWE-362: Concurrent Execution using Shared Resource with Improper
Synchronization (‘Race Condition’)

21

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 13/42

http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

Figure 3 Snippet I of Yasca’s report for Employee Record Management System. Full-size DOI: 10.7717/peerj-cs.2821/fig-3

Figure 4 Snippet II of Yasca’s report for Employee Record Management System. Full-size DOI: 10.7717/peerj-cs.2821/fig-4

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 14/42

http://dx.doi.org/10.7717/peerj-cs.2821/fig-3
http://dx.doi.org/10.7717/peerj-cs.2821/fig-4
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

applications can expose sensitive information. While A03:2021 Injection focuses on
exploitation, CWE-79 Injection Improper Neutralization of Input During Web Page
Generation (‘Cross-site Scripting’) highlights misconfiguration that can aid attackers
in gathering intelligence. Once all the vulnerabilities listed in the entire Yasca report
were categorised in the same way, the data was tabulated as shown in Table 4. For
instance, it can be seen that a total of 145 high-severity vulnerabilities mapped to
A03:2021 Injection risk category were found. Similarly, a total of 22 medium-severity
vulnerabilities mapped to CWE-798 Use of Hard-coded Credentials risk category were
found.

○ Analysis of OWASP ZAP report-Fig. 5 shows a part of this report that lists the first
three vulnerabilities found in the Employee Record Management System. Taking

Table 4 Analysis of Yasca’s Employee Record Management System.

Name of
vulnerabilities

OWASP Top 10:2021 category CWE Top 25:2023 category Severity
level

Number of
vulnerabilities

Cross Site
Scripting

A03:2021 Injection CWE-79 Improper Neutralization of Input During Web Page
Generation (‘Cross-site Scripting’)

High 145

SQL Injection A03:2021 Injection CWE-89 Improper Neutralization of Special Elements used in an
SQL Command (‘SQL Injection’)

High 39

Weak
Credentials

A07:2021 Identification and
Authentication failures

CWE-259 Use of Hard-coded Passwords Medium 22

Figure 5 Snippet I of OWASP ZAP’s report for Employee Record Management System. Full-size DOI: 10.7717/peerj-cs.2821/fig-5

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 15/42

http://dx.doi.org/10.7717/peerj-cs.2821/fig-5
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

the third vulnerability identified (i.e., ‘Absence of Anti-CSRF Token’) as an example,
we note that scrolling further in the report leads to more details about this
vulnerability as shown in Figs. 6 and 7. The severity label for this vulnerability is
provided in the ‘Risk’ column as shown in Fig. 5.
We can see that OWASP ZAP has already mapped this vulnerability to the A01:2021
Broken Access Control risk category of OWASP Top 10:2021 list and to the CWE-352:
Cross-Site Request Forgery (CSRF) risk category of CWE Top 25:2023 list (see Figs. 6
and 7). In general, A01:2021 Broken Access Control refers to vulnerabilities where
attackers can bypass authorization mechanisms, gaining unauthorized access to data
or functionality. Meanwhile CWE-352: Cross-Site Request Forgery (CSRF) refers to a
specific weakness where an attacker tricks a user into performing unwanted actions
on a Web application where they are authenticated. Both these risk categories
highlight improper access and user session exploitation.
Once all the vulnerabilities in the entire OWASP ZAP report were categorised in the
same way, the data was tabulated as shown in Table 5. For instance, it can be seen that
a total of 14 high-severity vulnerabilities mapped to A01:2021 Broken Access Control
risk category were found. Similarly, a total of 9 medium-severity vulnerabilities
mapped to CWE-548: Broken Access Exposure of Control Information Through
Directory Listing risk category were found.
Finally, a few vulnerabilities reported by OWASP ZAP (and included in Table 5) did
not map to a risk category included in the CWE Top 25:2023 list (shown in Table 2).

Figure 6 Snippet II of OWASP ZAP’s report for Employee Record Management System. Full-size DOI: 10.7717/peerj-cs.2821/fig-6

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 16/42

http://dx.doi.org/10.7717/peerj-cs.2821/fig-6
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

Figure 7 Snippet III of OWASP ZAP’s report for Employee Record Management System.

Full-size DOI: 10.7717/peerj-cs.2821/fig-7

Table 5 Analysis of OWASP ZAP’s report for Employee Record Management System.

Name of vulnerability OWASP Top 10:2021
category

CWE Top 25:2023 category Severity
level

Count of
vulnerabilities

SQL Injection A01:2021 Broken Access
Control

CWE-89 Improper neutralization of Special
Elements used in an SQL Command (‘SQL
Injection’)

High 7

SQL Injection-MYSQL A01:2021 Broken Access
Control

CWE-89 Improper Neutralization of Special
Elements used in an SQL Command (’SQL
Injection’)

High 7

Absence of Anti-CSRF Tokens A01:2021 Broken Access
Control

CWE-352 Cross-Site Request Forgery (CSRF) Medium 9

Application Error Disclosure A05:2021 Security
Misconfiguration

– Medium 1

Content Security Policy (CSP) Header Not
Set

A05:2021 Security
Misconfiguration

– Medium 12

Directory Browsing A01:2021 Broken Access
Control

– Medium 9

Missing Anti-clickjacking Header A05:2021 Security
MISCONFIGURATION

– Medium 8

Parameter Tampering A04:2021 Insecure Design – Medium 2

Vulnerable JS Library A06:2021 Vulnerable and
Outdated Components

– Medium 2

Big Redirect Detected (Potential Sensitive
Information Leak)

A04:2021 Insecure Design – Low 3

Cookie no HttpOnly Flag A05:2021 Security
Misconfiguration

– Low 2

Cookie without SameSite Attribute A01:2021 Broken Access
Control

– Low 2

(Continued)

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 17/42

http://dx.doi.org/10.7717/peerj-cs.2821/fig-7
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

For example ‘Content Security Policy (CSP) Header Not Set’ and ‘X-Content-Type-
Options Header Missing’ vulnerabilities could be mapped to CWE-693: Protection
Mechanism Failure but this CWE is not included in CWE Top 25:2023 list. Likewise,
multiple vulnerabilities listed in Table 5 could be mapped to CWE-200: Exposure of
Sensitive Information to an Unauthorized Actor risk category but this CWE is also not
included in the CWE Top 25:2023 list (shown in Table 2) and therefore it is not
mentioned in Table 5. It should be noted here that reporting these vulnerabilities is
outside the scope of this work.
The above categorization process was repeated for the reports generated by each of
the nine tools (four SAST and five DAST tools) for all seventy-five Web applications.
This iterative process ensured the completeness and consistency of the analysis. A
detailed guide for replicating this work is available at GitHub (https://github.com/
devNowRO/WebAppSecurity/blob/main/Methodology.txt).

7. Tabulation of Findings for:

○ RQ1-To determine which approach was more effective for assessing Web application
security (in terms of finding vulnerabilities belonging to OWASP Top 10:2021 and
CWE Top 25:2023 risk categories), the number of Web applications in which
vulnerabilities found using ‘Only SAST approach’, using ‘Only DAST’, or ‘Both
Approaches’ was tabulated. The findings are presented in Table A7 (in Appendix A)
for the OWASP Top 10:2021 list and in Table A8 (in Appendix A) for the CWE Top
25:2023 list.

○ RQ2-To determine which tool was most effective for assessing Web application
security (in terms of finding vulnerabilities belonging to OWASP Top 10:2021 and
CWE Top 25:2023 risk categories), the number of vulnerabilities found (belonging to
each risk category) was tabulated. For the OWASP Top 10:2021 list, the findings are
presented in Table A9 (in Appendix A). For the CWE Top 25:2023 list, the findings
are shown in Tables A10 and A11 (in Appendix A).

○ RQ3-To determine which tool was most effective at finding vulnerabilities at each
severity level, the number of vulnerabilities found at each severity level (high,
medium, and low) was tabulated. The findings are presented in the Results for RQ3
section.

Table 5 (continued)

Name of vulnerability OWASP Top 10:2021
category

CWE Top 25:2023 category Severity
level

Count of
vulnerabilities

Server Leaks Information via “X-Powered-
By” HTTP Response Header Field(s)

A01:2021 Broken Access
Control

– Low 13

Server Leaks Version Information via
“Server” HTTP Response Header Field

A05:2021 Security
Misconfiguration

– Low 24

X-Content-Type-Options Header Missing A05:2021 Security
Misconfiguration

– Low 14

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 18/42

https://github.com/devNowRO/WebAppSecurity/blob/main/Methodology.txt
https://github.com/devNowRO/WebAppSecurity/blob/main/Methodology.txt
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

○ RQ4-To determine if OWASP ZAP is consistently effective in finding vulnerabilities,
the number Web applications in which vulnerabilities belonging to OWASP Top
10:2021 list was tabulated along with the severity level of each vulnerability. Only the
reports generated by scanning each of the 75 Web applications using OWASP ZAP
were used. The emphasis on OWASP ZAP is because it is recommended by the
OWASP project and warrants additional evaluation. Therefore, a methodological
evaluation of OWASP ZAP’s consistency and accuracy using target Web applications
from distinct domains lays the groundwork for understanding how OWASP ZAP
performs under varying scopes and conditions. The findings are presented in
Table A12 (in Appendix A) together with the findings from Phase-I (Khanum, Qadir
& Jehan, 2023).

RESULTS
Results for RQ1
The findings for SAST and DAST approaches, categorized according to OWASP Top
10:2021, are presented in Fig. 8. The X-axis represents the OWASP Top 10:2021 risk
categories, while the Y-axis displays the number of Web applications in which
vulnerabilities from each category were identified. There are three bars for each risk
category, namely ‘Only SAST’ approach, ‘Only DAST’ approach, and ‘Both Approaches’.
For instance, in Fig. 8, vulnerabilities belonging to A02:2021: Cryptographic Failures risk
category:

. were found by the ‘Only SAST’ approach in 14 target Web applications. These
vulnerabilities were not identified by any DAST tool.

. were found by the ‘Only DAST’ approach in three target Web applications. These
vulnerabilities were not identified by any SAST tool.

. were found by ‘Both Approaches’ in one target Web application. In other words, these
vulnerabilities were by SAST and by DAST approach.

This distinction highlights the contribution of each approach and the combined
detection capability of both approaches in cases where both approaches were able to detect
vulnerabilities within the same risk category.

First, it is obvious that for four risk categories, utilising only DAST tools is more
effective than utilising only SAST tools. These categories are A01:2021 Broken Access
Control, A04:2021 Insecure Design, A06:2021 Vulnerable and Outdated Components and
A08:2021 Software and Data Integrity Failures.

Conversely, using only SAST tools is more effective (than using only DAST tools) for
the A02:2021 Cryptographic Failure, A07:2021 Identification and Authentication Failures
and A-10:2021 Server-Side Request Forgery category.

However, both approaches are effective for A03:2021 Injection and A05:2021 Security
Misconfiguration categories. None of the tools, using either approach, were able to find
vulnerabilities belonging to A09:2021 Security Logging and Monitoring Failures risk

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 19/42

http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

category. For clarity, this category was excluded from Fig. 8. Table A7 (in Appendix A)
summarises the findings for all 10 risk categories included in the OWASP Top 10:2021 list.

The findings, with respect to CWE Top 25:2023, are presented in Fig. 9, where the
X-axis represents the CWE Top 25:2023 risk categories, and the Y-axis shows the number
of Web applications in which each vulnerability was identified. Similar to Fig. 8, there are
three bars for each risk category, namely ‘Only SAST’ approach, ‘Only DAST’ approach,
and ‘Both Approaches’.

To start with, utilising only SAST tools is more effective than using only DAST tools
for more than half of the CWEs shown in Fig. 9. For three of the CWEs (CWE-352
Cross-Site Request Forgery (CSRF), CWE-862 Missing Authorization, CWE-119 Improper
Restriction of Operations within the Bounds of a Memory Buffer), using only DAST
approach found the most vulnerabilities. In contrast, using only SAST approach was able
to identify the most vulnerabilities belonging to CWEs (CWE-287 Improper
Authentication, CWE-798 Use of Hard-coded Credentials and CWE-306 Missing
Authentication for Critical Function). Both approaches were able to identify CWE-79
Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’),
CWE-89 Improper Neutralization of Special Elements used in an SQL Command (‘SQL
Injection’), and CWE-22 Improper Limitation of a Pathname to a Restricted Directory
(‘Path Traversal’).

Unfortunately, none of the tools (regardless of approach) were successful in finding
vulnerabilities belonging to eight risk categories. This can be seen in Table A8

Figure 8 RQ1: OWASP-based comparison of SAST and DAST approaches.
Full-size DOI: 10.7717/peerj-cs.2821/fig-8

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 20/42

http://dx.doi.org/10.7717/peerj-cs.2821/fig-8
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

(in Appendix A) that presents a summary of the findings for all 25 risk categories. For the
sake of clarity, the above-mentioned eight risk categories (along with eight other risk
categories that were found in very few Web applications) are excluded from Fig. 9.

In summary, the best approach for developers is shown in Table 6. This
recommendation is based on the approach that detected vulnerabilities (belonging to each
risk category) in the highest number of Web applications. For instance, to identify
A01:2021 Broken Access Control vulnerability, the ‘Only DAST’ approach is recommended
as it was able to identify this vulnerability in all 75 Web applications (see Fig. 8 and
Table A7). Likewise, ‘Only SAST’ approach was able to identify CWE-798: Use of
Hard-coded Credentials in 74 out of 75 Web applications (see Fig. 9 and Table A8).

Results for RQ2
The findings for the nine tools categorised according to OWASP Top 10:2021 is presented
in Fig. 10. The X-axis represents the OWASP Top 10:2021 risk categories and the Y-axis
indicates the number of vulnerabilities identified. For each category, nine bars are shown;
one for each tool. To aid clarity, only six of the most commonly detected categories are
included in Fig. 10. This also helps ensure a more focused analysis on the effectiveness of
each tool in identifying the most significant vulnerabilities. The results for all ten categories
in presented in Table A9.

Two tools stand out in terms of the number of found vulnerabilities. Firstly, Yasca
dominated the identification of vulnerabilities belonging to the A03:2021 Injection

Figure 9 RQ1: CWE-based comparison of SAST and DAST approaches.
Full-size DOI: 10.7717/peerj-cs.2821/fig-9

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 21/42

http://dx.doi.org/10.7717/peerj-cs.2821/fig-9
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

category while OWASP ZAP dominated in the A05:2021 Security Misconfiguration
categories by finding the most vulnerabilities.

In the case of CWE Top 25:2023, Fig. 11 presents the number of vulnerabilities detected
by each tool. The X-axis represents the CWE Top 25:2023 risk categories, while the Y-axis
shows the number of vulnerabilities found across all the target Web applications. For each
category, nine bars are shown; one for each tool.

In Fig. 11, we focused only on the six most frequently detected categories, as other
categories had a very small number of vulnerabilities that could not be effectively shown in
the figure. This allows for a more focused comparison of the tools’ performance in
detecting the most prevalent vulnerabilities within the CWE Top 25:2023 list. The results
for all twenty-five categories in presented in Tables A10 and A11.

Table 6 RQ1: recommended approach.

Approach OWASP Top 10:2021 CWE Top 25:2023

Only DAST A01:2021 Broken Access Control CWE-119: Buffer Overflow

A04:2021 Insecure Design CWE-352: Cross-Site Request Forgery (CSRF)

A06:2021 Vulnerable and Outdated Components CWE-862: Missing Authorization

A08:2021 Software and Data Integrity Failures

Only SAST A02:2021 Cryptographic Failure CWE-287: Improper Authentication

A07:2021 Identification and Authentication Failures CWE-798: Use of Hard-coded Credentials

A10:2021 Server-Side Request Forgery (SSRF) CWE-306: Missing Authentication for Critical Function

Both A03:2021 Injection CWE-79: Improper Neutralization of Input During

Web Page Generation (‘Cross-site Scripting’)

A05:2021 Security Misconfiguration CWE-89: SQL Injection

CWE-22: Path Traversal

Figure 10 RQ2: OWASP-based comparison of tools. Full-size DOI: 10.7717/peerj-cs.2821/fig-10

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 22/42

http://dx.doi.org/10.7717/peerj-cs.2821/fig-10
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

Unmistakably, Yasca was the dominant tool for CWE-79: Improper Neutralization of
Input During Web Page Generation. Also, for CWE-798 Use of Hard-coded Credentials
category, Yasca found more vulnerabilities than any other tool even though the count was
less than 2,000.

Progpilot performed better than all the other tools for CWE-89: SQL Injection. It was
also the second-best for finding vulnerabilities in the CWE-79: Improper Neutralization of
Input During Web Page Generation category.

For CWE-22: Path Traversal, Vega outperformed all the other tools. Finally, for the
remaining two categories, Synk found the most vulnerabilities in CWE-862: Missing
Authorization and Iron WASP had the highest count for CWE-434: Unrestricted File
Upload.

In a nutshell, the most appropriate tool for developers for each OWASP Top 10:2021
risk category and for each CWE Top 25:2023 category is shown in Table 7. For example,
OWASP ZAP is the most effective tool for three of the OWASP Top 10:2021 risk
categories, namely A01:2021 Broken Access Control, A04:2021 Insecure Design, and
A05:2021 Security Misconfiguration. Similarly, Yasca is the best tool for finding
vulnerabilities that belong to CWE-79: Improper Neutralization of Input During Web Page
Generation (‘Cross-site Scripting’). Yasca is also best at finding vulnerabilities in the
A03:2021 Injection and A07:2021 Identification and Authentication Failures) risk
categories.

Results for RQ3
Table 8 presents the number of high-severity, medium-severity, and low-severity
vulnerabilities detected by each tool. Yasca has the highest count of 19,465 for

Figure 11 RQ2: CWE-based comparison of tools. Full-size DOI: 10.7717/peerj-cs.2821/fig-11

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 23/42

http://dx.doi.org/10.7717/peerj-cs.2821/fig-11
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

high-severity vulnerabilities. The second best tool is Progpilot, with a considerably lower
count of 4,001 high-severity vulnerabilities. Interestingly, both are SAST tools.

In the case of medium-severity vulnerabilities, IronWASP recorded the highest count of
1,471. This is almost twice the number found by OWASP ZAP. It should also be noted here
that Progpilot and Wapiti were not able to find any medium-severity vulnerabilities.

For low-severity vulnerabilities, Vega had the highest count of 2,900 vulnerabilities. In
contrast, the performance of SonarQube was poor although this could be because the free
version used in the research and it is likely to be less effective than the paid version.

A few other observations can be made from Table 8. Firstly, reputable tools such as
OWASP ZAP and Burp Suite did not outperform other tools as expected. OWASP ZAP
had the second highest count for medium-severity vulnerabilities while Burp Suite secured
the third highest count for low-severity vulnerabilities. This comparatively poorer
performance of Burp Suite could be because the free community edition was used in this
study. Secondly, the tool with the largest range of performance was Progpilot. It had the
second highest count for high-severity vulnerabilities but performed extremely poorly for

Table 7 RQ2: recommended tool.

Tool OWASP Top 10:2021 CWE Top 25:2023

Yasca A03:2021 Injection CWE-79: Improper Neutralization of
Input During

A07:2021 Identification and Authentication
Failures

Web Page Generation (‘Cross-site
Scripting’)

CWE-798: Use of Hard-coded Credentials

Progpilot – CWE-89: SQL Injection

Snyk – CWE-862: Missing Authorization

SonarQube –

OWASP
ZAP

A01:2021 Broken Access Control –

A04:2021 Insecure Design

A05:2021 Security Misconfiguration

Wapiti –

Vega – CWE-22: Path Traversal

Iron WASP – CWE-434: Unrestricted File Upload

Burp suite A06:2021 Vulnerable and Outdated
Components

Table 8 RQ3: findings for severity level (number of vulnerabilities found). The highest number of vulnerabilities at each level of severity are
shown in bold.

Severity Tool
Yasca Progpilot Synk SonarQube Vega Iron WASP Burp Suite Wapiti OWASP ZAP

High 19,465 4,001 1,776 36 845 676 392 291 217

Medium 6 0 402 10 501 1,471 6 0 690

Low 342 30 687 32 2,900 143 530 507 340

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 24/42

http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

medium- and low-severity vulnerabilities. This could be explained by the fact that it is a
language-specific (PHP) static analysis tool.

Overall, Yasca is the best choice for finding high-severity vulnerabilities. Iron WASP
seems promising for medium-severity vulnerabilities, while Vega was found to be effective
for low-severity vulnerabilities.

Results for RQ4
In RQ4, we sought to check that the effectiveness of OWASP ZAP, as presented in
Khanum, Qadir & Jehan (2023), also applies when a lager set of real-world applications are
used as targets. It is important to note that the target Web applications and domains
examined in Khanum, Qadir & Jehan (2023), including banking, e-commerce, and
recruitment portals differ from those analysed in this work (namely healthcare, education,
and technology). The complete list of of target Web applications and their OWASP ZAP
reports, used in Khanum, Qadir & Jehan (2023), are available on GitHub (https://github.
com/devNowRO/WebAppSecurity/tree/main/Khanum-et-al-2023).

The comparison, illustrated in Fig. 12, uses percentages instead of counts to ensure
fairness because Khanum, Qadir & Jehan (2023) used 70Web applications as targets, while
this study used 75. The X-axis represents the OWASP Top 10:2021 risk category and the
Y-axis shows the percentage of Web applications in which vulnerabilities were identified.
For clarity, we have focused on only six most frequently occurring 10 OWASP Top
10:2021 risk categories in Fig. 12. The reader is referred to Table A12 (in Appendix A) for a
detailed comparison of the findings from Khanum, Qadir & Jehan (2023) and this study.

The results clearly confirm the consistent effectiveness of OWASP ZAP in identifying
vulnerabilities across a wide range of Web application domains. In particular, the

Figure 12 RQ4: comparison of OWASP ZAP’s performance (based on % of web applications).
Full-size DOI: 10.7717/peerj-cs.2821/fig-12

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 25/42

https://github.com/devNowRO/WebAppSecurity/tree/main/Khanum-et-al-2023
https://github.com/devNowRO/WebAppSecurity/tree/main/Khanum-et-al-2023
http://dx.doi.org/10.7717/peerj-cs.2821/fig-12
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

performance for A01:2021 Broken Access Control and A05:2021 Security Misconfiguration
risk categories is very similar. A01:2021 Broken Access Control pertains to cases where users
may act beyond their intended permissions, leading to unauthorized access to sensitive
information, while A05:2021 Security Misconfiguration includes instances of improper
configurations that leave systems vulnerable to attack.

For the remaining four risk categories shown in Fig. 12, there is a slightly more
noticeable difference in performance. The most notable deviation in performance is
observed in the A03:2021 Injection risk category. In Khanum, Qadir & Jehan (2023),
OWASP ZAP did not detect any instances of this vulnerability, whereas in this study 20%
of the Web applications exhibited vulnerabilities in this category. Also, there is
considerable difference in severity levels for these four risk categories. For instance,
low-severity vulnerabilities belonging to A04:2021 Insecure Design risk category, were
found in about 20% of theWeb applications in Khanum, Qadir & Jehan (2023) but in more
than 90% of the Web applications in this work. It should also be noted that our results also
confirm that OWASP ZAP struggles to detect vulnerabilities in certain risk categories. This
is discussed in greater detail in the Discussion of Results for RQ4 section.

DISCUSSION
In this work, we set out to determine the best approach and the best free tool for finding
vulnerabilities in each OWASP Top 10:2021 and CWE Top 25:2023 risk categories. Our
results are compared with the findings reported in existing work in Table 9. Firstly, most
other studies rely on commercial tools to find OWASP vulnerabilities in one or two
well-known vulnerable Web Applications. Secondly, our work has two more unique
features. To begin with, we used both OWASP Top 10:2021 and CWE Top 25:2023 lists.
The only other research that does this was Li (2020) but it used previous versions of these
lists and deployed only one custom-made app. This makes it impossible to make any
meaningful comparison of their results with ours. The next unique aspect of our work is
that we scanned multiple real-world Web applications using nine different tools and made
our results publicly available for further research.

Discussion of results for RQ1
Based on our findings, we recommend approaches for several risk categories in Table 6.
For instance, ‘Only DAST’ approach is recommended for four OWASP Top 10:2021 risk
categories and three CWE Top 25:2023 risk categories. Similarly, the results also helped us
recommend the ‘Only SAST’ approach for three OWASP Top 10:2021 risk categories and
three CWE Top 25:2023 risk categories (see Table 6 for the names of these risk categories).

Only in the case of following two OWASP Top 10:2021 risk categories and three CWE
Top 25:2023 risk categories were either approach equally effective.

. A03:2021 Injection

. A05:2021 Security Misconfiguration

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 26/42

https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

. CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site
Scripting’)

. CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘SQL
Injection’)

. CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal’)

In such cases, the selection of approach can be made based on non-technical criteria
such as developer experience, ease of integration into workflow, or budget constraints.

It is interesting to note that our results confirm the recommendation of Tudela et al.
(2020) and Cruz, Almeida & Oliveira, 2023 that combining the two approaches is the most
effective strategy. However, we go one step further by:

. identifying the risk categories that can best be detected using ‘Only SAST’ or ‘Only
DAST’ approach. For example, from Table A7, we can see that ‘Only SAST‘ is best for
A07:2021 Identification and Authentication Failures risk category (‘Only DAST’
approach was not able to find any vulnerability belonging to this category). Likewise, we
can note that for A01:2021 Broken Access Control, ‘Only SAST’ approach was not
effective but ‘Only DAST’ was extremely effective. Similarly, for the CWE Top 25:2023
list, we found that CWE-352: Cross-Site Request Forgery (CSRF) is best identified using
‘Only DAST’ and CWE-287: Improper Authentication is best detected using ‘Only SAST’.

Table 9 Comparison of findings.

Source OWASP
Top 10

CWE
Top
25

Real-world
apps

Finding(s)/Contribution(s) Limitation(s)

Tudela et al. (2020) 2017 N N Combination of SAST (Fortify); DAST(Arachni, OWASP
ZAP); IAST (CCE) approach is best.

OWASP Benchmark Project

Setiawan, Erlangga
& Baskoro (2020)

2017 N Y IAST (Jenkins, API ZAP and SonarQube) approach provides
greater test accuracy.

1 domain

Li (2020) 2017 2019 Y Checkmarx for SAST 1 custom-made app

Cruz, Almeida &
Oliveira (2023)

2021 N – OWASP ZAP for DAST
Bandit for SAST

No information
about target apps

Khanum, Qadir &
Jehan (2023)

2021 N Y1 OWASP ZAP is effective for five categories Only OWASP ZAP

This work 2021 2023 Y2 1. DAST approach is suitable
for OWASP Top 10:2021 and using SAST approach is
suitable for CWE Top 25:2023

Tools did not identify
vulnerabilities in all risk
categories.

2. OWASP ZAP is the best tool for OWASP Top 10:2021 and
Yasca and Synk are the best for CWE Top 25:2023

3. Yasca is best for high severity, Iron WASP for medium
severity, and Vega for low severity vulnerabilities.

4. OWASP ZAP is consistent in effectiveness in terms of
count and severity of vulnerabilities

Notes:
1 50 live; 20 Locally-hosted.
2 75 Locally-hosted.

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 27/42

https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/22.html
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

. identifying the risk categories that were not detected by either approach (see the rows
with 0’s in Tables A7 and A8). The names of these risk categories (one from OWASP
Top 10:2021 list and eight from CWE Top 25:2023 list) are given below:

- A09:2021 Security Logging and Monitoring Failures

- CWE-787 Out-of-bounds Write

- CWE-416 Use After Free

- CWE-125 Out-of-bounds Read

- CWE-476 NULL Pointer Dereference

- CWE-190 Integer Overflow or Wraparound

- CWE-502 Deserialization of Untrusted Data

- CWE-863 Incorrect Authorization

- CWE-276 Incorrect Default Permissions

This limitation is not unique to our work and has been documented by Alazmi & De
Leon (2022), Priyawati, Rokhmah & Utomo (2022), and Khanum, Qadir & Jehan (2023).
There could be several reasons for the absence of vulnerabilities belonging to certain risk
categories:

- The Web application was developed using the Secure Software Development Life Cycle
(S-SDLC) meaning that it incorporated secure coding practices such as input validation,
output encoding, and robust authentication. These measures would effectively prevent
common vulnerabilities like ‘Insecure Key Management’, ‘Credential Stuffing’
Vulnerabilities, ‘Insufficient Logging’ and ‘Insecure URL Handling’. Additionally, a type-
safe, memory-safe programming language could have been selected for development that
was not susceptible to the missing vulnerabilities and included smooth error handling.
For example, languages like Java, Perl, and TypeScript perform their own memory
management and therefore are unlikely to contain vulnerabilities such as CWE-787 Out-
of-bounds Write, CWE-416 Use After Free, or CWE-476 NULL Pointer Dereference.
Likewise, if the programming language or data constructs are selected carefully, it is also
possible to avoid vulnerabilities that belong to CWE-190 Integer Overflow or
Wraparound.

- The Web application’s operational flow during scanning did not include code, data, or
interaction that would expose certain vulnerabilities. For example, the absence of
functionalities like file uploads or sensitive data handling reduces the attack surface,
limiting opportunities for exposure of vulnerabilities that may be categorised as
belonging to A10:2021 Server-Side Request Forgery (SSRF).

- Automated vulnerability assessment tools may also have failed to detect certain issues,
resulting in false negatives. An example of this would be vulnerabilities that belong to
A09:2021 Security Logging and Monitoring Failures as deficiencies in logging and
monitoring are best determined by expert reviews or after an incident.

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 28/42

https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/863.html
https://cwe.mitre.org/data/definitions/276.html
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

- Lastly, the limitation of false positives and false negatives is recognised as an issue in
automated Web application security testing tools (Aydos et al., 2022).

Discussion of results for RQ2

With regard to the best tool (see Table 7), we find that our recommendation of OWASP
ZAP (a DAST tool) is similar to that of Tudela et al. (2020) and Cruz, Almeida & Oliveira
(2023). Our recommendation is based on its comparatively superior performance for
A01:2021 Broken Access Control, A04:2021 Insecure Design, A05:2021 Security
Misconfiguration risk categories compared to the eight other tools. Likewise, for A03:2021
Injection and A07:2021 Identification and Authentication Failures risk categories, we
recommend the SAST tool Yasca. Finally, for A06:2021 Vulnerable and Outdated
Components risk category, Burp Suite is recommended. No recommendation is made for
the remaining three OWASP Top 10:2021 risk categories because the number of
vulnerabilities found were very negligible or zero (refer to Table A9). The reader is referred
to the Discussion of Results for RQ1 subsection for possible reasons why no
vulnerabilities (belonging to certain categories) were detected.

For the CWE Top 25:2023 list, recommendations are made for only six risk categories in
Table 7. The complete results for CWE Top 25:2023 list are presented in Table A10) and
Table A11. Yasca proved to be the only tool capable of finding vulnerabilities that belong to
more than one risk category i.e., CWE-79: Improper Neutralization of Input During Web
Page Generation (‘Cross-site Scripting’) and CWE-798: Use of Hard-coded Credentials.
Progpilot, Synk, Vega, and Iron WASP are recommended for one risk category each.

It should also be noted that our data showed Yasca, Progpilot, and Synk as the most
effective SAST tools which is at variance with the SAST tools mentioned by Li (2020), Cruz,
Almeida & Oliveira, 2023, and Tudela et al. (2020). This could be because we only
considered free versions of SAST tools and the fact that SAST tools are language-
dependent. These reasons could also explain the comparatively poorer performance of
well-known tools like Burp Suite in our study-it recommended for only one risk category
A06:2021 Vulnerable and Outdated Components in Table 7.

Overall, we recommend Yasca for SAST analysis and OWASP ZAP for dynamic
analysis based on the number of vulnerabilities detected by all tools.

Discussion of results for RQ3

There are very few studies that assess tools according to the severity-level of vulnerabilities
they detect. Our results show that a SAST tool, namely Yasca, is the best choice for finding
high-severity vulnerabilities (refer to Table 8). On the other hand, DAST tools perform
comparatively better for medium-severity and low-severity vulnerability detection.

However, it should be remembered that SAST tools are known for high false-positive
rates (Croft et al., 2021). Their use is best complemented by manual inspection and should
be limited to certain sections of code. This means that Yasca should be considered for

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 29/42

http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

finding high-severity vulnerabilities but with the caveat that false-positives should be
manually examined. If the source code of a Web application is not available, then DAST
tools like Vega are recommended for high-severity and low-severity levels while Iron
WASP is recommended for medium-severity levels (refer to Table 8).

Discussion of results for RQ4

The results of this study, with respect to checking the efficacy of OWASP ZAP on a more
diverse set of target Web applications, overlaps to some extent with the findings reported
by Priyawati, Rokhmah & Utomo (2022) and Alazmi & De Leon (2022). The former
suggested that the most frequently found categories by OWASP ZAP are A01:2021 Broken
Access Control, A04:2021 Insecure Design, A05:2021 Security Misconfiguration, and
A08:2021 Software and Data Integrity Failures. All four of these risk categories are included
in Fig. 12 thereby demonstrating the consistency of OWASP ZAP’s performance. The
latter study, Alazmi & De Leon (2022) noted that most effective tools tend to centre on the
detection of SQLi and XSS attacks which fall in the A03 Injection category. In our findings,
less than a quarter of the Web applications had vulnerabilities belonging to this category
while in Khanum, Qadir & Jehan (2023) this was zero. This difference could be explained
by the use of both live and locally deployed Web applications in Khanum, Qadir & Jehan
(2023). It is possible that injection risks are not adequately addressed in small deployments
whereas larger organizations with live Web applications may have dedicated teams that
have effectively mitigate such vulnerabilities. Another influencing factor could be the
selection of Web application domains. Khanum, Qadir & Jehan (2023) primarily focused
on e-commerce, banking, and recruitment domains, which tend to have comparatively
stronger security measures than the three domains used in this study (i.e., education,
healthcare, and technology).

Lastly, it can be seen from Table A9 that OWASP ZAP fails to detect any vulnerability
belonging to the following categories:

. A02:2021 Cryptographic Failures-this risk category refers to the use of default
cryptography keys or the use of weak cryptography keys. Such vulnerabilities are best
detected with SAST analysis instead of DAST analysis tools such as OWASP ZAP.
Table A9 confirms this by showing that only SAST analysis tools, such as Synk, were able
to detect vulnerabilities belonging to this category.

. A07:2021 Identification and Authentication Failures-vulnerabilities belonging to this risk
category were only detected by the SAST tool Yasca (see Table A9). None of the other
tools, including OWASP ZAP was able to detect any vulnerabilities belonging to this
category. This category typically includes vulnerabilities such as the use of hard-coded
passwords and credentials. Therefore, it is very likely that only a comprehensive SAST
tool, like Yasca, that supports languages that other SAST tools do not support (such as C/
C++ and Perl) is comparatively more effective.

. A09:2021 Security Logging andMonitoring Failures-this is a unique risk category that can
be challenging to test. From Table A9, it can be seen that none of the eight tools was able
to identify any vulnerabilities that could be mapped to it. According to OWASP, the

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 30/42

https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

vulnerabilities belonging to this risk category are determined using interviews or asking
if attacks were detected during a penetration test. Therefore, our results are excellent for
highlighting the importance of non-technical methods and recommending their use to
complement technical security testing.

. A10:2021 Server-Side Request Forgery (SSRF)-this is a new risk category added to the latest
version of OWASP Top 10 list and it occurs when a remote resource is fetched without
validating the user-supplied URL. Overall, it is known to have a low incidence rate
and only Synk and Iron WASP were able to detect a few vulnerabilities belonging to this
risk category (Table A9). OWASP ZAP was not able to detect this risk category in this
work or in Khanum, Qadir & Jehan (2023) (see Table A12). This limitation could be taken
into consideration during plans for further development of OWASP ZAP.

The exploitation of the above risk categories can have severe consequences, especially the
second-highest ranking A02:2021 Cryptographic Failures, but their detection seems to
require use of techniques beyond OWASP ZAP’s scope. This underscore the importance of
supplementary, approaches, tools or manual review for thoroughWeb security assessment.

Limitations and threats to validity

Firstly, this study relied on locally-hosted target Web applications to maintain consistent
testing conditions. It is likely that the findings may differ (to some extent) if the security
assessment was repeated using updated versions of these Web applications or in a live
production environment with different server configurations, databases, or network
settings. Specifically, the technical constraint of this work include hosting applications in a
local environment using XAMPP and MySQL, which may not fully replicate the
complexities of production environments. Key factors such as distributed databases,
diverse attack surfaces, different input data, and increased traffic loads in real-world
scenarios could influence the identification of vulnerabilities. To account for such changes,
future research should focus on testing live applications within real-world environments.
Also, as the threat landscape is rapidly evolving, future work should use the latest risk
categories, such as the updated version of CWE Top 25 released in 2024 (https://cwe.mitre.
org/data/definitions/1430.html) and the next version of OWASP Top 10 that is expected to
be announced in the first half of 2025 (https://owasp.org/www-project-top-ten/).

Moreover, there are two external threats pertaining to the obtained results. First, the
results obtained are specific to the examples studied. To determine if these findings can be
generalized to other contexts, additional live applications across various domains should
be tested using hybrid testing approaches. Second, each tool is limited in its abilities. For
instance, SAST tools like Yasca are limited to finding code vulnerabilities and do not
capture actual application behaviour or usage patterns. DAST tools, on the other hand, do
not analyse underlying source code and cannot detect vulnerabilities due to insecure
coding patterns. Furthermore, any future updates to testing tools may produce
inconsistencies in results.

Finally, construct validity could be affected by the evaluation criteria applied to each
tool. Variations in vulnerability definitions and manual categorization may lead to

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 31/42

https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://cwe.mitre.org/data/definitions/1430.html
https://cwe.mitre.org/data/definitions/1430.html
https://owasp.org/www-project-top-ten/
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

inconsistencies. Additionally, limitations in scan thoroughness, attributed to time
constraints, may have affected the depth of vulnerability detection, thereby restricting the
comprehensiveness of the findings. Furthermore, this study offers observational insights
rather than a causal analysis of tool effectiveness, suggesting that larger sample sizes may
be necessary to validate these trends.

CONCLUSION

This study evaluates seventy-five Web applications using nine different SAST and DAST
tools to assess their effectiveness for identifying vulnerabilities belonging to OWASP Top
10:2021 and CWE Top 25:2023 risk categories.

Our findings show that using ‘Only DAST’ approach is recommended for detecting four
risk categories of OWASP Top 10:2021 while using ‘Only SAST’ approach is
recommended for three risk categories. Either approach can be used for A03:2021 Injection
and A05:2021 Security Misconfiguration risk categories. For CWE Top 25:2023, the results
are more evenly distributed. Specifically, three different risk categories are best detected by
using ‘Only DAST’, three by ‘Only SAST’, and also three by ‘Both Approaches’.

The best performing DAST tool was OWASP ZAP while Yasca was the best performing
SAST tool. Yasca was also able to find the highest number of high-severity vulnerabilities.
For medium-severity and low-severity levels, the DAST tools, Iron WASP and Vega, were
able to find the most vulnerabilities. Furthermore, tools such as SonarQube (free version)
and Wapiti could not be recommended for detecting any risk categories. Burp Suite (free
version) was only considered a good option for one OWASP Top 10:2021 risk category. It
is hoped that these recommendations can be helpful for developers during tool selection.

Lastly, we showed that the performance of OWASP ZAP is mostly consistent with our
earlier work Khanum, Qadir & Jehan (2023) in that it is a very effective tool for finding
vulnerabilities when tested on large set of real-world Web applications. Specifically, the
results for A01:2021 Broken Access Control and A05:2021 Security Misconfiguration risk
categories were very similar.

The main limitation of this work is that none of the tools used were able to detect
vulnerabilities in a few risk categories. For the OWASP Top 10:2021 list, no vulnerabilities
were detected for the A09:2021 Security Logging and Monitoring Failures risk category.
According to OWASP’s Web site, vulnerabilities in this risk category are determined using
interviews conducted during incident response or penetration testing to check if attacks
were detected (https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_
Failures). This emphasises the importance of including non-technical methods to ensure
thorough security testing. In the case of the eight CWE Top 25:2023 risk categories that
were not detected (CWE-787: Out-of-bounds Write, CWE-476: NULL Pointer Dereference,
CWE-416: Use After Free, CWE-190: Integer Overflow or Wraparound, CWE-863: Incorrect
Authorization, CWE-502: Deserialization of Untrusted Data, CWE-276: Incorrect Default
Permissions, CWE-125: Out-of-bounds Read), it is important to note that there could be
multiple reasons for this outcome. For example, it is possible to avoid more than half of

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 32/42

https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

these CWEs just by carefully selecting a safe, robust programming language and avoiding
risky programming constructs. Future work could explore a wider selection of tools and
more realistic deployment of Web applications to ensure thorough automated security
testing.

APPENDIX A

Table A1 OWASP top 10:2021 list (OWASP, 2021).

Rank OWASP top 10:2021 Brief description

1 A01:2021 Broken Access Control This occurs when restrictions on what authenticated users are allowed to do are not properly enforced,
allowing unauthorized access to sensitive data or functionality.

2 A02:2021 Cryptographic Failures This includes weaknesses in cryptographic algorithms, key management, and data protection methods.

3 A03:2021 Injection This occurs when untrusted data is sent to an interpreter as part of a command or query, leading to
unintended execution of malicious commands (e.g., SQL injection).

4 A04:2021 Insecure Design This refers to security flaws that arise from inadequate or missing security controls during the design
phase of an application.

5 A05:2021 Security Misconfiguration This occurs when security settings are not properly configured, leaving the application vulnerable to
attacks.

6 A06:2021 Vulnerable and Outdated
Components

This involves using components (e.g., libraries, frameworks) with known vulnerabilities or outdated
versions that are no longer supported.

7 A07:2021 Identification and
Authentication Failures

This covers problems such as flawed authentication mechanisms and inadequate session management.

8 A08:2021 Software and Data
Integrity Failures

This occurs when software or data is tampered with, leading to unauthorized modifications or execution
of malicious code.

9 A09:2021 Security Logging and
Monitoring Failures

This pertains to insufficient logging and monitoring, which can hinder detection of security breaches.

10 A10:2021 Server-Side Request
Forgery (SSRF)

This involves attackers inducing a server to make unauthorized requests to internal or external resources.

Table A2 CWE Top 25:2023 List-I (MITRE, 2023).

Rank CWE Top 25:2023 Brief description

1 CWE-787: Out-of-bounds Write This occurs when data is written past the end or before the beginning of the
intended buffer, potentially leading to memory corruption or arbitrary code
execution.

2 CWE-79: Improper Neutralization of Input During Web
Page Generation (‘Cross-site Scripting’)

This vulnerability allows attackers to inject malicious scripts into web pages
viewed by other users, leading to session hijacking, defacement, or data theft.

3 CWE-89: Improper Neutralization of Special Elements
used in an SQL Command (‘SQL Injection’)

This occurs when untrusted input is included in SQL queries without proper
sanitization, allowing attackers to manipulate or extract database data.

4 CWE-416: Use After Free This occurs when a program continues to use a pointer after the memory it
references has been freed, potentially leading to crashes or code execution.

5 CWE-78: Improper Neutralization of Special Elements
used in an OS Command (‘OS Command Injection’)

This allows attackers to execute arbitrary operating system commands by injecting
malicious input into a command string.

6 CWE-20: Improper Input Validation This occurs when input data is not properly validated, allowing attackers to
submit malicious input that can disrupt the application or exploit other
vulnerabilities.

(Continued)

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 33/42

https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_(SSRF)/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_(SSRF)/
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/20.html
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

Table A2 (continued)

Rank CWE Top 25:2023 Brief description

7 CWE-125: Out-of-bounds Read This occurs when data is read from memory outside the bounds of the intended
buffer, potentially leading to information disclosure or crashes.

8 CWE-22: Improper Limitation of a Pathname to a
Restricted Directory (‘Path Traversal’)

This allows attackers to access files or directories outside the intended directory,
potentially leading to unauthorized data access or system compromise.

9 CWE-352: Cross-Site Request Forgery (CSRF) This occurs when an attacker forces a user to execute unwanted actions on a web
application in which they are authenticated.

10 CWE-434: Unrestricted Upload of File with Dangerous
Type

This allows attackers to upload malicious files to a server, potentially leading to
code execution or system compromise.

11 CWE-862: Missing Authorization This occurs when an application does not properly enforce access controls,
allowing unauthorized users to perform privileged actions.

12 CWE-476: NULL Pointer Dereference This occurs when a program dereferences a pointer that is expected to be valid but
is actually NULL, leading to crashes or undefined behavior.

13 CWE-287: Improper Authentication This occurs when authentication mechanisms are weak or improperly
implemented, allowing attackers to bypass authentication or impersonate users.

Table A3 CWE Top 25:2023 list-II (MITRE, 2023).

Rank CWE Top 25:2023 Brief description

14 CWE-190: Integer Overflow or Wraparound This occurs when an integer operation results in a value that is too large or too
small to be represented, potentially leading to unexpected behavior or
vulnerabilities.

15 CWE-502: Deserialization of Untrusted Data This occurs when untrusted data is deserialized, potentially leading to arbitrary
code execution or other malicious outcomes.

16 CWE-77: Improper Neutralization of Special Elements
used in a Command (‘Command Injection’)

This allows attackers to inject malicious commands into a system command,
leading to arbitrary command execution.

17 CWE-119: Improper Restriction of Operations within the
Bounds of a Memory Buffer

This occurs when operations on a memory buffer exceed its bounds, potentially
leading to memory corruption or code execution.

18 CWE-798: Use of Hard-coded Credentials This occurs when credentials (e.g., passwords or keys) are hard-coded into the
application, making them easily discoverable by attackers.

19 CWE-918: Server-Side Request Forgery (SSRF) This occurs when an attacker can induce a server to make unauthorized requests
to internal or external resources.

20 CWE-306: Missing Authentication for CriticalFunction This occurs when a critical function does not require authentication, allowing
unauthorized users to perform sensitive actions.

21 CWE-362: Concurrent Execution using Shared Resource
with Improper Synchronization (‘Race Condition’)

This occurs when multiple threads or processes access a shared resource without
proper synchronization, potentially leading to unexpected behavior or
vulnerabilities.

22 CWE-269: Improper Privilege Management This occurs when privileges are not properly managed, allowing users to gain
unauthorized access to sensitive functions or data.

23 CWE-94: Improper Control of Generation of Code (‘Code
Injection’)

This occurs when an application dynamically generates code without proper
validation, allowing attackers to inject malicious code.

24 CWE-863: Incorrect Authorization This occurs when an application incorrectly enforces authorization, allowing
unauthorized users to access restricted resources.

25 CWE-276: Incorrect Default Permissions This occurs when default permissions are set incorrectly, potentially allowing
unauthorized access to files or resources.

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 34/42

https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/862.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/918.html
https://cwe.mitre.org/data/definitions/306.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/269.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/863.html
https://cwe.mitre.org/data/definitions/276.html
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

Table A4 Target web applications from healthcare domain.

No. Name of app and URL

1 Blood Bank and Donor

2 COVID19 Testing Management System

3 Doctor Appointment Management SyStem

4 Hospital Management System

5 Online Birth Certificate System

6 BP Monitoring Management System

7 Online Nurse Hiring System

Table A5 Target web applications from education domain.

No. Name of app and URL

1 Student Management System

2 Online Course Registration

3 Student Result Management System

4 Student Study Center

5 Teacher Subject Allocation Management System

6 Teachers Record Management System

7 Online Library Management System

8 Pre-school Enrollment System

9 Online Education Institutes Managing System

10 Quiz Web Application

11 Online Examination System for MCQ

Table A6 40 target web applications from technology domain1.

No. Name of app and URL

1 HOTEL Management

2 Online Pizza Ordering System

3 Online Computer and Laptop Store

4 Quality Beauty Parlour Management System

5 Book Management System

6 Online Eyewear Shop Application

7 Computer Service Management System

8 Art Gallery MS

9 Auto Taxi Stand Management System Project

10 Apartment Visitors Management System

11 Bank Locker Managament System

12 Bus Pass Management System

13 Car Rental Portal

14 Client Management System

(Continued)

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 35/42

https://phpgurukul.com/blood-bank-donor-management-system-free-download/
https://phpgurukul.com/covid19-testing-management-system-using-PHP-and-mysql/
https://phpgurukul.com/doctor-appointment-management-system-using-PHP-and-mysql/
https://phpgurukul.com/hospital-management-system-in-php/
https://phpgurukul.com/online-birth-certificate-system-using-PHP-and-mysql/
https://phpgurukul.com/bp-monitoring-management-system-using-php-and-mysql/
https://phpgurukul.com/online-nurse-hiring-system-using-php-and-mysql/
https://phpgurukul.com/student-record-system-PHP
https://phpgurukul.com/online-course-registration-free-download/%20
https://phpgurukul.com/student-result-management-system/%20
https://phpgurukul.com/student-study-center-management-system-using-php-and-mysql/%20
https://phpgurukul.com/teacher-subject-allocation-system-using-PHP-and-mysql%20
https://phpgurukul.com/teachers-record-management-system-using-php-and-mysql/%20
https://phpgurukul.com/online-library-management-system/%20
https://phpgurukul.com/pre-school-enrollment-system-using-php-and-mysql/%20
https://www.kashipara.com/project/PHP/10169/online-education-institutes-managing-system
https://www.kashipara.com/project/PHP/11332/quiz-web-application-PHP-amp-mysql-source-code-PHP-project
https://www.kashipara.com/project/PHP/10629/online-examination-system-for-mcq
https://www.kashipara.com/project/PHP/26/hotel-management-system-using-PHP-download-project
https://www.kashipara.com/project/PHP/10564/online-pizza-ordering-system
https://www.kashipara.com/project/PHP/10531/online-computer-and-laptop-store
https://www.kashipara.com/project/PHP/10335/quality-beauty-parlour-management-system
https://www.kashipara.com/project/PHP/10321/book-management-system
https://www.kashipara.com/project/PHP/10131/online-eyewear-shop-application
https://www.kashipara.com/project/PHP/10081/computer-service-management-system
https://phpgurukul.com/art-gallery-management-system-using-php-and-mysql/
https://phpgurukul.com/auto-taxi-stand-management-system-using-php-and-mysql/
https://phpgurukul.com/apartment-visitors-management-system-using-php-and-mysql/
https://phpgurukul.com/bank-locker-management-system-using-php-and-mysql/
https://phpgurukul.com/bus-pass-management-system-using-php-and-mysql/
https://phpgurukul.com/car-rental-project-php-mysql-free-download/
https://phpgurukul.com/client-management-system-using-php-mysql/
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

Table A6 (continued)

No. Name of app and URL

15 Company Visitors Management System

16 Complaint Management system

17 Cyber Cafe Management System

18 Daily Expense Tracker

19 Dairy Farm Shop Management System

20 Directory Management System

21 e-Diary Management System

22 Employee Leave Management System

23 Employee Record Management System

24 GYM Management System

25 Hostel Management System

26 Maid Hiring Management System

27 Men Salon Management System

28 News Portal Project

29 Old Age Home Management system

30 Online Banquet Booking System

31 online DJ Booking Management System

32 Online Shopping Portal Project

33 Online Fire Reporting System

34 Online Security Guard Hiring System

35 Rail Pass Management System

36 Restaurant Table Booking System

37 Tourism Management System

38 Zoo Management System

39 Simple Real-time Chatbox

40 Online Food Ordering System

Note:
1 Complete list at: https://github.com/devNowRO/WebAppSecurity/blob/main/Web%20apps%20sources.xlsx

Table A7 RQ1: findings for OWASP top 10:2021 risk categories (number of web applications).

OWASP category Only SAST
tools

Only DAST
tools

Both
approaches

A01:2021 Broken Access Control 0 75 0

A02:2021 Cryptographic Failures 14 3 1

A03:2021 Injection 7 0 68

A04:2021 Insecure Design 3 22 0

A05:2021 Security Misconfiguration 0 2 73

A06:2021 Vulnerable and Outdated Components 1 58 0

A07:2021 Identification and Authentication
Failures

16 0 0

A08:2021 Software and Data Integrity Failures 1 12 0

A09:2021 Security Logging and Monitoring
Failures

0 0 0

A10:2021 Server-Side Request Forgery (SSRF) 3 2 0

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 36/42

https://phpgurukul.com/company-visitor-management-system-using-php-and-mysql/
https://phpgurukul.com/complaint-management-system-pro-version-using-php-and-mysql/
https://phpgurukul.com/cyber-cafe-management-system-using-django-python-mysql/
https://phpgurukul.com/daily-expense-tracker-system-pro-version-using-php/
https://phpgurukul.com/dairy-farm-shop-management-system-using-php-and-mysql/
https://phpgurukul.com/directory-management-system-using-php-and-mysql/
https://phpgurukul.com/e-diary-management-system-using-php-and-mysql/
https://phpgurukul.com/employee-leaves-management-system-elms/
https://phpgurukul.com/employee-record-management-system-in-php-and-mysql/
https://phpgurukul.com/gym-management-system-using-php-and-mysql/
https://phpgurukul.com/hostel-management-system/
https://phpgurukul.com/maid-hiring-management-system-using-php-and-mysql/
https://phpgurukul.com/men-salon-management-system-using-php-and-mysql/
https://phpgurukul.com/news-portal-project-in-php-and-mysql/
https://phpgurukul.com/old-age-home-management-system-using-php-and-mysql/
https://phpgurukul.com/online-banquet-booking-system-using-php-and-mysql/
https://phpgurukul.com/online-dj-booking-management-system-using-php-and-mysql/
https://phpgurukul.com/shopping-portal-free-download/
https://phpgurukul.com/online-fire-reporting-system-using-php-and-mysql/
https://phpgurukul.com/online-security-guards-hiring-system-using-php-and-mysql/
https://phpgurukul.com/rail-pass-management-system-using-php-and-mysql/
https://phpgurukul.com/restaurant-table-booking-system-using-php-and-mysql/
https://phpgurukul.com/tourism-management-system-free-download/
https://phpgurukul.com/zoo-management-system-using-php-and-mysql/
https://www.kashipara.com/project/PHP/1344/simple-real-time-chatbox
https://www.kashipara.com/project/PHP/3909/online-food-ordering-system
https://github.com/devNowRO/WebAppSecurity/blob/main/Web%20apps%20sources.xlsx
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

Table A8 RQ1: findings for CWE top 25:2023 risk categories (number of web applications).

CWE category Only SAST
tools

Only DAST
tools

Both
approaches

CWE-787: Out-of-bounds Write 0 0 0

CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’) 36 0 38

CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘SQL
Injection’)

17 0 56

CWE-416: Use After Free 0 0 0

CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

0 2 0

CWE-20: Improper Input Validation 17 0 0

CWE-125: Out-of-bounds Read 0 0 0

CWE-22: Improper Limitation of a Pathname 1 27 45

to a Restricted Directory (‘Path Traversal’)

CWE-352: Cross-Site Request Forgery (CSRF) 0 65 0

CWE-434: Unrestricted Upload of File with Dangerous Type 12 0 0

CWE-862: Missing Authorization 2 40 4

CWE-476: NULL Pointer Dereference 0 0 0

CWE-287: Improper Authentication 70 0 0

CWE-190: Integer Overflow or Wraparound 0 0 0

CWE-502: De-serialization of Untrusted Data 0 0 0

CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command
Injection’)

13 0 0

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer 1 18 1

CWE-798: Use of Hard-coded Credentials 74 0 0

CWE-918: Server-Side Request Forgery (SSRF) 4 2 0

CWE-306: Missing Authentication for Critical Function 34 0 0

CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization (‘Race
Condition’)

11 0 0

CWE-269: Improper Privilege Management 2 0 0

CWE-94: Improper Control of Generation of Code (’Code Injection’) 4 3 0

CWE-863: Incorrect Authorization 0 0 0

CWE-276: Incorrect Default Permissions 0 0 0

Table A9 RQ2: findings for OWASP top 10:2021 risk categories (number of vulnerabilities found). The highest number of vulnerabilities found
by each tool are shown in bold.

Category Yasca Prog-
pilot

Synk Sonar-
Qube

OWASP
ZAP

Wapiti Vega Iron-
WASP

Burp-
suite

A01:2021 Broken Access Control 0 0 0 0 500 0 0 0 0

A02:2021 Cryptographic Failures 1 0 95 1 0 0 0 0 0

A03:2021 Injection 17,748 1,179 1,776 2 537 193 349 662 276

A04:2021 Insecure Design 0 0 0 0 335 1 0 0 304

A05:2021 Security Misconfiguration 1,279 50 780 80 10,294 547 3,761 1,611 112

(Continued)

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 37/42

http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

Table A9 (continued)

Category Yasca Prog-
pilot

Synk Sonar-
Qube

OWASP
ZAP

Wapiti Vega Iron-
WASP

Burp-
suite

A06:2021 Vulnerable and Outdated Components 0 0 0 1 227 0 0 0 233

A07:2021 Identification and Authentication
Failures

387 0 0 0 0 0 0 0 0

A08:2021 Software and Data Integrity Failures 0 0 1 0 28 0 0 0 0

A09:2021 Security Logging and Monitoring
Failures

0 0 0 0 0 0 0 0 0

A10:2021 Server-Side Request Forgery (SSRF) 0 0 13 0 0 0 0 14 0

Table A10 RQ2: findings for CWE top 25:2023 risk categories-I (number of vulnerabilities found). The highest number of vulnerabilities found
by each tool are shown in bold.

Category Yasca Prog-
pilot

Synk Sonar-
Qube

OWASP
ZAP

Wapiti Vega Iron-
WASP

Burp-
Suite

CWE-787: Out-of-bounds Write 0 0 0 0 0 0 0 0 0

CWE-79: Improper Neutralization of Input During Web Page
Generation (‘Cross-site Scripting’)

13,797 3,436 823 0 122 68 39 113 44

CWE-89: Improper Neutralization of Special Elements used in an
SQL Command (‘SQL Injection’)

21 4,056 1,291 0 219 110 307 336 200

CWE-416: Use After Free 0 0 0 0 0 0 0 0 0

CWE-78: Improper Neutralization of Special Elements used in an OS
Command (‘OS Command Injection’)

0 0 0 0 4 0 0 37 0

CWE-20: Improper Input Validation 0 0 59 0 0 0 0 0 0

CWE-125: Out-of-bounds Read 0 0 0 0 0 0 0 0 0

CWE-22: Improper Limitation of a Pathname to a Restricted
Directory (‘Path Traversal’)

0 36 246 0 421 43 2,652 792 0

CWE-352: Cross-Site Request Forgery (CSRF) 0 0 0 0 9,725 0 0 0 0

CWE-434:Unrestricted Upload of File with Dangerous Type 0 0 43 0 0 0 0 109 0

CWE-862: Missing Authorization 0 0 862 0 578 0 0 0 0

CWE-476: NULL Pointer Dereference 0 0 0 0 0 0 0 0 0

CWE-287: Improper Authentication 0 0 458 30 0 0 0 0 0

Table A11 RQ2: findings for CWE top 25:2023 risk categories-II (number of vulnerabilities found). The highest number of vulnerabilities found
by each tool are shown in bold.

Category Yasca Prog-
pilot

Synk Sonar-
Qube

OWASP
ZAP

Wapiti Vega Iron-
WASP

Burp-
Suite

CWE-190: Integer Overflow or Wraparound 0 0 0 0 0 0 0 0 0

CWE-502: De-serialization of Untrusted Data 0 0 0 0 0 0 0 0 0

CWE-77: Improper Neutralization of Special Elements used in a
Command (‘Command Injection’)

207 0 6 0 0 0 0 0 0

CWE-119: Improper Restriction of Operations within the Bounds of a
Memory Buffer

0 4 0 0 38 0 0 0 0

CWE-798: Use of Hard-coded Credentials 1,348 0 117 0 0 0 0 0 0

CWE-918: Server-Side Request Forgery (SSRF) 0 0 36 0 0 0 0 16 0

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 38/42

http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Table A11 (continued)

Category Yasca Prog-
pilot

Synk Sonar-
Qube

OWASP
ZAP

Wapiti Vega Iron-
WASP

Burp-
Suite

CWE-306: Missing Authentication for Critical Function 0 0 89 45 0 0 0 0 0

CWE-362: Concurrent 97 0 0 0 0 0 0 0 0

Execution using Shared Resource with Improper Synchronization
(‘Race Condition’)

CWE-269: Improper Privilege Management 0 0 3 0 0 0 0 0 0

CWE-94: Improper Control of Generation of Code (’Code Injection’) 0 0 8 0 0 0 0 20 0

CWE-863: Incorrect Authorization 0 0 0 0 0 0 0 0 0

CWE-276: Incorrect Default Permissions 0 0 0 0 0 0 0 0 0

Table A12 RQ4: findings for comparison of OWASP ZAP’s performance (number of web applications).

OWASP Top 10:2021 category Severity level Khanum, Qadir & Jehan (2023) This work

A01:2021 Broken Access Control High 57 64

Medium 33 60

Low 58 73

A03:2021 Injection High 0 18

Medium 0 2

Low 0 0

A04:2021 Insecure Design High 35 3

Medium 0 16

Low 14 69

A05:2021 Security Misconfiguration High 63 74

Medium 46 75

Low 54 73

A06:2021 Vulnerable & Outdated Component High 40 5

Medium 40 5

Low 0 0

A08:2021 Software & Data Integrity Failures High 0 0

Medium 0 0

Low 53 20

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 39/42

http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

Author Contributions
. Sana Qadir conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

. Eman Waheed conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.

. Aisha Khanum conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.

. Seema Jehan conceived and designed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The Yasca Reports are available at GitHub: https://github.com/daisy2310/Yasca-
Reports.

The Progpilot Reports are available at GitHub:
https://github.com/daisy2310/Progpilot-Reports.
The Snyk Reports are available at GitHub:
https://github.com/daisy2310/Snyk-Reports.
The SonarQube Reports are available at GitHub:
https://github.com/daisy2310/SonarQube-Reports.
The OwaspZAP Reports are available at GitHub:
https://github.com/daisy2310/OwaspZAP-Reports.
The Wapiti Reports are available at GitHub:
https://github.com/daisy2310/Wapiti-Reports.
The Vega Reports are available at GitHub:
https://github.com/daisy2310/Vega-Reports.
The Iron WASP Reports are available at GitHub:
https://github.com/daisy2310/IronWASP-Reports.
The BurpSuite Reports are available at GitHub:
https://github.com/daisy2310/BurpSuite-Reports.
The list of targetWeb applications and their OWASP ZAP reports are available at

GitHub: https://github.com/Aishakf7/OWASP-Based-Assessment-of-Web-Application-
Security-Application-Reports-and-Application-links.

The reports are also all available at Zenodo: Qadir, S., Jehan, S., Khanum, A., & Emam,
W. (2025). WebAppSecurity [Data set]. Zenodo. https://doi.org/10.5281/zenodo.
15070993.

REFERENCES
Akgul Y. 2016.Web site accessibility, quality and vulnerability assessment: a survey of government

web sites in the Turkish republic. Journal of Information Systems Engineering & Management
1(4):50.

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 40/42

https://github.com/daisy2310/Yasca-Reports
https://github.com/daisy2310/Yasca-Reports
https://github.com/daisy2310/Progpilot-Reports
https://github.com/daisy2310/Snyk-Reports
https://github.com/daisy2310/SonarQube-Reports
https://github.com/daisy2310/OwaspZAP-Reports
https://github.com/daisy2310/Wapiti-Reports
https://github.com/daisy2310/Vega-Reports
https://github.com/daisy2310/IronWASP-Reports
https://github.com/daisy2310/BurpSuite-Reports
https://github.com/Aishakf7/OWASP-Based-Assessment-of-Web-Application-Security-Application-Reports-and-Application-links
https://github.com/Aishakf7/OWASP-Based-Assessment-of-Web-Application-Security-Application-Reports-and-Application-links
https://doi.org/10.5281/zenodo.15070993
https://doi.org/10.5281/zenodo.15070993
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

Alazmi S, De Leon DC. 2022.A systematic literature review on the characteristics and effectiveness
of web application vulnerability scanners. IEEE Access 10(21):33200–33219
DOI 10.1109/ACCESS.2022.3161522.

Albahar MA, Alansari D, Jurcut AD. 2022. An empirical comparison of pen-testing tools for
detecting web app vulnerabilities. Electronics 11(19):2991 DOI 10.3390/electronics11192991.

Altulaihan EA, Alismail A, Frikha M. 2023. A survey on web application penetration testing.
Electronics 12(5):1–23 DOI 10.3390/electronics12051229.

Amankwah R, Chen J, Song H, Kudjo PK. 2022. Bug detection in Java code: an extensive
evaluation of static analysis tools using juliet test suites. Software: Practice and Experience
53(5):1125–1143 DOI 10.1002/spe.3181.

Andrade MJ. 2019. White-box testing automation with SonarQube: continuous integration, code
review, security, and vendor branches. In: Alexandre Peixoto de Queirós R, Simões A, Pinto M,
eds. Code Generation, Analysis Tools, and Testing for Quality. IGI Global Scientific Publishing,
64–88.

Anupam A, Gonchigar P, Sharma S, Prof.Prapulla S, Anala D. 2020. Analysis of open source
node.js vulnerability scanners. International Research Journal of Engineering and Technology
(IRJET) 07(05):5449–5454.

Aydos M, Aldan C, Coskun E, Soydan A. 2022. Security testing of web applications: a systematic
mapping of the literature. Journal of King Saud University—Computer and Information Sciences
34(9):6775–6792 DOI 10.1016/j.jksuci.2021.09.018.

Chaleshtari NB, Pastore F, Goknil A, Briand LC. 2023. Metamorphic testing for web system
security. IEEE Transactions of Software Engineering 49(6):3430–3471
DOI 10.1109/TSE.2023.3256322.

Croft R, Newlands D, Chen Z, Babar MA. 2021. An empirical study of rule-based and
learning-based approaches for static application security testing. In: 15th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM).
Piscataway: IEEE.

Cruz DB, Almeida JR, Oliveira JL. 2023. Open source solutions for vulnerability assessment: a
comparative analysis. IEEE Access 11:100234–100255 DOI 10.1109/ACCESS.2023.3315595.

Dawoud A, Finster S, Coppik N, Ashiwal V. 2024. Better left shift security! framework for secure
software development. In: Proceedings of the 2024 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW), 642–649.

Dimitrov V. 2022. Cwe ontology. Serdica Journal of Computing 16(1):39–56
DOI 10.55630/sjc.2022.16.39-56.

Ford N. 2023. List of data breaches and cyber attacks in 2023. Available at https://www.
itgovernance.co.uk/blog/list-of-data-breaches-and-cyber-attacks-in-2023.

Ghazanfar I, Abbas H, Iqbal W, Rashid I. 2021. Vulnerability assessment of Pakistan government
websites. In: 2021 International Conference on Communication Technologies (ComTech),
115–119.

Helmiawan MA, Firmansyah E, Fadil I, Sofivan Y, Mahardika F, Guntara A. 2020. Analysis of
web security using open web application security project 10. In: 2020 8th International
Conference on Cyber and IT Service Management (CITSM), 1–5.

Hughes NC. 2024. Biggest data breaches and cyber hacks of 2023 and 2024. Available at https://
www.techopedia.com/biggest-data-breaches-and-cyber-hacks.

Idris I, Majigi MU, Abdulhamid S, Olalere M, Rambo SI. 2017. Vulnerability assessment of some
key nigeria government websites. International Journal of Digital Information and Wireless
Communications 7(3):143–153 DOI 10.17781/P002309.

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 41/42

http://dx.doi.org/10.1109/ACCESS.2022.3161522
http://dx.doi.org/10.3390/electronics11192991
http://dx.doi.org/10.3390/electronics12051229
http://dx.doi.org/10.1002/spe.3181
http://dx.doi.org/10.1016/j.jksuci.2021.09.018
http://dx.doi.org/10.1109/TSE.2023.3256322
http://dx.doi.org/10.1109/ACCESS.2023.3315595
http://dx.doi.org/10.55630/sjc.2022.16.39-56
https://www.itgovernance.co.uk/blog/list-of-data-breaches-and-cyber-attacks-in-2023
https://www.itgovernance.co.uk/blog/list-of-data-breaches-and-cyber-attacks-in-2023
https://www.techopedia.com/biggest-data-breaches-and-cyber-hacks
https://www.techopedia.com/biggest-data-breaches-and-cyber-hacks
http://dx.doi.org/10.17781/P002309
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

Khanum A, Qadir S, Jehan S. 2023. Owasp-based assessment of web application security. In: 18th
International Conference on Emerging Technologies (ICET), 240–245.

Kunda MA, Alsmadi I. 2022. Practical web security testing: evolution of web application modules
and open source testing tools. In: 2022 International Conference on Intelligent Data Science
Technologies and Applications (IDSTA), 152–155.

Lachkov P, Tawalbeh L, Bhatt S. 2022. Vulnerability assessment for applications security through
penetration simulation and testing. Journal of Web Engineering 21(7):2187–2208
DOI 10.13052/jwe1540-9589.2178.

Li J. 2020. Vulnerabilities mapping based on owasp-sans: a survey for static application security
testing (sast). Annals of Emerging Technologies in Computing 4(3):1–8
DOI 10.33166/AETiC.2017.10.01.

MITRE. 2023. CWE—2023 CWE top 25 most dangerous software weaknesses. Available at https://
cwe.mitre.org/top25/archive/2023/2023_cwe_top25.html.

Murah MZ, Ali AA. 2018. Web assessment of Libyan government e-government services.
International Journal of Advanced Computer Science and Applications 9(12):583–590
DOI 10.14569/issn.2156-5570.

OWASP. 2021. OWASP top 10: 2021. Available at https://owasp.org/Top10/.

OWASP. 2024. Source code analysis tools. Available at https://owasp.org/www-community/Source_
Code_Analysis_Tools.

Priyawati D, Rokhmah S, Utomo IC. 2022. Website vulnerability testing and analysis of website
application using OWASP. International Journal of Computer and Information System (IJCIS)
3(3):142–147 DOI 10.29040/ijcis.v3i3.90.

RedEdgeSecurity. 2024. Challenges and solutions in web application security testing. Available at
https://rededgesecurity.com/challenges-and-solutions-in-web-application-security-testing/.

Setiawan H, Erlangga LE, Baskoro I. 2020. Vulnerability analysis using the interactive application
security testing (iast) approach for government x website applications. In: 2020 3rd International
Conference on Information and Communications Technology (ICOIACT), 471–475.

Shahid J, Hameed MK, Javed IT, Qureshi KN, Ali M, Crespi N. 2022. A comparative study of
web application security parameters: current trends and future directions. Applied Sciences
12(8):4077 DOI 10.3390/app12084077.

Touseef P, Alam KA, Jamil A, Tauseef H, Ajmal S, Asif R, Rehman B, Mustafa S. 2019. Analysis
of automated web application security vulnerabilities testing. In: Proceedings of the 3rd
International Conference on Future Networks and Distributed Systems. Association for
Computing Machinery.

Tudela FM, Higuera J-RB, Higuera JB, Montalvo J-AS, Argyros MI. 2020. On combining static,
dynamic and interactive analysis security testing tools to improve owasp top ten security
vulnerability detection in web applications. Applied Sciences 10(24):9119
DOI 10.3390/app10249119.

Verizon. 2023. Verizon data breach investigation report. Available at https://inquest.net/wp-
content/uploads/2023-data-breach-investigations-report-dbir.pdf.

WEF. 2023. Global Cybersecurity Outlook 2023. Available at https://www3.weforum.org/docs/
WEF_Global_Security_Outlook_Report_2023.pdf.

Qadir et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2821 42/42

http://dx.doi.org/10.13052/jwe1540-9589.2178
http://dx.doi.org/10.33166/AETiC.2017.10.01
https://cwe.mitre.org/top25/archive/2023/2023_cwe_top25.html
https://cwe.mitre.org/top25/archive/2023/2023_cwe_top25.html
http://dx.doi.org/10.14569/issn.2156-5570
https://owasp.org/Top10/
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools
http://dx.doi.org/10.29040/ijcis.v3i3.90
https://rededgesecurity.com/challenges-and-solutions-in-web-application-security-testing/
http://dx.doi.org/10.3390/app12084077
http://dx.doi.org/10.3390/app10249119
https://inquest.net/wp-content/uploads/2023-data-breach-investigations-report-dbir.pdf
https://inquest.net/wp-content/uploads/2023-data-breach-investigations-report-dbir.pdf
https://www3.weforum.org/docs/WEF_Global_Security_Outlook_Report_2023.pdf
https://www3.weforum.org/docs/WEF_Global_Security_Outlook_Report_2023.pdf
http://dx.doi.org/10.7717/peerj-cs.2821
https://peerj.com/computer-science/

	Comparative evaluation of approaches & tools for effective security testing of Web applications
	Introduction
	Related work
	Methods
	Methodology
	Results
	Discussion
	Conclusion
	Appendix a
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

