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ABSTRACT
Interpolation techniques provide a method to convert point data of a geographic
phenomenon into a continuous field estimate of that phenomenon, and have become a
fundamental geocomputational technique of spatial and geographical analysts. Natural
neighbour interpolation is one method of interpolation that has several useful proper-
ties: it is an exact interpolator, it creates a smooth surface free of any discontinuities,
it is a local method, is spatially adaptive, requires no statistical assumptions, can be
applied to small datasets, and is parameter free. However, as with any interpolation
method, there will be uncertainty in how well the interpolated field values reflect
actual phenomenon values. Using a method based on natural neighbour distance
based rates of error calculated for data points via cross-validation, a cross-validation
error-distance field can be produced to associate uncertainty with the interpolation.
Virtual geography experiments demonstrate that given an appropriate number of data
points and spatial-autocorrelation of the phenomenon being interpolated, the natural
neighbour interpolation and cross-validation error-distance fields provide reliable
estimates of value and error within the convex hull of the data points.While thismethod
does not replace the need for analysts to use sound judgement in their interpolations,
for those researchers for whomnatural neighbour interpolation is the best interpolation
option the method presented provides a way to assess the uncertainty associated with
natural neighbour interpolations.

Subjects Computational Science, Spatial and Geographic Information Science
Keywords Convex hull, Digital, Neighbor, Python, Raster, Sibson, Virtual geography experi-
ments, Voronoi diagram

INTRODUCTION
Spatially continuous geographic phenomena are often only measured at point locations.
Interpolation techniques provide a method to convert such point data into a continuous
estimate of the phenomenon, and have become a fundamental computational technique
of spatial and geographical analysts with key texts devoting large sections to interpolation
methods (Burrough & McDonnell, 1998; O’Sullivan & Unwin, 2010; Slocum et al., 2014).

Natural neighbour (or Sibson) interpolation is an interpolation technique that was first
presented by Sibson (1981). The method is based upon a Voronoi (or: Dirichlet, Thiessen)
diagram that partitions space to identify those areas that are closest to a set of points (Okabe
et al., 2000). Previous authors (Sambridge, Braun & McQueen, 1995; Watson, 1999) have
noted several useful properties of natural neighbour interpolation: (i) the method is an
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exact interpolator, in that the original data values are retained at the reference data points;
(ii) the method creates a smooth surface free from any discontinuities; (iii) the method is
entirely local, as it is based on a minimal subset of data locations that excludes locations
that, while close, are more distant than another location in a similar direction; and (iv) the
method is spatially adaptive, automatically adapting to local variation in data density or
spatial arrangement. To this list I would add: (v) there is no requirement to make statistical
assumptions; (vi) the method can be applied to very small datasets as it is not statistically
based; and (vii) the method is parameter free, so no input parameters that will affect the
success of the interpolation need to be specified.

These properties make natural neighbour interpolation particularly well suited for the
interpolation of continuous geographic phenomena from data points that have a highly
irregular spatial distribution. While the choice of an appropriate interpolation method will
always vary on a case by case basis, studies comparing interpolation methodologies with
climate and land surface data demonstrate that natural neighbour interpolation is a highly
competitive and sometimes optimal technique (Abramov & McEwan, 2004; Bater & Coops,
2009; Hofstra et al., 2008; Lyra et al., 2018; Yilmaz, 2007).

Unfortunately, natural neighbour interpolation can be relatively slow in comparison
to other methods (Abramov & McEwan, 2004). The high computational cost arises from
the need to insert a new point into the Voronoi diagram for every cell that will make
up the interpolation field, and this geometric process becomes increasingly difficult in
higher dimensions (Park et al., 2006). This has led to the development of discrete (or
digital) natural neighbour interpolation that is significantly quicker than traditional
approaches (Park et al., 2006) and has been applied successfully in a geographical
context (Keller et al., 2015).

While natural neighbour interpolation has various useful properties, and the discrete
form is computationally scalable, there is a great deal of uncertainty associated with
any interpolation. Therefore, being able to associate interpolation estimates with some
form of uncertainty would be highly desirable. Previous efforts for natural neighbour
interpolation have been based upon fitting statistical uncertainty models (Bater & Coops,
2009; Ghosh, Gelfrand & Mlhave, 2012), but this approach is contrary to natural neighbour
interpolation’s useful properties (v), (vi), and (vii). Therefore, for those researchers
who decide that for their data and objectives natural neighbour interpolation is the
best interpolation option, I present an approach to associate the interpolation with a
measure of uncertainty that is consistent with all the useful properties of natural neighbour
interpolation.

MATERIALS & METHODS
Discrete natural neighbour interpolation
In the 2-dimensional planar context that is most relevant to geographical applications,
discrete natural neighbour interpolation begins by calculating a discrete Voronoi diagram.
First, a raster spatial domain C of cells c is defined such that c ∈C ⊂R2 and hence each c
has coordinate attributes x,y for its centre so all ci={xi,yi}.

Etherington (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.282 2/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.282


The data points are then used to define a set P of n data cells P = {p1,p2,p3,...,pn}
where P ∈C , and each data cell has coordinate attributes for its cell centre x,y and value
z , so pi={xi,yi,zi}. When multiple data points occur within a raster cell, the resulting data
cell has a value z that is the mean of all the data point values.

The discrete Voronoi polygon V (pi) that contains all the cells that are closest to each
data cell can then be defined as

V (pi)={c ∈C |d(c→pi)< d(c→pj) ∀ j 6= i} (1)

where d(c→ p) is the Euclidean distance between the centre of the cells c and p. When c is
equally distant from more than one p for convenience c is assigned to the p with smallest
index. The set of n discrete Voronoi polygons then creates the discrete Voronoi diagram

V (P)={V (p1),V (p2),V (p3),...,V (pn)} (2)

that identifies which raster cells are closest to which data cells (Fig. 1A) (Okabe et al., 2000).
In the process of calculatingV (P) another setD(P→C) that records the Euclidean distance
from the set of data cells P to all raster cells C (Fig. 1B) is created. As each data cell pi has
an associated value zi, V (P) can be used to interpolate the data cell values across the raster
to produce Z (P), which in a geographic information system (GIS) context is equivalent to
nearest neighbour interpolation (Burrough & McDonnell, 1998; Tomlin, 1990) (Fig. 1C).

To interpolate the data cell values using natural neighbour interpolation, the set of
Euclidean distances from an interpolation cell ci to all raster cells D(ci→C) is calculated
(Fig. 1D). Then the discrete Voronoi polygon for the interpolation cell V (ci) is defined as

V (ci)={c ∈C |D(ci→C)≤D(P→C)} (3)

that is the set of raster cells that are as close or closer to the interpolation cell than any data
cell. The set V (ci) can then be used to find the set of relevant data cell values

Z (ci)={c ∈Z (P)|c ∈V (ci)} (4)

that will form the basis on the interpolation to that cell (Fig. 1E). The natural neighbour
interpolation estimate ẑ is then calculated as

ẑ(ci)=
∑

Z (ci)
]Z (ci)

(5)

where
∑

Z (ci) is the sum of the cell values in Z (ci) and ]Z (ci) is the number of cells in the
set Z (ci), hence ẑ(ci) is simply the mean of Z (ci). By calculating ẑ(ci) for all raster cells the
natural neighbour interpolation is produced (Fig. 1F).

Calculating uncertainty
Cross-validation error
Global error estimation is a traditional approach to measure the uncertainty of geographic
models (Zhang & Goodchild, 2002). Given a set of n paired observed o and modelled m
values, the absolute error ei for each pair is ei= |mi−oi|, and a global estimate of error
using a method such as the mean absolute error (MAE) is calculated as

MAE =
1
n

n∑
i=1

ei (6)
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Figure 1 Discrete natural neighbour interpolation. (A) For a set P of n data cells p the discrete Voronoi
diagram V (P) defines which raster cells are closest to which data cells and (B) the distance to the closest
data cell D(P→C). (C) V (P) is used to interpolate the values z of the data cells to produce Z (P). (D) For
an interpolation cell ci the distance to all raster cells C is calculated as D(ci→ C), and (E) by comparing
D(ci→ C) to D(P→ C) identifies Z (ci) which are those cells of Z (P) that are as close or closer to the ci
than any data cell p. The mean value of Z (ci) is the natural neighbour interpolation estimate ẑ for ci, and
by repeating this process for all raster cells (F) the natural neighbour interpolation is produced.

Full-size DOI: 10.7717/peerjcs.282/fig-1

that is simply the mean of all the absolute errors (Willmott & Matsuura, 2005).
However, there is little point in doing this for the data cells of natural neighbour

interpolation as given property (i) that it is an exact interpolator the estimated value ẑi
for the data cells will always be the same as the actual value zi so the absolute errors will
always be zero. Therefore, MAE needs to be applied in conjunction with a cross-validation
approach that iteratively withholds each data cell pi from the set of data cells P to produce
the set {P−pi}, and then uses interpolation to estimate the value ẑi at the withheld data
cell pi on the basis of a discrete Voronoi diagram V ({P−pi}) that is developed without the
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withheld data cell. The absolute error ei for each data cell pi is then calculated as ei= |ẑi−zi|
and the cross-validation MAE can be calculated using Eq. (6).

Even with cross-validation theMAE like all global error estimates, such as the commonly
used root-mean-square error (RMSE), are not ideal measures of uncertainty for a spatial
interpolation (Zhang & Goodchild, 2002). As non-spatial methods that average errors
across space they cannot indicate if errors are consistent across space or if higher errors in
one region are balanced out by lower errors in another region. This is a critical limitation
of global error estimation methods, as for application purposes it could be very useful to
know where the interpolation uncertainty is higher or lower.

Cross-validation error field
One way to communicate the spatial uncertainty of geographical information is to map
estimates of error (Zhang & Goodchild, 2002). This has been attempted before for natural
neighbour interpolation (Bater & Coops, 2009; Ghosh, Gelfrand & Mlhave, 2012), but as
already noted these statistical modelling approaches are contrary to natural neighbour
interpolation’s useful properties (v), (vi), and (vii).

Another way to map estimates of error that is consistent with the properties of natural
neighbour interpolation is the cross-validation error field (Willmott & Matsuura, 2006).
This process begins in a similar manner to the cross-validation MAE, but once e has been
calculated for each data cell, rather than average the errors using Eq. (6) the errors are
assumed to be spatially autocorrelated and interpolation is used to interpolate e to estimate
an absolute error field ê. This use of localised absolute errors is highly advantageous
as it is consistent with property (iii) of natural neighbour interpolation and allows for
error estimates to reflect local changes in the spatial-autocorrelation of the phenomenon
being interpolated, with lower errors in more autocorrelated areas and higher errors less
autocorrelated areas.

However, while the cross-validation error field does indicate where interpolation errors
are likely to be higher, it cannot be used directly as a measure of uncertainty for natural
neighbour interpolation as ultimately the interpolation is calculated using all n data cells
and given property (i) of natural neighbour interpolation is that it is an exact interpolator
we know we will have zero error and hence zero uncertainty at the data cells.

On the basis of Tobler’s first law of geography that ‘‘everything is related to everything
else, but near things are more related than distant things’’ (Tobler, 1970), Zhang &
Goodchild (2002) recognise that distance is an important component of uncertainty as
locations nearer to data should have less uncertainty. This relationship of increasing
error with increasing distance to data has even been demonstrated for natural neighbour
interpolation (Keller et al., 2015). Therefore, I propose to extend the cross-validation error
field idea by incorporating distance to produce a cross-validation error-distance field that
will better represent the uncertainty associated with natural neighbour interpolation.

Natural neighbour distances
A positive relationship between natural neighbour interpolation absolute errors and the
minimum distance to a data cell has been shown (Keller et al., 2015), so this relationship
could be used to predict absolute error as a function of distance from the nearest data
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Figure 2 Computation of the natural neighbour distance. (A) For an interpolation raster cell ci the Eu-
clidean distance to all data cells dj is calculated, and the discrete Voronoi diagram V (P) is used to produce
D(P) that interpolates the distances by the discrete Voronoi polygons. (B) the cells of D(P) that are closer
to ci than any data cell defines the set D(ci) and the mean value of this set gives the natural neighbour dis-
tance δ for ci. (C) When repeated for all raster cells a natural neighbour distance field is produced.

Full-size DOI: 10.7717/peerjcs.282/fig-2

point. However, minimum distance to a data cell is a simplistic metric that does not
account for the number and spatial configuration of the data cells (Keller et al., 2015).
In addition, using the minimum distance from data cells D(P) produces a field that has
discontinuities along the edges of the discrete Voronoi polygons (Fig. 1B) that are contrary
to the property (ii) of the natural neighbour interpolation method that creates surfaces free
of any discontinuities. Therefore, the natural neighbour distance δ is presented as a more
appropriate measure of distance that incorporates information about the number, spatial
distances, and relative positions of the data cells forming the interpolation.

The method to calculate δ follows a very similar approach to that of calculating
the interpolation, and therefore recycles various data structures that are used for the
interpolation. For each interpolation cell ci the Euclidean distances to all data cells are
calculated dj = d(ci→pj), and then using the Voronoi diagram V (P) these distances are
interpolated via nearest neighbour interpolation to produce D(P) that is the distance to
the data cells mapped into the discrete Voronoi polygons (Fig. 2A).

The set V (ci) can be used again to find the set of relevant data cell distances

D(ci)={c ∈D(P)|c ∈V (ci)} (7)

that will form the basis of the interpolation to that cell (Fig. 2B). The natural neighbour
distance is then calculated as

δ(ci)=
∑

D(ci)
]D(ci)

(8)

that is simply the mean value of the distances for the cells in D(ci). With δ calculated
for all raster cells it becomes evident that unlike minimum distance that contains spatial
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discontinuities (Fig. 1B) the natural neighbour distance creates a smooth surface free of any
discontinuities (Fig. 2C). Also, the minimum distance is an optimistic measure of distance
as it only accounts for the closest data cell, whereas by comparison the distances for δ are
larger as they recognise that the other data cells involved in the interpolation are further
away.

Cross-validation error-distance field
To incorporate δ into the estimate of error to produce a cross-validation error-distance
field, the first step is still a cross-validation process in which each data cell is iteratively
withheld and an estimate of the value of the withheld data cell is made with the remaining
n−1 data cells. However, the absolute error e = |zi− ẑi| is now divided by the natural
neighbour distance δ to calculate a rate of error r for each data cell

ri=
|zi− ẑi|
δi

(9)

with these rates of error stored so that each data cell becomes pi={xi,yi,zi,ri}. Then when
conducting the natural neighbour interpolation, while estimating the value ẑ an estimate
of the rate of error r̂ can be simultaneously produced (Fig. 3A) and used to produce an
error estimate

êi= r̂i×δi (10)

that when estimated for all cells produces a cross-validation error-distance field (Fig. 3B).
The cross-validation error-distance field clearly captures information from the rate of error
field (Fig. 3A) and the natural neighbour distance field (Fig. 2C) with lower error estimates
in areas that have either low rates of error or natural neighbour distances, and higher
error estimates in areas that have higher rates of error and/or natural neighbour distances.
Therefore, the cross-validation error-distance field captures uncertainty information
relating to local variation in both the autocorrelation of the underlying phenomenon field
being interpolated and the spatial distribution of the data cells providing data for the
interpolation.

Virtual geography experiments
The discrete natural neighbour interpolation and cross-validation error-distance field
algorithms described here were implemented using a Python computational framework
(Pérez, Granger & Hunter, 2011) using the NumPy (Van der Walt, Colbert & Varoquaux,
2011), SciPy (Virtanen et al., 2020), and Matplotlib (Hunter, 2007) packages. Having
proposed a new method, it is sensible to provide an evaluation of how performance
varies under different conditions. However, in doing so it is important to remember
that interpolation errors result not only from the efficacy of the interpolation method,
but also from distribution of data points and the real (but unknown) distribution of the
phenomenon field being interpolated (Willmott & Matsuura, 2006) that will be unique
to each study. Also, what constitutes an acceptable level of interpolation error will also
vary between studies. Therefore, the objective here is try and identify simple trends in
performance to verify the methods work as would be expected and to provide some basic
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Figure 3 Computation of the cross-validation error-distance field. (A) The rate of absolute error for
each data cell ri calculated through cross-validation, and then an estimated rate of absolute error field r̂ is
produced by natural neighbour interpolation of r . (B) The cross-validation error-distance field ê that is
the product of r̂ and the natural neighbour distance δ for each interpolation cell.

Full-size DOI: 10.7717/peerjcs.282/fig-3

information that will help an analyst to make a more detailed assessment of whether
interpolation is feasible or not.

To evaluate the effectiveness of the proposed interpolation methods, a series of in
silico virtual geography experiments were conducted. Virtual geographies are a very useful
approach for methodological evaluation as the conditions can be tightly controlled and
explored fully. Virtual geographic phenomena fields for grids of 100× 120 cells were created
using the NLMpy package (Etherington, Holland & O’Sullivan, 2015) implementation of
the mid-point displacement fractal algorithm that produces fields representing natural
phenomena such as land surfaces (Fournier, Fussell & Carpenter, 1982). The spatial-
autocorrelation of the values produced by the mid-point displacement method can be
controlled by varying the h parameter to produce fields with spatial-autocorrelation that
varies from low to high (Fig. 4).

The underlying premise of the experiments was that with random sampling of a virtual
geographic phenomenon with actual values z (Fig. 5A), natural neighbour interpolation
can be used to produce estimated values ẑ (Fig. 5B). The absolute difference between the
actual values and the estimated values is the value error e(ẑ)= |ẑ− z | (Fig. 5C) that will
indicate how well the natural neighbour interpolation method works. The value error is
also estimated by the cross-validation error-distance field ê (Fig. 5D), and the absolute
difference between the value error e(ẑ) and the estimated error ê is the error of errors
e(ê)= |ê−e(ẑ)| that indicates how well the proposed cross-validation error-distance field
performs (Fig. 5E).
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Figure 4 Examples of virtual geographic phenomena fields created by the mid-point displacement
fractal algorithm. The spatial-autocorrelation varies from low to high and is controlled by the h parame-
ter that in these examples has been set to (A) h= 0, (B) h= 1, and (C) h= 2.

Full-size DOI: 10.7717/peerjcs.282/fig-4

To summarise the performance of both natural neighbour interpolation and the cross-
validation error-distance field, the MAE (Eq. (6)) was calculated for the cells inside and
outside of the convex hull of the sampling points for both e(ẑ) (Fig. 5C) and e(ê) (Fig. 5E).
The MAE was chosen as the error statistic as it expresses error in the same units as the
variable of interest and is insensitive to the number of cells in the sample (Willmott &
Matsuura, 2006), which was important here as the convex hull area would vary as a result
of the random sampling.

When the spatial-autocorrelation and number of sample points is reduced we would
expect a reduction in performance of both the natural neighbour interpolation and the
cross-validation error-distance field (Figs. 5A–5E versus Figs. 5F–5J). Therefore, to examine
how the natural neighbour methods performed under varying conditions 500 experiments
were conducted in which h randomly varied uniformly between 0.0 to 2.0 and n randomly
varied uniformly between 10 to 100. The cross-validation MAE was also calculated for each
experiment to assess if the cross-validation MAE could be used as an indicator of expected
interpolation performance.

RESULTS
The results from the virtual geography experiments demonstrate that, as would be expected
for the cells within the convex hull of the sampling points, the MAE of the value errors
e(ẑ) from the natural neighbour interpolation (Fig. 6A) and error of errors e(ê) from the
cross-validation error-distance field (Fig. 6B) reduced as the number of data points n and
the spatial-autocorrelation h of the underlying virtual phenomena fields increased. The
effect of h was more important, as when h was low or high n did not have much effect
on the performance. The importance of h is to be expected as all interpolation methods
work on the assumption that the phenomenon being interpolated has sufficient levels of
spatial-autocorrelation.
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Figure 5 The natural neighbour interpolation virtual geography experimental process. (A) A virtual
geography phenomenon field z with spatial-autocorrelation of h= 2 and n= 20 random sampling points,
(B) the resulting natural neighbour interpolation ẑ from the sampling points, and (C) value error e(ẑ) =
|ẑ − z |. (D) The cross-validation error-distance field estimated error ê that is also produced during inter-
polation is then compared to the value error e(ẑ) to produce (E) the error of errors e(ê) = |ê − e(ẑ)|. In-
terpolation performance as a function of e(ẑ) and e(ê) was summarised for cells within and outside the
convex hull of the sampling points. The same experimental process in (A–E) is replicated in (F–J) for a
virtual geography phenomenon field with spatial-autocorrelation of h = 1 and n = 10 random sampling
points, demonstrating a reduction in interpolation performance at lower levels of spatial-autocorrelation
and sampling.

Full-size DOI: 10.7717/peerjcs.282/fig-5

Therewas also a very strong correlation between e(ẑ) and e(ê) (Fig. 6C) and this similarity
of behaviour under different conditions indicates that the cross-validation error-distance
field meets the objective of providing a measure of uncertainty that is consistent with all
the useful properties of natural neighbour interpolation.

While the results of the virtual geography experiments (Figs. 6A and 6B) indicate that
lower average errors can be expected when n∼> 20 and h∼> 1.0 (Fig. 4B) such criteria cannot
be easily applied by an analyst as while n is known h is unknown and in many situations will
be hard to guess. Fortunately, while the cross-validation MAE that can always be calculated
by an analyst is generally slightly higher than the e(ẑ) there is still a strong correlation
between the two variables (Fig. 6D), and this correlation is extremely useful as it indicates
to an analyst the likely levels of e(ẑ) and therefore e(ê) too.

A comparison of e(ẑ) and e(ê) inside and outside of the convex hull around the sampling
points clearly shows that while the performance follows a similar trend e(ẑ) and e(ê) can
be expected to be higher outside of the convex hull (Figs. 6E–6F).
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Figure 6 Performance of natural neighbour interpolation and cross-validation error-distance fields
from 500 virtual geography experiments. The mean absolute error (MAE) of cells within the convex hull
around sampling points for different experimental combinations of the number n of random sampling
points and the spatial-autocorrelation h of virtual phenomena fields for (A) the value errors e(ẑ) from the
natural neighbour interpolations and (B) the error of errors e(ê) from the cross-validation error-distance
fields that (C) were highly correlated. (D) Comparison of e(ẑ) and the cross-validation MAE derived from
the sampling points. Comparison of interpolation performance inside and outside the convex hull around
the sampling points for (E) e(ẑ) and (F) e(ê).

Full-size DOI: 10.7717/peerjcs.282/fig-6

Etherington (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.282 11/16

https://peerj.com
https://doi.org/10.7717/peerjcs.282/fig-6
http://dx.doi.org/10.7717/peerj-cs.282


DISCUSSION
The virtual geography experiments indicate that under suitable conditions the natural
neighbour interpolation field and the cross-validation error-distance field should provide
useful estimates of a geographic phenomenon field with associated uncertainty. The
fact that the cross-validation error-distance field reflects localised changes in the spatial
distribution of both the underlying phenomenon and the point data is particularly useful,
and contrasts with other spatial interpolation uncertainty methods such asMAE and RMSE
that estimate error using a global approach.

The virtual geography experiments demonstrated that the performance of natural
neighbour interpolation will be lower outside of the convex hull around the data points, as
is expected (Watson, 1999)—although this is also likely to be true of all spatial interpolation
techniques as beyond the convex hull interpolation becomes extrapolation. However, we
do not suggest that interpolation should be restricted to within the convex hull as there
may be occasions where the area of interest may occur slightly outside the convex hull.
For example, when interpolating rainfall data from weather stations that are usually sited
in settlements, there are likely to be areas of coastline along peninsulas and headlands that
will not fall within a convex hull around the weather stations (Lyra et al., 2018). Therefore,
it is logistically useful that discrete natural neighbour interpolation can produce estimated
values beyond the convex hull of the available data points. What is helpful in this context
is that the cross-validation error-distance field incorporates information on distance from
data points, therefore as interpolations move further beyond the convex hull the error-field
should increase to help to guard against erroneous estimates.

However, the responsibility of appropriate use of natural neighbour interpolation still
belongs with the spatial analyst who must make decisions about whether interpolation is
useful based on their knowledge of: the expected spatial-autocorrelation of the phenomenon
being interpolated, the number and distribution of data points, the location of the areas for
which interpolations are required, and the magnitude of the estimated errors in relation
to the magnitude of the value estimates. And of course, the cross-validation error-distance
field only captures uncertainty in the interpolation itself and does not incorporate any
uncertainty that may arise from the data itself. While I have argued against the use of
the cross-validation MAE as a measure of uncertainty, I would recommend that analysts
continue to calculate the cross-validation MAE given its strong correlation with the
performance of the natural neighbour interpolation, and therefore the performance of the
cross-validation error-distance field too. Analysts can then use the cross-validation MAE
as a helpful guide when deciding if interpolation is advisable or not. When doing so it is
important to remember that as the cross-validation MAE is based on the use of n−1 data
cells, the error estimates may be slightly higher than the real errors that would be based
on all n data that is ultimately used in the interpolation (Willmott & Matsuura, 2006).
Therefore, the cross-validation MAE should be seen as a slightly conservative indication of
likely interpolation performance.
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CONCLUSION
For those researchers for whom natural neighbour interpolation is the best interpolation
option, the cross-validation error-distance field method presented provides a way to
assess the uncertainty associated with natural neighbour interpolations that is consistent
with the useful properties of natural neighbour interpolation. While the cross-validation
error-distance method has been described here in the context of discrete natural neighbour
interpolation, there is no reason why this same approach could not be applied to geometric
natural neighbour interpolation as well. Discrete natural neighbour interpolation has been
implemented here in two-dimensional space for ease of visualisation, but the method will
generalise to higher dimensions (Park et al., 2006) and in principle I cannot see any reason
why the uncertainty method presented could not also be applied in higher dimensions
by those who wish to do so. The approach could easily be adapted to other interpolation
methods, as all that is required is a measure of weighted distances to the data points
creating the interpolation. Given the promise of the algorithm, and to encourage its use
and development, the Python code used to generate the examples presented is freely
available under the permissive MIT License as supplementary material.
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