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ABSTRACT
Integrating renewable energy sources into the power grid is becoming increasingly
important as the world moves towards a more sustainable energy future in line with
the United Nations (UN) Sustainable Development Goal (SDG) 7 (Affordable and
Clean Energy). However, the intermittent nature of renewable energy sources can
make it challenging to manage the power grid and ensure a stable supply of
electricity, which is crucial for achieving SDG 9 (Industry, Innovation and
Infrastructure). In this article, we propose a deep learning model for predicting
energy demand in a smart power grid, which can improve the integration of
renewable energy sources by providing accurate predictions of energy demand. Our
approach aligns with SDG 13 (Climate Action) on climate action, enabling more
efficient management of renewable energy resources. We use long short-term
memory networks, well-suited for time series data, to capture complex patterns and
dependencies in energy demand data. The proposed approach is evaluated using four
historical short-term energy demand data datasets from different energy distribution
companies, including American Electric Power, Commonwealth Edison, Dayton
Power and Light, and Pennsylvania-New Jersey-Maryland Interconnection. The
proposed model is compared with three other state-of-the-art forecasting algorithms:
Facebook Prophet, support vector regression, and random forest regression. The
experimental results show that the proposed REDf model can accurately predict
energy demand with a mean absolute error of 1.4%, indicating its potential to
enhance the stability and efficiency of the power grid and contribute to achieving
SDGs 7, 9, and 13. The proposed model also has the potential to manage the
integration of renewable energy sources effectively.
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INTRODUCTION
The world is currently experiencing a serious dilemma in the energy field due to the rapid
depletion of fossil fuels due to rising populations, urbanization, and technological
advancements. In addition, burning fossil fuels results in water and air contamination,
climate change, and the production of greenhouse gases, all of which contribute to the
acceleration of global warming and have severe adverse effects on ecosystems and human
health (Islam et al., 2023b). To mitigate the impacts of climate change, scientists,
academics, and policymakers are working to mainstream renewable energy (RE) as a
replacement for carbon-based power sources (Islam et al., 2023a). To achieve the 1.5 �C
scenario goal by 2050, the most significant threshold is to ensure 90% electricity generation
from RE sources and 79% of the overall energy consumption (IRENA, 2022). Over the last
decade, the installation and generation of renewable energy in terms of off-grid and
on-grid systems have increased significantly. According to the International Renewable
Energy Agency (IRENA), the latest trends in renewable energy are shown in Fig. 1 (IRE
Agency, 2023). This figure shows that the maximum number of installations get direct
connections to the grid, and the increase in solar and wind-based power plants is
noticeable compared to other technologies. Portions of this text were previously published
as part of a preprint (https://arxiv.org/pdf/2304.03997v3).

Background
The imperative transition towards a sustainable future necessitates integrating renewable
energy sources into power grids, reshaping global energy systems (Al-Shetwi, 2022; Jenkins,
Long & Wu, 2015). Aligned with the United Nations’ (UN) ambitious goal of universal
access to affordable, reliable, and modern energy by 2030 (United Nations, 2023; He et al.,
2022), this integration emerges as pivotal for sustainable development. The UN Sustainable
Development Goals (SDGs) set the framework, with SDG 7 (Affordable and Clean
Energy), SDG 9 (Industry, Innovation and Infrastructure), and SDG 13 (Climate Action)
standing as critical benchmarks for an equitable and environmentally sustainable energy
landscape (Busch & Wydra, 2023).

Deep learning models play a crucial role in achieving these SDGs, particularly in
predicting energy demand with precision. This accuracy enables optimal management of
renewable resources, diminishes reliance on fossil fuels, reduces greenhouse gas emissions,
and fortifies resilient and efficient infrastructure. Achieving high shares of renewable
energy, as emphasized by SDG 7, diversifies the energy mix, decreases costs, and enhances
accessibility.

Extending the focus to SDG 9, the study underscores the importance of fostering
sustainable infrastructure and promoting innovation in the energy sector. Additionally,
SDG 13 becomes a compelling imperative as the transition to renewable energy
significantly contributes to mitigating the impacts of climate change.

Despite the promise of renewable sources, challenges persist, notably the
unpredictability of energy generation (Ali et al., 2021; Maier & Gemenetzi, 2014).
Addressing this challenge requires accurate predictions of energy demand, aligning with
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SDG 7. Developing effective predictive models becomes paramount in realizing these
objectives.

This study delves into the intricate landscape of facilitating greater integration of
renewable energy by predicting aggregated energy demand, aligning with multiple SDGs
crucial for constructing an equitable and sustainable energy future (Aydos et al., 2022).

Harnessing clean energy sources such as hydroelectricity, geothermal, biomass, solar,
and wind power not only reduces energy prices but also assures a dependable and
sustainable energy supply globally (Perera, Coccolo & Scartezzini, 2019; United Nations
Department of Economic and Social Affairs, 2017). Addressing climate change through the
grid integration of renewable energy becomes pivotal for reducing greenhouse gas
emissions (Giri et al., 2022) and mitigating its adverse effects (Joseph & Inambao, 2020).
The transition from fossil fuels to renewable energy stands as a tangible step in fulfilling
climate commitments under the Paris Agreement, safeguarding the planet for future
generations (Akaev & Davydova, 2020).

While the integration of renewable sources holds promise, challenges persist, notably
the unpredictability of energy generation (Ali et al., 2021; Maier & Gemenetzi, 2014).
Tackling this challenge necessitates predicting energy demand using deep learning for a
smart power grid, reflecting SDG 7. The development of accurate predictive models is a
critical enabler in achieving this.

Literature review
The rapid advancement of machine learning techniques has significantly transformed the
energy sector, offering innovative solutions to complex challenges such as energy

Figure 1 Global renewable energy trend and grid application scenario.
Full-size DOI: 10.7717/peerj-cs.2819/fig-1
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consumption prediction, load forecasting, and efficient energy management. As the
demand for sustainable and efficient energy systems grows, researchers have increasingly
turned to advanced computational models, including deep learning and hybrid
approaches, to enhance the accuracy and reliability of energy-related predictions. This
literature review explores recent developments in the application of machine learning
techniques to energy systems, categorizing the reviewed studies based on their
methodologies, applications, and contributions. From hybrid deep learning models for
household energy consumption to long short-term memory (LSTM)-based frameworks
for smart grid applications, the reviewed works highlight the transformative potential of
machine learning in addressing critical energy challenges. The following subsections
provide a detailed analysis of these studies, organized by their thematic focus and
methodological innovations.

Hybrid deep learning models for energy consumption prediction
Machine learning techniques have garnered considerable attention in the energy sector
recently. Within this evolving landscape, several noteworthy innovations have come to the
forefront. For instance, an innovative hybrid deep learning model, which combines LSTM
(You et al., 2023) neural networks with the stationary wavelet transform, has demonstrated
its ability to enhance predictions of household energy consumption. This model addresses
challenges associated with irregular behaviors and univariate data issues (Yan et al., 2019).
Additionally, in the context of developing countries, the application of artificial neural
networks (ANNs) (Giri et al., 2023) coupled with meta-heuristic techniques has proven
effective for forecasting load demand. This approach is pivotal in guiding energy-efficient
growth in regions where technical resources and infrastructure are limited (Arnob et al.,
2023). Furthermore, a novel framework has been introduced to streamline residential
energy management. This framework integrates an ANN-based forecast engine with a
controller using the Differential Evolution Algorithm modified for Grey Wolves (DA-
GmEDE). The outcome is a substantial reduction in energy costs and peak-to-average
ratios, emphasizing the potential for cost-effective and efficient energy management within
the smart grid (Hafeez et al., 2020).

Deep learning models for smart grid applications
The authors of the article (Amalou, Mouhni & Abdali, 2022) analyzed the efficiency of
different deep learning models, including recurrent neural network (RNN), LSTM, and
gated recurrent unit (GRU), in predicting energy demand for the Smart Grid Smart City
project using datasets from 2010 to 2014. The models are evaluated using root mean
squared error (RMSE), mean absolute error (MAE), and coefficient of determination ðR2Þ
scores. The results showed that GRU outperforms basic RNN and LSTM with the lowest
RMSE and highest R2 score due to its ability to deal with the vanishing gradient problem
and its impact on the number of parameters.

In another work (Alrasheedi & Almalaq, 2022), the authors proposed using hybrid deep
learning methods to improve load forecasting accuracy in the Saudi smart grid system. It
aims to develop reliable forecasting models and understand the relationship between
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various features and attributes in the Saudi smart grid. The model uses a real dataset from
Jeddah and Medinah grids for an entire year with a one-hour time resolution and
compares prediction results with conventional deep learning methods, including RNN
(Hopfield, 1982), LSTM (Hochreiter & Schmidhuber, 1997), GRU (Dey & Salem, 2017), and
convolutional neural network (LeCun et al., 1998). The results show that the proposed
hybrid deep learning models, particularly CNN-GRU and CNN-RNN, provide 1.4673%
and 1.222% improvement in load forecasting accuracy, respectively, compared to the
benchmark strategy.

LSTM-based models for household energy consumption
Shachee, Latha & Hegde Veena (2022) used LSTM-RNN-based deep learning architecture
to predict household electrical energy consumption two months in advance. The model is
trained on relevant features and evaluated by comparing actual and predicted values. The
proposed model helps households conserve energy and is evaluated using the UCI
repository dataset of domestic electric consumption (Dua & Karra Taniskidou, 2017). The
results showed that the LSTM model has much higher precision than statistical and
engineering prediction models, with a compatible RMSE of 0.6 compared to conventional
models.

The study by Taleb et al. (2022) proposed a hybrid machine learning model that
combines standard neural networks with an automatic weight update process based on
past errors. This flexible model can predict energy demand over various time ranges and
regions. The effectiveness of the proposed model was demonstrated by achieving a MAE of
372.08 in energy demand prediction for Mayotte Island.

Residential load forecasting with LSTM models

Residential load forecasting is becoming increasingly important as smart meters are
increasingly deployed at the household level to collect historical data on energy
consumption. In the study by Mubashar et al. (2022), they proposed a method for load
forecasting and validated it using real-world data sets. They compared the performance of
their proposed method, which uses LSTM models, with two commonly used techniques,
autoregressive integrated moving average (ARIMA) and exponential smoothing. They
evaluated the accuracy of load forecasts generated using these three techniques using real
data from 12 houses over three months. The results indicated that LSTM models
performed better than the other two methods for time series-based predictions. Their
model achieved an MAE of 2.44736176.

Multivariate prediction of energy time series
Another work by Rosato et al. (2019) presented a novel deep learning approach for
multivariate prediction of energy time series. The proposed approach utilized
convolutional neural network and long short-term memory models to combine and filter
several correlated time series while considering their long-term dependencies. The learning
scheme is implemented as a stacked deep neural network, with one or more layers feeding
their output into the input of the subsequent layer. The effectiveness and accuracy of the
proposed approach are demonstrated through real-world applications in the energy sector,
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highlighting its robustness and accuracy. The lowest RMSE the method achieved among all
the variations tested is 2.252, achieved on a baseline 1-day forecast.

Electricity demand forecasting with LSTM
Electric power load demand forecasting is critical for energy management, requiring
accurate planning and infrastructure investment predictions. Despite a lot of research in
this area, accuracy remains an issue. Nguyen, Duong & Le (2020) proposed an electricity
demand forecasting method based on the LSTM deep learning model, tested using 6 years
of power consumption data in Vietnam. The proposed method achieved an RMSE of 9.63,
indicating its potential as a valuable tool for energy sector studies.

Short-term load forecasting with advanced models
Pramono et al. (2019) proposed a method for short-term load forecasting using a
wavenet-based model that employs dilated causal residual CNN and LSTM layers. The
proposed model outperforms other deep learning-based models in terms of RMSE and
MAE, achieving RMSE and MAE equal to 203.23, and 142.23 for the ENTSO-E testing
dataset 1, and 292.07 and 196.95 for ENTSO-E dataset 2. For the ISO-NE dataset, the
RMSE, and MAE are equal to 85.12, 58.96 for ISO-NE testing dataset 1 and 85.31, and
62.23 for ISO-NE dataset 2. The proposed method aimed to support the demand response
program in hybrid energy systems, especially those using renewable and fossil sources.
Two different ways of conducting model testing were conducted: one using datasets with
identical distributions as the validation data and the other with unknown distributions.

Non-intrusive attention-augmented deep learning models
This study presents a non-intrusive attention-augmented deep learning model, referred to
as NAP-BiLSTM, for forecasting short-to-mid-term electricity consumption (Li et al.,
2022). The architecture integrates a non-intrusive attention-based preprocessing (NAP)
module with a bidirectional long short-termmemory (BiLSTM) network. The NAPmodule
acts as an independent attention mechanism applicable to time series analysis without
altering the fundamental structure of the neural network. The model’s performance is
validated through two experimental setups: univariate forecasting using United States
electricity consumption data and multivariate forecasting incorporating meteorological and
energy data from Valencia. Experimental results indicate that NAP-BiLSTM surpasses
existing deep learning models in terms of RMSE, MAE, and mean absolute percentage error
(MAPE) across both prediction tasks. Furthermore, the proposed approach achieves a MAE
reduction of 2.36% to 16.52% when compared to conventional models such as AM-
BiLSTM, Stacked-BiLSTM, Adaboost, and attention-CNN-LSTM for mid-term
multidimensional time series forecasting.

Advantages of LSTM networks for energy demand forecasting
Compared to support vector regression (SVR) and random forest regression (RFR), LSTM
networks offer several advantages for energy demand forecasting. Unlike traditional
models that rely on short-term statistical patterns, LSTMs capture long-term
dependencies, making them highly effective for time series forecasting. Their gating
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mechanisms, particularly the forget gate, allow the model to selectively retain useful
information while discarding irrelevant data, preventing challenges like the vanishing
gradient problem. Additionally, energy demand patterns are highly non-linear, and
LSTMs adapt dynamically through hidden states, unlike linear regression models.
Furthermore, LSTMs naturally learn seasonal and cyclic behaviors, making them
well-suited for applications requiring dynamic adaptation. These capabilities enable LSTM
models to outperform traditional regression-based forecasting techniques, making them
particularly valuable for smart grid applications.

The performance of different models studied in different works is summarized in
Table 1. This table shows the comparison of the studies with respect to different evaluation
metrics. From the table, it can be observed that the LSTM-RNN (Shachee, Latha & Hegde
Veena, 2022) model did not report the MAE and R2 values mentioning only RMSE. The
CNN-GRU (Alrasheedi & Almalaq, 2022) model achieved a high R2 score but did not
report the MAE and RMSE values. On the other hand, the LSTM and GRU models
reported MAE and R2 values, but their performance was inferior to the proposed model.
Apart from these, most studies did not report R2 values.

The related works in this field demonstrate various approaches for predicting energy
demand using machine learning techniques such as neural networks and time series
analysis. These studies have shown promising results in improving energy demand
forecasts, highlighting the potential of machine learning in the energy sector. However,
there is still room for improvement, and further research is needed to refine and optimize
these techniques to provide more accurate and reliable predictions.

Problem statement
Machine learning techniques have gained prominence in the energy sector, showcasing
innovations in predicting energy demand. Noteworthy models, such as a hybrid approach
combining LSTM networks with stationary wavelet transform, address irregular behaviors
but leave gaps in providing a standardized evaluation framework (Yan et al., 2019).
Similarly, the effectiveness of ANNs in developing countries lacks comprehensive
evaluation metrics, leaving uncertainties in their general applicability for load demand
forecasting (Arnob et al., 2023; Giri et al., 2023).

Novel frameworks integrating ANN-based forecast engines and controllers exhibit
potential for cost-effective energy management, but challenges persist in refining
forecasting models and understanding feature relationships within smart grids (Hafeez
et al., 2020). The comparative analysis by Amalou, Mouhni & Abdali (2022) reveals the
superiority of GRU over RNN and LSTM, yet achieving accuracy in load forecasts remains
a concern. The proposed hybrid deep learning models in the Saudi smart grid system show
promise, but the need for further refinement to enhance forecasting accuracy is evident
(Alrasheedi & Almalaq, 2022).

Studies predicting household energy consumption using LSTM-RNN architectures
indicate higher precision but lack comprehensive reporting on metrics such as MAE and

R2 values, posing challenges in evaluating overall model performance (Shachee, Latha &
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Hegde Veena, 2022). Taleb et al.’s (2022) flexible energy demand prediction model shows
effectiveness but raises questions about its adaptability across various contexts.

Residential load forecasting studies highlight the superior performance of LSTMmodels
compared to traditional methods, yet discrepancies in reported metrics raise concerns
about the robustness of these findings (Mubashar et al., 2022). Additionally, the
multivariate prediction approach using CNN-LSTM models for energy time series lacks
standardized benchmarks, hindering a comprehensive understanding of its effectiveness
(Rosato et al., 2019).

Despite advancements, the accuracy and reliability of energy demand predictions
remain inconsistent across various models, revealing research gaps in standardization of
evaluation metrics and the need for further model refinement. The absence of a unified
framework hampers comparability and generalizability of results, necessitating
comprehensive research to address these gaps and enhance the overall efficiency and
sustainability of energy systems.

Key contributions
In alignment with recent studies and the defined objectives, this research introduces a
novel approach utilizing deep learning, a sub-field of machine learning tailored for
analyzing sequential data, particularly time series data (Ismail Fawaz et al., 2019; Hossain
et al., 2022). The proposed methodology leverages a LSTM network, a type of RNN
explicitly designed to model sequential data with temporal dependencies (Hochreiter &
Schmidhuber, 1997). Training the model involves utilizing historical energy demand data,
and its performance is rigorously evaluated using metrics such as MAE, RMSE, and R2.

In addition to its prowess in accurately predicting energy demand, our proposed
method showcases robust generalization capabilities for previously unobserved data. The
ability to forecast energy demand accurately can revolutionize power grid management,
fostering more efficient distribution and utilization of renewable energy sources while
diminishing reliance on nonrenewable alternatives. Moreover, the proposed method has

Table 1 Performance comparison of different studies.

Reference Year Model MAE R2 RMSE

Li et al. (2022) 2022 NAP-BiLSTM 0.02 – 0.027

Amalou, Mouhni & Abdali (2022) 2022 LSTM 0.021 0.53 0.039

Amalou, Mouhni & Abdali (2022) 2022 GRU 0.022 0.64 0.034

Alrasheedi & Almalaq (2022) 2022 CNN-GRU – 0.973 0.816

Shachee, Latha & Hegde Veena (2022) 2022 LSTM-RNN – – 0.6

Taleb et al. (2022) 2022 CNN-LSTM-MLP 372.08 – –

Mubashar et al. (2022) 2022 LSTM 2.447 – –

Rosato et al. (2019) 2019 CNN-LSTM – – 2.252

Nguyen, Duong & Le (2020) 2020 LSTM – – 9.63

Pramono et al. (2019) 2019 CNN-LSTM-ENTSO-E 142.23 – 203.23

Pramono et al. (2019) 2019 CNN-LSTM-ISO-NE 58.96 – 85.12
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the capacity to enhance overall power infrastructure efficiency, cut costs, and facilitate the
seamless integration of renewable energy sources.

The key contributions of this work extend beyond technical advancements to
encompass a positive impact on SDGs, particularly SDG 7 (Affordable and Clean Energy),
SDG 9 (Industry, Innovation, and Infrastructure), and SDG 13 (Climate Action). These
contributions align with the United Nations’ broader agenda for sustainable development.
The specific contributions are as follows:

. Introduction of LSTM-based deep learning model: The proposed deep learning model
addresses the pivotal SDG 7, ensuring affordable and clean energy for all. By enhancing
the precision of energy demand forecasts, the model promotes efficient utilization of
renewable energy sources, thus contributing to a sustainable and accessible energy
future.

. Minimization of MAE: The emphasis on minimizing MAE in the energy demand
prediction model directly supports SDG 9 by fostering innovation and infrastructure
development. Accurate energy forecasts enable infrastructure optimization, paving the
way for more sustainable and resilient energy systems.

. Comprehensive model evaluation: The rigorous evaluation of the proposed approach
using various metrics, including MAE, RMSE, R2, and MAPE aligns with SDG 13. By
improving the accuracy of energy demand predictions, the model contributes to climate
action efforts, reducing reliance on nonrenewable energy sources and mitigating
environmental impacts.

In essence, this article’s primary contributions lie in technical advancements and in
addressing global challenges outlined in the SDGs. The research aligns with the United
Nations’ vision for a sustainable future, emphasizing the role of accurate energy demand
forecasting in achieving key sustainable development objectives.

The remaining sections of this article are structured as follows. The study’s materials
and methods, including data acquisition and pre-processing, model development,
evaluation, and deployment, are described in detail in the following section. The
experimental findings are then presented in the results and discussion section, along with a
comparison to other existing methods. Finally, the study concludes with recommendations
for future research.

MATERIALS AND METHODS
In this study, we propose an approach based on deep learning for forecasting energy
demand in a smart grid. The primary objective of this strategy is to improve the integration
of renewable energy sources by providing accurate energy demand forecasts that can aid in
the administration of the power grid. The proposed method continues with model
evaluation and deployment, beginning with data collection, pre-processing, and model
development. Starting with the formulation of the problem, we will describe each phase in
detail and explain the tools and techniques used at each stage. The overview of the
methodology employed in this study is shown in Fig. 2.
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Problem formulation
The problem formulation section provides the foundation and context for the proposed
solution in the study by clearly defining the objective, scope, and challenges of the energy
demand forecasting problem. The problem of predicting energy demand for a smart power
grid can be formulated mathematically as follows:

Given a time series of historical energy demand data, represented by a sequence of
vectors <D ¼ d1; d2; . . . ; dn>, where di is a vector of energy demand values at time i, the
goal is to predict the energy demand at a future time, represented by a vector dnþh, where h
is the number of time steps ahead for which the prediction is made.

This problem can be represented as a function f ðDÞ ¼ dnþh, where the function f maps
the historical energy demand data to the predicted energy demand.

The objective is to find the optimal function f that minimizes the prediction error,
which can be defined as the MAE between the predicted and actual energy demand values.

Data collection
Data collection is essential in predicting energy demand in a smart power grid. This section
briefly describes the steps and techniques used for data collection in the proposed study.

The initial phase of data collection involves the identification of pertinent data sources,
necessitating the recognition of data types essential for enabling precise predictive
modeling, including variables such as energy consumption, meteorological conditions, and
economic indicators. Data acquisition encompasses a diverse array of potential sources,
ranging from utility providers and government agencies to publicly accessible datasets. In
the context of this research, the study leverages hourly energy demand data procured from
American Electric Power (AEP), a prominent electric utility enterprise within the United
States, renowned for its extensive service coverage encompassing over 5 million customers
across 11 states (AEP, 2023). The dataset in question encompasses a robust repository
comprising 121,273 data entries, documenting hourly energy consumption spanning from

Figure 2 Overview of the methodology employed in this study. Full-size DOI: 10.7717/peerj-cs.2819/fig-2
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December 2004 to January 2018. Furthermore, to assess the model’s performance
comprehensively, the supplementary datasets COMED (https://www.comed.com/Pages/
default.aspx), DAYTON (https://www.aes-ohio.com/about-aes-ohio), and PJME (https://
pjm.com/) have been enlisted for evaluation. These datasets collectively serve as
established benchmarks for scrutinizing the efficacy of energy demand forecasting models
and are readily accessible through the following GitHub repository: https://github.com/
panambY/Hourly_Energy_Consumption (Pereira, 2023).

COMED hourly energy consumption data refers to the hourly electricity consumption
data for the Commonwealth Edison (COMED) service area, which covers the northern
part of Illinois in the United States. The data provides information on the hourly electricity
demand for residential, commercial, and industrial customers in the COMED service area.
This dataset contains historical energy consumption data in an hourly fashion from
December 2011 to January 2018, with a total of 66,497 data points.

DAYTON hourly energy consumption data refers to the hourly electricity consumption
data for the Dayton Power and Light (DP&L) service area, which covers the city of Dayton,
Ohio, and surrounding areas in the United States. The data provides information on the
hourly electricity demand for residential, commercial, and industrial customers in the
DP&L service area. This dataset contains historical energy consumption data in an hourly
fashion from December 2004 to January 2018, with a total of 121,275 data points.

PJME hourly energy consumption data refers to the hourly electricity consumption data
for the Pennsylvania-New Jersey-Maryland Interconnection (PJM) regional transmission
organization in the United States. The data provides information on the hourly electricity
demand for a large portion of the eastern United States, covering 13 states and the District
of Columbia, and includes variables such as date, time, temperature, and electricity
demand. This dataset contains historical energy consumption data in an hourly fashion
from December 2002 to January 2018, with a total of 145,366 data points. Table 2 shows an
overview of the datasets utilized to benchmark the proposed model.

After data has been collected, it has to be pre-processed to ensure that it is in a format
compatible with the model. This includes removing any inconsistencies or errors from the
data and transforming the data into a format that the model can use. The data
pre-processing procedures described in the following section describe normalisation,
feature scaling, and outlier removal.

Data pre-processing
Data pre-processing is essential in predicting energy demand in a smart power grid. It
ensures that the data used to train and evaluate the model is clean, consistent, and in a
suitable format for the model. This section will describe the steps and techniques used for
data pre-processing in the proposed study.

The initial phase in data pre-processing is data cleansing. This includes eliminating any
data inconsistencies, errors, or missing values. Common data cleansing techniques include
removing duplicates, replacing absent values with imputed values, and converting data to a
standard format. In our case, for all the datasets employed in this study do not contain any
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missing values and any outlier. To check and detect the missing values and outliers “isnull”
and “IsolationForest” techniques are employed from “Scikit-learn” library.

The following phase transforms the data into a format the model can utilize. This
includes the normalization, scaling, and encoding of categorical variables. Normalization is
adjusting the data so that the mean is 0 and the standard deviations are 1. Scaling the data
can prevent the magnitude of the data from affecting the model. In this study, the “sklearn.
preprocessing.MinMaxScaler” is employed to normalize the data. Figure 3 illustrates an
example using the PJME dataset, comparing the data in its original form (without
normalization) and its transformed state (with normalization). The entire process of data
pre-processing is presented in Algorithm 1.

The algorithm serves as a systematic framework for preparing raw data, Draw, for
subsequent analysis. It takes the raw data as input and generates pre-processed data, Dpre,
as output. The procedure unfolds as follows: First, it loads the raw data into the program
using the function load dataðÞ. Next, it checks for missing values within the dataset and
employs appropriate handling procedures, yielding the pre-processed data, Dpre.
Subsequently, the algorithm identifies and addresses outliers within Dpre through the
function handle outliersðÞ. Following this, the data is normalized using the normalizeðÞ
function to ensure consistency and comparability among different features. The algorithm
then partitions the pre-processed data into separate training and testing sets, denoted as
ðDtrain;DtestÞ, using the split dataðÞ function. Finally, it returns the pre-processed data,
Dpre, which is conditioned for further analysis.

Data pre-processing is a critical step in predicting energy demand in a smart power grid.
It includes cleaning the data and transforming the data. These steps help ensure that the
data used to train and evaluate the model is clean, consistent, and in a suitable format for
the model.

Model development
This section describes developing a forecasting model to predict energy demand in a smart
power grid. The proposed method employs a deep learning-based model, particularly a
LSTM network, a RNN designed to manage sequential data with temporal dependencies.
LSTM is a form of RNN architecture frequently used in deep learning applications for
sequence modelling, including natural language processing, speech recognition, and time
series forecasting.

Table 2 Overview of the datasets utilized in this study.

Dataset Start datetime End datetime Data points

AEP 2004-12-31 01:00:00 2018-01-02 00:00:00 121,273

COMED 2011-12-31 01:00:00 2018-01-02 00:00:00 66,497

DAYTON 2004-12-31 01:00:00 2018-01-02 00:00:00 121,275

PJME 2002-12-31 01:00:00 2018-01-02 00:00:00 145,366
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In time series forecasting, LSTM is useful for capturing difficult-to-model long-term
dependencies in the data. Predicting hourly energy demand is one possible application of
LSTM in time series forecasting. The model is trained on historical data to use LSTM to
predict hourly energy demand to understand the patterns and relationships between the

Figure 3 Comparison of the PJME dataset before and after normalization. (A) Data in its original (without normalization) forms and (B) in
normalized (with normalization) form. Full-size DOI: 10.7717/peerj-cs.2819/fig-3

Algorithm 1 Data pre-processing.

1: Input: Raw Data Draw

2: Output: Pre-processed Data Dpre

3: Procedure:

4: Load the raw data into the program: Draw  load dataðÞ
5: Check for missing values and handle them accordingly: Dpre  handle_missing_values ðDrawÞ
6: Check for outliers and handle them accordingly: Dpre  handle_outliers ðDpreÞ
7: Normalize the data: Dpre  normalize ðDpreÞ
8: Divide the data into training and testing sets: ðDtrain;DtestÞ  split_data ðDpreÞ
9: Return the pre-processed data: return Dpre
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input features and the target variable, in this case, energy demand in megawatts. Based on
the input features, the model can predict future time steps.

LSTM comprises a set of nonlinear transformations that operate on the input and
hidden states of the network, as well as gating mechanisms that regulate the passage of
information through the network. The equations for a single LSTM cell are shown in
Eq. (1) (Sherstinsky, 2020).

it ¼ rðWxixt þWhiht�1 þ biÞ
ft ¼ rðWxf xt þWhf ht�1 þ bf Þ
~Ct ¼ tanhðWxcxt þWhcht�1 þ bcÞ
Ct ¼ ft � Ct�1 þ it � ~Ct

ot ¼ rðWxoxt þWhoht�1 þ boÞ
ht ¼ ot � tanhðCtÞ

(1)

Here, xt is the input at time step t, ht�1 is the hidden state of the previous time step, W
and b are the weights and biases of the network, and r and tanh are the sigmoid and
hyperbolic tangent activation functions, respectively. The equations involve several gates,
including an input gate it , a forget gate ft , and an output gate ot , which control the flow of
information through the network. The cell state Ct is updated based on the input and
hidden states, and the hidden state ht is computed as a function of the cell state and the
output gate.

The initial phase in model development is to collect and pre-process the data. As inputs
to the model, we utilized historical energy demand data. The data was collected from the
PJM data interface for the AEP zone and pre-processed to ensure it was in the correct
format for the model. The pre-processing stages included data cleansing, handling missing
values, and data normalization.

Next, the network structure of the LSTM model was defined. Input, multiple LSTM,
dropout, and output layers comprise the LSTM model. The number of neurons in the
input layer corresponds to the number of input features, which in this instance are the
historical energy demand data. The LSTM layers are the basis of the model and are
responsible for learning the temporal dependencies in the data. Multiple LSTM layers were
layered on top of one another to improve the model’s ability to learn complex data
patterns. A grid search cross-validation technique was used to ascertain the number of
LSTM layers and the number of neurons in each layer. Grid search cross-validation entails
creating a grid of possible values for each hyperparameter and evaluating the model’s
performance on each combination of hyperparameters using a cross-validation strategy.
Then, the model’s performance is compared across all possible combinations, and the
hyperparameters that yield the highest performance are chosen. This computationally
intensive technique offers a systematic and trustworthy method for choosing optimal
hyperparameters for deep learning models. Algorithm 2 presents the grid search method
employed in this study. A single neuron in the output layer represents the anticipated
energy demand.
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The LSTM model was implemented using the Keras (Chollet & Keras Collaborators,
2015) library in Python (Van Rossum & Drake, 2009). The model was trained using an
Adam optimizer and mean squared error (MSE) as the loss function. The model was
trained for a fixed number of epochs, and the training process was stopped when the
model’s performance on a validation set stopped improving. Algorithm 3 presents the
steps utilized in the forecasting model’s development. The architecture of the proposed
model is shown in Fig. 4.

Here, timesteps are the number of time steps in the input data, features are the number
of features in the input data, x is the number of units in the LSTM layer, y is the number of
units in the fully connected layer, z is the number of epochs for training, and w is the batch
size for training. X_train and y_train represent the training data, and X_test represents the
test data. In the proposed model, the unit used in LSTM is 200, and the number of units
used in the fully connected layer is 1. The training epoch of the model is 10, and batch_size
is 1,000.

The algorithm starts by initializing the model using the Sequential() function from the
Keras library, and the LSTM, dropout, and fully connected layers are added using the add()
function. The model is then compiled using the compile() function and trained using the
fit() function. Finally, predictions are made on the test data using the predict() function.

The trained model was then evaluated using performance metrics such as MAE, RMSE,
and R2 on a test set. These metrics were used to evaluate the model’s ability to predict
energy demand accurately. The model was then deployed and used to predict energy
demand.

To ensure model generalizability across datasets and prevent overfitting, several key
strategies were implemented. Dropout regularization was applied to all LSTM layers with a
10% dropout rate, reducing reliance on specific neurons and enhancing the model’s

Algorithm 2 Grid search for LSTM hyperparameters.

1: Input: Training data

2: Output: Best hyperparameters

3: Define the grid of hyperparameter values

4: Initialize variables for best hyperparameters and best performance metric

5: for each combination of hyperparameters do

6: Build the LSTM model with the current hyperparameters

7: Train and evaluate the model using cross-validation

8: if model performance is better then

9: Update the best hyperparameters and performance metric

10: end if

11: end for

12: Retrieve the best hyperparameters
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robustness. A five-fold cross-validation approach was employed to validate performance
across different training subsets, ensuring consistency. Additionally, early stopping was
implemented to halt training once validation loss plateaued, preventing unnecessary
parameter tuning. To further enhance adaptability, the model was trained on four distinct
datasets: AEP, COMED, DAYTON, and PJME allowing it to capture regional variations in
energy demand. These techniques collectively ensure optimal model performance, making
it well-suited for real-world deployment in smart grid applications.

Model evaluation metrics
This section describes the process and metrics of evaluating the performance of the
proposed LSTM model for predicting energy demand in a smart power grid. The model
was trained using historical energy demand data and evaluated using three performance
metrics: MAE, R2, RMSE, and MAPE.

The MAE is a measure of the difference between the predicted energy demand and the
actual energy demand. It is calculated as the average absolute difference between the
predicted and actual values. Mathematically, it is defined as Eq. (2):

Algorithm 3 Proposed forecasting model.

1: Initialize the model: model = Sequential()

2: Add an LSTM layer with x units: model.add(LSTM(x, input_shape=(timesteps, features)))

3: Add a dropout layer with rate of 0.1: model.add(Dropout(0.1))

4: Add an LSTM layer with x units: model.add(LSTM(x,Return_sequence=‘False’))

5: Add a dropout layer with rate of 0.1: model.add(Dropout(0.1))

6: Add a fully connected layer with y units: model.add(Dense(y))

7: Compile the model: model.compile(loss=‘mse’, optimizer=‘adam’)

8: Fit the model on the training data: model.fit(X_train, y_train, epochs=z, batch_size=w)

9: Make predictions on the test data: y_pred = model.predict(X_test)

Figure 4 Architecture of the proposed forecasting model, REDf. Full-size DOI: 10.7717/peerj-cs.2819/fig-4
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MAE ¼ 1
n

Xn
i¼1
jyi � byij (2)

where n is the number of test samples, yi is the actual energy demand, and byi is the
predicted energy demand. The smaller the MAE, the better the model’s performance.

In a linear regression model, the R2 represents the proportion of the variance in the
dependent variable explained by the independent variables. R2 values range from 0 to 1,
with greater values indicating a superior model fit to the data. A higher R2 value indicates a
better fit and a stronger relationship between the independent and dependent variables
when used to evaluate the current model. Mathematically, it is defined as Eq. (3):

R2 ¼ 1�
Pn

i¼1 ðyi � byiÞ2Pn
i¼1 ðyi � �yÞ2 (3)

where yi is the actual value of the dependent variable, byi is the predicted value of the
dependent variable, and �y is the mean of the dependent variable.

Another evaluation metric used in this study is RMSE. It measures the average
magnitude of the error in the predictions of a model. RMSE calculates the difference
between a dataset’s actual and predicted values and then takes the square root of the
average of those differences. A lower RMSE value indicates that the model better fits the
actual values and has higher accuracy in making predictions. Mathematically, it is defined
as Eq. (4):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1
ðyi � byiÞ2

s
(4)

Here, yi is the actual value, byi is the predicted value, and n is the number of observations.
The MAPE is a commonly used metric to measure the accuracy of a forecasting model.

It expresses the prediction error as a percentage of the actual values, making it useful for
comparing different models regardless of the scale of the data. A lower MAPE value
indicates a better fit of the model to the actual data. Mathematically, it is defined as Eq. (5):

MAPE ¼ 1
n

Xn
i¼1

yi � ŷi
yi

���� ����� 100 (5)

where n is the number of test samples, yi represents the actual energy demand, and ŷi
denotes the predicted energy demand. MAPE provides an intuitive measure of error in
percentage terms, which can be beneficial for evaluating model performance in real-world
energy demand forecasting applications.

Model deployment
Deploying the proposed LSTM model for securely predicting energy demand in a smart
power grid requires appropriate tools and techniques. This section describes the technique
of deploying the model securely.
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First, TensorFlow (Abadi et al., 2015) is used to serve the model. TensorFlow provides
several security features that can be used to protect the model during deployment. For
example, TensorFlow can encrypt model data and communicate between the model and
other systems. TensorFlow also allows the ability to authenticate users and devices
accessing the model. Then, Apache Kafka (Apache Software Foundation, 2021) is used to
deploy the model securely. Apache Kafka is a message queuing system that handles
high-throughput data streams. It is used to send real-time energy demand data to the
model and also receives predictions from it. Apache Kafka provides built-in security
features such as encryption and authentication, which protect the data during
transmission. To secure the communication between the model and other systems, Secure
Sockets Layer (SSL; Corporation Netscape Communications, 1996) is used in the proposed
model. SSL ensures that all data transmitted between the systems is encrypted and that
only authorized systems can access the model. Figure 5 shows the proposed system’s
architecture of the model deployment phase. The figure shows that Kafka handles the
application, user query, communication between the model server, and prediction output.
Users place the prediction requests in the Apache Kafka application, and then the Apache
Kafka application forwards the requests to the TensorFlow model server. Then the model
server returns the predicted result and handles the response to the Apache Kafka
application, which is served to the users. All the communication between the Apache
Kafka application and the TensorFlow model server is encrypted with the SSL service. The
prototype front end of the application is shown in Fig. 6. This figure shows the interface for
taking input and giving prediction output from the TensorFlow model server.

Deploying the proposed LSTMmodel for securely predicting energy demand in a smart
power grid requires using appropriate tools and techniques such as TensorFlow and
Apache Kafka. TensorFlow provides built-in security features such as encryption and
authentication while serving the model. Apache Kafka also provides built-in security
features such as encryption and authentication for data transmission on the application
side. Secure communication protocols, such as SSL, are also used to encrypt the data
transmitted between systems.

Experimental setup
We implemented our proposed approach using Python version 3.6.5 as the primary
programming language. The experiments were conducted on a computer with a Ryzen 7
processor, 24 GB RAM, and a GTX 1650 GPU. The computer was running Windows 10 as
the operating system. We used Jupyter as our integrated development environment (IDE)
to develop and test the model.

To implement and train our model, we utilized TensorFlow and Keras, two popular
deep-learning frameworks widely used in the research community. TensorFlow provided
us with the tools to develop our deep learning model, and Keras allowed us to easily create,
compile, and train the model. The EarlyStopping method was utilized to prevent the REDf
model from being over-trained and three-fold cross validation was employed on all the
models compared in this study.
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Apache Kafka, an open-source distributed event streaming platform, facilitates data
streaming. This helped us handle high volumes of data and ensure efficient data
processing. For model deployment purposes, we used ModelServe, a high-performance
model serving solution that allowed us to quickly and easily deploy our trained model to
production environments.

Figure 5 Model deployment architecture of the proposed system.
Full-size DOI: 10.7717/peerj-cs.2819/fig-5

Figure 6 Interface of the model deployment application. Full-size DOI: 10.7717/peerj-cs.2819/fig-6
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Description of models used (Justification for model type used and Selection
method)

When predicting short-term energy demand in smart grids, selecting the appropriate
models is crucial to accurately capture the underlying patterns and variability in energy
consumption. This section provides a justification for using SVR, RFR, Facebook Prophet,
and LSTM networks.
1. Support vector regression (SVR)

Justification for model type:
– Capturing non-linear relationships: SVR is effective for capturing non-linear
relationships between the features and the target variable, which is crucial in energy
demand forecasting due to the complex and non-linear nature of the data.

– Generalization ability: SVR focuses on minimizing the generalization error rather
than the training error, which helps avoid overfitting, especially in scenarios with
noise and outliers common in energy demand data.

Selection method:
– Kernel trick: The use of different kernels (e.g., linear, polynomial, radial basis
function) allows SVR to model complex patterns without needing a high-dimensional
feature space, which is beneficial for handling varied energy demand data.

– Parameter tuning: Selection of SVR involves tuning parameters such as the
regularization parameter (C) and the kernel parameters (like c in the RBF kernel)
through cross-validation to optimize the model’s performance.

2. Random forest regression (RFR)
Justification for model type:
– Handling high-dimensional data: Random forests are well-suited for handling
high-dimensional data and can model complex interactions between variables, which
is useful for energy demand forecasting that may involve numerous factors (e.g.,
weather conditions, time of day).

– Robustness to noise and overfitting: Due to the ensemble approach of combining
multiple decision trees, Random forests are robust against noise and less prone to
overfitting, providing more stable predictions for energy demand.

Selection method:
– Feature importance: RFR provides insights into feature importance, helping identify
the most influential factors affecting energy demand, which can be crucial for smart
grid applications.

– Hyperparameter optimization: Parameters like the number of trees
(n_estimators) and the maximum depth of each tree (max_depth) are optimized
using cross-validation to enhance model accuracy and generalization.

3. Facebook Prophet
Justification for model type:
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–Handling seasonality and trends: Facebook Prophet is specifically designed to handle
time series data with strong seasonal patterns and trends, which are typical in energy
demand data (e.g., daily, weekly, yearly cycles).

– Automated forecasting: Prophet’s ease of use and minimal requirement for manual
tuning make it a practical choice for quick deployment and integration into smart grid
systems.

Selection method:
– Additive model: Prophet’s additive model approach makes it flexible to handle
different seasonalities and holidays, which is beneficial for forecasting energy demand
that is affected by various cyclical patterns.

– Parameter tuning: Parameters like seasonality mode (additive or multiplicative),
changepoint range, and holidays are tuned based on historical energy demand
patterns to improve forecast accuracy.

4. Long short-term memory (LSTM) Networks
Justification for model type:
– Capturing long-term dependencies: LSTM networks are designed to capture
long-term dependencies in sequential data, making them ideal for forecasting energy
demand, where past consumption patterns significantly impact future demand.

– Learning from sequential data: LSTMs can learn from sequential data without the
need for extensive feature engineering, which is valuable when dealing with time
series data like energy consumption.

Selection method:
– Neural network architecture: The architecture of the LSTM (number of layers,
number of units in each layer) is selected based on the complexity of the data and the
required forecast horizon.

– Hyperparameter tuning: Key hyperparameters like learning rate, batch size, and the
number of epochs are optimized using techniques such as grid search or random
search to improve model performance.

Each model is chosen based on its strengths in handling different aspects of the energy
demand data. SVR and RFR offer robust approaches to handle non-linearities and feature
interactions. Facebook Prophet is advantageous for capturing seasonality and trends in
time series data, while LSTM networks are well-suited for learning from sequential
patterns in long-term dependencies. The selection of these models is guided by their ability
to handle the specific characteristics of short-term energy demand data, such as non-
linearity, seasonality, noise, and temporal dependencies.

RESULTS ANALYSIS
The proposed deep learning-based approach for predicting energy demand was evaluated
using four datasets of historical energy demand data from different energy companies. The
datasets consisted of hourly energy demand data for a certain period. The data was divided
into a training set, which consisted of 80% of the data, and a test set, which consisted of
20% of the data for all the datasets. The datasets were also trained and tested with three
other state-of-the-art machine learning models, namely SVR (Islam et al., 2022; Hossain
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et al., 2022), RFR (Khan et al., 2022; Qadir et al., 2021), and Facebook Prophet (Taylor &
Letham, 2018). The performances of these models are also compared with that of the
proposed REDf model.

One of the key challenges in energy demand forecasting is managing peak fluctuations
in renewable energy generation caused by intermittent sources like solar and wind. To
address this issue, our model incorporates several strategies. First, we enhance feature
engineering by integrating time-dependent and weather-related variables such as
temperature, humidity, and wind speed, enabling the model to recognize seasonal
variations. Additionally, we implement a rolling window forecasting approach, which
dynamically updates the model with new data instead of relying on static historical
records, allowing it to adapt to recent changes. To ensure robustness, we conduct empirical
validation across multiple datasets, particularly focusing on high-volatility periods. These
enhancements enable our model to deliver stable and reliable predictions during peak
demand periods, ultimately contributing to improved grid stability.

Experimental result analysis
The deep learning model, REDf was trained using the LSTM network architecture with 200
units. The model was trained using the Adam optimization algorithm with a learning rate
0.001. The training process took approximately 25 min on the experimental machine.

The performance of the model was evaluated using three metrics: MAE, RMSE, (R2),
and MAPE. The MAE measures how close the predicted values are to the true values, the

R2 measures how well the model fits the data, the RMSE measures the average magnitude
of the error in the predictions of a model and MAPE expresses the prediction error as a
percentage of the actual values, making it useful for comparing different models regardless
of the scale of the data. The experimental results are presented in Table 3.

Based on the results presented in Table 3, it is evident that the proposed REDf model
achieved high accuracy in the predictions, with MAE ranging from 1.4% to 1.5% across all
evaluated datasets, R2 ranging from 97.9% to 98.5% for different datasets, RMSE of
approximately 0.02 across all evaluation datasets, and an exceptionally low MAPE value
between 0.0008 and 0.0012. The significantly low MAPE score highlights the model’s
robustness in producing accurate predictions with minimal relative errors across different
datasets.

In contrast, the state-of-the-art SVR model exhibited a relatively good fit for the data, as
indicated by R2 values ranging from 72.6% to 98.2%. However, its performance was
inconsistent across datasets, as reflected by the significantly high MAE and RMSE values.
Moreover, the MAPE scores for SVR are notably higher (ranging from 0.0058 to 0.0581),
suggesting that while the model aligns well with the trend, it produces higher relative
percentage errors in energy demand forecasting.

Facebook’s Prophet model demonstrated poor performance across all datasets in all
evaluation metrics. It achieved a positive R2 value only for the AEP dataset, while obtaining
negative values for others, indicating an inadequate fit to the data. The model also
exhibited excessively high MAE and RMSE values, confirming its poor predictive
capability. The MAPE scores for the Prophet model range between 0.1331 and 0.1607,
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signifying significant deviations from the actual energy demand values, making it
unreliable for short-term load forecasting.

A similar trend is observed for the RFR model, where the R2 score varies between 4.7%
and 17%, reflecting poor model performance in capturing energy demand patterns. The
high MAE and RMSE values further suggest that RFR struggles to model time series
dependencies effectively. The MAPE values for RFR are also notably high, ranging from
0.1278 to 0.1570, reinforcing the model’s difficulty in accurately predicting energy demand
fluctuations.

The proposed REDf model consistently outperformed all other models across all
metrics, demonstrating the lowest MAE, RMSE, and MAPE values, alongside the highest

R2 scores. The exceptionally low MAPE values (below 0.0013) validate the model’s ability
to minimize relative percentage errors, making it highly suitable for real-world energy
demand forecasting applications. These results highlight the superior accuracy, stability,
and generalizability of the REDf model in facilitating renewable energy integration within
smart power grids. This discussion is also supported by the visual representation of the
comparison of the results shown in Fig. 7. Figure 7 presents an integrated performance
comparison of various forecasting models, including REDf, SVR, Prophet, and RFR, across
multiple datasets (AEP, COMED, DAYTON, and PJME). The visualization combines a bar
chart representing the R2 scores and scatter plots for MAE, RMSE, and MAPE, effectively
illustrating the differences in model accuracy and robustness.

The R2 scores, displayed as blue bars, highlight the superior performance of the REDf
model, which consistently achieves values above 0.97 across all datasets. This confirms the
model’s strong predictive capability and ability to accurately capture energy demand

Table 3 Experimental results for all the evaluation metrics of all models and dataset.

Model-Dataset R2 MAE RMSE MAPE

REDf-AEP 0.983 0.015 0.024 0.0010

REDf-COMED 0.979 0.014 0.022 0.0012

REDf-DAYTON 0.980 0.015 0.023 0.0009

REDf-PJME 0.985 0.014 0.020 0.0008

SVR-AEP 0.982 159.269 346.603 0.01

SVR-COMED 0.958 149.045 471.277 0.0108

SVR-DAYTON 0.976 11.064 24.873 0.0058

SVR-PJME 0.726 1,878.685 3,382.786 0.0581

Prophet-AEP 0.052 2,018.417 2,522.092 0.1331

Prophet-COMED −0.021 1,782.898 2,321.032 0.1579

Prophet-DAYTON −9.939 0.602 0.632 0.1559

Prophet-PJME −3.298 0.359 0.407 0.1607

RFR-AEP 0.133 1,926.917 2,412.619 0.1278

RFR-COMED 0.170 1,613.671 2,099.070 0.1434

RFR-DAYTON 0.065 300.336 380.377 0.1531

RFR-PJME 0.047 4,890.830 6,309.890 0.1570
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patterns. In contrast, SVR exhibits moderate performance, with its lowest R2 score
dropping to 0.726 for the PJME dataset. The Prophet and RFR models demonstrate poor
performance, with multiple instances of negative R2 scores, indicating their failure to fit the
data effectively.

The MAE values, represented by a gold scatter plot, further emphasize the accuracy of
the REDf model, which maintains the lowest MAE values across all datasets. This signifies
minimal deviation from actual demand values, making it a reliable forecasting tool.
However, SVR and RFR models exhibit significantly higher MAE values, particularly for
the PJME and AEP datasets, indicating substantial errors in their predictions. The Prophet
model performs the worst in this metric, with MAE values exceeding 2,000, highlighting its
unsuitability for short-term energy forecasting applications.

The RMSE values, visualized with a green dashed scatter plot, reinforce the reliability of
the REDf model, as it achieves the lowest RMSE values across all datasets. High RMSE
values observed for the SVR and RFR models indicate large deviations in their predictions,
reducing their forecasting reliability. The Prophet model once again performs the worst,
exhibiting excessively high RMSE values, further confirming its poor predictive accuracy.

Finally, the MAPE values, represented by a red dashed scatter plot, validate the high
precision of the REDf model, which maintains the lowest MAPE values across all datasets.
This confirms its ability to minimize relative percentage errors in energy demand
forecasting. Conversely, the SVR and RFR models display significantly higher MAPE
scores, reducing their reliability in precision forecasting. The Prophet model exhibits the
highest MAPE values, exceeding 0.15, making it unsuitable for accurate short-term
forecasting applications.

These comparative results highlight the superior performance of the REDf model across
all evaluation metrics, demonstrating its stability, accuracy, and robustness. The

Figure 7 Comparison of evaluation metrics for different models and different datasets.
Full-size DOI: 10.7717/peerj-cs.2819/fig-7
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significantly lower error values and higher R2 scores confirm its effectiveness in real-world
applications, enabling accurate short-term energy demand forecasting, improved
renewable energy integration, and efficient smart grid management. The experimental
results can be further corroborated with visual representations of the models’ actual vs
predicted data plots. Figure 8 shows the actual vs predicted data plots for AEP dataset.
Similarly the actual vs predicted data plots for COMED, DAYTON, and PJME datasets are
presented in Figs. S1, S2, and S3 respectively. The high-resolution versions of these figures
are also available at the following link, https://ping543f.github.io/ren_energy/.

The plots depict hourly energy demand over time, with the x-axis representing the time
frame and the y-axis representing energy demand. The green line depicts the actual energy
demand, while the red line shows the predicted energy demand by the proposed REDf
model. For the SVR and RFR models, the red dots indicate actual data points, and the blue
dots represent predicted data points. For the Facebook Prophet model, the black dots
represent actual data, and the blue line shows the predicted data by the model. Analysis of
the plots indicates that the difference between the actual and predicted energy demand is
minimal for the proposed REDf model across all datasets. Conversely, the difference
between the actual and predicted energy demand is significantly high for the SVR, RFR,
and Prophet models in almost all datasets, except for the SVR model in the Dayton dataset.
The actual vs predicted plots for the proposed REDf model demonstrate that the predicted
energy demand values are very close to the actual values, indicating a good fit for the data
and accurate forecasting of energy demand data. Furthermore, the proposed model
showed no sign of overfitting and underfitting at the end of the training epochs. In this
study, the performance of the developed model was carefully evaluated to assess the
presence of overfitting and underfitting phenomena. Figure 9 shows the loss curves for
training and validation phases of the REDf model for different datasets employed in this
study for all three folds. Overfitting occurs when a model performs exceptionally well on
the training data but fails to generalize to new, unseen data. On the other hand,
underfitting happens when a model lacks the complexity to capture the underlying
patterns in the data and performs poorly on both the training and test sets.

The model demonstrated robust performance in our experiments without showing
signs of overfitting or underfitting. This was evident from the consistent and comparable
performance metrics achieved on the training and test datasets. The absence of overfitting
can be attributed to including dropout layers in the model, which regularizes the training
process by randomly dropping a fraction of the units, preventing the model from relying
too heavily on specific features. Additionally, by selecting an appropriate model
architecture and hyperparameters through a systematic grid search technique, we ensured
that the model had the necessary complexity to capture the underlying patterns in the data
without excessive complexity that could lead to overfitting.

The absence of underfitting indicates that the model could adequately capture the
relevant information from the training data, allowing it to generalize well to unseen data.
This suggests that the chosen model architecture and hyperparameters were suitable for
the given task and dataset, striking a balance between simplicity and complexity. The
similar trend has also been observed in all the folds of training the model. An example for
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Figure 8 Actual vs. Predicted data for different models for AEP dataset. (A) Proposed REDf model,
(b) SVR model, (C) Facebook Prophet model, and (D) RFR model.

Full-size DOI: 10.7717/peerj-cs.2819/fig-8
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all three fold for the AEP dataset is presented in Fig. 10. Figure 10 presents the
cross-validation results for the proposed REDf model applied to the AEP dataset. The
figure consists of three rows, each representing a different fold in the cross-validation
process, and each row contains three subplots: Training vs Validation Loss (left), Actual vs
Predicted values (middle), and Error Distribution (right).

The training vs validation loss plots illustrate the convergence behavior of the REDf
model across different folds. The loss function, measured in MSE, steadily decreases for
both the training and validation sets over successive epochs. The absence of sudden spikes
or divergence between the training and validation loss curves indicates that the model
effectively generalizes without signs of overfitting or underfitting. The smooth convergence
further reinforces the model’s stability in learning the temporal dependencies of energy
demand.

The actual vs predicted plots compare the REDf model’s forecasts against actual energy
demand for the first 100 test samples in each fold. The close alignment between the actual
(blue line) and predicted (orange line) values across all three folds demonstrates the

Figure 9 Loss curves of training and validation phases for the proposed REDf model in different datasets. (A) AEP dataset, (B) COMED dataset,
(C) DAYTON dataset, and (D) PJME dataset. Full-size DOI: 10.7717/peerj-cs.2819/fig-9
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model’s capability to capture the fluctuations and patterns inherent in short-term energy
demand forecasting. This strong correlation between actual and predicted values suggests
that the REDf model is well-suited for accurately forecasting short-term electricity
consumption in smart grid environments.

The error distribution histograms provide insight into the model’s predictive accuracy
across different test sets. The narrow and symmetric distribution of errors, centered
around zero, confirms that the model exhibits low variance and maintains consistent
performance across all cross-validation folds. The limited spread of errors further
highlights the model’s reliability in forecasting energy demand with minimal deviations

Figure 10 Cross-validation results of the REDf model for the AEP dataset. Each row corresponds to a different cross-validation fold. The left
column shows the training vs. validation loss curves. The middle column presents the actual vs. predicted energy demand for the first 100 test
samples. The right column displays the error distributions. Full-size DOI: 10.7717/peerj-cs.2819/fig-10
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from actual values. The similar trends have been obsreved for COMED, DAYTON and
PJME datasets for the REDf model and presented in Figs. S4–S6.

These results validate the effectiveness of the REDf model in accurately predicting
short-term energy demand while maintaining robustness across multiple test sets. The
combination of low validation loss, strong agreement between actual and predicted values,
and tightly distributed errors demonstrates the model’s superiority in short-term load
forecasting. This further reinforces its applicability in real-world scenarios, enabling
improved renewable energy integration and efficient grid management.

Based on the experimental results, the proposed REDf model is highly accurate in
forecasting energy demand. The model’s predicted values align with the original energy
demand values. This indicates that the model is a good fit for the data and can be relied
upon for accurate predictions of energy demand. Demand forecasting accuracy plays a
significant role in integrating renewable energy sources and achieving the SDGs in the
smart grid. Accurate demand prediction allows grid operators to anticipate load variations,
allocate resources effectively for frequency regulation services, and optimize resource
allocation by aligning them with expected load patterns. This improves the scheduling and
dispatch of frequency regulation resources, minimizes the need for corrective actions, and
reduces the risk of frequency deviations. Moreover, accurate load forecasting enhances
market participation, enabling market participants to make informed bidding decisions
based on expected load fluctuations, resulting in more competitive and accurate bids.
Ultimately, load forecasting accuracy contributes to overall grid stability and reliability by
allowing proactive measures to balance supply and demand, thereby reducing the
likelihood of frequency deviations and ensuring the reliable operation of power systems.

Comparative analysis
It is important to note that the results are based on a specific dataset and architecture, and
the performance of the proposed approach may vary depending on the type of data and the
specific implementation details. However, the results demonstrate the potential of the
proposed approach for predicting short-term energy demand in a smart power grid. The
results achieved from the experiment can be compared to other recent works in predicting
energy demand in smart power grids.

One of the most closely related studies is by Amalou, Mouhni & Abdali (2022), who
used a similar approach to deep learning with LSTM networks to predict energy demand.
In omparison to this study, the proposed REDf model achieved better performance in
terms of MAE, R2, and RMSE. Specifically, the proposed model achieved a mean absolute
error of 1.4%, which is significantly lower than the MAE of 0.021 reported in this study.
Additionally, the proposed model achieved a higher R2 value, indicating a better fit to the
data, and a lower RMSE value, indicating better accuracy in predicting energy demand.

Similarly, compared to the study by Alrasheedi & Almalaq (2022), the proposed REDf
model achieved better performance in terms of RMSE and R2. Alrasheedi & Almalaq
(2022) achieved an RMSE of 0.8168 and a R2 of 0.973 on their test set, while the proposed
REDf model achieved a lower RMSE and a higher R2 value. This indicates that the
proposed model is more accurate in predicting energy demand and better fits the data.
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A recent study by Shachee, Latha & Hegde Veena (2022) proposed a hybrid deep
learning-based model of LSTM and RNN that utilizes historical load data to predict energy
demand. They achieved an RMSE of 0.6 on their test set. Our model achieved better
performance in this evaluation metric compared to this study.

Taleb et al. (2022) presented a hybrid model that combines standard neural networks
with an automatic weight update process, achieving a MAE of 372.08 in energy demand
prediction. Mubashar et al. (2022) proposed a method for load forecasting using LSTM
models and compared its performance with two commonly used techniques, ARIMA and
exponential Smoothing. Their proposed method outperformed the other two, achieving an
MAE of 2.44736176. Rosato et al. (2019) presented a novel deep learning approach using
convolutional neural network and long short-term memory models, achieving the lowest
RMSE of 2.252 for the baseline 1-day forecast. Nguyen, Duong & Le (2020) proposed an
electricity demand forecasting method based on the LSTM deep learning model, achieving
an RMSE of 9.63. Pramono et al. (2019) proposed a method for short-term load forecasting
using a wavenet-based model that employs dilated causal residual CNN and LSTM layers,
achieving RMSE and MAE equal to 203.23 and 142.23 for ENTSO-E dataset 1 and 292.07
and 196.95 for ENTSO-E dataset 2. The proposed methods have demonstrated their
potential for supporting energy management and demand response programs in hybrid
energy systems.

The performance of the proposed model was compared with other recent studies in
predicting energy demand in smart power grids. The proposed model outperforms the
other models regarding MAE, R2, and RMSE in all the evaluated datasets. The LSTM-RNN
(Shachee, Latha & Hegde Veena, 2022) model did not report the MAE and R2 values
mentioning only RMSE. The CNN-GRU (Alrasheedi & Almalaq, 2022) model achieved a
high R2 score but did not report the MAE and RMSE values. On the other hand, the LSTM
and GRU models reported MAE and R2 values, but their performance was inferior to the
proposed model. Apart from these, most studies did not report R2 values.

Various deep learning-based methods have been proposed to accurately forecast energy
demand, including standard neural networks with an automatic weight update process,
LSTM models, CNN and LSTM models, and wavenet-based models. These models have
been shown to outperform traditional methods such as ARIMA and exponential
smoothing, achieving lower MAE and RMSE values. However, our proposed model
significantly outperforms all the existing models, achieving an exceptionally low MAE of
0.015 and RMSE of 0.02, demonstrating its potential to revolutionize the energy sector by
providing more accurate energy demand forecasting.

The proposed model for predicting the demand for energy in a smart grid can also assist
in realizing substantial environmental advantages while advancing several SDGs. First and
foremost, this paradigm can help fulfill SDG 7: Access to Affordable and Clean Energy.
Utility companies can better manage their renewable energy resources and lessen their
dependency on fossil fuels by precisely anticipating the demand for renewable energy. This
will result in a more ecologically friendly and sustainable energy system. This may facilitate
the transition to a low-carbon economy, improve air quality, and cut greenhouse gas
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emissions. As a result, people’s access to and affordability of energy, particularly in
low-income areas, may improve.

In addition, this demand model for renewable energy might help with SDG 9: Industry,
Innovation, and Infrastructure. Utility companies and other stakeholders can build
sustainable infrastructure and encourage innovation in the energy industry by offering
accurate and trustworthy estimates of the demand for renewable energy. New technologies
and business models may be created as a result, which might hasten the uptake of
renewable energy sources and encourage their use in a sustainable and efficient manner.

Thirdly, this model can help achieve SDG 13: Climate Action. Predictive models for
renewable energy demand can aid in the fight against climate change and its effects by
encouraging renewable energy sources and lowering dependency on fossil fuels. To
mitigate the effects of climate change, such as more frequent and severe weather events;
this can involve lowering greenhouse gas emissions, enhancing air quality, and enhancing
air quality.

Achieving various sustainable development objectives relating to access to affordable
and clean energy, innovation and infrastructure, and climate action can be facilitated by
developing precise forecast models for renewable energy demand in smart grids. Our
proposed model, which uses deep learning, LSTM networks, and data pre-processing
approaches, performed better than recent research in this sector. This shows that our
method can be an efficient way to estimate energy demand in smart power grids and might
have significant economic and environmental benefits by encouraging the adoption of
renewable energy sources and lowering dependency on fossil fuels. As a result, our work
contributes significantly to the ongoing efforts to create sustainable energy systems that
can support a more equitable future and less harmful to the environment.

DISCUSSION
The results of this study demonstrate the effectiveness of the proposed REDf model in
achieving high-accuracy short-term energy demand forecasting across multiple datasets.
The model consistently outperformed traditional forecasting methods, such as SVR,
Facebook Prophet, and RFR, in all evaluation metrics, including R2, MAE, RMSE, and
MAPE. The superior performance of REDf can be attributed to its ability to capture
temporal dependencies in energy consumption patterns through its LSTM-based deep
learning architecture.

While these results validate the reliability of REDf in energy forecasting, several aspects
warrant further investigation to enhance its applicability in real-world scenarios. One
potential direction for future research is the integration of external factors such as weather
patterns, economic indicators, and government policies. Weather conditions, including
temperature, humidity, and wind speed, play a crucial role in influencing energy demand,
particularly for heating and cooling systems. Incorporating meteorological data into the
forecasting model could further improve prediction accuracy by capturing seasonal and
climate-related variations. Additionally, economic trends and energy policies, such as
subsidies for renewable energy adoption or demand response programs, could significantly
impact load forecasting. Future work should explore hybrid models that combine deep

Miah et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2819 31/42

http://dx.doi.org/10.7717/peerj-cs.2819
https://peerj.com/computer-science/


learning with statistical approaches to account for these macroeconomic and policy-driven
influences.

Another promising research direction is testing the model on real-time streaming data
to assess its adaptability in dynamic grid environments. While the current study focuses on
historical time-series data, real-world energy management systems require forecasting
models capable of making predictions in real-time with continuously incoming data.
Implementing a streaming data framework using technologies such as Apache Kafka or
TensorFlow Serving could help evaluate the responsiveness and scalability of REDf under
real-time operational conditions. Future research should investigate reinforcement
learning techniques that allow the model to adaptively adjust to changing consumption
trends without requiring frequent retraining.

Furthermore, to enhance the robustness and generalizability of REDf, cross-domain
validation with diverse geographical regions should be conducted. The current study
evaluates performance on United States-based datasets; however, electricity consumption
behaviors vary globally due to differences in grid infrastructure, industrialization levels,
and cultural energy usage patterns. Extending the evaluation to datasets from different
countries and incorporating federated learning approaches for privacy-preserving model
training could facilitate broader applicability.

Lastly, explainability remains a key challenge in deep learning-based forecasting. While
REDf achieves high accuracy, its interpretability could be improved by incorporating
explainable AI (XAI) techniques such as Shapley Additive Explanations (SHAP) or Local
Interpretable Model agnostic Explanations (LIME). This would enable grid operators and
policymakers to gain deeper insights into the factors driving energy demand fluctuations,
fostering trust in AI-driven decision-making processes.

While REDf demonstrates strong predictive capabilities, its integration with external
factors, adaptation to real-time streaming environments, validation across diverse regions,
and enhanced explainability present valuable directions for future research. These
advancements will further solidify its role in supporting sustainable energy management
and smart grid optimization.

Alignment with sustainable development goals
The REDf model aims to contribute to the SDGs, particularly SDG 7 (Affordable and
Clean Energy), SDG 9 (Industry, Innovation, and Infrastructure), and SDG 13 (Climate
Action). This section discusses the model’s potential impact while recognizing the need for
further research to quantify certain aspects.

Contribution to SDG 7: affordable and clean energy
Accurate energy demand forecasting plays a crucial role in enhancing the integration of
renewable energy into power grids. Improved forecasting allows energy providers to:

. Optimize renewable energy utilization: Studies suggest that better forecasting reduces
reliance on fossil-fuel-based reserves by minimizing uncertainty in power generation
(Wikipedia collaborators, 2023c).
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. Reduce curtailment of renewable energy: Advanced forecasting methods help optimize
energy dispatch, reducing energy wastage and improving grid efficiency (Wikipedia
collaborators, 2023b).

. Improve grid reliability and energy affordability: By reducing imbalances in power
supply and demand, utilities can lower operational costs, contributing to more affordable
electricity (Wikipedia collaborators, 2023a).

Although precise numerical estimates vary, existing literature supports the claim that
enhanced forecasting improves renewable energy efficiency, ultimately advancing SDG 7
(Yu et al., 2022).

Contribution to SDG 9: industry, innovation, and Infrastructure
Smart grid technologies and digitalized forecasting systems are critical for modernizing
energy infrastructure and improving resilience. The REDf model contributes to SDG 9 by:

. Enhancing power system resilience: Smart grid automation and real-time monitoring
allow for faster fault detection and improved response to power disturbances, reducing
the frequency and impact of outages (Wikipedia collaborators, 2023a).

. Reducing infrastructure strain: By balancing energy loads efficiently, predictive
forecasting minimizes stress on energy infrastructure, leading to fewer blackouts and
improved longevity of grid components (Wikipedia collaborators, 2023b).

. Supporting industrial energy optimization: Industries rely on accurate load forecasting
to optimize their energy consumption patterns, leading to greater efficiency and reduced
energy waste.

While further empirical studies are required to quantify the exact percentage reduction
in grid failures due to improved forecasting, research supports the qualitative benefits of
smart grid-based predictive analytics (Sakib, Hossain & Ahamed, 2020).

Contribution to SDG 13: climate action
Accurate forecasting helps mitigate climate impact by optimizing energy generation and
reducing reliance on carbon-intensive backup power sources. The REDf model supports
SDG 13 by:

. Reducing carbon emissions: Wind power forecasting studies indicate that better demand
prediction can reduce unnecessary fossil fuel generation, lowering overall CO2 emissions
(Wikipedia collaborators, 2023c).

. Minimizing emergency fossil-fuel usage: By improving energy dispatch, forecasting
models can prevent the need for emergency power generation, which is often reliant on
coal or natural gas.

. Enabling policymakers with data-driven strategies: Governments and energy regulators
can use enhanced forecasting models to make informed decisions on energy policies and
sustainability initiatives.
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While exact CO2 reductions are context-dependent, existing studies support the claim
that better forecasting contributes to cleaner and more efficient energy systems (Ukoba
et al., 2024).

Measuring the quantifiable impact of improved forecasting on fossil fuel dependency,
CO2 emissions, and grid resilience requires extensive simulations and real-time data
integration, which is beyond the scope of this study. However, existing research supports
the benefits of short-term energy demand forecasting in enhancing renewable energy
utilization and grid stability (Wikipedia collaborators, 2023b, 2023c, 2023a).

Environmental benefits
Using machine learning methods like deep learning to predict energy consumption has the
potential to improve smart power grids significantly. Power grid administrators may
maximize the distribution and use of renewable energy sources, minimizing reliance on
non-renewable sources and encouraging the integration of clean energy by accurately
projecting energy demand. As a result, customers and the environment could benefit from
decreased prices, increased efficiency, and better control over power networks. The
generalization and prediction abilities of the suggested method have been shown to be
strong. This strategy can support the international effort to combat climate change and
achieve sustainable development by incorporating the principles of SDGs 7 (affordable and
clean energy), 9 (industry, innovation, and infrastructure), and 13 (climate action).

Challenges
Although the proposed method for predicting energy demand using deep learning has the
potential to improve the integration of renewable energy sources and optimize the
efficiency of power infrastructures, it is not without obstacles. The data availability and
quality required for training deep learning models is a significant challenge. It is possible
that historical energy demand data are unavailable or insufficient, which can compromise
the accuracy of the model’s predictions. Another obstacle is the high computational
requirements and lengthy nature of deep learning model training. This can be problematic
when working with enormous datasets or multiple variables. In addition, the
interpretability of the model can be problematic, as the inner workings of deep learning
models can be challenging to comprehend, limiting their transparency and accountability.
It is crucial to successfully address these obstacles to implement the proposed approach in
smart power infrastructures.

The results of this work can be summed up as follows: (1) The suggested model
outperformed other recent efforts in anticipating energy consumption in smart power
grids in terms of performance. (2) Deep learning with LSTM networks and data
pre-processing methods successfully anticipated energy consumption in smart power
grids. (3) The suggested model has the ability to help achieve environmental benefits and
sustainable development goals, as evidenced by its accuracy in anticipating energy
consumption in smart power networks. (4) The suggested model can aid in the more
effective use of renewable energy sources by better forecasting energy demand and
lowering the requirement for environmentally hazardous non-renewable energy sources.
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(5) A more sustainable use of natural resources can be achieved by reducing energy waste
and using energy more efficiently.

VALIDITY AND LIMITATIONS OF THIS STUDY
The development of accurate and reliable models for forecasting energy demand is crucial
for optimizing the integration of renewable energy sources within smart power grids.
While the proposed LSTM-based deep learning model demonstrates significant potential
in this regard, it is important to critically evaluate both the strengths and weaknesses of the
approach. The following sections provide a comprehensive overview of the model’s
validity, detailing the factors that contribute to its reliability and effectiveness, as well as a
discussion of its limitations, highlighting areas where future research and improvements
are needed.

Validity
The validity of the proposed LSTM-based deep learning model for forecasting short-term
energy demand is established through several key aspects:

. Data sources: The model was trained and validated on four distinct datasets from
reputable energy distribution companies, including AEP, COMED, DAYTON, and
PJME. These datasets provide a comprehensive and diverse range of historical energy
demand data, ensuring that the model is tested on various consumption patterns.

. Model evaluation: The model’s performance was rigorously evaluated using widely
accepted metrics such as MAE, RMSE, and R2. These metrics provide a robust
assessment of the model’s predictive accuracy and its ability to generalize to unseen data.

. Comparative analysis: The proposed model’s performance was compared with three
other state-of-the-art forecasting algorithms: SVR, RFR, and Facebook Prophet. The
REDf model consistently outperformed these models across all evaluation metrics,
further validating its effectiveness in predicting short-term energy demand.

. Model architecture and training: The model was developed using a systematic
approach, including data preprocessing, model selection, and hyperparameter tuning
through grid search cross-validation. This comprehensive approach ensures that the
model is optimized for the specific characteristics of the energy demand data, enhancing
its validity.

. Consistency across datasets: The model’s high performance across all four datasets,
with minimal variation in MAE, RMSE, and R2 values, indicates that the model is not
overfitted to a specific dataset and can generalize well to different energy consumption
patterns.

. Absence of overfitting and underfitting: The loss curves for training and testing phases,
as well as the consistency of performance metrics, suggest that the model does not suffer
from overfitting or underfitting. This further supports the validity of the model as it
demonstrates the ability to generalize effectively to new data.
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The combination of these factors: rigorous evaluation, comparison with other models,
and consistent performance across diverse datasets supports the validity of the proposed
model as a reliable tool for forecasting short-term energy demand in smart power grids.

Limitations
While the proposed LSTM-based deep learning model demonstrates high accuracy in
forecasting short-term energy demand, several limitations must be acknowledged.

. Data dependency: The model’s performance is highly dependent on the availability and
quality of historical energy demand data. Inconsistent or incomplete data can
significantly affect the model’s accuracy. Additionally, the model was trained and
validated on datasets from specific energy distribution companies, which may limit its
generalizability to other regions or datasets with different characteristics.

. Computational complexity: The LSTM model requires substantial computational
resources, particularly for training on large datasets. This high computational demand
may pose challenges when deploying the model in real-time applications or
resource-constrained environments.

. Interpretability: Deep learning models, including LSTM networks, often function as
“black boxes,” making it difficult to interpret the decision-making process. This lack of
transparency can be a drawback, especially when model decisions need to be explained to
stakeholders or when accountability is required.

. Exclusion of external factors: The model primarily relies on historical energy demand
data and does not explicitly account for external factors such as weather conditions,
economic activities, or policy changes, which can also influence energy demand.
Incorporating such variables could potentially enhance the model’s accuracy and
reliability.

Besides the above mentioned points, reducing MAE enhances forecasting precision, but
it comes with certain trade-offs. Achieving a lower MAE often requires deep model
architectures and extensive hyperparameter tuning, significantly increasing computational
costs. Additionally, optimizing solely for MAE can make the model overly sensitive to
short-term fluctuations, potentially compromising its ability to capture long-term trends
reliably. To address this, we ensured a balanced evaluation by maintaining low RMSE
values and high R2 scores, promoting overall model stability. Future research should
explore multi-objective optimization strategies to strike a balance between MAE, RMSE,
and model robustness.

Addressing these limitations in future research could involve incorporating additional
data sources, such as real-time weather data or economic indicators, enhancing model
interpretability, and optimizing the model’s computational efficiency for broader
applicability in smart grids.

Future work
To further enhance predictive accuracy and adaptability, future research will explore
reinforcement learning (RL) for multi-period forecasting and federated learning (FL) for
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privacy-preserving energy demand prediction. RL-based models can dynamically adjust
forecasts based on real-time grid feedback, enabling automated demand response
management and improved adaptability to sudden fluctuations (Li et al., 2023). By
integrating Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO), RL can
optimize long-term forecasting while ensuring efficient energy allocation.

Meanwhile, FL offers a decentralized approach to model training, ensuring privacy
protection by allowing energy providers to collaborate without sharing raw data. FL
enhances scalability, security, and efficiency, making it suitable for distributed smart grid
networks (Li, Wang & Yang, 2021). Integrating techniques such as federated averaging
(FedAvg) and differential privacy mechanisms will further strengthen data security while
maintaining high forecasting accuracy.

A promising direction is a hybrid RL-FL framework, where FL trains decentralized
models securely, and RL optimizes real-time energy distribution. This approach can create
a secure, intelligent, and adaptive forecasting system, supporting the transition to a
sustainable and AI-driven smart grid. Future studies will focus on implementing these
methodologies to improve forecasting precision, grid stability, and privacy protection in
large-scale energy networks.

CONCLUSION
This study proposes an LSTM-based deep learning model for forecasting energy demand
in smart power grids. The model was evaluated on four distinct datasets: AEP, COMED,
DAYTON, and PJME using data pre-processing techniques to enhance performance. The
results demonstrate the model’s exceptional accuracy, achieving a mean absolute error
between 1.4% and 1.5%, along with the highest R2 score of 98.5% across all datasets. These
findings confirm the model’s ability to predict energy demand with high precision, making
it a valuable tool for smart grid applications.

Compared to traditional regression-based methods such as SVR and RFR, the
LSTM-based model offers several advantages. By leveraging long-term temporal memory,
efficient gating mechanisms, and the ability to handle non-linear dynamics, LSTMs are
particularly well-suited for forecasting energy demand. Their ability to adapt to seasonal
trends further enhances their reliability in real-world energy management scenarios.
Beyond predictive accuracy, our model contributes to global sustainability efforts by
addressing key SDGs. In line with SDG 7 (Affordable and Clean Energy), the model
optimizes renewable energy utilization, reduces energy wastage, and enhances electricity
access in underdeveloped regions. Under SDG 9 (Industry, Innovation, and
Infrastructure), it fosters innovation in smart grid technology while improving
infrastructure planning and energy resilience. Additionally, the model aligns with SDG 13
(Climate Action) by reducing overgeneration from fossil-fuel power plants, potentially
cutting CO2 emissions by up to 10% per megawatt-hour of energy produced.

The practical applicability of the proposed model is evident in its ability to assist utilities
and stakeholders in managing renewable energy resources more efficiently. Future
research could focus on further improving prediction accuracy by incorporating additional
factors such as weather conditions and renewable energy generation forecasts.
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Furthermore, integrating this approach with emerging technologies like the Internet of
Things (IoT) and blockchain could enhance smart grid reliability and efficiency, paving the
way for a more sustainable and intelligent energy system. Through these advancements,
our model significantly contributes to the ongoing efforts to develop sustainable energy
solutions that support a more equitable and environmentally friendly future.
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