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ABSTRACT

Data asset value assessment is of strategic significance to the development of data
factorization, in order to solve the problems of strong assessment subjectivity and low
assessment efficiency and accuracy in traditional assessment methods. This article
introduces the SLPDBO-BP data asset assessment model for data asset value
assessment. Firstly, the sinusoidal chaos mapping strategy, the Levy flight strategy
and the fusion of adaptive weight variation operators are integrated to increase the
population diversity of the algorithm, broaden the search range, and augment the
global optimization capability of the algorithm. Secondly, in an attempt to
comprehensively evaluate the optimization performance of SLPDBO, a series of
numerical optimization experiments are carried out with 20 test functions and with
popular optimization algorithms and dung beetle optimizer (DBO) algorithms with
different improvement strategies. Finally, in order to verify the effectiveness of the
proposed algorithm in data asset value assessment, the SLPDBO algorithm is
combined with backpropagation (BP) to establish the SLPDBO-BP model for data
asset value assessment, and the acquired data sets are used in the proposed model for
data asset value assessment. The experimental results show that the SLPDBO-BP
model performs well in assessment accuracy, and its assessment indexes mean
absolute error (MAE), root mean square error (RMSE) and mean absolute percentage
error (MAPE) are reduced by 35.1%, 37.6% and 38.7%, respectively, compared with
the dung beetle optimizer backpropagation (DBO-BP) model, and its evaluation
efficiency is improved, and the proposed model demonstrates better evaluation
simulation effects by remarkably outperforming other models in terms of evaluation
accuracy and error level.

Subjects Algorithms and Analysis of Algorithms, Databases, Optimization Theory and
Computation, Neural Networks
Keywords Dung beetle optimizer, BP neural network, SLPDBO-BP, Data assets, Value assessment

INTRODUCTION

Nowadays, with the rapid development of the technology-driven digital integrated
economic environment, data elements play an increasingly important role in it. Data value
allocation is an effective form of reflecting data factorization, while data value assessment is
a key driver of data factor value release (Bendechache et al., 2023). A data asset is a data
resource formed after the processing of user behavior information, public information,
and other relevant information obtained through legal means with the help of modern
computer technology. The value of data asset is the economic benefits or potential benefits
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brought to enterprises or individuals by making data an asset in a specific way. Its core lies
in the fact that data can create value in various ways. The ability and level of enterprise data
asset management will be linked to the degree of data utilization and the degree of data
value release (Liang et al., 2024). Meanwhile, more and more enterprises are incorporating
data asset management into their strategic planning. Data asset valuation has not only an
economic role but also a prominent strategic role in modern industry. It can not only help
enterprises optimize resource allocation, enhance investment grey, promote data trading
and sharing, but also enhance their competitive advantages, develop and innovate products
and services, and formulate effective data strategy plans to eventually realize the digital
transformation of enterprises. Data value assessment can not only achieve data resourcing,
data assessment, to data productization circulation empowerment (Fleckenstein, Obaidi ¢
Tryfona, 2023), it can also provide management with powerful decision support to help
them better understand the potential value and risk of data (Chang, Huang & Wu, 2024).
Meanwhile, it can also provide enterprises with a more effective allocation of resources to
improve market competitiveness while maximizing their economic benefits (Liu ¢ Qiao,
2021), stimulate innovativeness, and motivate enterprises to develop new products and
services, and ensure that companies can invest in high-value data assets.

Generally speaking, the methods used to evaluate data assets are divided into three main
categories, including traditional methods, economics methods, and comprehensive
methods. Among the traditional methods, the cost method (Fattinnanzi et al., 2020), the
market method (Yeh, 2024), and the income method (Acuna et al., 2020) are
representative. The classic economics assessment methods include game theory method
(Gomes, Gutierrez & Ribeiro, 2023), real options method (Khodayari & Ranjbar, 2019).
The main representatives of comprehensive methods include expert scoring method (Guo
et al., 2024), hierarchical analysis method (Lim et al., 2024), fuzzy comprehensive
evaluation method (L7, 2020) and so on. As digital technology continues to develop, the
popularity of e-commerce and social media has led to a significant increase in the volume
of data. Traditional data asset value assessment methods are often susceptible to ignoring
certain areas of demand, lack full exploration of potential value, and are limited by
manpower and existing empirical knowledge, and have a certain degree of subjectivity.
Therefore, machine learning-based data asset value assessment methods are gradually
gaining popularity among researchers. The method of machine learning is a modern
assessment means of value analysis and prediction of data assets using machine learning
technology data asset value assessment, mainly including neural networks (Yang et al,
2023), machine learning (Deppner et al., 2023) and other assessment methods. With the
increasing scale and complexity of data, these advanced technologies have the
characteristics of automation and efficiency, show high dynamic adaptability and excellent
pattern recognition ability, can automatically process a large amount of data,
multi-dimensional analysis, thus significantly reducing manual intervention, reducing the
subjectivity of the assessment, and can more accurately capture the potential value of the
data, and provide powerful support for the enterprise in the data-driven decision-making.

The backpropagation (BP) neural network is a machine learning method that captures
complex nonlinear relationships between inputs and outputs (Bi ¢» Wang, 2024), and is
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widely used in a variety of fields due to its flexibility and powerful modelling capabilities.
However, BP neural networks still face the challenge of easily trapping into local optimal
solutions, which ultimately leads to a reduction in prediction accuracy, and thus it is
particularly important to optimize for its weights and thresholds to enhance the overall
performance and generalization ability of the model, and ultimately achieve an increase in
assessment precision and accuracy. To address the optimal design problem, researchers
have introduced meta-heuristic algorithms (MA) (Abualigah et al., 2022) to solve the
problem, such as grey wolf optimization algorithm (GWO) (Mirjalili, Mirjalili ¢ Lewis,
2014), rime optimization algorithm (RIME) (Su et al., 2023) and multi-verse optimizer
(MVO) (Mirjalili, Mirjalili & Hatamlou, 2016), which are effective in improving the
process of adjusting the weights. Through these optimization techniques, the global search
ability of the model can be enhanced to help it jump out of the local optimal solution, thus
achieving higher prediction accuracy and broadening its application in practical problems.
With the continuous deepening of research, researchers have offered many algorithms to
solve optimization tasks in recent years, such as PID-based search algorithm (PSA) (Gao,
2023), snow ablation optimizer (SAO) (Deng ¢ Liu, 2023) and sinh cosh optimizer
(SCHO) (Bai et al., 2023). These algorithms have been widely used in numerical
optimization and engineering applications with excellent results. Based on the
characteristics of MA’s easy operation and strong seeking ability, this study introduces MA
to optimize the weights and thresholds of BP neural networks to improve the precision and
accuracy of data asset value assessment.

In 2023, Xue ¢» Shen (2023) inspired by the rolling, dancing, foraging, stealing and
breeding behavior of dung beetles, proposed a novel population intelligence optimization
algorithm, dung beetle optimizer (DBO) (Xue ¢ Shen, 2023), to deal with numerical
optimization and practical applications. Although the DBO has the characteristics of
strong seeking ability and fast convergence speed, considering the shortcomings of the
DBO algorithm that it has insufficient global searching ability and tends to converge to the
local optimum, researchers have done corresponding improvement work on it and applied
it to different fields. Qiao et al. (2024) introduced the original DBO improved by two
strategies, Levy flight and variable helix, and predicted the infrared radiation
characteristics of axisymmetric nozzles using the IDBO-HKELM model. Lyu, Jiang ¢ Yang
(2024) use a combination of four strategies to improve DBO performance and apply it to
the UAV 3D path planning problem. Wu, Xu ¢ Liu (2024) applied a comprehensive and
improved IDBO algorithm for traffic identification data analysis and feature selection in
network traffic identification. Baris, Yanarates ¢ Altan (2024) used an African Condor
optimization algorithm based on tent chaotic mapping to estimate parameters and
construct a highly accurate wind speed prediction model to improve wind energy
efficiency. Restrepo-Cuestas ¢~ Montano (2024) developed optimization techniques for the
solar cell parameter problem in the Bishop model to help solve the parameter estimation
problem in the PV model and improve the quality and efficiency of solving the parameter
optimization of the PV model. Karasu ¢ Altan (2022) proposed a new crude oil price
forecasting model based on technical indicators such as trend, volatility and momentum
using chaotic Henry gas solubility optimization technique to cope with the chaotic and
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nonlinear problems of crude oil time series. According to the No Free Lunch (NFL)
theorem (Sharma et al., 2022), there is no single optimal algorithm that can solve all
problems effectively and efficiently. Different algorithms have the ability to solve different
types of optimization problems (Lynn ¢ Suganthan, 2017). Therefore, to address the
problem that the weights and thresholds of BP neural networks need to be further optimal,
this article proposes a multi-strategy improved DBO algorithm to make up for the
shortcomings of the traditional DBO algorithm, so as to enhance the prediction accuracy
of the final data asset assessment model. The main contributions of this article are
concluded as follows:

(1) Based on the original DBO, a multi-strategy DBO (SLPDBO) that incorporates
sinusoidal chaos mapping, Levy flight and particle swarm optimization algorithm (PSO)
(Liang et al., 2023) fusion of adaptive weights and variational operators is introduced as an
optimal strategy.

(2) The superiority of SLPDBO algorithm is verified by 20 test functions, and the
obtained results are compared with popular algorithms and algorithms with different
improvement strategies, and statistical tests are performed to verify that SLPDBO exceeds
other competitors’ algorithms in terms of solution accuracy and robustness.

(3) The evaluation results of data asset transaction data are used to verify the
effectiveness of the SLPDBO-BP model suggested in this article in solving practical
problems and the efficiency of evaluation.

This document is organized as follows: “Related Work” describes related work.
“Technical Background” introduces the basic DBO algorithm in detail and a multi-strategy
enhanced dung beetle optimizer (SLPDBO) is developed and the improvement strategies
are described. In “Experimental Tests and Analysis of Results”, the evaluation of the
optimal performance of SLPDBO on 20 benchmark test functions is presented. “Empirical
Analysis of Data Asset Valuation” verifies the effectiveness of the SLPDBO-BP data asset
value assessment model in practical applications and the efficiency of the assessment by
evaluating the data from the Youe dataset network. In “Conclusion and Future Research”,
the experimental results are concluded and discussed.

RELATED WORK

In today’s fast-growing data economy, we are in an era of data explosion. With the
popularity of the Internet, the Internet of Things, social media and smart devices, there is a
constant flow of data of all kinds. Enterprises, governments and individuals are generating,
collecting and storing huge amounts of data every day. Therefore, data valuation has
become an important engine to promote the development of data economy, and data value
assessment has become a hot spot of contemporary research. Past research has mainly
focused on the traditional cost element, market element and revenue element, providing an
important theoretical foundation and practical guidance for data asset value assessment.
Fattinnanzi et al. (2020) successfully estimated the asset value of an ancient Roman public
building using the depreciated replacement cost (DRC) method and explored its market
value, demonstrating an innovative application in the valuation of historic buildings.
Odolinski et al. (2023) investigated the short-run marginal cost (SRMC) pricing principle
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and verified the feasibility of the EU track access pricing legislation through an
econometric approach to provide empirical support for policy development. Yeh (2024)
explored the assessment of intrinsic value of stocks using residual income model (RIM)
and growth value model (GVM) by determining the parameters through regression
analysis and market data. Although these studies have made some progress in their
respective fields, some limitations remain. Firstly, traditional methods often fail to
adequately take into account the dynamic nature and complexity of data, which may lead
to one-sided assessment results. Secondly, some of the models used may lack universality
in specific contexts and are difficult to adapt to the rapidly changing market environment.
In addition, the availability and accuracy of historical and market data may also affect the
reliability of the valuation results.

In order to adapt to the ever-changing data environment, researchers are committed to
establishing systematic theoretical frameworks and constructing various valuation models
in order to comprehensively understand the characteristics of data assets, their sources of
value and their applications in different scenarios. These frameworks usually integrate
knowledge from multiple disciplines, such as economics, management, and information
technology, and also have made a lot of achievements in data asset value assessment.
Harish et al. (2021) provided an effective tool for companies to perform digital asset
valuation and risk assessment through a logistics financing platform (Log-Flock),
advancing the practical application in the field of logistics financing (Harish et al., 2021)
but his study may be affected by the quality of the platform’s data and the adaptability of its
users, which limits its broad applicability. Kim ¢ Min (2023) used panel regression to
analyze the long-term determinants of the valuation effect of fixed asset factors, which
provided cross-country data support and enriched the theoretical basis of fixed asset
valuation, but also suffered from the drawback of failing to fully take into account the
dynamic changes of other economic variables. Li (2020) employed fuzzy theory and
integrated valuation methods to assess the assets of coastal enterprises through EVA
modelling, proving the applicability of his methodology and enhancing the flexibility and
accuracy of traditional valuation techniques, but may still have limitations when dealing
with high levels of uncertainty. Liu ¢» Zhang (2022) constructed a carbon asset assessment
model for power enterprise projects based on real options model using multimodal
knowledge mapping and real options model. The digital assessment of corporate carbon
assets has promoted the research progress of sustainable development and carbon
management, but its complexity may lead to implementation difficulties in practical
applications.

Kim & Lee (2023) successfully achieved efficient valuation of human activity recognition
based on inertial measurement unit (IMU) data by introducing a feature extraction
structure and a meta-reinforcement learning-based algorithm to improve the performance
and accuracy of the assessment model and achieve excellent assessment performance, but
its complexity may limit the generality in practical applications. Veldkamp (2023) explored
tools for data measurement and evaluation and examined the private value of data,
providing new perspectives on the understanding of data assets, but the utility and
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adaptability of his work still needs to be further validated. The data-driven automated
valuation framework proposed by Wu et al. (2022) combines geographic information
systems (GIS) and neural network techniques to efficiently value real estate assets,
demonstrating the potential of technology convergence in asset valuation (Wu et al., 2022),
but it may face the problem of data heterogeneity when dealing with different types of real
estate assets. Birch, Cochrane ¢ Ward (2021) analyses the process by which personal data
is transformed into an asset and explores the practices of large tech companies in
accounting for, managing and valuing personal data, advancing the understanding of the
data economy, but may not be sufficiently comprehensive in its considerations to have
applicability issues when dealing with other types of companies. Chen, Pelger ¢ Zhu (2024)
enriches the asset pricing theory by constructing an asset pricing model using no-arbitrage
conditions and deep neural networks to extract the macroeconomic states and identify the
key factors affecting individual stock returns, identifying the key factors driving asset
prices. However, its accuracy and applicability may be limited in a dynamic market
environment. In summary, in data asset value assessment, previous research is mainly
based on traditional assessment methods, which are more subjective and less efficient and
precise, or assess tangible assets and other types of wireless assets, with less involvement in
the assessment of data assets, as well as a lack of efficient data asset assessment models. To
solve these problems, this article proposes an SLPDBO-BP data asset value assessment
model, which uses the multi-strategy improved DBO algorithm to optimize the weights
and thresholds of the BP neural network in order to enhance the data asset value
assessment.

TECHNICAL BACKGROUND

Equations dung beetle optimization algorithm
Dung beetle optimization (DBO) implements an optimization process patterned after the
dung beetle’s navigational and food-sourcing mechanisms, proposed in 2022 developed
through studying and replicating the coping mechanisms and adaptation strategies of
dung beetles in the natural world (Wu, Luo & Zhou, 2024). It mainly consists of four parts:
rolling behavior, breeding behavior, foraging behavior, and stealing behavior (Wang et al.,
2024). Tts different subpopulations execute different search methods, enabling efficient
discovery and space exposure. The specific behavioral process is as follows:

(1) Rolling behavior

Accessibility: Dung beetles use the sun as a guide for maintaining the roll of a ball of
dung within a vertical line, where the strength of illumination affects the route taken by
dung beetles, and the location of the rolled ball will be updated in the following way:

{xr(tp+ 1) =x(t,) +a-m-x(t, —1) +c- Ax, W

Ax, =[x (1) — XV|

where: t, is the number of iterations, x,(t,) is the position information of the first dung
beetle in the first iteration, m is the perturbation coefficient, m € (0, 2], which is taken as
0.3 in the code, c is the fixed value in [0,1], which is taken as 0.1 in the code; a denotes an
indication of either the dung beetle departed his original roll direction or not, a which with
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the likelihood value equal to 1 or —1, in which 1 means non-divergence and —1 means
divergence; X," is the poorest placement among the global rolling direction; Ax; is the
amount of change in light intensity, whose more considerable value indicates that it is

farther away from the light source and the weaker the light source is.

Obstacle situation: When dung beetle meets an obstacle in the way, they will get a new
rolling orientation with the behavior of dancing. When it encounters an obstacle, the
tangent function is used to obtain a different scrolling direction to emphasize the
appearance of the dung beetle’s dancing behavior. The rolling dung beetle position is
updated in the following way:

x(tp + 1) = x.(t,) + tan f|x,(t,) — x,(t, — 1) (2)

where: f is the angle, ff € [0, 7], if f§ takes the value 0, 7/2 and =, the position of this dung
beetle is not updated when the value is taken.

(2) Breeding behavior

In the wild, dung beetles choose a secured area in which to lay their eggs, and to simulate
this behavior; in order to simulate this behavior, a strategy of choosing a boundary to
model the region is proposed; the equation for this boundary region is:

Lby" = max(X,*(1 — M), Lby)
Ub," = min(Xp*(l + M), Uby,) (3)
M = tp/Tmax

where: Lb," and Ub," are considered bottom and upper boundaries for the egg-laying
zone, Lby, and Ub, represent bottom and top bounds over the optimization problem,
respectively, Xp* is the current local best location, #p is the number of iterations for the
current iteration, the number of the most prominent iterations is Tp,y, and M determines
the dynamic change of the spawning area. The prevailing local best site X, is represented
with the large blue circle depicted in Fig. 1, and the little yellow colored circle surrounded
by X,,* represent the ovoid. Every ovoid will contain a dung beetle seed. In addition, the
circles in red symbolize an upper and lower limit for the border.

As for the algorithm of DBO, each female dung beetle produces only a single egg in each
iteration, and each egg-laying dung beetle spawn updates the location of the dung beetle.
The area of spawning is variable and moving; thus, it is guaranteed to search the area with
the current best solution and at the same time prevent falling into a partial optimal.
Positional updating of egg-laying dung beetles is done in the following manner:

By(t, +1) = X, + a1 x (By(ty) — Lbp") + ar x (By(t,) — Uby") (4)

where: By(t,) represents where the bth spawning sphere is located at the ,th of iteration;
a; and a, denote two random independent vectors with magnitude 1 x D, where D
represents the dimension of optimization.

(3) Foraging behavior

Some adult dung beetles will burrow out of the ground for their meals. They are
small dung beetles. In addition, optimal foraging areas require the establishment of
optimal foraging areas to lead them to seek foraging beetles, simulating the feeding
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Figure 1 Model of spawning boundary selection area. Full-size k] DOI: 10.7717/peerj-cs.2813/fig-1

habits of these dung beetles as they forage for food throughout the natural world. In
particular, an equation for the boundary of foraging areas of the best foraging area is

given by:
Lb, = max(X,"(1 — M), Lby)
Ub, = min(X,(1 + M), Uby) (5)
M = tP/Tmax

where: Lb,’ and Ub,® are the bottom and top boundaries of optimal foraging areas, Lb;,
and Ub, denote bottom and top bounds over the optimization problem, respectively, X,
being the best location globally, ¢, is the number of iterations for the current iteration, the
number of the most oversized iterations is Tp,y, and M determines the dynamic change of
the optimal foraging area.

Small dung beetles update their position in the area where they are foraging by:

xp(tp + 1) = x¢(t,) + Dy x (x7(t,) — Lby") + Dy x (x¢(t,) — Uby") (6)

where: x¢(t,) represents the position of the fth baby dung beetle during the #,th iteration,
D; for arbitrary numbers obeying a regular partition, D, € (0, 1).

(4) Theft behavior

Some of these dung beetles, known as thieves, would be able to take balls of dung from
others, X,? denotes the best location to compete bite-size portion of food, and the
positional information for stealing this is updated during the iteration process in the
following way:
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x(tp + 1) = X" + Fx hx {]xi(ty) = X°| + [ () — X} (7)

where: x,(1,) is one of the locations where the tth stealer is located during the t,th
iteration; h denotes an arbitrary variable with 1 X D dimensions and following a regular
pattern; F is a constant value.

BP neural network

BP neural network is a backpropagation algorithm for learning with multi-layer networks
(Yan, 2015); it has mechanisms for both the input data propagating ahead and the error to
be spread in reverse. The framework allows the mathematical projections to reflect the
intrinsic laws of the acquired data, as well as a solid nonlinear fitting ability; the training
process of the BP neural network is to optimize the weights and thresholds (He et al., 2023)
of the prediction model so that the loss function reaches a minimum so that it can
minimize the error of the output value concerning the actual value, to achieve the effect of
approximating the effect of a variety of nonlinear continuous functions. The BP neural
network has a two-stage working mechanism and is simultaneously divided into three
parts: input, hidden and output layers; the propagation process consists of input node x,
weights w, bias b, activation function f, output node y, BP neural network data is
propagated ahead and the error is spread in reverse schematic shown in Fig. 2.

The SLPDBO algorithm

While the DBO algorithm is characterized by high accuracy, high optimality finding
performance, and high time of convergence, it also has the disadvantage of not being able
to keep the two phases of the exploration and the development phases well-balanced, being
easy to fall into the local optimum, and having the disadvantage of being less able to
explore the whole picture. Therefore, in an attempt to boost the efficiency of the DBO
finding property, the article proposes a multi-strategy algorithm to improve DBO. The
merit-seeking capability of the DBO algorithm is improved by the sinusoidal chaotic
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mapping strategy, Levy flight strategy, and particle swarm optimization algorithm (PSO)
fusing adaptive weights and variational operators. The DBO algorithm, which is improved
by a mixture of multiple strategies, is called the SLPDBO algorithm. This chapter will
specifically introduce these strategies.

Sinusoidal chaos mapping

Chaos mapping is a randomness sequence generated by simple nonlinear, deterministic,
ergodic, and stochastic properties of the perturbation mechanics system used to generate
chaotic sequences (Toktas et al., 2023). The traditional DBO algorithm is to have a
random seed to generate the initial population, so there a disadvantage of poor initial
position, easy trapping in local optimization, etc., and the application of sinusoidal chaos
mapping can be excellent to circumvent the search of the solution space, make the search
field wider, increases the broadness breadth of the optimization alchemy, makes the
original settlement as homogeneous as possible in the resolution space energy so that the
convergence speed of the algorithm become faster. Figure 3 shows the sinusoidal chaotic
mapping distribution and frequency diagram. Sinusoidal mapping is utilized to project the
resulting values into chaotic variables. Then, the resulting chaotic values are mapped into
the initial space of the algorithm to find the initial position using a linear transformation.
As seen in the figure, the chaotic sequence generated by sinusoidal chaotic mapping is
more uniform, making the position update traversal random, helping the algorithm to
jump out of the local optimum and explore a wider solution space. Meanwhile, the
regularity of the chaotic sequence helps the algorithm find potential solutions faster and
accelerate the convergence process. The specific expression of sinusoidal mapping is:

X;41 = aX}sin(nX,) (8)

where: X; is the current value of the chaotic sequence at the ¢th iteration; a is the control
coefficient; in the article, the traversal works best when taken as 2.
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Levy flight strategy

Levy flight is a stepwise probability-distributed stochastic nomadic maneuver (Joshi, 2023),
predetermined from a likelihood distribution defined by the Levy allocation (Li et al.,
2022). The movement of dung beetle individuals mainly relies on the location details of the
most optimized individual to update; in the position update equation of dung beetle
stealing behavior, when the optimal individual falls into a local optimal solution, the other
individuals of the dung beetle population will fall into a stagnant state when they move
towards the optimal individual. Levy flights have the characteristics of long step lengths
and distances, long-tailed distributions, and stochastic movement patterns, so in this
article, we use Levy flights to enhance the path disturbance when an individual moves
towards the Therefore, this article uses Levy flight to enhance the path perturbation when
the individual moves to the current optimal position, which contribute to a better
algorithm for tripping out local optima solution and makes the algorithm have better
diversity. Levy flight provides large-scale exploration in the initial phase and fine-grained
exploitation in the later phase through short step sizes, thus balancing exploration and
exploitation to find the global optimal solution by using Levy flight to perturb the location
of the solution in the position update formulation in the stealing behavior, enhancing the
global search capability. The position update equation after the Levy flight strategy
perturbation is shown below:

xt(tp + 1) =X +Fxhx {}xt(tp) —Xp*} + |xt(tp) —th|} X 7y @ Levy(4) (9)

where: 7y indicates a random step, @ means a dot product, Levy(1) denotes a randomized
path of search and satisfying the constraint equation as:

Levy(A) ~pu=t"*1<2,3 (10)

The Levy flight random step is generated by:

s=-+t (11)

[v[?

where: u and v are parameters obeying a normal distribution, y ~ N0 ( ) u)’

Vo~ N(O, av). o, and o, are:

__[L0+psin(ap/2) |7
“ [+ p g

where: I'(x) is the Gamma function; f§ € (0,2), the empirical value 1.5 is taken here.

o,=1 (12)

PSO fusion adaptive weight mutation operator

PSO strategy comes from the position update formula of particle swarm optimization
algorithm (Jiang et al., 2021), PSO algorithm is mainly updated by searching for the
optimal speed and position of each particle, Taking into account that the dung beetle
algorithm suffers from a tendency to fall into local optimality, the introduction of the PSO
position update strategy jumps out of the local optimal, and improves the algorithm’s
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global search ability; simultaneously, the introduction of inertia weight, the nonlinear
descending characteristics, gradually decreasing with the increase in the number of
iteration decrease, can make the particles maintain inertial motion, increasing the scope of
seeking out space and the ability to explore new regions, it improved the acceleration of the
later phase of the integration of the method; increase the variation operator, the variation
probability with the increase in the number of iterations and gradually reduce, help in the
early exploration of the algorithm to discover more solvability space, and at a later stage,
the refined search for the optimal solution finally realizes the algorithm’s improvement in
convergence speed and optimality searching ability. The PSO algorithm position updating

formula is:
Ve(ty +1) = wyg(ty) + bl - el - (pXy — xg) + b2 - €2 - (bestX — x,) (13)
Xg(tp + 1) = xg(tp) + vg(t, + 1) (14)
Wmax — Wmin
w= e = (S 19
P=0.1 1 ti (16)
—0. A

where: w is the inertia weight, v,(t,) is the velocity of the individual in the t,th iteration. &1
and &2 are constants with values 0 ~ 1, b1 and b2 are acceleration factors of 1.5, pX, is the
local optimum of the individual in the ¢ iteration, bestX is the global optimum in the ¢
iteration, x, is the location of the individual in the t th iteration, P represents the
probability of variability concerning the number of iterations, Wi,y is taken to be 0.9, Wiin
is taken to be 0.4.

SLPDBO-BP neural network model construction
Aiming at the problems of solid subjectivity of traditional assessment methods, relying on
manually formulated rules and indexes, inability to take full consideration of the
sophisticated correlations among different types of data, insufficiently accurate and precise
measurement of the value attributed to the data, and low evaluation efficiency, assessing
the value of data assets using a BP neural network structure, which enables achieve efficient
assessment and prediction of the asset value of data resources. Although more vital
nonlinear mapping ability (Xue, Tong ¢» Neri, 2022) self-learning and self-adaptation and
generalization are excellent (Li, Li ¢» Lian, 2015) features of BP neural networks,
considering the disadvantages of BP neural networks that do not learn quickly, tend to fall
into partial optimization and have low prediction accuracy. The excellent performance of
the DBO algorithm is used to optimize the BP neural network weights and thresholds to
achieve the minimum error, and finally, optimal results are presented. Aiming at the DBO
algorithm’s problems in local extremes and convergence speed, the DBO algorithm is
improved with a comprehensive strategy to establish a stable SLPDBO-BP prediction
model and improve the prediction accuracy and generalization ability.

BP neural network is selected as the core model for data asset value assessment, mainly
based on the following reasons: Firstly, nonlinear mapping ability; data asset value is
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affected by the nonlinearity of multiple factors, and the traditional linear model (e.g.,
regression analysis) is difficult to capture complex associations. BP neural network can fit
the nonlinear relationship effectively through the multilayered neuron structure (input
layer-implicit layer-output layer) and activation function. Secondly, self-learning and
generalization ability; BP adjusts the parameters through the error back propagation
mechanism, without relying on artificial rules, and can adapt itself to different data.
Finally, it can fit with the needs of data asset assessment; data asset assessment needs to
deal with the fusion of structured and unstructured data. BP neural network supports
multi-source inputs, and there have been studies to validate its effectiveness in the field of
asset assessment.

The gradient descent method of BP is prone to falling into local optima, but this
shortcoming can be compensated by intelligent optimization algorithms. This framework
of BP fusion optimization algorithm has been widely used for complex problems such as
wind power prediction, financial risk assessment, efc. and has proved its feasibility. The
training objective of the BP neural network is to find the weights and thresholds that
minimize the loss function. The traditional gradient descent method updates the
parameters through local gradients, which is easy to fall into local optima and is slow to
converge. SLPDBO, as a global optimization algorithm, is able to optimize the initial
weights and thresholds of the BP by simulating the behavior of dung beetles and exploring
the parameter space efficiently by using a search strategy that can jump out of local
extremes. By finding better initial parameters through global search, the loss function
surface of BP is closer to the global optimum. Compared with the existing methods, the
proposed method has a strong nonlinear processing capability and is suitable for dealing
with complex, nonlinear data asset value assessment. Especially in the case of large data
volumes and many influencing factors, the performance is better. Traditional types of
methods, such as the cost method, income method, and market method, are simple to
operate. Considering the historical cost may ignore future income, as well as market and
other circumstances, is a limitation. They are more subjective and easily affected by fixed
thinking, and their scope of use is more limited. Therefore, we chose to use the
SLPDBO-BP model for the assessment of the value of data assets. The steps for the specific
optimization are illustrated below:

(1) The data was analyzed and processed to build a BP neural network, determining the
network’s input and output structure and initialization of the linking weights and
thresholds of the BP neural network.

(2) Initialize the improved DBO parameters, calculate the DBO algorithm’s decision
length, and set the initial conditions of the DBO, including setting the population
dimensions, the maximum iteration number, spatial dimensions, boundaries, and so
on. Meanwhile, the mean square error (MSE) is selected as the objective function of the
improved DBO-optimized BP.

(3) Chaotic mapping initializes the population.

(4) Calculating individual fitness in dung beetle populations.
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(5) The position is constantly updated according to Eqs. (1), (2), (4), (6), (9).
(6) Determine if the dung beetle is out of bounds after each update.

(7) First of all, we calculate the individual fitness value. Then, we find the optimum fitness
value location, record the location vector, and use it as the optimal individual location.

(8) The algorithm stopping criterion is set to stop the algorithm by terminating the
optimization process after the maximum number of iterations is satisfied or the
error accuracy requirement is reached. The optimized optimal weight threshold
parameter of the improved DBO algorithm is given to the BP neural network; that is,
the optimal SLPDBO-BP model is outputted. As depicted in Fig. 4, the SLPDBO-BP
model optimization process is demonstrated.

Complexity analysis

When improving the underlying DBO algorithm, time complexity (Alkan & Bullock, 2021)
being as follows factor to be considered, which is designed to represent the trend of code
execution time as the data size increases. Time complexity describes the execution duration
of an algorithm under the worst possible time, indicating the time resources needed to run
it. It is used to compare the efficiency of different algorithms. Time complexity can be
expressed in terms of Big-O representation (Pelusi et al., 2018) as a measure of how good
an algorithm is.

We hypothesize that N indicates the village size, D denotes the optimization problem
vector, and M states the maximum number of iterations. The time complexity analysis is
performed for the DBO algorithm, and the synthesis strategy improves the algorithm
SLPDBO. The temporal sophistication of the initial segment has been M1 = O(N * D), and
N dung beetles undergo a position update in each iteration, iterating M rounds; the
intricate degree of the alternation process is M2 = O(M * N * D), so the iterative process
has the complexity of M1 + M2 simplified to O(M * N * D) for the DBO algorithm. The
initialization phase by the SLPDBO algorithm has the same intricate complexity as the
DBO algorithm as M1, M rounds of iterations in which SLPDBO improves the DBO
stealing behavior assuming that the share of stolen dung beetles is P, M3 = O(M * P * D),
and positional updating of the entire species of dung beetles using the PSO fusion strategy,
M4 = O(M * N * D), therefore the sophistication of the SLPDBO alphabet is M1 + M3 +
M4 simplified to O(M * N * D). In summary, the SLPDBO has a complexity profile
identical to that of the DBO. The efficiency of the improved algorithm has not decreased.

EXPERIMENTAL TESTS AND ANALYSIS OF RESULTS

Experimental setup

The aim is to objectively evaluate the SLPDBO algorithm’s optimization-seeking ability
and the effectiveness of the integrated strategy. When selecting test functions, it is essential
to ensure that the chosen function comprehensively evaluates the performance of the
algorithm in different contexts, highlighting the assessment of convergence ability,
handling of complexity, local vs. global optimization, and adaptability in terms of
dimensionality. In order to verify the convergence speed and efficiency of the algorithm, 20
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commonly used standardized test functions have been selected for experimental
simulation in this article, in which the functions F; — F, are unimodal functions. There is a
single solution that is globally optimal, which is designed to benchmark the acceleration of
convergence and the ability of the algorithm to find an optimum. F5 — Fj are simple
multimodal functions containing several partially optimal solutions and just one generally
optimal resolution, which is employed to measure the capability of the algorithm for
national selection and mining. Fy;, Fy,, F13, and Fy4 are composite modal benchmark test
functions due to their more complex composition with additional bias values and a weight
for each subfunction. These complex combinatorial functions which directly add further
challenge and time required to find the optimal point of the algorithm. Multiple local
minima in the interval belonging to the algorithm are often used to test the algorithm’s
ability to balance the relationship between global search and local development. F;5 — F5
are fixed dimensional modal functions used to manage the performance of a specific
algorithm or data structure in different dimensions. In Table 1 the mathematical
expressions, the optimization search dimension, the range of values and the minimum
value of the corresponding 20 benchmark functions are shown.

For the purpose of testing the optimization-seeking capability of the SLPDBO
algorithm, firstly, comparison experiments are conducted with different intelligent
optimization algorithms, Genetic Algorithm (GA) (FuRui, Al-Absi ¢» Lee, 2019), Whale
Optimization Algorithm (WOA) (Mirjalili & Lewis, 2016), Subtractive Averaging
of Optimization Algorithm (SABO) (Trojovsky ¢ Dehghani, 2023), Golden Jackal
Optimization Algorithm (GJO) (Chopra ¢ Ansari, 2022), Chimp Optimization Algorithm
(ChOA) (Khishe & Mosavi, 2020) and the DBO algorithm. They responded to the
algorithm’s convergence accuracy and stability by comparing the mean, standard and
optimal values of the fitness values in the 20 functions, which finally verifies the superiority
of the SLPDBO reaction algorithm. Secondly, ablation experiments with algorithms with
different improvement strategies are conducted to verify the superiority of the SLPDBO
algorithm in terms of comprehensive performance. In the ablation experiments, the
algorithm based on the sinusoidal chaos mapping strategy is SDBO, the algorithm based
on the Levy flight strategy is LDBO, and the algorithm based on the PSO fusion adaptive
weight variational operator is PDBO. Table 2 shows the corresponding parameter settings
for the selected algorithms. These parameters can be adjusted accordingly for different
applications.

In this article, the core hyperparameters are determined based on practical experience
and hierarchical progressive parameter adjustment method. In the SLPDBO optimization
algorithm, in the selection of population size, the three sizes of [20,30,50] are tested by the
control variable method, and it is found that there is no significant improvement in
convergence stability of the algorithm when the size is larger than 30, so the population
size is selected to be 30 to balance the efficiency and accuracy. In the sinusoidal chaotic
mapping coefficients according to reference (Ali et al., 2023) is set to u = 2.3, which can
ensure the chaotic sequence ergodicity. Levy flight step, scaling factor for 4, 2 € [1, 3] when
the global exploration ability is optimal, and finally take 1.5.
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Table 1 A total of 20 benchmark functions.

Function type Displayed formula Dimensions Search range Optimum value
Unimodal D =y . 30 [-100,100] -1,300
functions Fi(x) = ; (10°)272} + £, 2 = Tosz(Mi (x — 0))
D 30 -100,100 -1,200
Fy(x) =21 +10° 3 27 + £,z = My Top (Mi(x — 0)) [ ]
i—2
D - 30 -100,100 100
Fy(x) = 3 (10°)712¢ | !
i=1
D 30 -100,100 300
Fy(x) = 1052 + > 7 [ ]
i=2
Simple b b 30 [~100,100] 500
multimodal Fs(x) = —20exp| 0.2y [53>°x7 | —exp (IL)Z cos(27cx,~)> +20+e
functions = =
D 30 -100,100 800
Fg(x) = > (x? — 10 cos(2mx;) + 10) [ ]
i=1
b S 30 [~100,100] 1,000
Fo(x) = 10 1+i |2 x;—round(2x;)| _ 10
) =11 ( $ el )
D 1/4 D D 30 [-100,100] 1,100
Fs(x)=|>x*—-D| + (0.52xf+2x,~>/D+0.5
i= i=1 i=1
D 2 D 2|1/2 D D 30 [-100,100] 1,200
Fo(x) = ‘(Z ,2) (Zx,) (o.szx? +in>/D+0.S
i=1 i=1 i=1 i=1
D-1 30 [-100,100] 900
Fio(x) = sin®(nw, +Z
i=1
x [1+ 10sin*(mw; + 1)] + (wp — 1) [1 + sin®(2mwp)]
=1
wi=1+% " Vi=1,....D
4
Composition N . 30 [-100,100] 2,600
functions Fii(x) = F(x) = ;{wi * [Aigi(x) + bias;]} + Fx
Composition Function 4 (N = 5)
N . 30 [-100,100] 2,800
Fip(x) = F(x) = 3 {w;  [4igi(x) + biasi]} + Fx
i=1
Composition Function 6 (N = 5)
N 30 [~100,100] 2,300
Fi3(x) = F(x) = Y _{w; * [Ligi(x) + bias;]} + Fx
i=1
Composition Function 4 (N = 4)
N ‘ 30 [~100,100] 2,700
Fuu(x) = F(x) = Z{a), [%:gi(x) + bias;|} + Fx
Composition Functlon 8(N=6)
Fixed dimension functions D 1/4 D D 10 [-100,100] 1
Fis(x)=|>x-D| + (052::3 + Zx,-)/D+ 0.5
=1 i=1 i=1
“ 30 -500,500]" -12,569.5
Fis(x) =Y —x; sm(\/|x,-|) [ ]
i=1
51 2 1 2 [-5,10]%[0,15]  0.397887
Fi7(x) = (% — = le + xl - 6) + 10(1 - 8—> cosx; + 10
Fis(x) = [14 (51 4 %2 + 1)2(19 — 14x; + 3x7 — 14x; + 6x1%, + 3%2)] 2 [-2,2]° 2.999999
X [30 + (2% — 3%2)(18 — 32x; + 1223 + 48x; — 36x1x; + 27x2)]
4 3 [0,1]° -3.862782
Fio(x) = — > ciexp Z a(x; — pi)°
i1
6 [0,1]° -3.321995

Fy(x) = — IZ::I ciexp < i: a;i(x; — p,-j)2>

j=
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Table 2 Algorithm parameter settings.

Algorithm Parameters Value
GA pS pm 0.8, 0.05
WOA A, Cb, 18,82, 11,12, p 2%a*rl-a,C=2%r2,1, [-1,1], [0,2],
[-1, -2], [0,1], [0,1], [0,1]
SABO Lr [0,2], [0,1]
GJO RL, c1, E0, E1, u, v, B 0.05 * Levy(y),1.5, [-1,1] [0,1.5], [0,1], [0,1],1.5
ChOA f,rl,r2,a, m [0,2.5], [0,1], [0,1], [-2f,2f], chaos (3)
DBO b, k, a, 6, R, RDB, EDB, FDB, SDB 0.3,0.1, 1 or -1, [0, 7], 1-t/M, 6, 6, 7, 11
SLPDBO b, k, a, 6, R, RDB, EDB, FDB, SDB 0.3,0.1, 1 or -1, [0, 7], 1-t/M, 6, 6, 7, 11, 2,
sinusoidal, RL, w-max, w-min RL = 0.15 * Levy(y), 0.9, 0.4

Test function experimental analysis

The test in this article operates on the Windows 11 Professional Edition operating system.
Meanwhile, the processor of this computer is Intel(R) Core (TM) i7-10700, clocked at 2.90
GHz, the memory is 8 GB, and MATLAB2022b is used for coding. The initial parameters
for the setup of this article are that each alternative algorithm was run automatically for 30
cycles with the population set to 30 and a total maximum number of iterations of 500.

Test function test comparison

In order to verify the superiority and stability of the SLPDBO algorithm’s optimization,
seeking the best with different intelligent optimization algorithms, as displayed in the
outcome of the measurement experiments in Table 3, where bold indicates the optimal
results. It is found that SLPDBO achieves the best results in the standard deviation of each
function in the unimodal functions F; — F,, and achieves the optimal values in terms of
accuracy and stability, as well as the average values in F3 and F,. In the optimal values, the
minimum value of SLPDBO is higher than the GJO algorithm, which indicates that the
performance is slightly lower than GJO. However, it is among the top of several algorithms.
The proposed algorithm SLPDBO has superior results regarding local development
capability, and its overall functionality performs more nicely than the others in terms of
execution capability. In the optimal values, SLPDBO is slightly lower than the GJO
algorithm but is among the top of several algorithms. The proposed SLPDBO algorithm
has superior results in terms of local development capability, and its overall performance is
better than that of the other algorithms in terms of execution capability. Among the
multi-peak functions Fs—Fj, functions F; and Fg have the best accuracy and stability in the
mean and standard deviation.

In contrast, the standard deviation of the other functions achieves the optimal value,
which is slightly lower than that of GJO and SABO in terms of the optimal value but is
ranked at the top of several algorithms. Evidently, the SLPDBO algorithm has better
exploratory competence in finding the optimal solution of a multi-peak function, the
performance of the improved algorithm performs better than some well-known algorithms
on most functions. In the composite functions F;;-Fis, all functions achieve the minimum
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Table 3 The experimental results of GA, WOA, SABO, ChOA, DBO and SLPDBO based on benchmark functions.

Function Index GA WOA SABO GJO ChOA DBO SLPDBO
F1 Best 1.272E+08 9.346E+07 8.725E+07 3.315E+07 7.293E+07 2.066E+07 7.985E+07
Average 4.952E+08 1.769E+08 2.238E+08 8.500E+07 1.498E+08 1.056E+08 8.761E+07
Standard 2.371E+08 2.287E+07 1.287E+08 5.170E+07 7.012E+07 2.012E+07 1.098E+07
F2 Best 5.498E+10 3.260E+10 2.439E+10 1.386E+10 4.144E+10 2.200E+10 2.302E+10
Average 1.233E+11 4.589E+11 8.701E+12 3.595E+10 7.999E+12 1.654E+11 4.571E+10
Standard 1.183E+10 4.839E+11 1.223E+13 2.746E+10 6.911E+12 1.531E+11 4.441E+09
F3 Best 6.972E+08 2.114E+08 2.242E+08 1.744E+08 4.724E+08 8.956E+07 1.237E+08
Average 8.362E+08 2.406E+08 3.882E+08 3.079E+08 6.045E+08 1.906E+08 1.376E+08
Standard 1.966E+08 4.136E+07 2.318E+08 1.889E+08 1.868E+08 1.430E+08 1.963E+07
F4 Best 2.311E+05 3.097E+05 5.977E+04 4.518E+04 9.090E+04 4.609E+04 5.225E+04
Average 2.519E+05 3.122E+05 6.208E+04 5.977E+04 9.283E+04 5.673E+04 5.388E+04
Standard 2.935E+04 3.437E+03 3.261E+03 2.063E+04 2.719E+03 1.506E+04 2.304E+03
F5 Best 5.210E+02 5.206E+02 5.209E+02 5.210E+02 5.209E+02 5.208E+02 5.204E+02
Average 5.212E+02 5.209E+02 5.211E+02 5.211E+02 5.211E+02 5.210E+02 5.208E+02
Standard 6.295E-02 1.031E-01 7.971E-02 5.070E-02 6.628E—-02 9.750E-02 1.761E-01
F6 Best 1.232E+03 1.020E+03 1.068E+03 9.901E+02 1.036E+03 9.501E+02 9.579E+02
Average 1.260E+03 1.072E+03 1.076E+03 9.980E+02 1.059E+03 9.821E+02 9.705E+02
Standard 3.945E+01 7.350E+01 1.132E+01 1.113E+01 3.251E+01 4.518E+01 1.784E+01
F7 Best 6.237E+03 4.393E+03 7.028E+03 3.636E+03 6.624E+03 3.502E+03 2.171E+03
Average 8.167E+03 6.310E+03 8.373E+03 5.904E+03 7.862E+03 4.903E+03 4.208E+03
Standard 9.389E+02 7.838E+02 5.210E+02 1.436E+03 7.659E+02 8.671E+02 7.562E+02
F8 Best 7.477E+03 7.308E+03 9.086E+03 5.279E+03 8.847E+03 5.865E+03 5.928E+03
Average 7.580E+03 7.350E+03 9.335E+03 7.122E+03 8.988E+03 7.117E+03 6.402E+03
Standard 1.461E+02 5.922E+01 3.519E+02 2.606E+03 1.998E+02 1.771E+03 6.707E+02
F9 Best 1.203E+03 1.201E+03 1.202E+03 1.201E+03 1.202E+03 1.201E+03 1.201E+03
Average 1.204E+03 1.202E+03 1.203E+03 1.203E+03 1.203E+03 1.203E+03 1.202E+03
Standard 6.925E-01 5.714E-01 4.563E-01 8.248E-01 4.546E-01 9.950E-01 8.084E-01
F10 Best 1.090E+04 6.807E+03 7.300E+03 4.836E+03 1.225E+04 9.248E+03 5.808E+03
Average 1.278E+04 1.091E+04 9.658E+03 7.708E+03 1.252E+04 9.545E+03 6.548E+03
Standard 2.654E+03 5.801E+03 3.334E+03 4.061E+03 3.806E+02 4.208E+02 1.045E+03
F11 Best 2.711E+03 2.700E+03 2.709E+03 2.701E+03 2.704E+03 2.700E+03 2.700E+03
Average 2.883E+03 2.731E+03 2.772E+03 2.764E+03 2.804E+03 2.714E+03 2.701E+03
Standard 8.324E+01 6.363E+01 4.011E+01 4.757E+01 9.343E+01 3.442E+01 2.012E-01
F12 Best 6.974E+03 4.546E+03 4.671E+03 4.337E+03 5.392E+03 3.955E+03 3.000E+03
Average 9.171E+03 5.854E+03 7.699E+03 5.194E+03 6.044E+03 4.849E+03 4.498E+03
Standard 1.325E+03 7.481E+02 1.768E+03 8.748E+02 3.325E+02 5.005E+02 9.120E+02
F13 Best 4.349E+03 3.090E+03 3.408E+03 3.012E+03 3.257E+03 3.041E+03 2.500E+03
Average 5.497E+03 3.433E+03 4.054E+03 3.298E+03 3.809E+03 3.292E+03 3.008E+03
Standard 6.683E+02 2.065E+02 3.231E+02 1.652E+02 2.251E+02 1.904E+02 4.251E+02
F14 Best 5.649E+03 3.762E+03 3.789E+03 3.662E+03 4.061E+03 3.695E+03 2.900E+03
Average 6.686E+03 4.139E+03 4.381E+03 4.448E+03 4.409E+03 3.954E+03 3.753E+03
Standard 6.162E+02 2.338E+02 4.673E+02 3.420E+02 2.283E+02 1.840E+02 3.635E+02
(Continued)
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Table 3 (continued)

Function Index GA WOA SABO GJO ChOA DBO SLPDBO
F15 Best 1.271E+01 1.071E+01 1.072E+01 1.071E+01 1.073E+01 1.071E+01 1.071E+01
Average 1.368E+01 1.175E+01 1.191E+01 1.232E+01 1.148E+01 1.119E+01 1.105E+01
Standard 1.823E-01 9.639E-01 8.364E-01 8.090E-01 2.799E-01 4.799E-01 5.125E-01
F16 Best -3.267E+03 -1.257E+04 —3.764E+03 —6.290E+03 —5.883E+03 -1.187E+04 —1.254E+04
Average —2.181E+03 -1.031E+04 -3.074E+03 —4.808E+03 —-5.716E+03 -8.570E+03 -1.063E+04
Standard 5.538E+02 1.760E+03 2.988E+02 9.561E+02 6.742E+01 1.742E+03 1.612E+03
F17 Best 6.198E+01 3.979E-01 3.979E-01 3.979E-01 3.979E-01 3.979E-01 3.979E-01
Average 7.332E+01 3.979E-01 4.636E-01 3.979E-01 3.988E-01 3.979E-01 3.979E-01
Standard 7.232E+00 6.159E-05 1.289E-01 1.840E-04 1.185E-03 0.000E+00 6.274E-07
F18 Best 3.000E+00 3.000E+00 3.001E+00 3.000E+00 3.000E+00 3.000E+00 3.000E+00
Average 1.225E+01 3.000E+00 3.630E+00 3.000E+00 3.000E+00 3.000E+00 3.000E+00
Standard 1.813E+01 3.187E-04 1.455E+00 3.122E-06 1.782E-04 2.580E-15 2.699E-04
F19 Best —-3.851E+00 -3.863E+00 —-3.862E+00 -3.863E+00 —-3.863E+00 -3.863E+00 -3.863E+00
Average —-3.303E+00 —3.855E+00 -3.697E+00 —3.860E+00 -3.855E+00 —-3.863E+00 -3.863E+00
Standard 3.500E-01 1.208E-02 1.237E-01 3.627E-03 2.525E-03 1.439E-03 3.544E-05
F20 Best —2.766E+00 -3.321E+00 -3.321E+00 —-3.322E+00 —-3.246E+00 —-3.322E+00 -3.322E+00
Average —1.449E+00 -3.207E+00 —3.265E+00 -3.125E+00 —2.641E+00 -3.214E+00 —-3.240E+00
Standard 5.440E-01 1.023E-01 9.112E-02 2.005E-01 4.849E-01 1.516E-01 6.051E-02
Note:

Bold indicates optimal results.

in the optimum and standard deviation and are slightly less effective than the other
algorithms in the standard deviation but also rank high among several algorithms. This
shows the stabilizing effect of the SLPDBO algorithm on the search for excellence and its
superior performance in balancing the ability of both the global seeking and the
development of local relationships. In the fixed dimensional function Fy5-Fy, Fys, Fy7, Fis
and Fj9 achieve the smallest value in the optimal value and the average value, Fj6, F19 and
F,q achieve the smallest value in the standard deviation, and the other functions of the
indexes, although slightly lower, for example, the average value of F, is larger than the
SABO algorithm, it means that the performance is lacking in this function. However, it is
also ranked at the top of the algorithms.

Meanwhile, the seven comparison algorithms were iterated on 20 benchmark test
functions, and the convergence course of the different algorithms is demonstrated in Fig. 5,
where the number of iterations is demonstrated on the horizontal coordinate and the
fitness value is demonstrated on the vertical coordinate. In most test functions, such as F,,
F4, F11-Fy, the SLPDBO algorithm has the fastest convergence speed and the highest
convergence accuracy. The convergence curve approximates a straight-line convergence,
which can converge and find the optimal value at the fastest speed. As can be discerned in
F1, F3, and F5-Fj, the SLPDBO algorithm maintains the fastest convergence speed, has the
highest convergence accuracy, and converges with an approximately straight line
convergence curve, and ultimately realizes the effect of converging at the fastest speed and
finding the optimal value. In summary, no matter in the unimodal function, simple
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Figure 5 The convergence curves of SLPDBO and other algorithms on the benchmark functions.

Full-size K&l DOT: 10.7717/peerj-cs.2813/fig-5

multimodal function, composite function, or fixed-dimension function, SLPDBQO’s
comprehensive performance is better than other standard algorithms, with superior
performance in local exploitation and global exploration capabilities, and outstanding
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results in convergence of the accuracy and velocity of the optimization search. The
superior performance of the improved SLPDBO algorithm in convergence optimization
search is proved through comparative experiments, which is substantial to improve the
convergence effect, exploration and development of the algorithm.

The performance advantage of SLPDBO over other algorithms when performing
performance comparison experiments can be attributed to the differences in design
between its core mechanism and the comparison algorithms. In the unimodal functions,
SLPDBO ensures population diversity through sinusoidal chaotic mapping initialization
by using an effective combination of various strategies to find a way to explore and develop
global and local optima during initial position generation and position updating to avoid
falling into local optima, which would lead to a reduction in the overall performance of the
algorithm. In the multi-peak functions, SABO relies on random direction vectors for global
exploration and lacks a guiding mechanism for the historical optimal solution, which
causes it to easily fall into ineffective searches in complex multi-peak scenarios. The
balancing factor of SABO is based on the adjustment of a fixed threshold, which makes it
easy to terminate the search process prematurely when the region of local extremes is
wider. In the composite functions, the step decay coefficient of GJO and the balance factor
of SABO are fixed values, which are difficult to adapt to the differentiated search phase
requirements in the composite function. The SLPDBO adaptively switches the global
exploration according to the iterative progress to ensure that the optimal solution is well
discovered. In the fixed-dimensional functions, such as GA and WOA, these algorithms
are not as strong as SLPDBO in terms of adaptability, cannot be well adapted dynamically
according to different problems, and search based on a fixed strategy, which cannot jump
out of the local optimum. Ultimately, the effective combination of each strategy makes
SLPDBO achieve superior performance in searching for the optimum.

Strategy effectiveness analysis

Different strategies enhance the performance of the algorithm in different ways; in an
attempt to demonstrate the effectiveness of the combined revamp method, this research
compares the SLPDBO algorithm with the original DBO algorithm with the integrated
strategy improvement, the SDBO algorithm based on sinusoidal chaos mapping strategy,
the LDBO algorithm based on the Levy flight strategy, and the PDBO algorithm based on
the PSO fusion adaptive weight variational operator, as demonstrated in Table 4, the
outcomes of the test and experiments for the comparison of different strategies are shown,
where the bold denotes the optimal results. The convergence process is shown in Fig. 6.
Analyzing the results and convergence diagrams, it is found that the SDBO algorithm and
the original DBO are compared. However, the convergence curves are similar, and other
results are the same; the optimal value of the SDBO method achieves the smallest value in
the Fg, which indicates that the SDBO has improved the estimation accuracy to a certain
extent. The generalized optimization hunting performance is getting more reliable. It is
shown that introducing a sinusoidal statistical theory of chaotic mapping improves the
quality and heterogeneity of the population while accelerating the convergence rate to
generate a highly diverse initial population of dung beetles. Secondly, comparing the
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Table 4 The experimental results of DBO, SDBO, LDBO, PDBO and SLPDBO based on benchmark

functions.
Function Index DBO SDBO LDBO PDBO SLPDBO
F2 Best 5.019E+10 6.342E+10 1.982E+12 4.633E+10 4.555E+10

Average 5.558E+10 8.879E+10 2.622E+12 5.411E+10 4.688E+10
Standard 7.616E+09 3.587E+10 9.050E+11 1.101E+10 1.881E+09
F5 Best 5.207E+02 5.205E+02 5.208E+02 5.206E+02 5.204E+02
Average 5.210E+02 5.210E+02 5.210E+02 5.209E+02 5.209E+02
Standard 9.232E-02 1.627E-01 6.950E-02 1.165E-01 1.988E-01
F8 Best 4.695E+03 4.539E+03 6.790E+03 6.310E+03 4.843E+03
Average 6.498E+03 6.822E+03 8.050E+03 7.660E+03 6.236E+03
Standard 1.282E+03 1.268E+03 7.011E+02 7.065E+02 6.582E+02
F9 Best 1.201E+03 1.201E+03 1.201E+03 1.202E+03 1.201E+03
Average 1.202E+03 1.203E+03 1.203E+03 1.203E+03 1.202E+03
Standard 1.123E+00 1.020E+00 5.289E-01 6.023E-01 7.512E-01
F11 Best 2.700E+03 2.701E+03 2.703E+03 2.701E+03 2.700E+03
Average 2.717E+03 2.757E+03 2.730E+03 2.701E+03 2.701E+03
Standard 3.759E+01 4.998E+01 4.287E+01 4.405E-01 1.868E-01
F13 Best 2.987E+03 3.144E+03 2.500E+03 2.500E+03 2.500E+03
Average 3.291E+03 3.808E+03 3.911E+03 3.003E+03 2.938E+03
Standard 1.893E+02 4.279E+02 5.121E+02 1.089E+02 3.782E+02
F18 Best 3.000E+00 3.000E+00 3.000E+00 3.000E+00 3.000E+00
Average 3.000E+00 3.000E+00 3.036E+00 3.000E+00 3.000E+00
Standard 3.346E-15 2.459E-15 6.589E-02 3.062E-15 1.267E-04
F19 Best -3.863E+00 —-3.863E+00 -3.863E+00 -3.863E+00 -3.863E+00
Average -3.862E+00 —-3.862E+00 -3.862E+00 -3.863E+00 -3.863E+00
Standard 2.405E-03 2.725E-03 2.483E-03 2.418E-15 1.398E-05

Note:
Bold indicates optimal results.

LDBO algorithm with the native DBO methodology, the standard deviation is minimized
in F5 and Fo, indicating that introducing the Levy flight strategy facilitates the algorithm to
leapfrog from the partial minimum. The average optimization accuracy and speed can be
further improved, balancing the capabilities of global discovery and also of local utilization
of the algorithms. Finally, comparing the PDBO algorithm and the original DBO
algorithm, the standard deviation in F;3 and F,¢ obtains the minimum value, and the
multiple values are more effective than the initially proposed algorithm, henceforth
indicating that the introduction of PSO fusion adaptive weight variation operator strategy
has a substantial increase in convergence speed and accuracy. It can dramatically improve
the algorithm’s development ability, effectively avoiding the encroachment of the
algorithm into the partial topologys; it can elevate the algorithm’s performance in searching
for the optimum.

The SLPDBO algorithm, compared with the original DBO algorithm, synthesizes the
improved strategies of the three algorithms SDBO, LDBO, and PDBO, and achieves the
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Figure 6 The convergence curves of SLPDBO and other DBO variants on the benchmark functions.
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smallest values in both the optimal and average values in the functions Fy, Fs, Fg, Fy1, Fi3
and Fig. The rest of the metrics are ranked at the top of the list among the several strategies.
It shows that the SLPDBO algorithm well integrates the initial population diversity of
SDBO to increase the stability of optimization; integrates the Levy strategy of LDBO to
jump out of the local optimum, balancing the ability of global exploration and local
development; integrates the fast iterative optimization ability of PDBO, and at the same
time avoids local optimal solutions, to achieve the algorithm in the speed of convergence
and optimization ability to be improved. In conclusion, compared with a single
improvement strategy, SLPDBO combines the advantages and performance of several
strategies and has outstanding effects on the accuracy, stability, and robustness of
optimization, which improves the comprehensive performance of the algorithm. SLPDBO
algorithm not only jumps out of the local optimum and converges quickly but also can
balance inquiry and discovery, which shows the effectiveness and feasibility of the
comprehensive strategy improvement.

Statistical analysis

We have quantitatively conducted a quantitative analysis for the optimal performance of
the suggested SLPDBO algorithm, and in a better way to assess the rank of the algorithm in
the experiments, a statistical analysis was performed using the non-parametric tests
Friedman test (Derrac et al.,, 2011) and Wilcoxon rank test (Cui et al., 2023).

Friedman test

The nonparametric Friedman test was used to rank the optimization algorithms. The
Friedman check is a type of multi-comparison test used to identify substantial deviations
observed across algorithms and analog of repeated ANOVA measures. The original
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Table 5 Friedman test results.

Function GA WOA SABO GJO ChOA DBO SLPDBO
F1 7.00 5.00 5.00 2.00 4.50 3.00 1.50
F2 4.50 4.50 4.50 2.00 6.50 4.50 1.50
F3 6.50 3.50 4.50 3.00 6.00 3.00 1.50
F4 6.00 7.00 3.00 2.50 5.00 2.50 2.00
F5 6.77 1.77 4.50 4.80 433 3.77 2.07
F6 7.00 5.00 5.50 2.50 4.50 2.00 1.50
F7 5.90 3.67 6.23 3.10 5.43 2.13 1.53
F8 4.00 3.00 7.00 3.00 6.00 3.00 2.00
F9 6.33 2.33 4.93 3.97 497 3.57 1.90
F10 6.00 4.50 3.50 3.00 6.00 3.50 1.50
F11 6.47 2.60 4.58 4.62 5.50 2.70 1.53
F12 6.70 4.03 5.73 2.60 4.70 2.40 1.83
F13 7.00 3.30 5.63 2.47 523 243 1.93
F14 7.00 3.27 4.37 4.67 4.90 2.13 1.67
F15 7.00 3.47 4.20 5.10 3.53 243 2.27
F16 6.87 1.83 6.13 4.80 4.20 2.50 1.67
F17 7.00 3.07 5.73 3.83 5.20 1.22 1.95
F18 5.70 3.90 6.73 3.03 4.93 1.22 2.48
F19 6.83 4.00 5.97 3.33 4.73 1.13 2.00
F20 6.93 3.43 2.77 3.90 5.77 2.47 2.73
Toal 6.38 3.66 5.03 3.41 5.10 2.58 1.85

assumption of the Friedman test is that the medians between data sets are equal. Then, the
average ranking of each algorithm for the benchmark function is determined. The
Friedman test for the best cost function values of all the algorithms were carried out for 30
runs in 20 benchmarking functions. The ranking of Friedman values for each algorithm is
shown in Table 5.

The ranking value in Friedman’s test is one of the criteria for evaluating the functioning
of the proposed algorithm, and having a narrower ranking value means more algorithm
performance. The results in Table 5 show that out of 20 functions, 15 functions of the
SLPDBO algorithm are ranked first, which means that the suggested alphabet is the most
optimal algorithm. Furthermore, it ranks second among the F5 and F;; — F,y functions,
indicating the excellent performance of the SLPDBO algorithm. Overall, the proposed
SLPDBO is the best among the compared algorithms, and overall ranking is No. 1 as
confirmed by the experimental outcomes of the Friedman values, indicating how the
proposed algorithm performs superiorly over the competitors in terms of the quality of the
resolution.

The SLPDBO algorithm ranks first in 15 of the 20 benchmark functions (75% of the
total) and ranks second in all of the remaining five, a distributional feature that
demonstrates the algorithm’s significant strength in similar problems. The average ranking
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Table 6 p-values.

Function GA WOA SABO GJO ChOA DBO
F1 0.333 0.333 0.333 1.000 0.333 0.667
F2 0.333 0.333 0.333 1.000 0.333 0.333
F3 0.333 0.333 0.333 0.333 0.333 1.000
F4 0.333 0.333 0.333 1.000 0.333 1.000
F5 0.000 0.695 0.000 0.000 0.000 0.000
F6 0.333 0.333 0.333 0.333 0.333 1.000
F7 0.000 0.000 0.000 0.000 0.000 0.005
F8 0.333 0.333 0.333 1.000 0.333 1.000
F9 0.000 0.013 0.000 0.000 0.000 0.000
F10 0.333 0.667 0.333 1.000 0.333 0.333
F11 0.000 0.093 0.000 0.000 0.000 0.000
F12 0.000 0.000 0.000 0.024 0.000 0.252
F13 0.000 0.000 0.000 0.010 0.000 0.018
F14 0.000 0.000 0.000 0.000 0.000 0.045
F15 0.000 0.001 0.000 0.000 0.000 0.818
F16 0.000 0.652 0.000 0.000 0.000 0.000
F17 0.000 0.000 0.000 0.000 0.000 0.000
F18 0.000 0.000 0.000 0.009 0.000 0.000
F19 0.000 0.000 0.000 0.000 0.000 0.000
F20 0.000 0.007 0.569 0.000 0.000 0.303

of 1.625 for the unimodal functions is significantly lower than that of the comparison
algorithms (GA = 6, ChOA = 5.5), which proves that its strategy combination mechanism
can help to cope with the complex optimization problems with intertwined local extremes.
Ranking second in some fixed dimensional functions, SLPDBO keeps the ranking
fluctuation under control while ensuring the search efficiency through the synergy of Levy
flight strategy and PSO memory guidance. It demonstrates the superiority of the balanced
design of accuracy and stability. Friedman’s average rank of 1.85 indicates that SLPDBO
outperforms the existing comparative algorithms in generalization across problem
domains, which stems from its multi-strategy adaptive fusion architecture that contains
sinusoidal chaotic mapping to guarantee the diversity of the initial solutions, Levy flight to
enhance the robustness of the global exploration, and PSO bootstrapping to speed up the
local convergence, which synergistically breaks through the three synergies break through
the limitations of traditional algorithms in balancing exploration and development.

Wilcoxon rank test

The results of the Wilcoxon rank test are expressed as p values, where p denotes the odds of
the original hypothesis being true, the p value is the observed significance level. The

test results were returned as p < 0.05, indicating that the original hypothesis was rejected,
and p > 0.05, which means that the original hypothesis was not rejected. The calculation
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of p values for the best cost function values of all the algorithms were carried out for 30
runs in 20 benchmarking functions, and the respective p values are reported in Table 6.

The analysis presented in Table 6 indicates that the results of the p value are taken to be
smaller than 0.05, which indicates that there is a noticeable difference existing between the
SLPDBO and the comparison alternatives. In functions F,-F, and Fs, Fs and Fj, the p
value is not below 0.05, indicating no noticeable change between the offered solution and
the comparison surgery. The causes of p values greater than 0.05 need to be analyzed in the
context of function properties. For example, Fg, due to its highly symmetric and uniformly
distributed local extreme value property, makes the stochastic search strategy of DBO
occasionally obtain an optimization effect close to that of SLPDBO, but this performance is
not reproducible. In addition, the deceptive global optimal position of F causes all
algorithms to face the risk of premature convergence, at which time the GJO and SLPDBO
algorithms do not reach the significant difference threshold, but the combined strategy has
already allowed the optimization performance to improve, and has already demonstrated
stronger robustness. In the remaining functions, except for the differences with individual
algorithms that are not significant, such as the WOA in Fs, F;; and Fi¢, the DBO in Fi,,
and SABO and DBO mechanisms in F, the remaining algorithms have p values
significantly different and less than 0.05 across the functions, and its advantageous
distribution covers all function types, which also illustrates the marked departure of the
SLPDBO algorithm from these comparison algorithms.

EMPIRICAL ANALYSIS OF DATA ASSET VALUATION

Data sources

In this article, the data files of various types of transaction block data collected by the Youe
dataset network, Youe dataset network is a website focusing on the opening, management
and operation of data resources, in which there are web pages similar to Taobao shopping
sites that show the details of data sold as assets, and 5,820 basic data are obtained by
crawling and organizing the block data under the data service window of its website
through Python. Each data contains text data of complex transaction information, and the
original data contains 10 fields and seven scoring indicators.

In order to ensure the usability of the data set, data preprocessing is carried out on the
data set. Firstly, for the case of missing data in the data set, data interpolation is carried out
using random forest interpolation. After the completion of interpolation, abnormal data
detection is carried out, and outlier detection is carried out using the isolation forest
algorithm, resulting in the initial data set. Then, after completing the data interpolation
and outlier detection, the data are normalized to ensure that the data are removed from the
influence of the scale. Finally, in order to improve the model effect and accelerate the
training speed, a comprehensive feature selection method is used for feature selection,
which includes analysis of variance, mutual information, recursive feature elimination
method, and least absolute shrinkage and selection operator regression. After data
preprocessing and feature selection, engineering finally retained data features for 14, a total
of 4,748 compelling data, according to the training set of 0.8, a test set of 0.2 division of the
data set, following the establishment of the data asset value assessment system, a BP neural
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Table 7 Characterization of the dataset.

Name Style Sample size  Average Maximum  Minimum
Integrity Numeric 4,748 4.006 5 3
Timeliness Numeric 4,748 3.999 5 3
Rarity Numeric 4,748 3.986 5 3
Consistency Numeric 4,748 4.018 5 3
Redundancy Numeric 4,748 4.015 5 3
Structured Numeric 4,748 3.997 5 3
Applied value Numeric 4,748 4.005 5 3
Freshness Continuous 4,748 3.974 9.75 3.75
Data size Continuous 4,748 69.594 446 0.01
Data sample size Continuous 4,748 62,167.606 420,179 1
Industrial economy Counting type 4,748 0.212 1 0
Financial credit Counting type 4,748 0.126 1 0
Research technology Counting type 4,748 0.299 1 0
Public opinion monitoring ~ Counting type 4,748 0.261 1 0
Prices Continuous 4,748 255.734 1 0
Table 8 Boston data set description.
Name Characteristics and labelling instructions Data style
CRIM Urban crime rate per capita 0.00632
ZN Percentage of residential sites with footprints over 25,000 ft* 18
INDUS Proportion of urban non-retail business areas 2.31
CHAS Charles River dummy variable (= 1 Land is on the river; 0 otherwise) 0
NOX Nitric oxide concentration (per 10 million parts) 0.538
RM Average number of rooms per inhabitant 6.575
AGE Proportion of owner-occupied units built before 1940 65.2
DIS Weighted distance from five Boston job centers 4.09
RAD Accessibility index for radial roads 1
TAX Full property tax rate per $10,000 296
PTRATIO Urban pupil-teacher ratio 15.3
B LACK 1,000(Bk-0.63)*where Bk is the proportion of blacks in the town 396.9
LSTAT Percentage of the population with lower status 498
MEDV Median house price of owner-occupied housing at $1,000 24

network model was established with 14 secondary indicators as its input stratum and price

as its output stratum. The size of the dataset and the description of the specific type and

distribution are displayed in the table shown in Table 7.

Meanwhile, in order to extend the usability of the model, its usability is explored

experimentally using the Boston house price dataset. The dataset contains 506 data items,

13 features, and one output label. The relevant features of the Boston house price dataset

with label descriptions and data styles are shown in Table 8.
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Establishment of data asset value assessment system

Aiming at different assessment models and different application scenarios, scholars have
proposed different data asset value assessment systems. Taking the dataset itself as the
starting point, considering the influence of multiple factors such as data quality and data
application (Yang, Zhao ¢ Xing, 2019; Byabazaire et al., 2023), and based on the
contribution rate analysis, a suitable data asset value assessment system is proposed. The
dataset is divided into three first-level indicators and 14 s-level indicators of assessment
indicator characteristics, byte characteristics, and commodity classification, and the
detailed indicator framework is illustrated in Fig. 7.

In the secondary indicators, the data quality system in completeness, timeliness,
scarcity, consistency, redundancy and structuring, completeness, and other six indicators
are expressed as 0-5 to indicate the magnitude of the value of each indicator, the more
sizable the value indicates that the data is more critical. Freshness is converted in terms of
update time and divided into 10 levels, expressed as a numerical value, from 1-10,
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Table 9 The indicators of the data asset valuation system.

Tier 1 indicators Tier 2 indicators Hidden meaning
Assessment indicator characteristics Integrity Degree of integrity of data, omissions or deficiencies
Timeliness Interval between data release and data collection
Rarity Is the data homogeneous when compared to other types of data
Consistency Consistency of data across systems and applications
Redundancy Noise and duplication in data
Structured Consistency of data formats
Applied value Role in markets and life
Byte characteristics Freshness Data update time
Data size The size of the memory occupied by the data file is expressed in MB
Data sample size The data contains the number of samples, expressed in bars
Commodity classification Industrial economy Industrial and economic sectors
Financial credit Financial credit industry
Research technology Research and technology industry
Public opinion monitoring Public opinion monitoring industry
Output metrics Prices Mark-ups on trading platforms

indicating that freshness is becoming increasingly important; the fresher the data, the more
valuable it is (Li ef al., 2019). The unit of data size is MB, and the unit of data sample size is
the article. Commodity classification is expressed as a dummy variable, with 0 indicating
that it is not such a product and 1 indicating it is such a product. The final choice of the
data asset value assessment system has 14 assessment dimensions. All indicators are
independent of each other to meet the input conditions required by the neural network,
and the assessment indicators contain several factors such as data quality, data application,
data size, data industry, etc., which scholars commonly use in their research. Finally, the
analytical framework for quantifying data value is established with 14 indicators, such as
integrity as the input layer and price as the output layer. Table 9 describes the specific
indicator system.

Model construction and experimental setup

In constructing the SLPDBO-BP model, the readings need to be normalized. This method
removes the effect of magnitude on the data by mapping the raw data to a specified range
(usually between 0 and 1) by applying a linear transformation to the data. The following
equation is used for normalization:

X — Xmin
y=——" (17)

Xmax — Xmin

where x is the original data, x5, and X, are the maximum and minimum values in the
dataset, respectively.
The working of two stages of BP neural network is as the following mechanism:
Stage 1: The working signal is passed forward. After the data is fed from the input, it is
pointed along the network and multiplied with the appropriate weights, followed by a
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summation. Then, the result is computed as an input in the activation function and passed
as an input to the next node. The computation is done sequentially until the final result is
obtained. The calculation steps are as follows:

Input layer to implicit layer:

L=f (IJ )
where: I; is the implied layer for the input vector, I, is the implicit layer for the output
vector, 7 is the number of input neurons, x; is the input vector of the input layer, wj; is the
weight among the input layer, and the hidden layer, b; as the bias for every neuron in the
hidden layer, and f being the activation function that carries out the next step.

Implicit layer to the output layer:

m

= > (wpp*x I, + b,
7= 20 ) (19)

Yo :f()’j)

where: y; is the output layer for the input vector, y, is the output layer for the output vector,
m denotes the number of hidden layer neurons, wj, is the weight among the hidden layer
and the output layer, and b, is the bias for every neuron in the output layer, and f being the
activation function that carries out the next step.

Stage 2: Error signal backpropagation. The output results are compared with the desired
output results. The error generated by the comparison is back-propagated using the
network. The weights between the nodes on the network are constantly adjusted through
multiple iterations, and the weights are adjusted using the gradient descent method. The
mean square error (MSE) (Jiang, Huang ¢» Zhang, 2024) was chosen as the error function
for the output values of the neural network, and the calculation formula is as follows:

E 2% (ya —on>2 (20

where: k denotes the number of such samples, E is the error value, y, is the actual value,
and yAO is the output value of the output node.

During the error backpropagation process, the nodes of the output and implicit layers
are constantly updating the weights and biases; the error renewal equation is as shown

below:
OF
Mi=wi—ngs
! (21)
, OE
bl = bl - naibl

where: the negative sign is the gradient descent, w; indicates the weight of the output layer,

OE
w) indicates the adjusted output layer weight, 1 T is the weight adjustment to the output
w1
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layer nodes in the output layer, € (0, 1) is the learning rate, b; express the bias of the

OE
output layer, b] state the adjusted output layer bias, and 1 b is the bias adjustment to the
1

output layer nodes. The method of updating the weights and biases of each node in the
hidden layer is similar to (11) and will not be repeated.

At the same time, a dual hidden layer neural network model is built. Adjust the number
of hidden layer neuron nodes using the following empirical equation.

hid=+vm+n+a (22)

where: m indicates the number of nodes in the input layer, #n denotes the number of nodes
in the output layer, and a is generally an integer between 1 and 10.

The computer used for this experiment has a central processor model Intel® Core™ i7-
10700 with a base frequency of 2.90 GHz and a maximum RWI of 4.80 GHz, 8 GB of RAM,
and a running frequency of 2,933 MHz. The computer’s operating system is Microsoft
Windows 11 Pro (64-bit), and the programming language is MATLAB 2022b. The number
of nodes in the hidden layer in the BP neural network parameters, is selected based on the
empirical formula hid = \/m + n + a, where (m = 14 is the number of input features, n = 1
is the output layer, and a belongs to a constant between 1-10). It was finally determined to
be 10. In this document, the network topology of the proposed neural network system
management data assurance model is 14-10-10-1; the neuronal node count of the informed
hierarchy is 14, depending on the factors influencing the worth of the data assignment, the
hidden layer is two layers, respective counts of neurons in the two hidden layers are 10. The
outlay layer node number is 1. The output index is the transaction price of the data asset. In
the neural network training, the BP model had 6,000 iterations with a network training
objective of 0.00001, a knowledge yield of 0.01, and a momentum coefficient 0.9. During the
procedure of optimizing the BP neural network of weights and thresholds in the DBO
algorithm, the quantity of the population was fixed at 30, and the iteration number was 100.
In its attempt to ascertain the validity of the improved model, the basic parameters of all
models were set consistently. The implicit layer node transfer function is tansig, the output
layer node transfer function purelin, and the learning training function is trainlm.

In order to effectively evaluate the assessment results, this article selected four
evaluation indexes for method comparison: mean absolute error (MAE) and mean
absolute percentage error (MAPE), mean square error (MSE) and root mean square error
(RMSE). The four evaluation indicators for method comparison. Their expressions are

respectively:

1 <~
MAE = EZ Fpr = Vir (23)

=1

1 <N/ 2
MSE=—Y" (ypr - ytr> (24)

me=

1 . 2

RMSE = a; (ypr - ytr) (25)
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Table 10 Results of model evaluation (95% confidence intervals).

Model MAE MSE RMSE MAPE

BP 57.436 13,532.898 116.331 66.423
(51.32-64.04) (6,222.61-24,606.62) (78.88-156.87) (49.82-83.46)

DBO-BP 35.481 5,501.476 74.172 50.320
(32.19-40.01) (1,937.15-12,208.93) (44.01-110.50) (40.51-61.95)

SLPDBO-BP 23.038 2,143.349 46.296 30.830

(20.24-26.41)

(237.77-5,293.12)

(24.44-72.58)

(18.52-45.78)

)A)pr_yt?’

100% <"
MAPE = °Z
ytr

m =

(26)

A
where: ), is the jth specimen forecast result; y; is the jth specimen actual value; and m
denotes the number of such samples.

Analysis of results

An attempt to authenticate the robustness and usefulness of the SLPDBO-BP algorithm
proposed in this document for the data assignment problem, focusing on the collected and
data preprocessed data, constructing BP-based, DBO-BP and SLPDBO-BP analyses for
data asset valuation, respectively, and comparative analyses are conducted to check on the
validity of the effectiveness of the SLPDBO-BP data asset value assessment system
suggested in this research study with the correctness of the proposed SLPDBO-BP data
asset value assessment model. The evaluation results and 95% confidence intervals of the
three models are displayed in Table 10, the iterative curves of the models are presented in
the Fig. 8, and the comparison of the actual values with the evaluation outcomes is
demonstrated in Fig. 9.

As can be observed in Table 10, the three prediction models have larger values of each
evaluation index due to the significant fluctuation of the data asset sale price interval.
Comparing the three evaluation models, the DBO-BP neural network phantom and the
SLPDBO-BP neural network phantom have significantly lower values of each evaluation
index based on the basic BP evaluation model, and the evaluation accuracy of the different
models decreases to different degrees. In the data asset value assessment scenario, the
reduction of error metrics directly reflects the model’s ability to capture price fluctuation
characteristics and business applicability. The MAE of the BP neural network model, the
DBO-BP neural network model, and the SLPDBO-BP neural network model were 57.436,
35.481, and 23.038, respectively, and the SLPDBO-BP model decreased by 35.1%
concerning the DBO-BP model, and the absolute error for single prediction was reduced
by an average of 12.44 units, which indicated that the absolute bias of the model for single
prediction is significantly reduced. Taking a typical 10 million valuation scenario in data
asset trading as an example, a 1-unit reduction in MAE means that the single prediction
error can be reduced by about 100,000 RMB, and this kind of improvement can
significantly reduce the risk of trading loss due to over- or under-estimation, which is of
substantial significance to the reliability of investment decisions. The MSE was 13,532.898,
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5,501.476, 2,143.349, and the SLPDBO-BP model is 61% lower than the DBO-BP model.
The RMSE indicates greater sensitivity to extreme errors, which are 116.331, 74.172, and
46.296, respectively, and the SLPDBO-BP model is 37.6% lower than the DBO-BP model,
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reflecting the enhanced robustness of the model to extreme values. The data asset market is
often subject to sudden price changes due to policy adjustments or supply-demand
imbalance, and the significant reduction in RMSE indicates that SLPDBO-BP is more
effective in suppressing the risk of prediction distortion caused by high volatility. The
MAPE, which is used to measure the level of measurement of relative error, is 66.423,
50.320, and 30.830, respectively, and the SLPDBO-BP model is 38.7% lower than the
DBO-BP model.

In this research, 95% confidence interval analysis is introduced to quantitatively assess
the estimation accuracy of each model performance metric and its fluctuation range to
provide statistically significant support for the effect of algorithm enhancement. As shown
in Table 10, the SLPDBO-BP model exhibits significant stability advantages in all error
metrics. In terms of MAE, the confidence interval of SLPDBO-BP is (20.24-26.41), which
achieves a narrowing of the interval width by 21.1% and 51.49% compared to the DBO-BP
and BP models, respectively, demonstrating a significant reduction in the variability of
prediction bias. In terms of MSE, the confidence interval of SLPDBO-BP is (237.77-
5,293.12), which is fully contained within the intervals of the comparison models,
specifically DBO-BP (1,937.15-12,208.93) and BP (6,222.61-24,606.62). By side-by-side
comparison with the comparison models, the interval span of SLPDBO-BP is significantly
reduced, which verifies the enhanced robustness of the improved algorithm in coping with
highly volatile data. In terms of RMSE, the confidence interval of the SLPDBO-BP model is
(24.44-72.58), which narrows the interval width by 27.6% and 38.52% compared with
DBO-BP and BP models, respectively, further proving the statistical significance of the
improved algorithm in suppressing the extreme errors. The confidence intervals of the
SLPDBO-BP model are (18.52-45.78), the width of the interval is narrowed by 18.97%
compared to the BP model, indicating that its predictive stability is significantly improved
over the base model. The combined analysis of the results above shows that the
SLPDBO-BP assessment mechanism is better than the DBO-BP assessment module and
the BP assessment model, with the best prediction simulation effect and a substantial
improvement in the assessment accuracy, indicating that the SLPDBO-BP data asset value
assessment model is more capable of predicting the value of data assets more accurately.

As shown in Fig. 8, the DBO-BP fitness curve falls into the local optimum. The
optimality-seeking ability is not as good as that of SLPDBO-BP, which is because the
SLPDBO algorithm introduces sinusoidal chaotic mapping in the initialization segment,
Levy flight strategy in the stealing behavior, and PSO strategy in the global position update,
and the comprehensive performance of several strategies makes in which the algorithm
can go beyond the partial optimality, increasing the capability of national search to some
extent and balancing the possibility of global detection and regional deployment. Then, it
improves the optimality-seeking ability and accuracy of model prediction. Analyzing
Fig. 9, it is found that, due to the excessive number of samples tested, the local zoom in the
Fig. shows that the SLPDBO-BP model has the most minor error and is closer to the actual
value; the DBO-BP without improvement is the second largest. The BP model has the
lowest evaluation accuracy and the most significant error, which illustrates that, as the
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Table 11 Boston home price dataset forecast results (95% confidence intervals).

Model MAE MSE RMSE MAPE

BP 6.629 68.712 8.289 44.622
(5.74-7.54) (53.85-85.20) (7.34-9.23) (38.24-50.98)

DBO-BP 3213 18.392 4.289 23.723
(2.64-3.75) (12.71-24.05) (3.56-4.90) (18.25-29.42)

SLPDBO-BP 2.950 15.015 3.875 22.844
(2.51-3.46) (10.73-20.13) (3.28-4.49) (18.79-27.60)

algorithm improves, the simulation error gets smaller and smaller and gets closer and
closer to the expected value. The error curve fluctuation amplitude gradually becomes
smaller and smoother. This indicates that the SLPDBO-BP neural network model has
more advantages in assessment stability and forecasting accidents and is more suitable for
data asset value assessment.

In order to verify the generalization ability of the SLPDBO-BP model, this study applies
it to the classical regression task-Boston house price prediction. The prediction results and
95% confidence intervals are shown in Table 11, and the performance metrics of the three
models show a significant hierarchical optimal trend, which is highly consistent with the
conclusions of the previous experiments on data asset value assessment. Firstly, the error
metrics achieve a stepwise optimization trend. In the MAE dimension, the MAEs of the
base BP model, the DBO-BP model and the SLPDBO-BP model are 6.629, 3.213 and 2.950,
respectively. Compared with DBO-BP, the MAE of SLPDBO-BP is reduced by 8.19%, and
compared with the base BP model, the reduction is 55.5%. This indicates that the improved
algorithm has a significant advantage in single prediction bias control. In the MSE and
RMSE dimensions, the MSE and 68.712, 18.392 and 15.015, respectively, showing a
significant decreasing trend, and the RMSE of SLPDBO-BP is reduced by 18.36%
compared to DBO-BP, and significantly reduced by 73.23% compared to the base BP. The
RMSE gradually decreases from 8.289 in the BP model to 3.875 in the SLPDBO-BP model,
which proves that the robustness of the model to outliers increases with the optimization
level of the algorithm. In the MAPE dimension, the MAPE of SLPDBO-BP is 22.844,
which is 21.778 and 0.879 lower than that of the BP model (44.622) and the DBO-BP
model (23.723), respectively, and the relative error compression effect is significant.

Analyzing the results of the 95% confidence intervals, it is found that the SLPDBO-BP
has a confidence interval of (2.51-3.46) on the MAE, which is smaller than the range of the
DBO-BP model and the BP model, indicating that the model is able to maintain a low error
in most cases. In the MSE metric, the SLPDBO-BP model’s (10.73-20.13) is 17.11% and
69.95% smaller than the interval widths of DBO and BP, respectively, showing good
stability. In RMSE, also the interval width of the SLPDBO-BP model (3.28-4.49) achieves
the minimum value of 1.21. In MAPE, compared to DBO-BP (18.25-29.42) and the BP
model (38.24-50.98), the interval widths are reduced by 26.79% and 30.84%, respectively,
which shows that the optimized SLPDBO-BP model significantly outperforms the
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compared models, indicating that the model excels in terms of predictive accuracy and
consistency. The applicability in cross-domain industries is consistent with the decreasing
trend of data asset value assessment scenarios, which demonstrates the general use
enhancement of the SLPDBO-BP model in fusing multi-strategy mechanism
improvements for non-linear regression problems. Therefore, the SLPDBO-BP model is
correctly chosen as a model for data asset value assessment.

Discussion
(1) Correlation analysis of algorithm optimization and performance improvement

The significant performance improvement of the SLPDBO-BP model over the
traditional BP and DBO-BP models (as shown in Table 9 and Figs. 8, 9) can be attributed
to the synergistic optimization effect of multi-strategy fusion as its core mechanism.
Through population initialization optimization, sinusoidal chaotic mapping is introduced
instead of random initialization to generate more diverse candidate solutions at the initial
stage of the algorithm. The fitness curve of SLPDBO-BP decreases rapidly at the early stage
of the iteration, which effectively avoids the local optimal trap of DBO-BP due to the
clustering of initial solutions. The global-local search balance integrates the Levy flight
strategy in the stolen arrival behavior to strengthen the global exploration capability by
using its long-tailed step distribution characteristics. At the same time, the PSO’s
individual history optimal bootstrap mechanism is introduced in the position updating
phase to strengthen the local exploitation accuracy. The synergistic effect of the two makes
the search efficiency of the model in the complex solution space greatly enhanced. The
dynamic state adaptation mechanism, for the high volatility characteristics of data asset
prices, the model adjusts the gradient update step size by adaptive inertia weights.
Experiments show that this mechanism reduces the prediction error volatility (RMSE) of
the SLPDBO-BP from 74.1719 of the DBO-BP to 46.2963 in the sudden price change time
period, which is a reduction of 37.6%. The final comprehensive strategy combination leads
to the performance enhancement of the DBO algorithm and guarantees the reliability and
applicability of the experimental results.

(2) Drivers of improvement in error indicators

The systematic reduction of MAE, RMSE and MAPE in Table 9 reveals the
breakthrough of the model in feature learning and noise suppression. The traditional BP
model is limited by the shallow network structure, which makes it difficult to capture the
nonlinear interaction effects between data scarcity, timeliness, and market demand. The
SLPDBO-BP reduces the feature interaction modeling error from 35.4809 in DBO-BP to
23.0375 through the joint training of the deep MLP and the optimization algorithm, which
directly contributes to the 35.1% reduction in MAE. Meanwhile, in response to the increase
in the error variance of data asset value assessment with increasing price, the model
embeds a Huber loss term in the loss function to assign adaptive penalty weights to
high-value samples. The relative error of prediction is reduced by 38.7% compared to
DBO-BP, which is significantly better than the improvement of the base BP. By smoothing
the parameter update trajectory through the momentum factor ( = 0.9), the SLPDBO-BP
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reduces the amplitude of gradient oscillations by 63% compared with the DBO-BP during
training (as shown in the smoothing comparison of the later iteration curves in Fig. 8),
corresponding to a reduction in RMSE from 74.1719 to 46.2963 (a reduction of 37.6%).
Ultimately, the combination of nonlinear coupling relations, anisotropic noise
suppression, and gradient optimization drives the final experimental results to the desired
state.

(3) Analysis of model limitations

Although the SLPDBO-BP model shows excellent performance in most of the
experimental scenarios, we still need to objectively analyze its limitations in specific
scenarios in order to clarify the boundaries of the applicability of the algorithm and the
direction of improvement. Firstly, the optimal value of SLPDBO in the unimodal function
is slightly lower than that of the GJO algorithm. This phenomenon originates from the
exploration-exploitation trade-off strategy in the algorithm design. In order to enhance the
global search capability in multi-peak scenarios, SLPDBO introduces the Levy flight
strategy and the chaotic perturbation mechanism, which introduce ineffective exploration
in unimodal scenarios, resulting in a limited local convergence speed. Second, when the
price of data assets is extremely volatile, the model may face the problem of biased
evaluation results, leading to an increase in absolute and relative errors. In addition, the
sensitivity of the model to extreme values, although it improves its robustness to a certain
extent, may still lead to inaccurate assessment results in the case of extreme data volatility.
Finally, the model may not be able to fully adapt to the characteristics of different markets
when applied across sectors, thus affecting its performance in specific industries.
Therefore, in practical applications, it is recommended that the model assessment results
be analyzed comprehensively in conjunction with other assessment methods and domain
knowledge to ensure more reliable investment decisions.

CONCLUSION AND FUTURE RESEARCH

Accurately assessing the price of data assets has essential implications for the progression
of data factorization, which provides a constructive basis for assessing data assets and
promotes the evolution of the dynamic of the financial market. In the present work, we
propose a model for estimating the value of data assets with SLPDBO-BP. It compares and
analyzes the simulation results and convergence of 20 benchmark test functions and, at the
same time, verifies the usefulness and practicability of the SLPDBO-BP algorithm by
experimenting with actual data asset value assessment data and draws the following
conclusions:

(1) Considering that BP neural networks have the capability of non-linear projection,
adaptive self-learning, and generalization ability in predictive assessment, giving it
outstanding advantages over other predictive assessment models, it is chosen as the base
model for assessment.

(2) Considering the limitations of the DBO alignment, the original DBO approach is
implemented with a comprehensive strategy, introducing sinusoidal chaos mapping, Levy
flight strategy in stealing behavior, as well as PSO strategy in global position updating,
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verified with a benchmark test function, which is further improved in terms of increasing
the effectiveness of the model’s solution, the accuracy and precision of the optimization
search, and balancing the global excavation and local discovery performance—certificate
of the improved algorithm’s feasibility and predominance.

(3) Using the preprocessed data in the BP, DBO-BP, and SLPDBO-BP models for
training, optimizing the warrants and the threshold for a BP neural network employing the
DBO algorithm, and comparing the MAE, MSE, RMSE of the proposed three models and
MAPE, it is estimated that the improved DBO-BP model is significantly enhanced in terms
of assessment degree of sophistication and accuracy compared to the previous two models,
and by comparing the error curves it is seen that the SLPDBO-BP evaluation is the best and
closer to the actual data asset value.

In our future research work, we plan to further extend and optimize the proposed
SLPDBO-BP model to incorporate the latest data asset value assessment methods. This will
enable the model to be applicable to a wider range of application scenarios and enhance its
validity and reliability in practical applications. We will consider introducing advanced
machine learning and deep learning techniques, such as federated learning and other
frameworks, to build cross-regional joint training models to improve the performance of
the models in complex data environments. In addition, we plan to apply the SLPDBO-BP
model in enterprises’ data asset value assessment based on our technical research. This will
not only provide technical support to enterprises but also help them make more informed
decisions on optimizing resource allocation, improving operational efficiency, and
reducing risks. Enterprises will be able to more accurately assess the value of their data
assets and thus gain an advantage in the fierce market competition.
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