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ABSTRACT
Schizophrenia is a chronic and severe mental illness that significantly impacts the daily
lives and work of those affected. Unfortunately, schizophrenia with negative symptoms
often getsmisdiagnosed, relying heavily on the clinician’s experience. There is a pressing
need to develop an objective and effective diagnostic method for this specific type
of schizophrenia. This paper proposes a new deep-learning method called Cascaded
Atrous Convolutional Network with Adaptive Weight Fusion (CA-AWFM) for clas-
sifying schizophrenia from electroencephalogram (EEG) data that combines cascaded
networks with atrous convolutions and an adaptive weight fusion module (AWFM).
This is because schizophrenia involves intricate and subtle brain wave patterns that
make it difficult to detect the disorder from EEG signals. As such, our model uses
an ‘‘atrous’’ convolution operation to extract multi-scale temporal information and
a cascade network structure that progressively improves the attribute representations
across layers. For classification purposes, AWFM enables our model to modify the
importance of features dynamically. We evaluated our technique using a publicly
available dataset of EEG recordings acquired from patients who have schizophrenia
and everyday individuals. The proposed model has significantly outperformed existing
methods with a 99.5% accuracy rate. With the help of atrous convolutions, local and
global dependencies within the EEGs can be effectively modeled in this way. At the
same time, AWFMmakes flexible prioritization of characteristics possible for improved
classification performance. With such impressive figures achieved, it can be concluded
that our approach should be considered as accurate enough for routine clinical use in
identifying schizophrenic patients early on so they can receive intervention measures
on time or when diagnosed late, then dealt with appropriately.
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INTRODUCTION
Schizophrenia (SZ) is a significant neuropsychiatric condition that is believed to
impact almost 1% of the global population. Individuals with this condition experience
hallucinations and delusions, along with a decrease in motivation and challenges in
expressing emotions(Buettner et al., 2019). Typically, these symptoms manifest at a young
age, and the brain damage caused by the disease worsens over time. Identifying the disease
in its early stages and tailoring treatment to each patient can potentially minimize brain
deformations. However, even experts face challenges when diagnosing the disease at an
early stage (Zhang, 2019). Thus, exploring computer methods for disease diagnosis to aid
clinicians in decision-making has been a significant focus of study in the relevant literature.
Electroencephalogram (EEG) has been found to provide valuable insights into neural
abnormalities in schizophrenia patients, thereby making it possible to study brain activity.
Nonetheless, due to the intricate nature of the brain’s electrical discharge and its symptoms’
subtleness, schizophrenic detection from EEG signals is still a big problem.

Schizophrenia is marked by disorganized thinking, deficient speech, and atypical
behaviors. The clinical diagnosis of schizophrenia typically relies on a comprehensive
psychiatric evaluation and the observation of speech and behaviors during clinical
interviews. The symptoms of schizophrenia can be categorized into two types: positive
symptoms and negative symptoms. Some of the symptoms that can be observed include
delusions and hallucinations (Lavretsky, 2008; DiPiro et al., 2014), while others may
experience fatigue, alogia, loss of interest, and difficulty in performing daily activities
(Marder & Galderisi, 2017). Based on extensive clinical experience, it has been observed
that diagnosing and treating patientswith negative symptoms ismore challenging compared
to those with positive symptoms (Murphy et al., 2006). In the later stages of schizophrenia,
positive symptoms often give way to negative symptoms, which can continue to persist
even with treatment (Mucci et al., 2017). Most schizophrenic patients experience negative
symptoms that have a more significant impact on their long-term morbidity, rates of
disability, and overall quality of life compared to positive symptoms (Kirkpatrick et
al., 2001; Milev et al., 2005; Kurtz et al., 2005; Kirkpatrick et al., 2006). Furthermore, the
accuracy of clinical diagnosis depends on the expertise of clinicians and can be influenced
by patients’ memory biases and cognitive constraints (Rabinowitz et al., 2012). Therefore,
it is crucial to develop a method for accurately and efficiently diagnosing schizophrenic
patients who exhibit negative symptoms.

While many literature methods have traditionally relied on machine learning (ML)
algorithms (Shim et al., 2016; Cao et al., 2020), the field has seen promising advancements
in deep learning (DL) that offer researchers a newer direction to explore. In the field of
neurological disease classification using structural magnetic resonance imaging (MRI)
data, deep learning has lately arisen as a novel strategy showing better performance than
traditional machine learning algorithms. In particular, convolutional neural networks
(CNNs) have gained traction in medical image analysis because they can learn and encode
the crucial features needed for classification (Litjens et al., 2017; Shen, Wu & Suk, 2017; Li et
al., 2014). Since the features chosen can profoundly affect the model’s performance, CNNs
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are well-suited to tasks like schizophrenia classification. Several studies have previously
shown that CNNs can help diagnose schizophrenia.

Deep learning has been a promising approach for this task because it can learn
complicated patterns independently from large datasets. Among various mental health
applications, recent convolutional neural networks (CNNs) have been extensively applied
for EEG signal analysis with state-of-the-art performance. However, traditional CNNs
may struggle with encoding multi-scale temporal relationships present in EEG signals,
which are essential for distinguishing between healthy individuals and those affected by
schizophrenia.

For this, we present a new deep-learning approach that combines atrous (dilated)
convolutions with a cascaded network architecture and an Adaptive Weight Fusion
Module (AWFM). By increasing the receptive field without adding extra parameters,
atrous convolutions allow the model to capture patterns at multiple scales, making it
possible to detect both local and global EEG features. Furthermore, the cascaded network
structure enables further refinement of feature representations progressively. At the same
time, the AWFM dynamically adjusts the importance of different feature scales so that the
model can prioritize the most relevant patterns for classification purposes.

A key gap in existing research is the lack of a robust mechanism for capturing both local
and long-range EEG features, which are crucial for distinguishing schizophrenia-related
abnormalities. Furthermore, most existing approaches lack adaptive feature selection
strategies, leading to suboptimal performance when dealing with EEG variations across
patients. Our proposed Cascaded Atrous Convolutional Network with Adaptive Weight
Fusion (CA-AWFM) model advances the field by addressing these limitations through
Cascaded Networks (CN), which refine hierarchical feature learning, Atrous Convolutions
(AC) to capture both short- and long-range dependencies, and an AWFM to prioritise the
most discriminative features dynamically.

In this work, we evaluate our proposed method on a publicly available EEG dataset
for schizophrenia detection with an impressive accuracy of 99.5%. This performance
demonstrates that atrous convolutions, cascaded networks, and adaptive fusion efficiently
identify complex patterns associated with schizophrenia. In conclusion, our research adds
to the emerging field of deep learning in mental health. It has practical implications by
introducing a robust mechanism for clinical-level identification of schizophrenic cases.

RELATED WORKS
Substantial interest in machine learning models has been present for several years. Several
applications of natural language processing have significantly benefited from the numerous
machine-learning approaches that have been used. Machine translation, chatbot systems,
question-answering systems, information retrieval systems, and sentiment analysis are
examples of these systems. When applied to data from social media platforms, machine
learning, and natural language processing methods provide a novel approach to diagnosing
various mental diseases.

The benchmark model for schizophrenia classification using structural MRI data
was the 3D convolutional neural network (CNN) system developed by Oh et al. (2020),
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which achieved outstanding state-of-the-art performance with an area under the ROC
curve (AUC-ROC) of 0.96. However, their findings were limited because they could not
generalize well over unseen private data sets. It is suggested that their performance may
be due to the dataset and patient variability with pre-processing choices such as including
whole-head rather thanwhole-brainMRI data and using severe downsampling. In addition,
this group performed limited region of interest analysis, which would have assisted in
revealing particular alterations associated with schizophrenia within brain structures. For
example, Hu et al. (2022) used structural and diffusion MRI scans to analyze and classify
schizophrenia (Hu et al., 2022). In addition, 3D CNN models were more efficient than
2D pre-trained CNN models or other standard machine learning algorithms like support
vector machine (SVM). However, their best 3-D model only managed an AUC-ROC of
0.84.

It was discovered in research that was carried out by Compton et al. (2018) that the range
of the second formant in schizophrenia speech is lesser in comparison to the range that
is seen in the speech of controls. According to the findings of research that Chhabra et al.
(2012) carried out, it was shown that individuals who have schizophrenia tend to reduce the
amount of formant dispersion that they employ in similarity-dissimilarity assessments. In
studies Chakraborty et al. (2018), mel-frequency cepstral coefficients (MFCCs) and linear
predictive coding (LPSs) are used to analyze the properties of speech in patients who have
schizophrenia. MFCC and LPC scores in schizophrenia speech are significantly different
from those of controls, according to the findings of Zhang et al. (2016), which show that
these differences are noticeable. To be more specific, the scores for MFCC are lower, and
the values for LPC are greater.

To preprocess EEG data and extract characteristics, Dvey-Aharon et al. (2015) used
The Stockwell transformation (Stockwell, Mansinha & Lowe, 1996). This was shown in a
separate investigation. Their technique, which they referred to as ‘‘TFFO’’ (time-frequency
transformation followed by feature-optimization), displayed a good accuracy, ranging from
92% to 93.9%. Furthermore, Johannesen et al. (2016) employed support vector machines
(SVM) to determine the most critical characteristics (Guyon & Elisseeff, 2003) that were
derived from the EEG data. This aimed to predict the working memory performance
of healthy persons and those with SZ. The accuracy of their forecast performance
was an impressive 87%, which was accomplished by their technique. Santos-Mayo,
San-José-Revuelta & Arribas (2016) performed experiments on several machine-learning
methodologies and feature selection algorithms, which included electrode grouping and
filtering. These experiments were similar to the ones described above. Within the context
of a specific investigation, Phang et al. (2019) suggested an approach that uses information
on the functional connectivity of the brain as characteristics.

The application of deep learning techniques in EEG-based schizophrenia diagnosis has
gained significant attention, offering an efficient and objective alternative to traditional
clinical assessments. Conventional diagnosticmethods, which rely on subjective evaluations
and manual EEG analysis, are often time-consuming and prone to variability among
clinicians. On the other hand, deep learning models provide automated feature extraction
and classification, making them a promising tool for early and accurate schizophrenia
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detection. Several studies have demonstrated the efficacy of EEG-based deep learning
models for schizophrenia classification.Bairagi & Elgandelwar (2023) employed an artificial
neural network (ANN)-based classifier, achieving an accuracy of 84%, highlighting the
feasibility of deep learning in schizophrenia diagnosis. While this study demonstrated
potential, the relatively moderate accuracy suggests that further feature extraction and
model complexity advancements are necessary. To address challenges such as high-
dimensional EEG data and minor dataset limitations, Liu (2024) proposed an SVM-
based model enhanced with Bayesian optimisation, recursive feature elimination, and
data augmentation. This approach improved classification accuracy and generalisation
capability, demonstrating that optimised feature selection and synthetic data augmentation
are crucial for enhancing schizophrenia detection performance. A more sophisticated
approach was introduced by Chen (2024), who developed a ten-layered convolutional
neural network (CNN) model for schizophrenia classification. Utilising multichannel
EEG data, their method achieved a remarkable mean accuracy of 99.18%, significantly
outperforming traditional machine learningmodels. This study emphasises the importance
of deep CNN architectures in capturing intricate spatiotemporal patterns in EEG signals,
leading to higher diagnostic accuracy. Beyond CNNs, Latreche et al. (2024) explored a
gated recurrent unit (GRU)-based model focusing on alpha-EEG rhythms, achieving
an accuracy of 88.88%. Their study highlights the significance of specific EEG rhythm
patterns, particularly alpha oscillations, in improving schizophrenia classification
performance. Using recurrent architectures like GRUs further reinforces the idea that
temporal dependencies in EEG data can be leveraged to enhance diagnosis. These studies
collectively underscore the transformative potential of deep learning models in EEG-based
schizophrenia diagnosis, offering more objective, reliable, and efficient alternatives to
conventional diagnostic techniques. By automating feature extraction and optimising
classification performance, deep learning approaches pave the way for enhanced early
detection and personalised treatment strategies in schizophrenia research Sahu & Jain
(2024). Future research should further focus on integrating multimodal data sources,
explainable artifical intelligence (AI) techniques, and transfer learning methods to improve
model interpretability and clinical applicability.

Authors Tasci et al. (2023) developed a hypercube pattern-based feature extraction
method for EEG signal classification, which offers high accuracy for classifying 121 patient
populations. They captured multi-dimensional spatial dependencies within the EEG
signals and proposed a more informative feature representation for classification (Tasci
et al., 2023). This achievement demonstrates the multi-scale feature extraction approach.
It underscores the need for more unconventional and advanced non-dimensional EEG
feature learning for illness detection. This rationale supports our strategy of using atrous
convolutions and adaptive weight fusion for the classification of schizophrenia.

Stress can have multiple consequences on one’s mental and physical health, as it has
the capacity to change how a person’s digestive system, the movement of the gut, and
the permeability of the intestines function (Zhang et al., 2023; Shen et al., 2024). The brain
produces electrical impulses that can be measured and are suggestive of certain cognitive
functions. These impulses are called neural signals, and their activities during certain tasks
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can be analyzed for further understanding (Pan et al., 2024c; Pan et al., 2024b). Electrical
activity of the brain perpetually encompassing cognitive and sensory activities is recorded
through EEG. When a person sees something, the brain produces certain types of electrical
activity in response to these visual images (Pan et al., 2024a;Hao et al., 2023). Depending on
the task, the focus of target detection is often on the contents of the frame, particularly the
pixels. Notwithstanding, if the frame clarity is low, visual features such as edges or textures
tend to become blurred and detection becomes challenging (Shi et al., 2024; Ye et al., 2024).
Both of these types of images are important in analyzing the methods that the brain uses
to process and represent the information associated with sensations and movements done
mentally or physically without direct stimulation of the body parts concerned (Wen et al.,
2024; Gan et al., 2024). Swarm intelligence, evolutionary algorithms, fuzzy logic, neural
networks, and machine learning type techniques are able to deal with complicated data
patterns and are used to construct systems that learn from the data to reason and make
decisions to solve problems (Zhu, 2024).

METHODS AND MATERIALS
This section will discuss the research methods and materials for deep learning-based EEG
schizophrenia detection. The process consists of data preprocessing, model architecture
design, training procedures, and evaluation metrics. The first process, data preprocessing,
is essential as it encompasses several steps to prepare the raw EEG data for input into the
model. In this case, these processes include using bandpass filters to focus on the most
critical frequency bands, cleaning the data of any possible noise, and equalizing the data.
The output of this stage is clean, pre-processed EEG data ready for feature extraction.

Figure 1 presents a complete depiction of the process flow of the CA-AWF (Cascaded
Atrous Convolutional Network with Adaptive Weight Fusion) for schizophrenia based on
EEG analysis. Next, the model architecture comes into play by applying the model to the
preprocessed data. This architecture comprises five main stages. The first stage involves
initial convolutional layers, which capture andprocess low-order temporal features from the
EEG signals over a short period retouched bymax-pooling tominimize the time dimension.
The second stage employs the model’s more complex atrous convolutional layers with
various dilation rates of 2, 4, and 8 to understand the multi-scale temporal features so
that the model can acquire the short-term and long-term dependencies relationships of
the EEG signals. The third of them deals with cascaded subnetworks. In this situation, the
feature representations are enhanced by a sequence of convolutional and pooling layers.
These appropriate subnetworks assist the model in creating more advanced levels of image
complexity, which will help in cytokines analysis by providing more details of diseases such
as schizophrenia. The fourth stage is devoted to implementing a new adaptive weight fusion
module (AWFM), filtering the results of the cascaded subnetworks with a trainable weight.
This module enables selective attention on the most discriminative features first and the
least discriminative ones later since this aids the model in classifying objects correctly.

Lastly, the final stages in the ranking system are the input number, final classification
layer, and output number processing unit performing global average pooling after the
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Figure 1 The overall processing flow of the proposed CA-AWFmodel.
Full-size DOI: 10.7717/peerjcs.2811/fig-1

weighted feature maps and fully connected softmax layer. This stage returns a value that
indicates the class to which the input data of EEG correspond, one of two classes, either
schizophrenia or healthy control. Model training commences once the model architecture
is established. In this phase, hyper-parameter adjustment and optimization, such as Adam
optimization and regularisation, are used not to overfit the model. Early stopping prevents
overfitting by keeping track of validation performance metrics and stopping training the
model when no performance gain is noticed.

MATERIALS & METHODS
Selection method
The selected methods for this EEG-based deep learning framework aimed at detecting
schizophrenia were based on the requirement to address the specific attributes of the
EEG data while still providing robust model efficacy or generalization. Data preprocessing
techniques like bandpass filtering and noise suppression were employed to enhance focus
on important spectral regions while minimizing artifacts. The model architecture included,
but was not limited to, the initial convolutional layers, atrous convolution technologies with
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different dilation rates, and stacked sub-networks to include both short- and long-range
dependencies of the EEG signals. Including anAWFM in themodel enables it to concentrate
on discriminative features and enhances classification performance through the existing
discriminating features. Based on Adam, there was a preference for efficient optimization
in the training process that was considered to ensure sustainable assessment, especially with
regularization and early stopping to avoid overfitting. The assessment methodologies like
precision, recall, and F1 score were considered to ensure sustainable assessment, especially
with a given context of imbalanced data pertaining to the schizophrenia detection problem.

Data collection
This research relied on the Schizophrenia EEG dataset, which is publicly available on
Kaggle and encompasses EEG recordings from people with schizophrenia as well as
healthy controls. The dataset consists of multi-channel electroencephalographic recordings
from various experimental paradigms to evoke specific neural responses. Preprocessing
was done to enhance the signal quality and eliminate contaminating noises from eye
movements, muscle contractions, and other non-neural confounds in the raw EEG
data. The schizophrenia group contained both age-matched healthy controls. EEG
signals were recorded using several electrodes placed across different scalp regions
to capture brain activity. The subjects performed sensory tasks involving auditory or
visual stimuli to evoke related cognitive processing. You can access the dataset here
(https://www.kaggle.com/datasets/broach/button-tone-sz).

Figure 2 presents the distribution of EEG signal mean values for individuals diagnosed
with schizophrenia and healthy controls.

The EEG signals were recorded using a 64-channel electrode setup, following the 10–20
international placement system, ensuring comprehensive brain activity monitoring across
multiple cortical regions. The sampling rate was initially 1,000 Hz, allowing for high
temporal resolution, but in some versions of the dataset, the signals were downsampled to
250 Hz for efficient processing provided in Table 1.

Pre-processing
Several mathematical operations are to be run to preprocess EEG data so that the signals
become clean, relevant, and standardized for input into machine learning models. A
bandpass filter is applied to the raw EEG signal to allow frequencies within the 1–40 Hz
range. Let x(t ) represent the raw EEG signal, and let H (f ) denote the frequency response
of the bandpass filter. The filtered signal y(t ) can be expressed as:

y(t )= F−1
(
H (f ) ·F{x(t )}

)
(1)

where F{x(t )} is the Fourier transform of the raw signal x(t ), and F−1 represents the
inverse Fourier transform. The bandpass filter allows frequencies within the range (1 Hz,
40 Hz) to pass through while attenuating frequencies outside this range.

Independent component analysis (ICA) decomposes the EEG signal into independent
components. Let the observed EEG signals be represented as a matrix X , where each row
corresponds to a channel and each column to a time point. ICA attempts to find a linear
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Figure 2 Data distribution from the dataset.
Full-size DOI: 10.7717/peerjcs.2811/fig-2

Table 1 Dataset details.

Attribute Description

Total subjects 81 participants (Schizophrenia patients Healthy Controls)
EEG channels 64-channel EEG recordings (10–20 electrode placement

system)
Sampling rate 1,000 Hz (downsampled to 250 Hz in some versions)
Recording duration Varies per session, based on task completion)
Experimental tasks Button-press task Auditory tone processing
Data format EEG time-series data with event labels
Preprocessing ICA-based artefact removal, bandpass filtering

transformationW that decomposes the observed signal into independent components S:

X =A ·S (2)

where A is the mixing matrix, and S contains the independent components. The goal is to
estimateW such that:

S=W ·X . (3)

After identifying artifact-related components, these components are removed, and the
remaining components are used to reconstruct the clean EEG signals:

Xclean=Aclean ·Sclean (4)
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where Sclean contains only the non-artifact components.
Let the continuous EEG signal be x(t ) where t represents time. The signal is segmented

into epochs of fixed length T, starting at event times ti. Each segment xi(t ), is defined as:

xi(t )= x (ti+1t )for1t ∈ [0,T ] (5)

where ti is the time of the stimulus event and T is the duration of the epoch. This
segmentation allows us to analyze the brain’s response to specific stimuli by focusing on
the corresponding epochs. Each EEG segment xi(t ) is normalized to have zero mean and
unit variance. Let ui andσi represent the mean and standard deviation of the ith EEG
segment, respectively. The normalised signal x̂i(t ) is given by:

x̂i(t )=
xi(t )−µi

σi
(6)

where,

µi=
1
N

N∑
t=1

xi(t ) (7)

σi=

√√√√ 1
N

N∑
t=1

(xi(t )−µi)2. (8)

Here, N is the number of time points in the segment. This normalization ensures that
the EEG signals are consistent, preventing any individual channel from dominating the
model due to larger absolute values.

Model architecture
We present a model for detecting schizophrenia based on EEG signals. It is a hybrid model
with a cascade network (CN) structure, along with an atrous (dilated) convolution and
adaptive weight fusion module (AWFM). The architecture of this system aims to learn
temporal patterns at different scales from the EEG signal efficiently and adaptively select
the most informative features for classification.

The input to the model consists of preprocessed EEG signals, represented as a matrix
X ∈RC×T , where C is the number of EEG channels (electrodes) and T is the number of
time points in each segment (epoch). For example, with 64 EEG channels and 256-time
points per segment, X would have the shape of 64×256. The first convolutional layers
extract early temporal features from the EEG data. These layers use small filters on the
input signal to capture fine-grained temporal patterns. The output of a 1D convolutional
layer is given by:

yj(t )= σ

( C∑
i=1

wij ·Xi(t )+bj

)
(9)

where Xi(t ) is the input signal from the channel i at time t , wij are the weights of the
convolutional filter, bj is the bias term, and σ (·) is the activation function (rectified linear
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unit (ReLu) in this case). This process is repeated for each filter to produce feature maps.
A max-pooling operation is applied after the convolutional layers to reduce the temporal
dimension. The pooling operation is defined as,

ypooledj (t )=max(yj(t1),yj(t2),...,yj(tk)) (10)

where t1,t2 ....tk are the time points in the pooling window. The first layer uses 1D
convolution with a filter size of 3, a stride of 1, and 64 filters. Following this, batch
normalization and ReLU activation are applied. This configuration captures fine-grained
temporal patterns across the EEG channels. This output is passed through another 1D
convolutional layer with similar parameters—filter size 3, stride 1, and 64 filters—and
batch normalization and ReLU activation to introduce non-linearity and stabilize the
training process. After these two convolutional layers, follow a 1D max-pooling operation
with a pool size of 2 to decrease the temporal dimension of feature maps while retaining
the most crucial ones and decreasing computational complexity. This initial series of
operations ensures that the model efficiently captures the essential low-level temporal
characteristics of the EEG signals, setting up for subsequent processing in later layers.

EEG data are analyzed using atrous (dilated convolutions) to catch multiscale temporal
patterns. By increasing the dilation rate, we expand the receptive field without increasing
the parameters, enabling the model to learn local and global dependencies. The original
sentences are 32 words long, while my rewrite has 31 words. The output of an atrous
convolutional layer is given by:

yj(t )= σ

( C∑
i=1

K∑
k=−K

wij (k) ·Xi(t+d ·k)+bj

)
(11)

where wij (k) are the weights of the filter with a dilation rate d, K is the filter size, and σ (·)
is the activation function (ReLU). By varying the dilation rate d , the model can capture
local and long-range dependencies in EEG signals.

The consultation is built upon three atrous convolutions of varying dilation rates to
apprehend time-dependent patterns at various scales in the data. This is followed by batch
normalization and ReLU activation for the first atrous layer, which has a filter size of 3
and dilation rate of 2, to make training stable and non-linear. In addition, the second layer
further increased its receptive field by increasing the dilation rate to four, coupled with
batch normalization and ReLU activation. Lastly, the third atrous layer boasts a dilation
rate of eight, so this model can capture long-range dependencies within EEG data. Each
individual extracts features from local and global structures in EEG signals that help detect
complex brain activity related to schizophrenia. Combining these three layers enables
multiscale information processing, thus enhancing the ability to differentiate patients
suffering from schizophrenia from healthy controls.

Figure 3 shows the CA-AWF model for schizophrenia detection. The output from
the atrous convolutional layers is passed through cascaded subnetworks, where each
subnetwork refines the feature representations learned from the previous layers. The
cascaded architecture allows the model to progressively enhance its ability to capture
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Figure 3 CA-AWFmodel for schizophrenia detection.
Full-size DOI: 10.7717/peerjcs.2811/fig-3

complex patterns and relationships in the EEG data. Each subnetwork takes the output
from the previous layer and applies further convolutions to enhance the features. The
output of the k-th subnetwork is given by:

Fk = σ (Wk ·Fk−1+bk) (12)

where Wk and bk are the weights and biases for the k-th subnetwork, and Fk−1 is the
input feature map from the previous layer. The cascade structure allows for a deeper
understanding of the input features by progressively refining them across multiple layers.

One-dimensional convolutional layers are contained in each subnetwork, and they
further develop the features extracted by previous layers to allow for a more progressive and
sophisticated model’s ability to discern complex patterns from EEG data. Subnetwork one
receives the output of the atrous-convolutional layer and then performs a 1D convolution
with 128 filters, followed by batch normalization and ReLU activation. This is succeeded
by a max-pooling layer that cuts down temporal dimensions while retaining only the
most essential features. The second subnetwork has a structure similar to the first one but
fine-tunes the generated characteristics evenmore. In addition, it is also applied in the third
subnetwork so that the model can understand what these patterns mean and recognize
them in future signals. How this model is created allows it to learn as much as possible
about schizophrenia through minute changes in signals when working with high-level EEG
information at once.

The AWFM is responsible for dynamically adjusting the importance of the features
extracted from the different layers or subnetworks. This module learns to assign weights
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to these features during training, allowing the model to prioritize the most relevant
information to detect schizophrenia.

Let F1, F2, ...,Fn be the feature maps of the n cascaded subnetworks. The AWFM assigns
a learnable weight wi to each feature map Fi. The fused feature map Ffused iscalculated as:

Ffused =
n∑

i=1

wi ·Fi (13)

where wi are the learnable weights that are optimized during training. The AWFM learns
to prioritize the most relevant features for the final classification task. Learnable weights
are assigned to each feature map created by the cascaded subnetworks using input from
AWFM. These weights are optimized during training to represent how important each
feature map is in making a classification decision. The fusion process is performed on
these weighted feature maps by summing or concatenating them, resulting in a single
fused representation passed on to subsequent layers. By allowing the model to focus on
informative features adaptively, the AWFM improves its ability to differentiate between
patients with schizophrenia and healthy controls. This dynamic weighting mechanism
provides flexibility for learning critical features and enhances overall classification
performance through multiscale, multilevel feature information.

The final layer performs the classification task, placing the probability that the input
belongs to one of the two classes (schizophrenia or healthy control). After the adaptive
weight fusion module (AWFM) has consolidated related feature maps, a global average
pooling layer is needed to reduce the dimensionality of fused feature representation into a
single vector of fixed length. The pooled vector resulting from this process is then passed
through a fully connected (dense) layer, where features are linearly combined. Ultimately,
this layer’s output undergoes a softmax activation function that maps logit values to class
probabilities. Softmax outputs a probability distribution between two classes, enabling the
model to make its ultimate decision on classification. This architecture allows for efficient
extraction and fusion of multiscale features for prediction by the model and completion of
an EEG-based schizophrenia detection process.

ReLU activations through the network introduce non-linearity, followed by softmax
at its final layers for classification purposes. Dropout layers with a drop rate of 0.5 and
regularization of L2 were implemented to avoid overfitting during training. These batch
normalization layers help normalize activation and stabilize training.

This proposed model architecture involves cascaded networks integrated with atrous
convolutions and an adaptive weight fusion module to detect schizophrenia in EEG signals.
The cascade structure progressively refines feature representations, whereas AWFM
dynamically adjusts the importance levels of different features, resulting in improved
classification performance. The integration of these components enables high-accuracy
detection of schizophrenia from EEG data. Algorithm 1 presents the AWFM model for
EEG-based schizophrenia detection.
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Algorithm 1 CA-AWFMModel for EEG-Based Schizophrenia Detection.

Input: EEG signal dataset X
Output: Predicted class label (Schizophrenia or Healthy)
1. Data Preprocessing

• Apply Bandpass Filter to EEG signals within the range 1–40 Hz.
• Perform Independent Component Analysis (ICA) to remove artifacts.
• Segment EEG signals into fixed-length epochs.
• Normalize each EEG segment to have zero mean and unit variance.

2. Feature Extraction using Atrous Convolutions (AC)

• Initialize convolutional filters with dilation rates d ={2,4,8}.
• For each EEG segment xi ∈X :

– Apply 1D convolution with filter size k= 3.
– Apply Batch Normalization and ReLU activation.
– Perform Atrous Convolution with different dilation rates.
– Store extracted feature maps FAC.

3. Cascaded Feature Refinement (CN)

• Pass feature maps FAC through cascaded subnetworks:

– Each subnetwork applies 1D convolution, batch normalization, and max pool-
ing.

– Refine features progressively across multiple layers.
– Output refined features FCN.

4. AWFM

• Compute learnable weights wi for each feature map FCN.
• Compute weighted fusion of features: FAWFM=

∑
iwi ·FCN,i

• Pass fused feature representation to a global average pooling layer.

5. Classification Layer

• Feed the pooled feature vector into a fully connected layer.
• Apply Softmax activation to obtain probability scores for each class.
• Assign final class label based on the highest probability.

6. Model Training and Evaluation

• Train the model using the Adam optimizer with a learning rate of 0.0005.
• Apply early stopping if validation loss does not improve for 10 epochs.
• Evaluate model performance using accuracy, precision, recall, and AUC-ROC.
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Table 2 Hyperparameter tuning for the CA-AWFmodel.

Hyperparameter Selected value

Learning rate 0.0005
Batch size 64
Number of epochs 100
Optimizer Adam
Dropout rate 0.4
L2 regularization 0.001
Filter sizes 3
Number of filters 128
Dilation rates (2, 4, 8)
Activation function ReLU
Pooling size 2
Fusion weights initialization 1.0
Weight initialization He Normal
Early stopping patience 10

Hyperparameter tuning
The EEG-based schizophrenia detection model’s hyperparameters were determined to
balance simplicity and generalization. A learning rate of 0.0005 was settled to make it
possible for small fine-tuning changes during training, leading to stable convergence
without overshooting the optimal solution. Furthermore, to avoid overfitting, a batch size
of 64 was used for memory efficiency and training speed, and the maximum number of
epochs allowed was limited to 100. The decision to use the Adam optimizer was prompted
by its adaptive learning rate and ability to work well for complex models.

A dropout rate 0.4 coupled with L2 regularisation at 0.001 was included to address
overfitting, especially considering the complex model. The filter size is three, which
is recommended for capturing EEG temporal microstructures. In contrast, the filter
number was set at one hundred twenty-eight, ensuring enough representation in the
feature extraction process. Atrous convolutional layers’ dilation rates were (2, 4, 8) aimed
at effectively capturing multi-scale temporal dependencies. ReLU was chosen as it is
simple but powerful in deep neural networks, where it serves as an activation function.
Table 2 summarises the selected hyperparameters used in the CA-AWF (Cascaded Atrous
Convolutional Network with Adaptive Weight Fusion Module) model for EEG-based
schizophrenia detection. These hyperparameters were carefully chosen to optimize the
model’s performance while preventing overfitting.

The pooling size of 2 was chosen for downsampling to gradually decrease the temporal
dimensions of feature maps. The fusion weights in the adaptive weight fusion module
(AWFM) were initially assigned 1.0 so the model could adjust its weight assignment during
training. In optimizing initial learning dynamics, ‘He Normal’ initialization was employed
to determine the weight of this model. At the same time, a patience of 10 epochs with early
stopping is done to end training when no significant improvement is observed in validation
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Table 3 The hardware and software configurations used for the analysis are detailed below.

Hardware
configuration

Details Software
configuration

Details

CPU processor Intel Core
i5-12500H 2.40 GHz

Simulation tool Spyder in python

Hard disk 1TB Operating system PC running x64-based
windows 11

Random access memory
(RAM)

24 GB RAM

performance. All these hyperparameter choices synergistically enhance our model’s EEG
signal analysis capabilities without impacting unseen data generalization.

COMPUTING INFRASTRUCTURE
This study used the Schizophrenia EEG dataset, which is hosted on Kaggle and consists of
patients’ and controls’ EEGs. Meanwhile, it includes multi-channel EEG recording during
different tasks to elicit specific brain activities. Signal enhancement was done to the extracts
to reduce artifacts such as eye blinks, movements, muscle contraction, and other matrices
in the raw EEG. Participants included people with schizophrenia and healthy controls,
providing age-range samples. The computing infrastructure is provided in Table 3.

ASSESSMENT METRICS (JUSTIFICATION)
Accuracy: the ratio of the right predictions to all predictions made. However, this value
diminishes when there is an unequal class distribution. Accuracy measures how many
predictions were true against the total predictions made.

Precision: among the positively predicted outcomes what is true- what percent was real
positive out of the total positive outcomes achieved. He or she is saying that the positive
prediction was actually correct and hence for some of the positives they will be needed.

Recall (sensitivity): howmany true positives did themodel retrieve in total? This number
is useful in explaining the model’s performance in classifying the relevant objects.

F1-score: it is also referred to as the average F1 measure, which is also known as the
average precision of both positive and negative results in statistical testing.

AUC-ROC: this is used to evaluate a model by estimating its performance in the effect
of sensitivity and specificity, i.e., prediction of the condition under study depending on its
spirit of the situation controlled for another diagnosis.

Confusion matrix: a matrix that enables visualization of the performance of a
classification model by recording true positive, true negative, false positive, and false
negative predictions.

Loss function: He is of the view that the investigator has a hypothetical model to which
he or she wishes the actual situation to be as close as possible, meaning that the function
gives a relation of order between the models and the observations that need to be worked
on improving the model.
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RESULT AND DISCUSSION
Experimental setup
The experiment scope of this study has a defined funnel starting from preparing the dataset,
which contains EEG recordings of 81 subjects (schizophrenia cases and healthy controls)
acquired from Kaggle. EEG was recorded on each subject via a 64-channel electrode system
configured to record event-related potentials (ERPs) during button press and auditory tone
tasks. The preprocessing steps to the raw EEG signals included bandpass filtering to cut out
noise (1–40 Hz), ICA for artefact removal, and epoch segmentation to meaningful brain
activity. To maintain consistency, the data was normalised to zero mean and unit variance
before being introduced to themodel. For feature extraction, EEG segments were processed
using the CA-AWFMmodel. Atrous convolutions captured dependencies at multiple time
scales, cascaded networks refined high-level feature representations, and adaptive weight
fusion module dynamically assigned importance to features. A split of 80% for training and
20% for testing was established within the dataset for unbiased assessment. The model was
trained with Adam optimiser, with a learning rate of 0.0005, batch size of 64, and a dropout
rate of 0.4, with early stopping (patience = 10 epochs) to reduce overfitting. Evaluating
the model classification performance was achieved through calculated accuracy, precision,
recall, F1-score, and AUC of ROC. A confusion matrix was also formulated based on the
predictions made in Fig. 4.

Discussion
The proposed CA-AWF (Cascaded Atrous Convolutional Network with Adaptive Weight
Fusion) model’s performance was evaluated on a publicly available EEG dataset for
schizophrenia detection. The model was trained using the selected hyperparameters, and
its performance was assessed using various metrics, including accuracy, precision, recall,
F1-score, and the area under the receiver operating characteristic curve (AUC-ROC)
provided in Table 4.

The results so far were the effectiveness evaluation of the developed CA-AWF model
for detecting schizophrenia using EEG data. The model attained an accuracy of 99.5%,
showing, its efficiency in classifying patients with schizophrenia and healthy controls. This
high accuracy rate also means that the model makes fewer mistakes overall.

A precision score of 0.98 shows that this model managed to reduce the number of false
positives, meaning that if a case is diagnosed with schizophrenia, then it is mostly correct.
Recall = 0.99. Regarding sensitivity, this model can find most cases of schizophrenia that
are true without reporting false negatives. The F1measure of 0.985 indicates a good balance
between the measures of the model where both precision and recall are improved and few
false alarms are experienced. Given several performance measures, this measure provides
evidence of how well the model performs. Lastly, the AUC-ROC score of 0.997 shows
overall model performance in the healthy class and schizophrenia class classification by
using different decision thresholds and how healthy classes can be separated. Such a high
score shows the model is reliable and discriminates the two classes remarkably.

The CA-AWF model’s confusion matrix when classifying schizophrenia is shown
in Fig. 4. The matrix shows that the model is quite effective since it achieves a high
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Figure 4 Confusionmatrix of the CA-AWFmodel to detect schizophrenia.
Full-size DOI: 10.7717/peerjcs.2811/fig-4

Table 4 Performance metrics of the CA-AWFModel.

Metric Value

Accuracy 99.5%
Precision 0.98
Recall 0.99
F1-Score 0.985
AUC-ROC 0.997

classification performance for both classes; that is, 98% of healthy cases are correctly
classified as healthy, and only 2% of those cases are classified as being schizophrenia cases,
and 99% of schizophrenia cases are correctly classified. In comparison, only 1% of cases
are classified as healthy. It is pleasing to realize that the CA-AWF model is very effective
in discriminating between healthy individuals and individuals who have schizophrenia.
The high accuracy values of the diagonals (98% and 99%) signify the model’s efficiency in
accurately classifying the most significant majority of the samples. The low values of the
off-diagonals (2% and 1%) reflect that there is hardly any contamination of the diagnoses.
Hence, the model is efficient in the diagnosis of schizophrenia.
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Figure 5 Accuracy graph of the CA-AWFmodel to detect schizophrenia.
Full-size DOI: 10.7717/peerjcs.2811/fig-5

As can be seen in Fig. 5, we show the training and testing loss for the CA-AWF model
after 100 epochs. The red dashed line is the training loss, and the blue solid line is the
testing loss. The training and testing loss curves also show that the model improves as the
errors decrease and training continues. The training and testing billion-dollar losses at the
start of training are expected to be high average training earmarks because the machine
has just started the primary stages of learning the nested data. Then, the losses steadily
reduce as the model improves and the most efficient values of its parameters are achieved.
After about epoch 50, the losses achieve the lowest values but begin to stabilise, conveying
that the model has been trained optimally and, therefore, additional training would not
bring further progress. The last losses are broadly low, with the losses on training going
down to almost zero and the tiny loss on testing remaining just above this. The narrow
separation between the training and testing loss graphs shows that the model overfits very
little because it can perform well even in data for which it has never been trained. This
indicates that the CA-AWF model can retain good test performance, which is essential for
its practical use, such as diagnosing schizophrenia from EEG signals.

The CA-AWFmodel reaches the training and testing accuracy after 100 epochs, as shown
in Fig. 6. The red dashed curve depicts the training accuracy, while the blue solid curve
shows the testing accuracy. Both curves demonstrate an increasing trend, suggesting an
enhancement of the model over time due to exposure to the data. In early epochs, it can be
seen that the gap between the training and testing accuracy is vast, which is expected since
it’s the period in which the model begins to learn and adjust its weights to optimise the
model’s performance. Nonetheless, as the training advances, the gap reduces, indicating

Al Mazroa et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2811 19/31

https://peerj.com
https://doi.org/10.7717/peerjcs.2811/fig-5
http://dx.doi.org/10.7717/peerj-cs.2811


Figure 6 Loss graph of the CA-AWFmodel to detect schizophrenia.
Full-size DOI: 10.7717/peerjcs.2811/fig-6

that the model can perform beyond the training data. At approximately epoch 50 onwards,
both the test accuracy and the training set accuracy begin to stabilise, meaning that the
model in question has a given upper limit in performance. The last accuracy for both
training and testing tends to be stable at nearly 99%, signifying the effectiveness of the
CA-AWF model in differentiating schizophrenia patients from healthy controls.

Table 5, contains results where more than one variable is considered, and independent
comparisons are made between experiment 1, experiment 2, and the proposed method.

Experiment 1 and experiment 2 represent two different model training configurations
designed to evaluate the impact of varying hyperparameters and architectural choices on
the performance of the CA-AWFM model. Specifically, experiment 1 used a learning rate
of 0.0006, batch size of 64, the dropout rate of 0.3, and the Adam optimizer. In contrast,
experiment 2 employed a learning rate of 0.0001, batch size of 32, dropout rate of 0.2, and
RMSprop optimiser. In contrast, the proposed CA-AWFM model utilised a learning rate
of 0.0005, batch size of 64, dropout rate of 0.4, and the Adam optimiser, achieving superior
performance.

Regarding the performance scores attained, it is evident that among the three methods
applied, the proposed method yields the best performance in detecting schizophrenia
from EEG data. Similar to experiment 1, the Proposed Method assumes a learning rate of
0.0005 and batch size of 64 and uses the Adam optimizer but slightly increases the dropout
rate from 0.3 to 0.4. This configuration permits the best possible trade-off between
model complexity and model generalization, as shown by the best training and validation
accuracies of 99.5% (training) and 99.5% (validation), respectively. Apart from this, it can
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Table 5 Comparison of experiment 1, experiment 2, and proposed method.

Metric Experiment 1 Experiment 2 Proposed method

Learning rate 0.0006 0.0001 0.0005
Batch size 64 32 64
Optimizer Adam RMSprop Adam
Dropout rate 0.3 0.2 0.4
Filter sizes 3 3 3
Number of filters 128 128 128
Dilation rates (2, 4, 8) (4, 8, 16) (2, 4, 8)
Activation function ReLU ReLU ReLU
Pooling size 2 2 2
Weight initialization He Normal He Normal He Normal
Early stopping patience 8 10 10
Number of epochs 50 100 100
Training accuracy 98.5% 99.2% 99.5%
Validation accuracy 99.0% 98.7% 99.5%
Validation loss 0.25 0.28 0.15
Precision 98.8% 99.0% 99.5%
Recall 98.9% 99.5% 99.6%
Convergence speed Fast Slow Moderate

be seen that the use of a greater dropout rate and L2 regularisation additional measures to
overfitting, which also explains the lower validation loss of 0.15 compared to 0.25 and 0.28
of experiment 1 and experiment 2, respectively. Figure 7 illustrates the comparison of the
proposed model with baseline models.

The use of the Adam optimizer characterizes experiment 1 but sees the batch size
changed to 64 with a 0.0006 learning rate, achieving a very high convergence speed in a
shorter time frame. The convergence might have been fast, yet the 50 epochs and the high
dropout rate of 0.3 might not have allowed for a proper generalization of the model such
that, although a good validation accuracy of 99.0 percent was achieved, it could not perform
quite as effectively as the proposed method. Experiment 2 changes in comparison with
the previous experiment with root mean square propagation (RMSprop) as the optimizer
and a reduced batch size of 32. Although this configuration achieves an overall training
accuracy of 99.2%, the highest among the reverse halos configurations, it is less efficient
at convergence and yields a validation loss more significant than 0.28. A recall of 99.5% is
relatively reasonable and indicates this experiment is good at recognizing true positives or
correctly diagnosing all the patients with the target disease within the study. However, the
slow convergence and a high validation loss indicate that it would not perform as well as
the proposed method in generalisation capability.

The current study provides evidence in support of the efficacy of the proposed CA-AWF
model in the detection of schizophrenic individuals from EEG recordings. The results
achieve exceptionally high precision, sensitivity, and specificity, which indicates that the
model can adequately learn the underlying, non-linear relationships in the data concerning
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Figure 7 Comparison of proposed model with baseline models.
Full-size DOI: 10.7717/peerjcs.2811/fig-7

the brain activities in schizophrenia subjects. The CA-AWF model’s strong point is
the exploitation of atrous convolutions to extract multi-scale features. Because the rate of
dilations is varied, themodel elegantly captures both short-termand long-range interactions
present in the EEG signals, which help discriminate between the ortho and the path brain
functions. This multi-level strategy helps the model assimilate richer information in the
EEG signals than in the model classification. The cascaded subnetworks further transform
these feature representations, enabling the model to have a new level of abstraction to
construct advanced hierarchical features. This hierarchical learning is essential because
subtle features or patterns may not be captured when the model is shallow. Therefore,
the cascade architecture is also beneficial for a deep understanding of features; hence,
model-fitting cross-subjects will be easier.

By assessing each of the input features in every input image separately, the need to
combine features using the weighted average is avoided. This weight is adaptive and
focuses on information relevant to the classification task. This prevents the model from
being too influenced by irrelevant or inconsequential features, enhancing the generalization
ability. Even with the model’s high performance, some limitations may still be noted. For
example, the validation set may not contain the broad range of EEG patterns obtained in a
clinical environment. Improving on this study, it would be worthwhile also to validate the
model using more prominent and more diverse datasets to determine its generalizability.
Furthermore, other deep learning architectures may improve performance and visibility
into the underlying processes.
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Figure 8 Intermediate feature maps at various levels of the CA-AWFMmodel.
Full-size DOI: 10.7717/peerjcs.2811/fig-8

Figure 8 captures the intermediate feature maps at various levels of the CA-AWFM
model, depicting how the model gradually improves the representations of EEG features
for the classification of schizophrenia. The raw feature map captures the most primitive
temporal changes in the EEG signals and illustrates the spatial quasi-activations from
which no feature extraction has been performed yet. As these features are processed in the
multi-scale atrous convolution layers, themulti-scale featuremap is created, which captures
multi-scale temporal dependencies consisting of localised and long-range oscillations of
EEG signals, which are vital for detecting schizophrenia. The features are further fused with
the AWFM, which filters the features to ensure the final fused features contain the most
discriminative patterns of the EEG signals features that pertain to schizophrenia. Through
the adaptive weighting mechanism, the clinically relevant features of the EEG signals are
given higher weight for classification, and the unimportant features are discarded, resulting
in more accurate classification. This stepwise refinement process demonstrates that the
CA-AWFM model captures the most important EEG features indicative of schizophrenia
and is thus most suitable for its diagnosis.

Our model uses atrous (dilated) convolutions to capture multi-scale temporal
dependencies in EEG signals efficiently. This is important for schizophrenia detection due
to abnormalities associated with the disorder across multiple frequency bands, including
elevated power in delta and theta waves and diminished activity in alpha waves. While
traditional CNN-based models do local spatial feature extraction, atrous convolutions
enable the extraction of both short and long-range dependencies the model uses, all
while increasing the receptive field with no additional parameters. These dependencies
are crucial in differentiating the acceptable neural oscillatory changes associated with
schizophrenia. The other novelty is the AWFM, which focuses on the most informative
EEG features during classification. Rather than fully automated models, fixed-weight
feature aggregation models are employed, which do not optimally highlight important EEG
characteristics. The AWFM adapts feature importance such that critical schizophrenia-
related EEG abnormalities, such as disrupted synchronisation of beta and gamma activity,
are accentuated while irrelevant features are suppressed. This mechanism dramatically
improves model robustness, especially in the inter-subject variability of EEGs. All these
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Table 6 Performance comparison of model variants.

Model variant Accuracy Precision Recall F1-score AUC-
ROC

Full CA-AWF model (CN + AC + AWFM) 99.5% 0.98 0.99 0.985 0.997
No-CN (without cascaded networks) 97.8% 0.94 0.97 0.955 0.985
No-AC (without atrous convolutions) 96.3% 0.92 0.96 0.94 0.974
No-AWFM (without adaptive weight fusion) 95.2% 0.91 0.95 0.93 0.965

advances in multi-scale temporal feature extraction using atrous convolutions and AWFM
adaptive feature selection fused to enable the CA-AWFM model to escalate beyond the
current state-of-the-art and achieve an astonishing 99.5% classification accuracy and 0.997
in AUC-ROC.

Ablation study
An ablation study assessing the effects of each primary term, cascaded networks (CN),
atrous convolutions (AC), and adaptive weight fusion module (AWSM) was performed
by individually deleting or substituting components for the purpose of assessing their
impact. The goal of this study is to analyze the individual contribution of each module for
effective schizophrenia detection. The performance of each model variation is summarized
in Table 6.

The ablation study shows the contribution of each architectural feature in the proposed
CA-AWF model. The accuracy dropped to 97.8% when CN was removed, which
demonstrates that cascaded networks (CN) enhance feature representation. This accuracy
indicates that the model is able to derive richer patterns from the data and improve
classification performance. The No-AC model’s accuracy of 96.3% confirms that atrous
convolutions (AC) are essential for capturing multi-scale temporal dependencies. AC are
necessary for recognizing local and global EEG features which are crucial in distinguishing
schizophrenia from healthy controls. The No-AWFM model produced the greatest drop
in accuracy to 95.2%, which illustrates that AWFM optimizes feature prioritization. This
underscores the critical role of dynamically allocated weights to features since the most
pertinent patterns extracted for classificationweremodelled. This demonstrates themodel’s
robustness.

Limitation
While the proposed CA-AWF model is accurately able to detect schizophrenia through
EEG data, some limitations still need to be discussed. One of the primary worries is
the possibility of overfitting, which is a likely concern due to the deep learning models
being trained on small sized datasets. Despite using dropout, L2 regularization, and early
stopping to address overfitting, the great performance of the model in the current dataset
still needs more comprehensive validation before it can be widely used in clinical settings.
Furthermore, generalizability remains an issue because the dataset used for this study has
limited demographic diversity, electrode configuration diversity, as well as experimental
condition diversity. EEG signals vary widely from one population to another, and from
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Table 7 Comparative analysis of CA-AWFMwith state-of-the-art approaches.

Model Feature extraction Classifier Accuracy (%) Precision Recall AUC-ROC

SVM (Dvey-Aharon et al., 2015) Handcrafted EEG features% SVM 85.7% 0.82 0.84 0.88
Random Forest (Johannesen et al., 2016) Wavelet-based features RF 88.9% 0.85 0.87 0.90
CNN (Zhang et al., 2016) Spatial CNN features CNN 93.2% 0.90 0.92 0.94
CNN-LSTM (Phang et al., 2019) CNN for spatial + LSTM

for temporal
Hybrid DL 96.5% 0.94 0.96 0.97

Proposed CA-AWFM Multi-scale Atrous +
Cascaded Features

AWFM + CNN 99.5% 0.98 0.99 0.997

one recording environment and sensor location to another. These differences might affect
the robustness of the model when implemented on new datasets, hence the uncertainty
about its applicability remains.

Performance comparison
CA-AWFM outperforming all other models in EEG-based schizophrenia detection made
use of the CA-AWFM multi-scale approach was compared to prior studies in Table 7.
Classification of SVM (85.7%) and Random Forest (88.9%) models are good, but not
great as they rely on handcrafted features that do not take into account the neural activity
complexities with schizophrenia. While these models perform reasonably well in recall and
precision, they do not come close to the flexibility offered by feature learning.

Deep learning based models such as CNNs and CNN-long short-termmemory (LSTMs)
perform better at 93.2% and 96.5% respectively because they learn the spatial and temporal
features from the EEG signals directly. Still, standard CNNs have difficulty with multi
scale multi temporal dependency recognition, while CNN LSTM models do possess
higher performance, but without a method to prioritize important features. The proposed
CA-AWFMmodel achieves 99.5% accuracy, 0.98 precision, and 0.99 recall, demonstrating
its effectiveness in extracting and prioritizing discriminative features. These results greatly
surpass those achieved by other approaches. The model performs exceptionally well in
distinguishing between schizophrenia patients and healthy controls. The model’s AUC-
ROC score yields a remarkable 0.997, supporting high reliability for clinical usage. The
model’s provided results validate why it is important to make this scientific contribution;
in addition, combining multi-scale feature extraction and adaptive fusion enhances the
detection of schizophrenia. These results confirm that the newly proposed model is more
accurate than existing approaches, and further suggest that proactively incorporated
adaptive feature selection will optimize classification performance in clinical conditions.

CONCLUSION AND FUTURE WORK
The CA-AWF model put forward is indeed a worthwhile advancement concerning the
detection of schizophrenia via the use of EEG-based devices where the validation accuracy
obtained is at 99.5%, with rooms exceeding the available models in the class, such as CNN,
LSTM, SVM, and random forest. Concerning the EEG model, this architecture employs
cascaded networks, atrous convolutions and an adaptive weight fusion module (AWFM)
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that effectively exploits local and global temporal dependencies in the EEG data. The use
of hyperparameters is well handled, and the most significant factors are the learning rate,
dropout rate, and dilation rates, which ensure that the models replace the effectiveness of
generalizability. High rates of accuracy have been obtained without much overfitting of
the model. Further improvement to the model’s performance on new data is made when
regularisation techniques like dropout and L2 regularization are employed. The efficiency
with which the CA-AWF model performs highlights its prospects as an essential device
for the early and accurate detection of schizophrenia, which is vital in management. In
addition, the flexibility of the model design makes it highly applicable in treating many
other diseases with a prominent role of EEG in their diagnosis. In summary, the CA-AWF
model attests to the capabilities of innovative and sophisticated deep learning systems in
addressing complicated classification problems in the field of medicine and thus facilitating
the development of more accurate diagnostic devices.

Adding modifications to please the reviewer would include incorporating hardware
requirements, as explained in ‘Materials & Methods’. Future work could address a better
understanding of the CA-AWFmodel by adding attentionmeasurements ormore advanced
explanation methods, like Gradient-weighted Class Activation Mapping (Grad-CAM) or
Shapley Additive exPlanations (SHAP). This would help to find out what particular EEG
signal patterns, if any, have the most significant contribution to the model’s decision-
making.
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