
Submitted 13 November 2019
Accepted 18 June 2020
Published 21 September 2020

Corresponding authors
Remzi Celebi,
remzi.celebi@maastrichtuniversity.nl
Joao Rebelo Moreira,
j.luizrebelomoreira@utwente.nl

Academic editor
Silvio Peroni

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj-cs.281

Copyright
2020 Celebi et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Towards FAIR protocols and workflows:
the OpenPREDICT use case
Remzi Celebi1,*, Joao Rebelo Moreira2,*, Ahmed A. Hassan3, Sandeep Ayyar4,
Lars Ridder5, Tobias Kuhn2 and Michel Dumontier1

1 Institute of Data Science, Maastricht University, Maastricht, Netherlands
2Computer Science, VU University Amsterdam, Amsterdam, Netherlands
3Pharmacology & Personalised Medicine, Maastricht University, Maastricht, Netherlands
4Medical Informatics, Stanford University, Palo Alto, CA, United States of America
5Netherlands eScience Center, Amsterdam, Netherlands
*These authors contributed equally to this work.

ABSTRACT
It is essential for the advancement of science that researchers share, reuse and reproduce
each other’s workflows and protocols. The FAIR principles are a set of guidelines
that aim to maximize the value and usefulness of research data, and emphasize the
importance of making digital objects findable and reusable by others. The question of
how to apply these principles not just to data but also to the workflows and protocols
that consume and produce them is still under debate and poses a number of challenges.
In this paper we describe a two-fold approach of simultaneously applying the FAIR
principles to scientific workflows as well as the involved data. We apply and evaluate
our approach on the case of the PREDICT workflow, a highly cited drug repurposing
workflow. This includes FAIRification of the involved datasets, as well as applying
semantic technologies to represent and store data about the detailed versions of the
general protocol, of the concrete workflow instructions, and of their execution traces.
We propose a semantic model to address these specific requirements and was evaluated
by answering competency questions. This semantic model consists of classes and
relations from a number of existing ontologies, including Workflow4ever, PROV,
EDAM, and BPMN. This allowed us then to formulate and answer new kinds of
competency questions. Our evaluation shows the high degree to which our FAIRified
OpenPREDICT workflow now adheres to the FAIR principles and the practicality and
usefulness of being able to answer our new competency questions.

Subjects Bioinformatics, Data Science, World Wide Web and Web Science, Software Engineering
Keywords Ontology-driven healthcare, FAIR workflows, Drug repurposing, Scientific workflows
and protocols, Reproducibility, Semantic web, Research Object, FAIR data principles

INTRODUCTION
Reproducible results are one of the main goals of science. A recent survey, however, showed
that more than 70% of researchers have been unsuccessful in reproducing another research
experiment and more than 50% failed to reproduce their own research studies (Baker,
2016).

The rate of non-reproducibility for pharmacological studies is particularly worrying.
Together with their high costs and their high rate of failure (around 90%), this highlights

How to cite this article Celebi R, Rebelo Moreira J, Hassan AA, Ayyar S, Ridder L, Kuhn T, Dumontier M. 2020. Towards FAIR protocols
and workflows: the OpenPREDICT use case. PeerJ Comput. Sci. 6:e281 http://doi.org/10.7717/peerj-cs.281

https://peerj.com/computer-science
mailto:remzi.celebi@maastrichtuniversity.nl
mailto:j.luizrebelomoreira@utwente.nl
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.281
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.281


the need for new approaches in drug discovery (Scannell et al., 2012). For these reasons,
we chose pharmacology as the field to apply and test the approach we will introduce below.
Specifically, we will be looking into drug repositioning, where small molecules approved
for one indication are repurposed for a new indication. Drug repositioning is gaining
recognition as a safe, effective and lower-cost approach to uncover new drug uses (Ashburn
& Thor, 2004; Sleigh & Barton, 2010). The availability of public data, both in the form
of literature curated knowledge and omics data has created exciting opportunities for
computational drug repositioning. For instance, gene expression data in repositories such
as the Gene Expression Omnibus (GEO) enable the analysis of correlations between drug
and gene expression - termed the Connectivity Map approach - to find chemicals that
may counter cellular disorders (Barrett & Edgar, 2006), including Alzheimer’s, and small
cell lung cancer (Lamb et al., 2006; Sirota et al., 2011). More sophisticated approaches use
network analysis and machine learning to efficiently combine drug and disease data (Cheng
et al., 2012; Gottlieb et al., 2011; Hoehndorf et al., 2013; Wu et al., 2013; Bisgin et al., 2014).

The ability to reproduce original research results is contingent on the availability of the
original data, methods and results. The FAIR principles (Wilkinson et al., 2016), describe a
set of requirements for data management and stewardship to make research data Findable,
Accessible, Interoperable, and Reusable. Ongoing efforts on FAIR cover data policies, data
management plans, identifier mechanisms, standards and data repositories (Collins et al.,
2018). Highly diverse communities, from the biomedical sciences to the social sciences and
humanities, are now working towards defining standards for publication and sharing of
data. In anticipation, newmethods and infrastructure are needed to facilitate the generation
of FAIR data and workflows.

Here, we describe a methodology to publish scientific workflows as FAIR data. We are
using the term workflow here to include computational steps implemented in software but
also manual steps, such as manual data cleaning steps or wet-lab activities. We evaluate
our method by applying it to the PREDICT drug repositioning workflow. Based on
this example, we will try to answer our research question of how we can use existing
vocabularies and techniques to make scientific workflows more open and FAIR, with
a particular focus on the interoperability aspect. The main contributions of this paper
are (a) general guidelines to make scientific workflows open and FAIR, focusing on the
interoperability aspect, (b) the OpenPREDICT use case, demonstrating the open and
FAIR version of the PREDICT workflow, (c) new competency questions for previously
unaddressed reproducibility requirements, and (d) evaluation results on the practicality
and usefulness of our approach.

BACKGROUND
Below, we refer to the most relevant background with respect to reproducibility, workflow
systems, and applying FAIR to workflows.

Scientific Workflows and Reproducibility
According to the Descriptive Ontology for Linguistic and Cognitive Engineering
(DOLCE) (Borgo & Masolo, 2010), a workflow is a ’’plan that defines role(s), task(s), and a

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 2/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.281


specific structure for tasks to be executed, usually supporting the work of an organization’’,
and a plan is a description of instructions with an explicit goal. A scientific workflow,
therefore, is such a plan that implements scientific methods to work towards the general
goal of scientific knowledge gathering and organization. Certain scientific workflows can
be automated through workflow systems, which are software systems that enable the
representation and execution of structured tasks.

The lack of relevant details in the published descriptions of scientific workflows
(Vasilevsky et al., 2013) is an important factor contributing to the non-reproducibility
rates of 64% in pharmacology (Ioannidis, 2005a; Prinz, Schlange & Asadullah, 2011), 89%
in cancer research (Begley & Ellis, 2012), and 66% in psychology (Klein et al., 2014). A
recent analysis of over 1.4 million Jupyter notebooks (available in GitHub) found that
only 24.11% of the notebooks could be executed without errors and only 4.03% produced
the same results (Pimentel et al., 2019). As a consequence, it has been reported that data
scientists spend 19% of their time finding, understanding and accessing datasets, and 60%
of their time cleaning and organizing these datasets to use in their studies (CrowdFlower,
2016). Thus, only 20% of the time is left for data scientists to spend on their core activities,
such as mining data, refining algorithms, building training sets and analyzing the results.

Workflow systems
To tackle the workflow decay phenomenon (Hettne et al., 2012), a number of recent
initiatives are targeting the improvement of the reproducibility of computational workflows
for example the CommonWorkflow Language (CWL) (https://www.commonwl.org/) and
the Workflow Description Language (WDL) (https://openwdl.org/), which have become
the de facto standard for syntactic interoperability of workflow management systems.
CWL and WDL are aimed to exchange and run computational workflows reproducibly
in different environments. They are designed to separate the workflow description from
its execution. In order to improve semantic interoperability and connect workflows
to real-world entities in a systematic way, additions of semantic models and methods
have been proposed, for example the Workflow4ever project with its Research Objects
method (Belhajjame et al., 2015).

Provenance is an important aspect of workflows, which can be classified into prospective
provenance, retrospective provenance, and workflow evolution provenance. Prospective
provenance refers to the specifications or ‘‘recipes’’ that describe the workflow steps and
their execution order, typically as an abstract representation of these steps (protocols),
as well as expected inputs and outputs (Cohen-Boulakia et al., 2017). Retrospective
provenance refers to the information about actual workflow executions that happened
in the past, including the concrete activities that consumed inputs and produced outputs,
as well as information about the execution environment (Khan et al., 2019). Workflow
evolution provenance refers to tracking the versions of workflow specifications and the
respective data, as the workflow specification is changed and improved over time.

A number of models and methods have been developed to capture these different kinds
of provenance. The PROV ontology (Lebo et al., 2013) provides the vocabulary and model
for provenance in general, which can be used in conjunction with top-level ontologies such

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 3/29

https://peerj.com
https://www.commonwl.org/
https://openwdl.org/
http://dx.doi.org/10.7717/peerj-cs.281


as DOLCE (Borgo & Masolo, 2010) and other general vocabularies such as Dublin Core
and schema.org. Several approaches have been proposed to apply PROV to workflows,
such as the Open Provenance Model for Workflows (OPMW) (Moreau et al., 2008),
P-PLAN (Garijo & Gil, 2012), and CWLProv (Soiland-Reyes et al., 2018). Other notable
examples include ProvBook and the Reproduce-me ontology (Samuel & König-Ries,
2018a; Samuel & König-Ries, 2018b) for workflows in Jupyter notebooks, the ML-Schema
ontology for machine learning workflows (Correa Publio et al., 2018), the Publishing
Workflow Ontology (PWO) for workflows in scientific publications (Hartanto, Sarno &
Ariyani, 2017), and the Business Process Modelling Notation (BPMN) to specify business
processes (Rospocher, Ghidini & Serafini, 2014). Other approaches, such as SMART
protocols (Giraldo et al., 2017) and protocols.io, target the description of laboratory
protocols.

Applying FAIR to workflows
The FAIR principles have received significant attention, but we currently lack overarching
approaches to align them with scientific protocols and workflows in a broad sense. Making
a workflow FAIR-compliant entails that general-purpose software can interpret it and
understand its context. The application of FAIR in healthcare, for example, has shown that
these principles boost data-driven applications that require the integration of data coming
from different sources, achieving ‘‘interoperability without the need to all speak exactly
the same language’’ (Imming et al., 2018). Recent initiatives have outlined how FAIR can
be applied to software (Neil & Daniel, 2018; Lamprecht et al., 2019), contributing towards
the goal of applying FAIR not just to input and output data, but to the entire process in
between, in order to solve the current problem that even human experts are often unable
to reconstruct the specific steps and parameters of a workflow from what is published in
scientific articles (Vasilevsky et al., 2013).

The FAIRification Jacobsen et al. (2019) consists of a number of steps required to
transform an existing data element to its FAIR version, typically leveraging the RDF
technology for the interoperability aspect. RDF is a broadly applicable formal language
to achieve the semantic interoperability principle I1. FAIRification starts by retrieving the
non-FAIR data from its sources. Subsequently these datasets are analyzed to understand
the data structures and how they are mapped to concepts from the domain. The next step,
semanticmodelling, is amajor activity comprising semantic harmonisation and integration,
requiring the reuse and/or creation of models compliant with the FAIR principles. Once
the dataset is aligned with semantic definitions, it can be expressed in RDF and augmented
with metadata. The last step is to store the FAIRified data into a findable and accessible
manner.

THE FAIR WORKFLOWS APPROACH
In this section we describe our workflow representation requirements, with a special focus
on the coverage of manual steps, different workflow abstraction levels, and versioning on
all these levels. We formulate these requirements as competency questions and present a

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 4/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.281


configuration of elements from existing semantic models as a unified model to answer
these competency questions.

Requirements and Competency Questions
With the help of structured interviewswith data scientists and a gap analysis of the literature,
we formulated user requirements for the reproducibility of workflows (the details of the
interviews are given in Appendix S1).

The interviewees stated that they experience many challenges in reproducing their or
others’ work, due to the lack of details of workflow steps, data cleaning and filtering.
Also essential information, such as processing parameters or design details needed to
reproduce the results, is often missing. Some of these requirements are already covered by
existing approaches while others have not been addressed so far. The interviews indicated
that the definitions of manual processes of workflows are usually missing or incomplete,
which is a requirement poorly addressed by computational workflow approaches. Often,
software libraries, packages and versions of tools used are not explicitly recorded. The
interviewees suggested making metadata of the datasets accessible, add richer prospective
and retrospective provenance and allowing for fine-grained workflow versioning linked
to outputs produced during distinct executions. A unanimous recommendation was to
allow for the separate input of relevant workflow parameters, so that one can run the same
workflow multiple times with different processing options without having to change the
workflow itself.

The representation of software environment details (e.g., the used libraries and packages)
is already addressed by some of the surveyed semantic models, like Workflow4ever,
CWLProv and Reproduce-me. We checked the capabilities of the existing semantic
approaches to address the needs collected from the interviews. We concluded that none of
the related work could completely address all the requirements together. The missing parts
can be put in threemain categories: (CQ1)Manual steps description and executions; (CQ2)
abstraction levels of workflows; and (CQ3) versioning of executed workflows. Therefore,
we propose the following additional sets of competency questions (CQ) to cover these
missing parts:

The first group of questions (CQ1) is about manual steps:

CQ1.1 Which steps are meant to be executed manually and which to be executed
computationally?

CQ1.2 For the manual steps, who are the agents responsible to execute them
(individuals and roles)?

CQ1.3 Which datasets were manually handled and their respective formats?
CQ1.4 What are the types of manual steps involved?

The second group (CQ2) is about instantiation of general workflows by more specific
ones:

CQ2.1 What are the main steps of a general workflow?
CQ2.2 What are the steps of a specific workflow and how are they described?

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 5/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.281#supp-1
http://dx.doi.org/10.7717/peerj-cs.281


Figure 1 Unified semantic model for workflows.
Full-size DOI: 10.7717/peerjcs.281/fig-1

CQ2.3 What higher-level description instantiated a certain workflow step?
CQ2.4 Who or what method made the instantiation of a semantic/meta level
description of a step into an executable workflow step?

The third group (CQ3) are questions about versioning of workflows and their executions:

CQ3.1 What are the existing versions of a workflow and what are their provenances?
CQ3.2 Which instructions were removed/changed/added from one version to another?
CQ3.3 Which steps were automatized from one version to another?
CQ3.4 Which datasets were removed/changed/added for the different versions?
CQ3.5 Which workflow version was used in each execution and what was generated?

To the best of our knowledge, none of the previous research on semantic modelling
of workflows (or protocols/processes) addresses all these requirements together. In few
cases some semantic models only partially cover some questions, as explained in the prior
section.

Unified model
From the study of the diverse existing semantic models for workflows and protocols,
we compiled a unified conceptual model covering the elements required to answer our
competency questions. For this, we applied the ontology-driven conceptual modelling
approach (Guizzardi et al., 2015), which is based on the Unified Foundational Ontology
(UFO) and its ontological language OntoUML (Moreira et al., 2016).

Figure 1 illustrates the main elements of our unified model (https://w3id.org/fair/plex),
which is primarily based on DOLCE Ultra Lite (DUL), PROV, P-PLAN and BPMN 2.0.

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 6/29

https://peerj.com
https://doi.org/10.7717/peerjcs.281/fig-1
https://w3id.org/fair/plex
http://dx.doi.org/10.7717/peerj-cs.281


The most relevant ontology used is P-PLAN, which provides an abstract terminology of
the main building blocks to describe plans.
The p-plan:Plan category is the core element of our unified model and is the class used

to classify any type of instruction. It allows for the composition of instruction by means
of smaller steps (p-plan:Step) that have input and output variables (p-plan:Variable). With
the pwo:hasFirstStep property, we can indicate the first step of a plan, and with dul:precedes,
we can indicate whenever a step precedes another, thereby enabling the representation of
sequential and parallel steps.

We decouple a particular step within a workflow from its instruction with the pattern
p-plan:Step dul:isDescribedBy p-plan:Plan, where each step always points to one plan. This
approach allows us to separate the workflow steps, enabling the reuse of instructions
by different workflows. Therefore, in our approach a step is a lightweight object (like a
pointer) that serves only for ordering of instructions without coupling them to the specific
workflow. Besides that, we use the dul:isDescribedBy property as a self-relationship of
p-plan:Plan, to represent that an instruction describes another instruction in a different
abstraction level. With this approach, we can represent anything from high-level abstract
protocols to concrete and executable workflow steps, and the links between these levels.
This can be used to first represent the general protocol and then move to the definition
of the executable steps akin to the common software engineering phases of specification
and implementation. Our model can however also be used in the other direction to extract
a new common protocol from similar existing concrete workflows. At the more abstract
levels, instructions are written in a natural language like English (or possibly pseudo-code),
whereas at the lowest level, we find the executable specifications, which can be written in a
programming language and thereby automatically executable. Alternatively, at the lowest
level instructions can be in natural language, such as for wet-lab instructions, which can
naturally only be executed in a manual fashion. For example, the first general step of a
specification of a machine learning pipeline like OpenPREDICT (to which we will come
back to shortly) might be to ‘‘load all features and gold standard’’ (a p-plan:Plan). The
concrete execution of this general step is described by four concrete and executable steps
(written in a language such as Python), each having a link (dul:isDescribedBy) to the general
description of the step.

We use the BPMN 2.0 ontology for the representation of manual and computational
activities with bpmn:ManualTask and bpmn:ScriptTask, which we both define as subclasses
of p-plan:Step. With this approach, the modeller can therefore include manual and
automated steps in the same workflow. More specific classes can be used for particular
workflow systems, such as reprod:Cell as a kind of bpmn:ScriptTask describing a code cell
in a Jupyter Notebook.

We follow the FAIR Data Point specification (https://github.com/FAIRDataTeam/
FAIRDataPoint-Spec) for the representation of datasets (input and output) through
the dcat:Dataset element, which should be linked to the available distributions
(dcat:Distribution) through the dcat:distribution property, and the URL to download
the distribution is represented with dcat:downloadURL. We improved this approach with
data formats from the EDAM ontology through the dcat:mediaType property. We use

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 7/29

https://peerj.com
https://github.com/FAIRDataTeam/FAIRDataPoint-Spec
https://github.com/FAIRDataTeam/FAIRDataPoint-Spec
http://dx.doi.org/10.7717/peerj-cs.281


prov:qualifiedUsage for variable bindings. For example, the instruction (p-plan:Plan) to
‘‘download a dataset and save it in the local environment’’ has a link (prov:qualifiedUsage)
to the ‘‘binding the online dataset to a local variable’’ (prov:Usage), which represents
the connection between the dataset distribution (dcat:Distribution) and the local variable
(p-plan:Variable) through instances of the prov:entity properties. For the representation
of retrospective provenance, i.e., information about prior executions of a workflow, we
follow the P-PLAN approach by using p-plan:Activity and linking it to the steps with
p-plan:correspondsToStep.

To represent the roles of the different involved agents (such as people and software),
we use the agent associations as defined in PROV. For example, the Jupyter Notebook
(prov:SoftwareAgent ) was used as execution environment (prov:Role) for all computational
steps of the OpenPREDICT workflow.

Furthermore, as a practical design decision, we extended the notion of prov:Association
for endurants, so the modeller can apply the association pattern similarly to the perdurant
way, i.e., use the property prov:hadPlan from p-plan:Association to p-plan:Plan instead of
the relation from prov:Activity through prov:qualifiedAssociation. Therefore, this approach
allows the modeller to represent the association of agent roles to an instruction. For
example, Remzi is the OpenPREDICT main developer, so the ‘‘Remzi as developer of
OpenPREDICT’’ (prov:Association) links to (a) the ‘‘Developer’’ (prov:Role) through
prov:hadRole property, (b) the Remzi object (a prov:Agent ) through prov:agent ; and (c)
all OpePREDICT instructions (p-plan:Plan), through prov:hadPlan. Notice that, although
the terminology of these properties targeted the perdurant aspect (prov:Activity), these
properties are also useful for the endurant aspect. Ideally, they should have the adequate
endurant terminology, so instead of prov:hadPlan, it should be ‘‘prov:hasPlan’’ (similarly
for prov:hadRole too).

One of the most important links is the one between a workflow execution
and its created outputs. For this, we specialized the PROV approach by using
prov:generated to link a workflow activity (p-plan:Activity) to an output artefacts
(opmw:WorkflowExecutionArtifact ). Therefore, each step execution can generate workflow
execution artifacts. To represent the specifics of machine learning workflows, we moreover
use the ML-Schema ontology (mls), such as to specify the trained model and its evaluation
measures (via mls:ModelEvaluation and mls:EvaluationMeasure). For example, it can be
used to specify the accuracy of the models that were trained during different executions.

For the representation of versioning, finally, we use dc:hasVersion to assign version
identifiers and prov:wasRevisionOf to link to the previous versions, and apply this to all
relevant elements, including workflows, instructions, software, and datasets.

Case study topic
We evaluate our approach below with a case study of a computational drug repurposing
method based on machine learning, called PREDICT (Gottlieb et al., 2011). PREDICT is
one of the most frequently cited drug repurposing methods and provides a ranking of
drug-disease associations on the basis of their similarity to a set of known associations.

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 8/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.281


PREDICT has reported a high AUC (0.90) for predicting drug indications, though neither
the original data nor the software to produce the results are available.

The features for the drug prediction classifier included five drug–drug similarity
measures and two disease–disease similarity measures. The similarities between drugs were
calculated based on molecular fingerprints, common side effects of drugs, target protein
sequence alignment, semantic similarity of target genes of drugs in the Gene Ontology, and
closeness of target proteins in human protein–protein interaction network. For the disease
aspect, two disease–disease similarities were calculated based on medical description of
diseases and semantic similarity of disease terms in the Human Phenotype Ontology. The
method transforms drug–drug and disease–disease similarities into integrated features to
be used for a logistic regression training.

For evaluating the performance of the logistic regression, 10-fold cross-validation was
used in two different ways: one in which 10% of drugs are hidden and one in which 10%
of associations are hidden. In the first strategy, 10% randomly selected drugs in the gold
standard and the known indications associated with them were removed. The positive
training set consisted of the remaining 90% of drugs and the indications associated with
them. The negative training set consisted of randomly generated drug-disease associations
which were not in the positive set. For the second strategy, the known associations were
divided into 90% positive training and 10% positive test sets, while negative training and
test sets were built using randomly generated drug-disease associations from respective
sets.

In the next section, we report on the application of our approach to this use case.

OPENPREDICT CASE STUDY
As case study, we took the original PREDICT workflow, as introduced above, and
transformed it with our approach to make it open and FAIR.We therefore call the resulting
workflow OpenPREDICT. It implements the same steps of the original PREDICT, i.e.,
five drug–drug similarity and two disease–disease similarity measures were used to train
a logistic regression classifier to predict potential drug-disease association (see Fig. 2).
Therefore, we follow the same general protocol of these four steps:
1. Data preparation: In this step, the necessary dataset is collected and preprocessed.
2. Feature Generation: In this step, we generate features from the collected data sets.

Drug-drug and disease-disease similarity scores were combined by computing the
weighted geometric mean. Thus, we combine five drug-drug similarity measures and
two disease-disease similarity measures, resulting in 10 features.

3. Model Training: In this step, the generated features from the previous step are to be
used to train in a simple logistic classifier.

4. Model Evaluation: This step uses two different cross-validation approaches: one where
10% of drugs is hidden and one where 10 % of associations is hidden for testing. ROC
AUC, AUPR, accuracy, precision and F-score of the classifier on test data are reported.
Below we explain how we made a FAIR version of PREDICT’s input data and then show

how we used our approach to model the OpenPREDICT workflow that is consuming this

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 9/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.281


Figure 2 OpenPREDICTWorkflow (version 0.1) with manual and computational steps.
Full-size DOI: 10.7717/peerjcs.281/fig-2

data. The implementation and the workflow description of OpenPREDICT are available
on GitHub (https://github.com/fair-workflows/openpredict).

FAIRified data collection
Since the original data used in PREDICT is not publicly available, we collected data from
open sources and made it FAIR with Linked Data (Bizer, Heath & Berners-Lee, 2009)
representations. We obtained data about drugs, drug targets, drug chemical structure,
and drug target sequence from DrugBank (Wishart et al., 2008), and additional drug
targets from the KEGG dataset (Kanehisa et al., 2007). The SIDER dataset (Kuhn et al.,
2010) was used for drug side effects and the HGNC and the GOA datasets (Gray et
al., 2015; Barrell et al., 2009) were used for gene identifier mapping and gene ontology
(GO) annotation respectively. We used Linked Data versions of the above-mentioned
datasets fromBio2RDF (Callahan, Cruz-Toledo & Dumontier, 2013), which is an influential
resource for the biomedical sciences, providing a network of data collected from several
major biological databases. On to of that, we used the supplementary file provided by
Menche et al. (2015) for protein–protein interactions and disease phenotype annotations
that link HPO terms to OMIM diseases (https://hpo.jax.org/app/download/annotation).
MeSH annotations were collected from (Caniza, Romero & Paccanaro, 2015) (https:
//paccanarolab.org/disease_similarity) and annotations were also obtained by NCBO
annotator API (Noy et al., 2009) using the OMIM disease description.

The data that was not yet in a Linked Data format were converted to RDF with a
FAIRification process (Jacobsen et al., 2019). We kept the copies of the retrieved non-RDF
datasets in our GitHub repository to prevent the data access issues that may arise if data
sources are unavailable. We also stored the collected datasets in a triplestore and created

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 10/29

https://peerj.com
https://doi.org/10.7717/peerjcs.281/fig-2
https://github.com/fair-workflows/openpredict
https://hpo.jax.org/app/download/annotation
https://paccanarolab.org/disease_similarity
https://paccanarolab.org/disease_similarity
http://dx.doi.org/10.7717/peerj-cs.281


Table 1 All datasets used in OpenPREDICT version v0.1 and v0.2.

Dataset file Date
retrieved

Data format Download URL

Bio2RDF r4 datasets
(Drugbank, KEGG,
HGNC, SIDER and
GOA)

2019-08-15 .nq (RDF) com-
pressed as .gz

https://download.bio2rdf.org/#/release/4/

PREDICT drug in-
dication gold stan-
dard

2019-08-15 .tab with tabular
separator

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159979/
bin/msb201126-s4.xls

Pubchem-Drugbank
mappings

2019-08-15 .tab with tabular
separator

https://raw.githubusercontent.com/dhimmel/drugbank/gh-
pages/data/mapping/pubchem.tsv

Protein-protein in-
teractions

2019-08-15 .txt with tabular sep-
arator

https://science.sciencemag.org/highwire/filestream/628238/
field_highwire_adjunct_files/1/Datasets_S1-S4.zip

HPO Phenotype an-
notations

2019-08-15 .tab with tabular
separator

http://compbio.charite.de/jenkins/job/hpo.annotations/
lastSuccessfulBuild/artifact/misc/phenotype_annotation.tab

†MESH Phenotype
annotations

2019-08-15 .tab with tabular
separator

http://www.paccanarolab.org/static_content/disease_
similarity/mim2mesh.tsv

MESH Phenotype
annotations (Bio-
Portal)

2019-08-15 .txt file https://raw.githubusercontent.com/fair-
workflows/openpredict/master/data/external/
meshAnnotationsFromBioPorttalUsingOMIMDesc.txt

SPARQL queries to access the triplestore in order to produce the features for PREDICT’s
method.

Our OpenPREDICT workflow has two versions (0.1 and 0.2). In the first, we
experimented with the FAIRifier tool with the two inputs that are provided as text
files, i.e., (protein–protein interactions in human interactome) and (disease phenotypic
descriptions). Besides the formalization of the manual steps through our approach, we
also provide guidelines for the manual steps. In the second, we wrote Python scripts
for FAIRificiation process of these datasets, evolving most of the manual steps to
computational ones. Table 1 summarizes the list of all datasets used in version v0.1
and v0.2. OpenPREDICT v0.2 also uses a different MESH annotation dataset for disease
similarity (indicated with † in Table 1)

For this FAIRification process, the data needs to be mapped to formal semantic
models. In our case, important concepts included ‘‘protein-protein interaction’’ from
Bioportal, ‘‘protein interactions’’ from EDAM (edam:topic_0128), the Bio2RDF properties
bio2rdf:interactor_a and bio2rdf:interactor_b for the gene interactors representing the role
of a gene in a protein–protein interaction, and ‘‘disease’’ and ‘‘has phenotype’’ from SIO
(SIO_010299 and SIO_001279).

OpenPREDICT workflow representation
Figure 2 illustrates the main steps of the OpenPREDICT workflow, in which the main
protocol is represented as a dul:Workflow and a p-plan:Plan, with version set through
the dc:hasVersion property. The workflow consists of four steps: data preparation, feature
generation, model training and evaluation, and presentation of results. Each one is defined

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 11/29

https://peerj.com
https://download.bio2rdf.org/#/release/4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159979/bin/msb201126-s4.xls
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159979/bin/msb201126-s4.xls
https://raw.githubusercontent.com/dhimmel/drugbank/gh-pages/data/mapping/pubchem.tsv
https://raw.githubusercontent.com/dhimmel/drugbank/gh-pages/data/mapping/pubchem.tsv
https://science.sciencemag.org/highwire/filestream/628238/field_highwire_adjunct_files/1/Datasets_S1-S4.zip
https://science.sciencemag.org/highwire/filestream/628238/field_highwire_adjunct_files/1/Datasets_S1-S4.zip
http://compbio.charite.de/jenkins/job/hpo.annotations/lastSuccessfulBuild/artifact/misc/phenotype_annotation.tab
http://compbio.charite.de/jenkins/job/hpo.annotations/lastSuccessfulBuild/artifact/misc/phenotype_annotation.tab
http://www.paccanarolab.org/static_content/disease_similarity/mim2mesh.tsv
http://www.paccanarolab.org/static_content/disease_similarity/mim2mesh.tsv
https://raw.githubusercontent.com/fair-workflows/openpredict/master/data/external/meshAnnotationsFromBioPorttalUsingOMIMDesc.txt
https://raw.githubusercontent.com/fair-workflows/openpredict/master/data/external/meshAnnotationsFromBioPorttalUsingOMIMDesc.txt
https://raw.githubusercontent.com/fair-workflows/openpredict/master/data/external/meshAnnotationsFromBioPorttalUsingOMIMDesc.txt
http://dx.doi.org/10.7717/peerj-cs.281


by (dul:isDescribedBy) its own p-plan:Plan. In the first version of OpenPREDICT (0.1) all
steps within the data preparation were manual (bpmn:ManualTask), as the FAIRification
process and the preparation steps on data that were already provided as RDF. The second
version of OpenPREDICT (0.2) automated most of these manual steps, requiring less
human intervention. We will now go through some of the most important aspects of this
representation.

Prospective provenance
We decoupled the workflow steps from the instructions, linking a p-plan:Step to a p-
plan:Variable through p-plan:hasInputVar and p-plan:hasOutputVar, while the p-plan:Plan
links to the prov:Usage through the prov:qualifiedUsage property, describing how to bind
the variable to other resources. This is an example:

opredict:Step_Download_Drugbank_dataset
rdf:type bpmn:ManualTask ;
rdf:type edam:operation_2409 ;
rdf:type p-plan:Step ;
p-plan:hasOutputVar opredict:Variable_Drugbank_dataset_online ;
p-plan:isStepOfPlan opredict:Plan_Main_Protocol_v01 ;
dul:isDescribedBy opredict:Plan_Download_Drugbank_dataset ;
dul:precedes opredict:Step_Save_Drugbank_dataset ;
rdfs:label "Download Drugbank dataset" ;

.

opredict:Plan_Download_Drugbank_dataset
rdf:type p-plan:Plan ;
dc:description "Download Drugbank dataset" ;
dc:language :LinguisticSystem_xsd_language_English ;
rdfs:label "Download Drugbank dataset" ;
prov:qualifiedUsage opredict:

Usage_Fetch_download_Drugbank_dataset_to_variable ;
.

opredict:Usage_Fetch_download_Drugbank_dataset_to_variable
rdf:type prov:Usage ;
rdfs:label "Link variable to download Drugbank dataset" ;
prov:entity opredict:Distribution_release -4-drugbank -drugbank.nq.gz;
prov:entity opredict:Variable_Drugbank_dataset_online ;

.

opredict:Distribution_release -4-drugbank -drugbank.nq.gz
rdf:type dcat:Distribution ;
rdfs:label "release /4/ drugbank/drugbank.nq.gz" ;
dcat:downloadURL "http :// download.bio2rdf.org/files/release /4/ drugbank/

drugbank.nq.gz" ;
dcat:mediaType opredict:DataFormat_nq_compressed_gz ;

.

opredict:Variable_Drugbank_dataset_online
rdf:type p-plan:Variable ;
rdfs:label "Drugbank dataset online" ;

.

Retrospective provenance
We represent the concrete executions that happened and the concrete output that
was generated with a p-plan:Activity that is linked to a p-plan:Step through the p-
plan:correspondsToStep property and to the outputs (opmw:WorkflowExecutionArtifact)
through prov:generated. Each output has a value (e.g., accuracy rate) and is linked to

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 12/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.281


prov:Generation through the prov:qualifiedGeneration property, which specifies when the
generation occurred with (prov:atTime). This is an example:
opredict:

Activity_Model_preparation_train_and_evaluation_Execution_1546302862
rdf:type p-plan:Activity ;
p-plan:correspondsToStep opredict:

Step_Model_preparation_train_and_evaluation ;
prov:generated opredict:ModelEvaluation_Accuracy_Execution_1546302862 ;
prov:generated opredict:

ModelEvaluation_AveragePrecision_Execution_1546302862 ;
prov:generated opredict:ModelEvaluation_F1_Execution_1546302862 ;
prov:generated opredict:ModelEvaluation_Precision_1546302862 ;
prov:generated opredict:ModelEvaluation_Recall_Execution_1546302862 ;
prov:generated opredict:ModelEvaluation_RocAuc_Execution_1546302862 ;

.

opredict:ModelEvaluation_Accuracy_Execution_1546302862
rdf:type mls:ModelEvaluation ;
dc:description "0.833336" ;
mls:specifiedBy opredict:EvaluationMeasure_PredictiveAccuracy ;
prov:qualifiedGeneration opredict:Generation_Execution_1546302862 ;

.

opredict:Generation_Execution_1546302862
rdf:type prov:Generation ;
prov:atTime "2019 -01 -01 T00 :02:31.011"^^ xsd:dateTime ;

Versioning of workflows
We track the modification across the two versions with the dc:hasVersion property on
the level of a dul:Workflow, p-plan:Plan, dc:LinguisticSystem, and prov:SoftwareAgent.
Furthermore, we use the prov:wasRevisionOf property to link to the previous version. This
is an example:
opredict:Plan_Main_Protocol_v02

rdf:type p-plan:Plan ;
rdf:type dul:Workflow ;
dc:created "2019 -05 -15" ;
dc:creator opredict:Agent_Remzi ;
dc:description "OpenPREDICT Main Protocol v.0.2" ;
dc:hasVersion "0.2" ;
dc:language :LinguisticSystem_xsd_language_English ;
dc:modified "2019 -07 -03" ;
pwo:hasFirstStep opredict:Step_Prepare_Input_Data_Files_v02 ;
rdfs:label "Main Protocol v.0.2" ;
prov:wasAttributedTo opredict:Agent_Remzi ;
prov:wasRevisionOf opredict:Plan_Main_Protocol_v01 ;

.

opredict:Plan_Main_Protocol_v01
rdf:type p-plan:Plan ;
rdf:type dul:Workflow ;
dc:created "2018 -11 -27" ;
dc:creator opredict:Agent_Remzi ;
dc:description "OpenPREDICT Main Protocol v.0.1" ;
dc:hasVersion "0.1" ;
dc:language :LinguisticSystem_xsd_language_English ;
dc:modified "2019 -05 -15" ;
pwo:hasFirstStep opredict:Step_Prepare_Input_Data_Files ;
rdfs:label "Main Protocol v.0.1" ;
prov:wasAttributedTo opredict:Agent_Remzi ;

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 13/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.281


EVALUATION
In this section we describe the evaluation of our approach, consisting of two parts: first, we
revisit each FAIR principle and explain how the principle is addressed. Second, we applied
the traditional ontology validation methodology by answering the competency questions
through the execution of SPARQL queries (the concrete queries are available in GitHub
repo).

Addressing the FAIR principles
In order for our workflow to comply with FAIR principles, we checked each FAIR
criterion defined in Wilkinson et al. (2016), as identified between parentheses below.
First, global and persistent identifiers were assigned to resources defined in the workflow
and associated data. Rich metadata for workflow and input and output data were created
using HCLS (https://www.w3.org/TR/hcls-dataset/) and FAIR data point specification
(F2). In addition, the metadata we generated contains an explicit global and persistent
identifier of the data they describe (F3). In order to enable the workflow and the
data used to be searched, they were uploaded in a triple-store as a FAIR Data Point
(https://graphdb.dumontierlab.com/repositories/openpredict). Data can be queried
through SPARQL over HTTP(S) protocol (A1.1). Since the data is not private or protected,
we don’t require authentication and authorisationmechanism (A1.2). All data andmetadata
are permanently available at Zenodo (https://doi.org/10.5281/zenodo.3770918) to make
the metadata accessible even the data is no longer available (A2). We used RDF and OWL
with commonly used controlled vocabularies and ontologies such as Bio2RDF vocabulary,
SIO and PROV to model input data and workflows (I1). HCLS dataset specification and
FAIR Data Point specification were used to define the metadata and provenance of data
(I2). Meaningful links between (meta)data such Bio2RDF links and data and workflow
were created (I3). To increase reusability of the workflow, we describe the workflow and
its data with community standards such as ML-Schema and P-PLAN (R1). We provide
the license (R1.1) and provenance information in the metadata using FAIR data point
specification (R1.2), and HCLS specification (R1.3) and PROV.

Answering competency questions
Besides evaluating whether each FAIR principle was addressed, we also assessed the
unified model using the common semantic validation approach, which is based on
SPARQL queries used to answer the competency questions. All questions listed in ‘The
FAIR Workflows Approach’ could be answered by running the SPARQL queries over
the OpenPREDICT use case. The complete queries and results can be found online
(https://github.com/fair-workflows/openpredict). Therefore, the reproduction of this
validation can be performed by re-executing the queries on the RDF representation of the
OpenPREDICT workflow. Below we explain the result for each competency question.

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 14/29

https://peerj.com
https://www.w3.org/TR/hcls-dataset/
https://graphdb.dumontierlab.com/repositories/openpredict
https://doi.org/10.5281/zenodo.3770918
https://github.com/fair-workflows/openpredict
http://dx.doi.org/10.7717/peerj-cs.281


CQ1 - Questions about manual steps.
CQ1.1: which steps are meant to be executed manually and which to be
executed computationally?
The SPARQL query we built to answer this question first filters all steps within the
first version of OpenPREDICT workflow (opredict:Plan_Main_Protocol_v01). The
results show each step and its type—manual (bpmn:ManualTask) or computational
(bpmn:ScriptTask)—as well as the respective instructions (p-plan:Plan) that describe the
steps. In summary, OpenPREDICT v0.1 has 28 manual steps and 14 computational steps
(42 in total), while v0.2 has 9 manual steps and 9 computational steps (18 in total). This
difference reflects the automatization of most of the manual steps within data preparation
(evolving from manual to computational) and the simplification of the computational
steps described in fewer Jupyter Notebook cells.

CQ1.2:For the manual steps, who are the agents responsible to execute them?
To answer this question we filtered the results for only manual steps through the statement:
values ?stepType bpmn:ManualTask

The result is a list of all steps and roles related to each one, such as executor, creator,
developer, and publisher. For example, Remzi is creator, developer and executor of all
instructions, while Ahmed is developer of some computational steps and Joao is the executor
of the entire OpenPREDICT workflow. This approach allows for the representation of
multiple roles played by different agents within each step.

As in related approaches such as Workflow4ever and Reproduce-me, we use the PROV
ontology to address the different types of agents and roles through the prov:wasAttributedTo
property, and apply the dc:creator and dc:publisher properties for the direct relation from
an instruction to an agent.

CQ1.3: Which datasets were manually handled and what are their formats?
OpenPREDICT’s computational steps use datasets, as explained in ‘FAIRified data
collection’, that required manual pre-processing. The difference between v0.1 and v0.2 is
that we automated the manual pre-processing of two datasets in v0.2; MESH Phenotype
annotations and protein-protein inter-actions. The main elements of the query reflect the
FAIR data point specification with DCAT elements (dcat:Distribution, dcat:downloadURL
and dcat:mediaType), PROV (prov:Usage and prov:qualifiedUsage) and EDAMclassification
for data handling steps (edam:operation_2409) and data formats (media types).

CQ1.4: What are the types of manual steps involved, and what are their
inputs and outputs?
Similar to the Reproduce-me approach, our ontology leverages on the P-PLAN
ontology to address the variables used as input and output of the manual steps,
mostly during data preparation in OpenPREDICT v0.1, such as downloading
and saving the datasets listed in the results of CQ1.3. For example, the input of
opredict:Step_Save_files_in_triplestore are variables that indicate the local file of each dataset
(serialized as RDF) and the output variable indicating the endpoint to upload all datasets
(opredict:Variable_Triplestore_endpoint_for_input_data).

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 15/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.281


When changing the filter from manual steps to computational steps, the pattern
followed was to classify the output variables of a step (a Jupyter Notebook cell)
according to the data saved in files. For example, in feature generation, the
opredict:Step_Feature_generation_01_Pipeline_Source_Cell11 has an output variable for
drug fingerprint similarity, indicating the generation of the file ‘‘drugs-fingerprint-sim.csv’’.

CQ2 - Questions about instantiation of general workflows by more specific
ones.
CQ2.1: What are the main steps of a general workflow?
OpenPREDICT workflow follows the common machine learning pipeline process of: data
preparation, feature generation, model training, model evaluation and presentation of
results. The query returns these steps by looking for the first step of the workflow (through
pwo:hasFirstStep) and following the preceding path in a recursive way, e.g.,
?step1 dul:precedes ?step2.
?step2 dul:precedes ?step3.
?step3 dul:precedes ?step4. (until there is no preceding steps)

The classification of the step is given by the EDAM specializations of the
Operation concept (operation_0004), such as Data Handling for data preparation
(edam:operation_2409). For the sake of simplicity, model training and evaluation were
performed within the same step. The main steps are listed below:
opredict:Step_Prepare_Input_Data_Files
opredict:Step_Feature_generation_Pipeline_OpenPREDICT_ipynb
opredict:

Step_Model_preparation_train_and_evaluation_Workflow_OpenPREDCIT_ -
_ML_ipynb

opredict:Step_Format_results_for_presentation

CQ2.2: What are the steps of a specific workflow?
Similar to the previous question, the SPARQL query uses the properties that allow
for the ordering of steps execution (pwo:hasFirstStep and dul:precedes). The pattern p-
plan:Step dul:isDescribedBy p-plan:Plan allows us to answer this question, by representing
how a step is described by an instruction. This pattern resembles the one used by
Workflow4ever, which applies the wfdesc:hasWorkflowDefinition (dul:isDescribed) to link
a wfdesc:Workflow (p-plan:Step) to a wfdesc:WorkflowDefinition (p-plan:Plan), aiming at
representing the instructions (e.g., a Python script) that are natively understood by the
wfdesc:WorkflowEngine (prov:SoftwareAgent ). However, different from this approach, we
classify the instruction language (p-plan:Plan dc:language dc:LinguisticSystem), allowing
for the representation of instructions that follow computer language or natural language,
which includes pseudo-code—commonly used to specify algorithms before implementing
in a particular computer language.

The results show that OpenPREDICT has 78 steps in total, where 60 steps belong to
v0.1 and 18 belong to v0.2, each step linked to an instruction. 9 instructions were reused
from v0.1 to v0.2 regarding data preparation, thus, v0.2 presents 9 new instructions that
are used to automate the data preparation phase. These instructions are written as either
English (natural language) or Python 3.5 (computer language), where most of the Python

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 16/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.281


ones refer to the Jupyter notebook cells for feature generation and model training and
evaluation.

CQ2.3: What higher-level description does a certain workflow step
instantiate?
The SPARQL query to answer this question includes the pattern p-plan:Plan
dul:isDescribedBy p-plan:Plan, which extends the capability described in the previous
question, i.e., decoupling steps from instructions, enabling the representation of different
abstraction levels of instructions and their relations. This pattern resembles the links
between specification artefacts (e.g., conceptual model, activity diagrams and use cases) and
implementation artefacts (e.g., software code, deployment procedures and automated tests)
in software engineering. Usually, a specification artefact aims at describing the instructions
necessary to enable a programmer to create the software code, sometimes automatically
generated as in model-driven engineering. For example, a pseudo-code within an activity
diagram (p-plan:Plan) may describe the behaviour expected (dul:isDescribed) for the
algorithm behind a service endpoint, which may be implemented as a Python script
(p-plan:Plan).

OpenPREDICT did not formally follow the specification phase of software engineering
since it is a research project, having the code developed from the data scientist interpretation
perspective about publications related to PREDICT. In research-oriented data science this
type of approach is common. However, we created some examples of the pattern that
represent the specification of OpenPREDICT workflow. Therefore, the results of this query
include 10 Jupyter Notebook cell instructions (p-plan:Plan), representing implementation
artefacts, that were specified (p-plan:isDescribedBy) by 3 specification instructions (p-
plan:Plan). The level of abstraction can be derived from the properties of the instruction.
For example, the 10 Jupyter Notebook cell instructions were written (dc:language) in
Python 3.5 (schema:ComputerLanguage), while the 3 specification instructions were
written in English (en value of xsd:language). Furthermore, this approach enables links
of s (specification artefacts) x i (implementation artefacts), where i¿s, i.e., a specification
artefact usually describes several software code lines (instructions). In OpenPREDICT, the
first specification instruction guides the load of input datasets, which is linked to cells 1–5
of the feature generation step, while the second guides the calculation of scores between
pairs of drugs and compute similarity feature, which is linked to cells 6–9.

CQ3 - Questions about versioning of workflows and their executions
CQ3.1: What are the existing versions of a workflow and what are their
provenance?
The collective workflow (the whole) is represented as a dul:Workflow and a p-plan:Plan.
Similar to other approaches (Workflow4ever, Reproduce-me, CWLProv, among others)
the query to answer this question makes use of DC properties (e.g., dc:creator, dc:created,
dc:modified) and PROV (e.g., prov:wasAttributedTo) for prospective provenance. It also
covers workflow versioning through dc:hasVersion and prov:wasRevisionOf, where the
former is responsible for version of dul:Workflow and the latter to link an instruction
to another (p-plan:Plan prov:wasRevisionOf p-plan:Plan pattern). The retrospective

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 17/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.281


(executions) provenance is supported by the link from an execution (a p-plan:Activity)
to the correspondent step (p-plan:correspondsToStep property), which is a pattern that
resembles most of the aforementioned semantic models. The main difference here
is the assumption that any instruction (p-plan:Plan) should be versionable, thus, all
executions link to a versioned instruction. Differently from Workflow4ever approach,
here we do not introduce any elements regarding the specification of the changes (e.g.,
roevo:ChangeSpecification). The results for OpenPREDICT show 2 workflows (v0.1 and
v0.2), both created by and attributed to Remzi, where v0.2 links to the prior version (v0.1).

CQ3.2: Which instructions were removed/changed/added from one version
to another?
Three SPARQL queries were written to answer whether the instructions of OpenPREDICT
v0.1 were removed or changed or added in v0.2. Each SPARQL uses the identifier of the
workflow versions (retrieved in CQ3.1) as an input parameter to perform the comparison
from one version to another. For the query for removed instructions, it considers all
instructions used in v0.1 that are not used in v0.2 and excludes the instructions that were
changed. For the query for changed instructions, it considers the instructions with the
prov:wasRevisionOf property. For the query for added instructions, the SPARQL query
uses the reverse logic from the removed.

Forty-seven instructions were removed from v0.1 to v0.2 due to the refactoring of the
code of feature generation, model training and model evaluation, and the elimination of
several manual steps in data preparation. Three instructions were changed, reflecting the
porting of the FAIRification manual steps to computational steps in data preparation, i.e.,
download and save human interactome and phenotype annotations. Seven instructions
were added in v0.2, where 3 of them represent the new Python scripts for data preparation
of the new data sources, other 3 represent the new scripts for feature generation and the
remaining for model training.

CQ3.3: Which steps were automatized from one version to another?
This query is quite similar to the one used for changed instructions (CQ3.2) but it makes
explicit that the old version of the instruction used as manual step (bpmn:ManualTask)
was modified to an instruction used as computational step (bpmn:ScriptTask) in the
new version. The results confirm the findings from the previous query regarding the
3 instructions that were ported from manual steps to computational steps, namely the
data preparation top-level instruction, the FAIRification instructions (download and save
human interactome and phenotype annotations). Although our approach covers change
management, we face the same challenges regarding the dependency of the developer
practices for code versioning. This means that, for example, a developer is free to choose
whether to remove files from an old version of the software implementation and add files
to the new version, even though these files refer to the same capability or routines. Most
of the version controls track the changes when the files (old and new) have the same name
and path (i.e., the step identifier), which is a similar approach used here.

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 18/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.281


CQ3.4: Which datasets were removed, changed, or added from one version
to the next?
This question can be answered by mixing the same query of CQ1.3 (datasets manually
used) with the logic used in query CQ3.2, i.e., one SPARQL query to the datasets removed,
one for the changed and one for the added. The query results over OpenPREDICT (v0.1
and v0.2) confirm the findings of CQ1.3, where none datasets were removed from the old
version to the new, none changed and 2 were added.

CQ3.5: Which workflow version was used in each execution and what was
generated?
This question is answered by using the pattern p-plan:Activity p-plan:correspondsToStep
p-plan:Step, where the step is part of the dul:Workflow that provides the workflow version.
The OpenPREDICT workflow had 14 executions represented with our unified model,
exemplifying the execution of some computational steps, i.e., each one a particular
Jupyter Notebook cell. Therefore, this approach allows for the representation of multiple
executions of each step according to the version of the corresponding instruction. Each
execution inherits the properties of p-plan:Activity, e.g., the event start and end time points.
Furthermore, each execution is associated to the correspondent generated artefacts through
the p-plan:Activity prov:generated opmw:WorkflowExecutionArtifact pattern, a similar
approach of Workflow4ever, which applied the inverse property prov:wasGeneratedBy. An
artefact generated by an execution can be an evaluation measure of the trained model, such
as the model accuracy and recall for that particular execution, i.e., a mls:ModelEvaluation.
Therefore, OpenPREDICT executions generated the values about the model evaluation
measures of accuracy, average precision, F1, precision, recall and ROC AUC. For example,
the results show that the model accuracy of v0.1 is 0.83, while v0.2 is 0.85.

This query can be further extended by considering the particular version of each
instruction that the executed step implements. In addition, ideally, each output of a
Jupyter Notebook cell should be represented as a opmw:WorkflowExecutionArtifact, so all
generated outputs are stored (similar to ProvBook/Reproduce-me approach). This query
can be easily changed to provide aggregations for related analytical questions, such as how
often each workflow version was executed.

DISCUSSION
Before we move on to discuss the encountered reproducibility challenges and other issues,
we would like to first highlight the two FAIR perspectives that our approach embodies and
demonstrates. Firstly, FAIR applies to the datasets that a scientific workflow consumes and
produces, e.g., the protein–protein interactions dataset used by OpenPREDICT, and we
need FAIRification approaches to raise existing datsets to this standard. This is the aspect
the FAIR principles originally focused on. On top of that, we have here proposed and
exemplified a second perspective. This additional perspective regards the workflows’ own
FAIRification, i.e., the process of aligning them with the FAIR principles, which relies on a
semantic modelling approach such as the one described in this paper. Our work therefore

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 19/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.281


expands the notions of FAIR and FAIRification from the relatively static artifacts of datasets
to the dynamic processes of workflows.

Reproducibility challenges
It was expected that our study would be unable to fully reproduce the accuracy of the
method reported in the PREDICT paper due to use of different input datasets. The
performance results of this study are lower than originally reported. The PREDICT paper
reported an AUC of 0.90 in cross-validation, but using the same gold standard, we could
only achieve AUC of 0.83.

We were also able to obtain the drug and disease similarity matrices used in PREDICT
from the authors via email request. Given 5 drug–drug similarity measures for 593 drugs
and 2 disease–disease similarity measures for 313 diseases, there are resulting 10 features
of combined drug-disease similarities. The logistic classifiers were trained with these pre-
computed similarity scores and an average AUC of 0.85 was obtained from 10 repetitions
in a 10-fold cross-validation scheme. This is still a significant difference from the AUC
of 0.90 what the authors reported in PREDICT study. This indicates that there was more
likely an error in the design or implementation of evaluation, and not the aggregation of
data nor the calculation of drug-drug and disease-disease similarity scores.

While attempting to reproduce the PREDICT study, we faced the following issues, which
we have turned into generic recommendations (highlighted in italics).
1. Insufficient documentation Essential details concerning the calculation of features

were not clearly defined, nor was the software code to perform the calculations
provided. Many details of an experiment, including data sets, processing parameters and
applied software and algorithms need to be specified in order to facilitate the replication
of the results. A methods section in a scientific article may not be the best place to provide
all this information as it is usually limited by size constraints and different organization
styles of journals and conference proceedings, leading to a lack of required detail.

2. Inaccessible or missing data Since no data except the gold standard data (drug–disease
associations) were given, the features for the PREDICT workflow were reconstructed
using the publicly accessible databases DrugBank and KEGG and SIDER. However, we
could not check if this resulted in exactly the same datasets. The original data that were
available to the authors could be absent or no longer accessible to others for many reasons.
Sufficient data should be published to enable reproducing a study.

3. Versioning and change of data In PREDICT, publicly accessible datasets have been
used to constructmodels and validate hypotheses for prediction of drug indications and
drugs were identified by their Drugbank IDs. However, Drugbank IDs are subject to
change over time. For example, two drugs (DB00510, DB00313) in the original dataset
were merged to the same drug within the current version of the Drugbank. Results
or hypotheses may change as a result of updated input data. In order to reconstruct the
original conclusion, it is important to record the version or the date of the data that were
used in a study. This is especially important as publicly accessible datasets are increasingly
used to construct models and validate hypotheses for prediction of drug indications.

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 20/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.281


4. Execution environment and third-party dependencies In the PREDICT study,
the versions of some software tools, such as the library for semantic similarity
calculation, were not specified. The versions of software libraries, packages and tools used
in a workflow should be explicitly mentioned, and an effort must be made to maintain the
access to those releases used in the original workflow.

Further Issues Encountered
While the execution of the FAIRification process in theOpenPREDICTwas straightforward,
the semantic modelling of the unified workflow model was challenging. The reuse
of existing semantic vocabularies for the representation of our unified model proved
to be an extensive task. There are several existing semantic approaches to represent
workflows that present reproducibility issues and different conceptualizations, sometimes
overlapping in their terminology. Computational workflow languages such as CWL and
WDL do not intend to define a semantic representation for workflows that involve both
manual and computational steps and enrich the workflows with sufficient metadata
to make them FAIR. The prospective part of Workflow4ever implementation (wfdesc
(https://raw.github.com/wf4ever/ro/0.1/wfdesc.owl)) has consistency issues such asmissing
disjointness and licensing elements, besides not conforming to the documentation (e.g., for
all elements related to workflow templates). On the other hand, semantic models like DUL,
PROV and P-PLAN presented higher quality and common foundations (in DOLCE), while
being easier to reuse and extend. Although CWLProv also provides an ontology-based on
W4ever semantic models, it is oriented only to retrospective provenance of computational
steps, reusing most of the predicates that P-PLAN extends (from PROV). Furthermore,
the URI (https://w3id.org/cwl/prov#) does not provide a concrete description of the new
predicates (e.g., cwlprov:image) and neither resolves to the RDF model (TBox).

A question that may arise is whether it would be better to create a new ontology from
scratch rather than creating a unified model based on the existing ontologies. We believe
that high quality semantic models should be reused, taking benefit from the lessons learned.
Furthermore, we consider that reusing existing semantic workflowmodels actually improve
semantic interoperability, while creating a new ontology may impede interoperability if
it is not accompanied with alignments to the existing semantic models. Therefore, our
approach appears to lead to an improved semantic interoperability. Because we reused
several semanticmodels, the competency questions that they target are potentially addressed
by our approach. For example, the gap in our approach regarding the representation of
change management for versioning can be addressed by reusing some elements from the
versioning approach of Workflow4ever, e.g., roevo:Change, roevo:ChangeSpecification and
roevo:VersionableResource.

Deciding which type of approach should be used for role representation should be
based on the needs for either a fine-grained definition of the role/relator pattern (a reified
relationship), such as the prov:Association approach, or a simple property, such as dc:creator.
While the former (1) enriches the definition of the role (an improved representation
capability), the latter (2) is less verbose:

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 21/29

https://peerj.com
https://raw.github.com/wf4ever/ro/0.1/wfdesc.owl
https://w3id.org/cwl/prov#
http://dx.doi.org/10.7717/peerj-cs.281


(1)
?Association prov:agent opredict:Remzi;
prov:hadRole opredict:Creator;
prov:hadPlan ?plan.

(2)
?plan dc:creator ’Remzi ’ .

One of the main challenges is to understand the different terminology used for
similar conceptualizations. Although the definitions of terms like plan, process, protocol,
procedure, workflow, plan specification and standard operating procedure seem to be
the same (or quite overlapping), their meanings become notoriously ambiguous across
varied communities. How to grasp these semantic differences is a crucial question that
needs further exploration. For example, in the bioinformatics community, the term
Workflow usually refer to an implemented (computational) piece of software, i.e., a set
of programming language instructions, usually developed with a Workflow Management
System as a Workflow Application (Da Cruz, Campos & Mattoso, 2012). Meanwhile, in
software engineering, the Workflow term is usually referred to a detailed business
process within the Business Process Modelling (BPM) research. Usually, the BPM
languages conform to graphical notations (e.g., BPMN, EPC, ARIS), targeted to human
comprehension rather than computational ends (process design/modelling). Additionally,
some BPM languages focus on representing, at a lower level of abstraction, the process
execution details, e.g., BPEL (process implementation) (Rosemann & vom Brocke, 2015).
This is a topic extensively covered by Service Oriented Architecture (SOA) initiatives.
Several related works target the gap that exists between business process models and
workflow specifications and implementations, such as service composition schemes
(Stephan, Thomas & Manfred, 2012) and formal provenance of process executions and
versioning (Krishna, Poizat & Salan, 2019). Furthermore, some of these languages provide
predicades for forks and conditionals, which were intentionally not included in the unified
model since they have a high complexity - it is still a topic under discussion in the CWL
community, for example.

In future work we will improve the modelling of manual steps by studying and possibly
incorporating predicates from the SMART protocols ontology. We will characterize
the abstraction levels of workflows based on multi-level process modelling approaches,
such as the widespread adopted APQC’s Process Classification Framework (PCF). The
PCF provides 5 abstraction levels for process specification, from a high abstraction level
to detailed workflow specification: category (level 1), process group (level 2), process
(level 3), activity (level 4) and task (level 5). Although this framework aims at providing
a methodological approach for business process specification, we should investigate
whether the minimal information elements of each level require proper representation
in the ontology. We should also consider the challenges of process refinement (’’process
description in amore fine-grained representation’’) (Ren et al., 2013). A process refinement
mechanismmaps and/or derives models from a higher-level specification to a detailed level,
equivalent to vertical and exogenous model transformations in model-driven engineering.
Typical refinement categories will be investigated, such as activity decomposition principles
about event delivery and execution condition transference (Jiang et al., 2016; Muehlen &

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 22/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.281


Rosemann, 2004). The representation of intentionality of the activities within business
processes will also be addressed in future work through goal-oriented semantic process
modeling (Horkoff et al., 2019), linking goals to activities and roles.

Industry-oriented approaches are also being investigated, such as Extract, Transform
and Loading (ETL/ELT) for data warehousing and SQL Server Integration Services, which
considers a workflow as a control flow, while a dataflow transforms data from a source to a
destination. Furthermore, Product Line Management (PLM) tools should be investigated,
especially the ones that cover Laboratory Information Management System (LIMS),
which provides important concepts such as Bill-of-Materials (BoM), specifications and
their certifications. For example, in PLM a specification is a description of raw materials
and packaging materials, and semi-finished and finished products. This description may
contain product characteristics (e.g., chemical compounds), recipes (e.g., BoM), production
methods, quality norms and methods, artwork, documents and others.

Ultimately, initiatives like CWL, the Center for Expanded Data Annotation and Retrieval
(CEDAR) (for metadata management) (Gonalves et al., 2017) and FAIRsharing.org (for
indexing FAIR standards) may be used as building blocks for the envisioned FAIR
workbench tool, which can be a reference implementation over a workflow system
such as Jupyter Notebook (e.g., a plug-in). Finally, the validation of the reproducibility
level of a workflow should consider specific FAIR metrics that take in consideration
specific recommendations (e.g., from CWLProv approach) and the practices for higher
reproducibility of Jupyter notebooks (Pimentel et al., 2019).

CONCLUSIONS
In this work, we examined how FAIR principles can be applied to scientific workflows. We
adopted the FAIR principles tomake the PREDICTworkflow, a drug repurposing workflow
based on machine learning, open, reproducible, and interoperable. From this stems, the
main contribution of this paper, the OpenPREDICT case study, which demonstrates how
to make a machine learning workflow FAIR and open. To do this, we created a unified
model that reuses several semantic models to show how a workflow can be semantically
modeled. We published the workflow representation, data and meta-data in a triple store
which was used as FAIR data point. In addition, new competency questions have been
defined for FAIR workflows and how these questions can be answered through SPARQL
queries. Among the main lessons learned, we highlight how the main existing workflow
modelling approaches can be reused and enhanced by our unified model. However, reusing
these semantic models showed to be a challenging task, once they present reproducibility
issues and different conceptualizations, sometimes overlapping in their terminology.

In the future, we envision that the intensive human effort that we had to perform in
order to make a workflow FAIR will be taken care of by smart and intuitive workflow tools.
As a prototype of such a tool, we are currently developing the FAIR workbench as a general
tool that allows users to deal with workflows and protocols in a semantic and FAIR form.

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 23/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.281


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Dutch Research Council (NWO) (No. 628.011.011) and
the Netherlands eScience Center (No.NLeSC P 17.0201). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Dutch Research Council: 628.011.011.
Netherlands eScience Center (No. NLeSC P 17.0201): NLeSC P 17.0201.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Remzi Celebi and Joao Rebelo Moreira conceived and designed the experiments,
performed the experiments, analyzed the data, performed the computation work,
prepared figures and/or tables, authored or reviewed drafts of the paper, and approved
the final draft.

• Ahmed A. Hassan analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

• Sandeep Ayyar analyzed the data, performed the computation work, prepared figures
and/or tables, and approved the final draft.

• Lars Ridder, Tobias Kuhn and Michel Dumontier conceived and designed the
experiments, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Data and code are available at GitHub: https://github.com/fair-workflows/openpredict.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.281#supplemental-information.

REFERENCES
Ashburn TT, Thor KB. 2004. Drug repositioning: identifying and developing

new uses for existing drugs. Nature Reviews Drug Discovery 3(8):673–683
DOI 10.1038/nrd1468.

Baker M. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533(7604):452–454
DOI 10.1038/533452a.

Barrell D, Dimmer E, Huntley RP, Binns D, ODonovan C, Apweiler R. 2009. The GOA
database in 2009—an integrated Gene Ontology Annotation resource. Nucleic Acids
Research 37(suppl_1):D396–D403.

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 24/29

https://peerj.com
https://github.com/fair-workflows/openpredict
http://dx.doi.org/10.7717/peerj-cs.281#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.281#supplemental-information
http://dx.doi.org/10.1038/nrd1468
http://dx.doi.org/10.1038/533452a
http://dx.doi.org/10.7717/peerj-cs.281


Barrett T, Edgar R. 2006. Gene expression omnibus: microarray data storage, submis-
sion, retrieval, and analysis. In:Methods in enzymology. Vol. 411. United States:
Elsevier, 352–369 DOI 10.1016/S0076-6879(06)11019-8.

Begley CG, Ellis LM. 2012. Drug development: raise standards for preclinical cancer
research. Nature 483(7391):531–533 DOI 10.1038/483531a.

Belhajjame K, Zhao J, Garijo D, Gamble M, Hettne K, Palma R, Mina E, Corcho O,
Gmez-Pérez JM, Bechhofer S, Klyne G, Goble C. 2015. Using a suite of ontologies
for preserving workflow-centric research objects. Journal of Web Semantics 32:16–42
DOI 10.1016/j.websem.2015.01.003.

Bisgin H, Liu Z, Fang H, Kelly R, Xu X, TongW. 2014. A phenome-guided drug
repositioning through a latent variable model. BMC Bioinformatics 15(1):267–267
DOI 10.1186/1471-2105-15-267.

Bizer C, Heath T, Berners-Lee T. 2009. Linked data-the story so far. International Journal
on Semantic Web and Information Systems 5(3):1–22.

Borgo S, Masolo C. 2010. Ontological foundations of dolce. In: Poli R, Healy M, Kameas
A, eds. Theory and applications of ontology: computer applications. Dordrecht:
Springer, 279–295 DOI 10.1007/978-90-481-8847-5_13978-90-481-8847-5.

Callahan A, Cruz-Toledo J, Dumontier M. 2013. Ontology-based querying with
Bio2RDFs linked open data. Journal of Biomedical Semantics 4(1):1–13.

Caniza H, Romero AE, Paccanaro A. 2015. A network medicine approach to quantify
distance between hereditary disease modules on the interactome. Scientific Reports
5:17658.

Cheng F, Liu C, Jiang J, LuW, LiW, Liu G, ZhouW, Huang J, Tang Y. 2012. Prediction
of Drug-Target Interactions and Drug Repositioning via Network-Based Inference.
PLOS Computational Biology 8(5):e1002503 DOI 10.1371/journal.pcbi.1002503.

Cohen-Boulakia S, Belhajjame K, Collin O, Chopard J, Froidevaux C, Gaignard A,
Hinsen K, Larmande P, Bras YL, Lemoine F, Mareuil F, Mnager H, Pradal C,
Blanchet C. 2017. Scientific workflows for computational reproducibility in the life
sciences: Status, challenges and opportunities. Future Generation Computer Systems
75:284–298 DOI 10.1016/j.future.2017.01.012.

Collins S, Genova F, Harrower N, Hodson S, Jones S, Laaksonen L, Mietchen D,
Petrauskaitė R, Wittenburg P. 2018. Turning FAIR into reality: final report
and action plan from the European Commission expert group on FAIR data.
DOI 10.2777/15242.

Correa Publio G, Esteves D, Lawrynowicz A, Panov P, Soldatova L, Soru T, Vanschoren
J, Zafar H. 2018.ML-Schema: exposing the semantics of machine learning with
schemas and ontologies. In: Reproducibility in machine learning workshop, ICML.

CrowdFlower. 2016. Data science report. Available at https:// visit.figure-eight.com/ rs/
416-ZBE-142/ images/CrowdFlower_DataScienceReport_2016.pdf (accessed on 09
October 2019).

Da Cruz SMS, CamposMLM,MattosoM. 2012. A foundational ontology to support
scientific experiments. In: CEUR workshop proceedings. 144–155.

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 25/29

https://peerj.com
http://dx.doi.org/10.1016/S0076-6879(06)11019-8
http://dx.doi.org/10.1038/483531a
http://dx.doi.org/10.1016/j.websem.2015.01.003
http://dx.doi.org/10.1186/1471-2105-15-267
http://dx.doi.org/10.1007/978-90-481-8847-5_13978-90-481-8847-5
http://dx.doi.org/10.1371/journal.pcbi.1002503
http://dx.doi.org/10.1016/j.future.2017.01.012
http://dx.doi.org/10.2777/15242
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf
http://dx.doi.org/10.7717/peerj-cs.281


Garijo D, Gil Y. 2012. Augmenting PROV with plans in P-PLAN: scientific processes as
linked data. In: LISC@ISWC.

Giraldo O, García A, López F, Corcho O. 2017. Using semantics for representing
experimental protocols. Journal of Biomedical Semantics 8: Article 52.

Gonalves RS, O’ConnorMJ, Martnez-RomeroM, Egyedi AL,Willrett D, Graybeal J,
MusenMA. 2017. The CEDAR workbench: an ontology-assisted environment for
authoring metadata that describe scientific experiments. In: The semantic Web—
ISWC 2017. 103110 DOI 10.1007/978-3-319-68204-4_10.

Gottlieb A, Stein GY, Ruppin E, Sharan R. 2011. PREDICT: a method for inferring
novel drug indications with application to personalized medicine.Molecular Systems
Biology 7(1):496 DOI 10.1038/msb.2011.26.

Gray KA, Yates B, Seal RL,Wright MW, Bruford EA. 2015. Genenames. org: the HGNC
resources in 2015. Nucleic Acids Research 43(D1):D1079–D1085.

Guizzardi G,Wagner G, Almeida JPA, Guizzardi RSS. 2015. Towards ontological
foundations for conceptual modeling: the unified foundational ontology (UFO)
story. Applied Ontology 10(3–4):259–271 DOI 10.3233/AO-150157.

Hartanto HA, Sarno R, Ariyani NF. 2017.Warning criterion ontology for measuring of
compliance in standard operating procedure implementation. Journal of Theoretical
and Applied Information Technology 95(24):6867–6880.

Hettne K,Wolstencroft K, Belhajjame K, Goble C, Mina E, Dharuri H, Verdes-
Montenegro L, Garrido J, De Roure D, RoosM. 2012. Best practices for workflow
design: how to prevent workflow decay. In: CEUR workshop proceedings, 952.

Hoehndorf R, Hiebert T, Hardy NW, Schofield PN, Gkoutos GV, Dumontier M.
2013.Mouse model phenotypes provide information about human drug targets.
Bioinformatics 30(5):719–725 DOI 10.1093/bioinformatics/btt613.

Horkoff J, Aydemir FB, Cardoso E, Li T, Maté A, Paja E, Salnitri M, Piras L, My-
lopoulos J, Giorgini P. 2019. Goal-oriented requirements engineering: an ex-
tended systematic mapping study. Requirements Engineering 24(2):133–160
DOI 10.1007/s00766-017-0280-z.

ImmingM, Böhmer J, Companjen B, Emery T, Groep D, Murchison K, Schoonhoven
R, Sesink L, Som de Cerff W, Sterl A, FrankeW. 2018. FAIR data advanced use cases:
from principles to practice in the Netherlands. Zenodo.

Ioannidis JPA. 2005a. Contradicted and initially stronger effects in highly cited clinical
research. JAMA 294(2):218–228 DOI 10.1001/jama.294.2.218.

Ioannidis JPA. 2005b.Why most published research findings are false. PLOS Medicine
2(8):e124 DOI 10.1371/journal.pmed.0020124.

Jacobsen A, Kaliyaperumal R, Da Silva Santos LOB, Mons B, Schultes E, Roos M,
ThompsonM. 2019. A generic workflow for the data fairification process. Data
Intelligence 2:56–65.

Jiang Y, Xiao N, Zhang Y, Zhang L. 2016. A novel flexible activity refinement ap-
proach for improving workflow process flexibility. Computers in Industry 80:1–15
DOI 10.1016/j.compind.2016.03.002.

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 26/29

https://peerj.com
http://dx.doi.org/10.1007/978-3-319-68204-4_10
http://dx.doi.org/10.1038/msb.2011.26
http://dx.doi.org/10.3233/AO-150157
http://dx.doi.org/10.1093/bioinformatics/btt613
http://dx.doi.org/10.1007/s00766-017-0280-z
http://dx.doi.org/10.1001/jama.294.2.218
http://dx.doi.org/10.1371/journal.pmed.0020124
http://dx.doi.org/10.1016/j.compind.2016.03.002
http://dx.doi.org/10.7717/peerj-cs.281


Kanehisa M, Araki M, Goto S, Hattori M, HirakawaM, ItohM, Katayama T,
Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. 2007. KEGG for linking
genomes to life and the environment. Nucleic Acids Research 36(Database):D480–D484
DOI 10.1093/nar/gkm882.

Khan FZ, Soiland-reyes S, Sinnott RO, Lonie A, Goble C, CrusoeMR. 2019. Sharing
interoperable work ow provenance: a review of best practices and their practical
application in CWLProv. GigaScience 1–26 DOI 10.5281/zenodo.1966881.

Klein RA, Ratliff KA, Vianello M, Adams Jr RB, Bahnǐk V, BernsteinMJ, Bocian K,
Brandt MJ, Brooks B, Brumbaugh CC, Cemalcilar Z, Chandler J, CheongW,
DavisWE, Devos T, Eisner M, Frankowska N, FurrowD, Galliani EM, Hasselman
F, Hicks JA, Hovermale JF, Hunt SJ, Huntsinger JR, Ijzerman H, JohnM-S,
Joy-Gaba JA, Barry Kappes H, Krueger LE, Kurtz J, Levitan CA, Mallett RK,
MorrisWL, Nelson AJ, Nier JA, Packard G, Pilati R, Rutchick AM, Schmidt K,
Skorinko JL, Smith R, Steiner TG, Storbeck J, Van Swol LM, Thompson D, van ’t
Veer AE, Vaughn LA, VrankaM,Wichman AL,Woodzicka JA, Nosek BA. 2014.
Investigating variation in replicability: A ‘‘many labs’’ replication project. Social
Psychology 45(3):142–152 DOI 10.1027/1864-9335/a000178.

Krishna A, Poizat P, Salaün G. 2019. Checking business process evolution. Science of
Computer Programming 170:1–26 DOI 10.1016/j.scico.2018.09.007.

KuhnM, Campillos M, Letunic I, Jensen LJ, Bork P. 2010. A side effect resource to
capture phenotypic effects of drugs.Molecular Systems Biology 6(1):343.

Lamb J, Crawford ED, Peck D, Modell JW, Blat IC,Wrobel MJ, Lerner J, Brunet J-
P, Subramanian A, Ross KN, ReichM, Hieronymus H,Wei G, Armstrong SA,
Haggarty SJ, Clemons PA,Wei R, Carr SA, Lander ES, Golub TR. 2006. The
connectivity map: using gene-expression signatures to connect small molecules,
genes, and disease. Science 313(5795):1929–1935 DOI 10.1126/science.1132939.

Lamprecht A-L, Garcia L, KuzakM,Martinez C, Arcila R, Martin Del Pico E,
Dominguez Del Angel V, van de Sandt S, Ison J, Martinez PA, McQuilton P,
Valencia A, Harrow J, Psomopoulos F, Gelpi JL, Chue Hong N, Goble C, Capella-
Gutierrez S. 2019. Towards FAIR principles for research software. Data Science
3(1):37–59 DOI 10.3233/DS-190026.

Lebo T, Sahoo S, McGuinness D, Belhajjame K, Cheney J, Corsar D, Garijo D, Soiland-
Reyes S, Zednik S, Zhao J. 2013. Prov-o: the prov ontology. W3C. Available at
https://www.w3.org/TR/prov-o/#:~:text=The%20PROV%20Ontology%20(PROV%
2DO,systems%20and%20under%20different%20contexts.

Menche J, Sharma A, KitsakM, Ghiassian SD, Vidal M, Loscalzo J, Barabási A-L. 2015.
Uncovering disease-disease relationships through the incomplete interactome.
Science 347(6224):1257601.

Moreau L, Freire J, Futrelle J, McGrath RE, Myers J, Paulson P. 2008. The open prove-
nance model: an overview. In: International provenance and annotation workshop.
Springer, 323–326.

Moreira JLR, Sales TP, Guerson J, Braga BFB, Brasileiro F, Sobral V. 2016.Menthor
editor: an ontology-driven conceptual modeling platform. In: JOWO@FOIS.

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 27/29

https://peerj.com
http://dx.doi.org/10.1093/nar/gkm882
http://dx.doi.org/10.5281/zenodo.1966881
http://dx.doi.org/10.1027/1864-9335/a000178
http://dx.doi.org/10.1016/j.scico.2018.09.007
http://dx.doi.org/10.1126/science.1132939
http://dx.doi.org/10.3233/DS-190026
https://www.w3.org/TR/prov-o/#:~:text=The%20PROV%20Ontology%20(PROV%2DO,systems%20and%20under%20different%20contexts
https://www.w3.org/TR/prov-o/#:~:text=The%20PROV%20Ontology%20(PROV%2DO,systems%20and%20under%20different%20contexts
http://dx.doi.org/10.7717/peerj-cs.281


MuehlenM. Z, RosemannM. 2004.Multi-paradigm process management. In: CAiSE
Workshops. 169–175.

Neil CH, Daniel SK. 2018. FAIR enough? Can we (already) benefit from applying the
FAIR data principles to software? Available at https:// figshare.com/articles/FAIR_
enough_Can_we_already_benefit_from_applying_the_FAIR_data_principles_to_
software_/7449239 DOI 10.6084/m9.figshare.7449239.v2.

Noy NF, Shah NH,Whetzel PL, Dai B, Dorf M, Griffith N, Jonquet C, Rubin DL, Storey
M-A, Chute CG, MusenMA. 2009. BioPortal: ontologies and integrated data re-
sources at the click of a mouse. Nucleic Acids Research 37(Web Server):W170–W173
DOI 10.1093/nar/gkp440.

Pimentel JF, Murta L, Braganholo V, Freire J. 2019. A large-scale study about quality
and reproducibility of jupyter notebooks. In: Proceedings of the 16th international
conference on mining software repositories. IEEE Press, 507–517.

Prinz F, Schlange T, Asadullah K. 2011. Believe it or not: how much can we rely on pub-
lished data on potential drug targets? Nature Reviews Drug Discovery 10(9):712–712
DOI 10.1038/nrd3439-c1.

Ren Y, Grner G, Lemcke J, Rahmani T, Friesen A, Zhao Y, Pan JZ, Staab S. 2013.
Process refinement validation and explanation with ontology reasoning. Service-
oriented computing, Berlin: Springer, 515–523.

RosemannM, vom Brocke J. 2015. The six core elements of business process man-
agement. In: Vom Brocke J, Rosemann M, eds. Handbook on business process
management 1: introduction, methods, and information systems. Berlin, Heidelberg:
Springer, 105–122 DOI 10.1007/978-3-642-45100-3_5978-3-642-45100-3.

Rospocher M, Ghidini C, Serafini L. 2014. An ontology for the business process
modelling notation. Formal Ontology in Information Systems - Proceedings of the
Eighth International Conference, FOIS 2014, September, 22–25, 2014, Rio de Janeiro,
Brazil. IOS Press 133–146.

Samuel S, König-Ries B. 2018a. Combining P-Plan and the REPRODUCE-ME ontology
to achieve semantic enrichment of scientific experiments using interactive note-
books. In: European semantic web conference. Springer, 126–130.

Samuel S, König-Ries B. 2018b. ProvBook: provenance-based semantic enrichment of
interactive notebooks for reproducibility. In: Proceedings of the ISWC 2018 Posters
Demonstrations, Industry and Blue Sky Ideas Tracks co-located with ISWC.

Scannell JW, Blanckley A, Boldon H,Warrington B. 2012. Diagnosing the decline in
pharmaceutical R&D efficiency. Nature Reviews Drug Discovery 11(3):191–200
DOI 10.1038/nrd3681.

Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A, Sage J, Butte
AJ. 2011. Discovery and preclinical validation of drug indications using compendia
of public gene expression data. Science Translational Medicine 3(96):96ra77–96ra77
DOI 10.1126/scitranslmed.3001318.

Sleigh SH, Barton CL. 2010. Repurposing strategies for therapeutics. Pharmaceutical
Medicine 24(3):151–159 DOI 10.1007/bf03256811.

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 28/29

https://peerj.com
https://figshare.com/articles/FAIR_enough_Can_we_already_benefit_from_applying_the_FAIR_data_principles_to_software_/7449239
https://figshare.com/articles/FAIR_enough_Can_we_already_benefit_from_applying_the_FAIR_data_principles_to_software_/7449239
https://figshare.com/articles/FAIR_enough_Can_we_already_benefit_from_applying_the_FAIR_data_principles_to_software_/7449239
http://dx.doi.org/10.6084/m9.figshare.7449239.v2
http://dx.doi.org/10.1093/nar/gkp440
http://dx.doi.org/10.1038/nrd3439-c1
http://dx.doi.org/10.1007/978-3-642-45100-3_5978-3-642-45100-3
http://dx.doi.org/10.1038/nrd3681
http://dx.doi.org/10.1126/scitranslmed.3001318
http://dx.doi.org/10.1007/bf03256811
http://dx.doi.org/10.7717/peerj-cs.281


Soiland-Reyes S, Khan FZ, Sinnott R, Lonie A, CrusoeMR, Goble C. 2018. Capturing
interoperable reproducible workflows. In:Workshop on research objects: workshop at
IEEE eScience 2018.

Stephan B, Thomas B, Manfred R. 2012. Bridging the gap between business process
models and service composition specifications. In: Jonathan L, Shang-Pin M, Alan
L, eds. Service life cycle tools and technologies: methods, trends and advances. Hershey:
IGI Global, 124–153 DOI 10.4018/978-1-61350-159-7.ch0079781613501597.

Vasilevsky NA, BrushMH, Paddock H, Ponting L, Tripathy SJ, Larocca GM, Haendel
MA. 2013. On the reproducibility of science: unique identification of research
resources in the biomedical literature. PeerJ 1:e148–e148 DOI 10.7717/peerj.148.

WilkinsonMD, Dumontier M, Aalbersberg IJ, Appleton G, AxtonM, Baak A,
Blomberg N, Boiten J-W, Da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ,
Clark T, Crosas M, Dillo I, DumonO, Edmunds S, Evelo CT, Finkers R, Gonzalez-
Beltran A, Gray A. JG, Groth P, Goble C, Grethe JS, Heringa J, t Hoen P. AC, Hooft
R, Kuhn T, Kok R, Kok J, Lusher SJ, MartoneME, Mons A, Packer AL, Persson B,
Rocca-Serra P, Roos M, van Schaik R, Sansone S-A, Schultes E, Sengstag T, Slater
T, Strawn G, Swertz MA, ThompsonM, van der Lei J, vanMulligen E, Velterop J,
Waagmeester A,Wittenburg P,Wolstencroft K, Zhao J, Mons B. 2016. The FAIR
guiding principles for scientific data management and stewardship. Nature 3:160018
DOI 10.1038/sdata.2016.18.

Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali
M. 2008. DrugBank: a knowledgebase for drugs, drug actions and drug targets.
Nucleic Acids Research 36(suppl_1):D901–D906.

WuC, Gudivada RC, Aronow BJ, Jegga AG. 2013. Computational drug repositioning
through heterogeneous network clustering. BMC Systems Biology 7(Suppl 5):S6–S6
DOI 10.1186/1752-0509-7-S5-S6.

Celebi et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.281 29/29

https://peerj.com
http://dx.doi.org/10.4018/978-1-61350-159-7.ch0079781613501597
http://dx.doi.org/10.7717/peerj.148
http://dx.doi.org/10.1038/sdata.2016.18
http://dx.doi.org/10.1186/1752-0509-7-S5-S6
http://dx.doi.org/10.7717/peerj-cs.281

