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ABSTRACT

As per a WHO survey conducted in 2023, more than 2.3 million breast cancer (BC)
cases are reported every year. In nearly 95% of countries, the second leading cause of
death for females is BC. Breast and cervical cancers cause 80% of reported deaths in
middle-income countries. Early detection of breast cancer can help patients better
manage their condition and increase their chances of survival. However, traditional
AT models frequently conceal their decision-making processes and are mainly

tailored for classification tasks. Our approach combines composite deep learning
techniques with explainable artificial intelligence (XAI) to enhance interpretability
and predictive accuracy. By utilizing XAI to examine features and provide insights
into its classifications, the model clarifies the rationale behind its decisions, resulting
in an understanding of concealed patterns linked to breast cancer detection. The XAI
strengthens practitioners’ and health researchers’ confidence and understanding of
artificial intelligence (AI)-based models. In this work, we introduce a hybrid deep
learning bi-directional long short-term memory-convolutional neural network
(BiLSTM-CNN) model to identify breast cancer using patient data effectively. We
first balanced the dataset before using the BILSTM-CNN model. The hybrid deep
learning (DL) model presented here performed well in comparison to other studies,

with 0.993 accuracy, precision 0.99, recall 0.99, and F1-score 0.99.
Submitted 2 October 2024

Accepted 16 March 2025

Published 16 April 2025 Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Corresponding author Learning, Neural Networks

Muhammad Zubair Asghar, Keywords XA, Disease prediction, Cross-fold-validation, Breast cancer diagnosis, BILSTM+CNN,
mzubairgu@gmail.com Disease prediction, Hybrid deep learning

Academic editor

Valentina Emilia Balas INTRODUCTION

Additional Information and

Declarations can be found on Breast cancer (BC) is one of the most common cancers affecting women worldwide and

page 30 has become a leading cause of death. Breast cancer kills more than 40,000 women and
DOI 10.7717/peerj-cs.2806 nearly 600 men each year, according to the latest data from the American Cancer Society.
© Copyright There are four main types of breast cancer: benign, typical, localized, and invasive. Benign
2025 Alzahrani et al. tumors cause minor changes in the anatomy of the breast, are not malignant, and are not as
Distributed under dangerous as malignant cancer (Nasser ¢» Yusof, 2023).

Creative Commons CC-BY 4.0 Detecting breast cancer, in its stages poses a challenge due to its high fatality rate among

OPEN ACCESS women often leading to death. Identifying tumors at a stage can improve the likelihood of

How to cite this article Alzahrani A, Raza MA, Asghar MZ. 2025. Demystifying diagnosis: an efficient deep learning technique with
explainable AI to improve breast cancer detection. Peer] Comput. Sci. 11:¢2806 DOI 10.7717/peerj-cs.2806


http://dx.doi.org/10.7717/peerj-cs.2806
mailto:mzubairgu@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2806
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

survival. Each year millions of women are diagnosed with breast cancer and many lose
their lives to this illness; thus timely detection of tumors is crucial, for combating the
disease and enhancing patient survival ratio. Furthermore, the basic instruments used to
diagnose breast cancer are too expensive for low-income countries. Thus, reducing the
physical and social impact of breast cancer on patients, is largely dependent on early
detection (Raza et al., 2024).

Early detection of malignant cancer will assist combat the illness and increase the
patient’s chances of survival. The healthcare industry generates vast amounts of data daily,
which can be analyzed using data mining techniques to uncover patterns and enable
accurate clinical predictions. Even though, traditional machine learning systems have their
benefits, they often operate like arcane contraptions with little understanding of the
decision-making process, which undermines confidence in and understanding of their
predictions (Sengar, Gaikwad ¢ Nagdive, 2020; Arshad, 2023).

The aim of this study is to address these concerns by developing an explainable artificial
intelligence (XAI) system that combines various methods to differentiate between
cancerous and non-cancerous growths, in the body. This study integrates explainable AI
techniques into a hybrid bi-directional long short-term memory-convolutional neural
network (BiLSTM-CNN) model to improve diagnostic accuracy while providing clear and
actionable insights into the model’s predictions, enhancing its utility for healthcare
professionals. The research aims to improve artificial intelligence (AI) technology in this
field to create a user tool that can help detect and intervene at a stage to enhance the
diagnosis of breast cancers effectively.

Research motivation

The motivation, behind this research is driven by the requirement for timely identification
of breast cancer. A major contributor to female mortality globally despite medical
advancements in technology; diagnostic instruments frequently fall short in accuracy and
cost effectiveness particularly in resource constrained environments. Additionally, various
neural network models function as entities posing challenges for healthcare providers to
have confidence, in their prognostications.

The study aims to enhance diagnostic precision and interpretability by integrating XAI
into the hybrid BiLSTM-CNN model. This integration facilitates trust and usability for
healthcare professionals, ultimately leading to improved patient outcomes. Moreover, the
emphasis on effectiveness guarantees that this technique can be utilized in scenarios
making cutting edge diagnostic resources more reachable and cost effective, for healthcare
facilities globally.

Problem formulation and research objectives

The objective of the work is to develop a BC predication system from given BC that can
discriminate between malignant and benign cancer. The goal is to predict BC based on two
class labels Si € {malignant , benign} provided D = {d1, d2... dn} as a dataset. The
XAI module will offer easily understandable rationales, for its predictions. This study aims
to focus on the following main goals:
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RO1: To apply hybrid deep learning (BILSTM+CNN) technique and explainable AI to
diagnose breast cancer

RO2: To compare the proposed hybrid deep learning technique (BiLSTM-CNN) with
various machine learning and deep learning models for breast cancer detection.

RO3: To assess the efficiency of the proposed model using ablation study.

Research contributions

The key contributions of this research are as follows:

e Development of a hybrid BILSTM-CNN deep learning model for breast cancer
detection, offering improved diagnostic accuracy.

o Integration of XAI techniques, specifically Shapley Additive Explanations (SHAP), to
enhance model interpretability and provide actionable insights for clinicians.

o Comprehensive evaluation of the proposed model’s performance using rigorous
benchmarking, ablation studies, and comparison with traditional machine learning and
standalone deep learning models.

» Demonstration of the effectiveness of feature selection and data balancing techniques to
improve the model’s robustness and generalization.

The structure of rest of the paperwork is as follows: The literature review portion
provides an overview of relevant material, followed by a discussion of the methodology,
findings, and conclusions. The last section concludes with a description of future studies.
Table 1 shows the glossary of key terms.

Literature review

This segment includes an overview of the literature on disease diagnosis. Sengar, Gaikwad
¢ Nagdive (2020) used the Waikato Environment for Knowledge Analysis (Weka)
platform to study breast cancer. WBC dataset is analyzed using a machine learning (ML)
decision tree classifier for the construction of an ontological model. The objective of this
study was to classify malignant and benign tumors using a decision tree based on the
SWRL and implement the ontological reasoner based on the decision tree. 97.10%
accuracy was achieved by the ontological model (Wang, 2022). This article proposes a
hybrid model (artificial neural network-support vector machine (ANN-SVM)) that
combines artificial neural networks (ANNs) and support vector machines (SVMs) for the
finding of BC. SVM is used as a BC classification algorithm and ANN as a feature extractor.
Fine-tuning the SVM hyperparameters and adjusting the ANN structure might
significantly enhance the intended model (Mangukiya, Vaghani ¢ Savani, 2022). In this
study, numerous ML approches for detecting BC were evaluated using the Breast-Cancer
WBC dataset. In this research, BC is diagnosed using ANN, k-neural networks (K-NN),
and SVM. Massari et al. (2023) performed this breast cancer prediction study using
varieties of ensemble ML models on the WDBC dataset. Breast cancer is classified using
different machine learning classifiers following data preparation and various feature
selection algorithms. MLP and J48 approaches attained maximum accurateness using the
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Table 1 Glossary of key terms.

Term

Definition

Explainable AI (XAI)
BiLSTM (Bidirectional Long Short-Term

Memory)
CNN (Convolutional Neural Network)
Feature Selection (FS)
SHAP (Shapley Additive Explanations)
AUC-ROC (Area Under the Receiver Operating
Characteristic Curve)

Data Balancing

Precision
Recall (Sensitivity)
F1-Score

Receiver Operating Characteristic (ROC) Curve
Correlation Coefficient (r)
Deep Learning

Sequential Data

Class Imbalance

Techniques that make Al models interpretable, providing insights into how predictions are made.

A deep learning model capturing both past and future dependencies in sequential data for better
context understanding.

A neural network architecture specialized in feature extraction and pattern recognition,
commonly used for image and structured data.

The process of identifying and selecting the most relevant features to improve model performance
and interpretability.

An XAI technique based on game theory, assigning importance scores to features to explain
model predictions.

A metric measuring a model’s ability to distinguish between positive and negative cases across
various thresholds.

Techniques to address class imbalances by ensuring equal representation of all classes in the
dataset.

The proportion of true positive predictions out of all positive predictions made by the model.
The proportion of true positive predictions out of all actual positive instances in the dataset.

The harmonic mean of precision and recall, balancing their contributions to evaluate model
performance.

A graphical representation of a model’s sensitivity vs. specificity, used to evaluate classification
performance.

A statistical measure that indicates the strength and direction of a linear relationship between two
variables.

A subset of machine learning that uses neural networks with multiple layers to learn patterns in
data.

Data where the order of elements is significant, such as time series or text sequences.

A condition in datasets where some classes have significantly more samples than others, often
leading to biased models.

genetic search feature selection approach. Pang (2022) investigated the performance of

ANNss and decision trees (DTs) for BC prediction. For the construction of the DT model,
various preprocessing techniques and PCA are used. DT (PCA transformation) is the most
accurate with 96% accuracy (Hall, Chang ¢ Mitchell, 2022). There are thousands of
females who die every year from BC. The DL model is used in this article to diagnose breast
cancer. Additionally, ML algorithms are analyzed in terms of their number. In this
research, CNN’s deep learning model is primarily examined. In order to improve accuracy,
some other deep learning algorithms can be adopted. In this work, Lopez-Martin et al.
(2017) describes XAI's function in the medical field. They employ several XAI methods,
such as LIME and SHAP, in addition to applying machine learning models to create
counterfactuals and anchors using the CVD dataset. This study highlights the necessity of
openness and understandability in Al-based models, particularly when making decisions
that affect human life, such as in medical diagnosis. The black box and understandability
decision-making processes are explained by this research. In this study, the deep learning
model may also be utilized to improve the understandability and transparency of the
Al-based model, even though just the machine learning model is utilized to grasp XAL
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Solanki et al. (2021) present a ML approach for BC classification and use XAI technique
(SHAP) to emphasizing inheritability. Using K-NN, SVM, XG-Boost, random forest (RF),
and ANN to achieving high accuracy and precision in categorizing BC disease. Key
attributes like “bare nuclei” and “area worst” are highlighted as important for BC
prediction. In this research the K-NN ML model outperformed with accuracy of 97.7%. In
recent years, XAl has gained significant attention in healthcare for improving the
interpretability and trustworthiness of diagnostic models. Several studies have introduced
innovative XAI methodologies. Aziz et al. (2024) conducted a comprehensive review of
XAI techniques in clinical decision support systems, emphasizing their role in improving
transparency and aiding clinicians in interpreting model predictions. Demir et al. (2024)
proposed transformer-based prototypes for medical diagnoses, leveraging explainability to
enhance user trust and diagnostic accuracy, particularly in breast cancer detection. Munshi
et al. (2024) explored ensemble-based XAI models for breast cancer detection, achieving a
significant improvement in interpretability and accuracy. Islam et al. (2024) presents a
comprehensive XAI evaluation framework incorporating fidelity, interpretability,
robustness, fairness, and completeness into a dynamic and adaptable scoring system. This
framework evaluates various XAI methods, including SHAP and Grad-CAM, across
multiple domains, including healthcare. While it does not specifically integrate SHAP and
Grad-CAM into a single hybrid method, it provides valuable insights into the effectiveness
of these techniques in medical applications.

Research gap

While deep learning models aid breast cancer diagnosis, many studies struggle with
classification performance due to suboptimal architecture and parameter choices. This
work introduces a BILSTM-CNN hybrid model with SHAP-based explainability to
enhance accuracy and interpretability. By optimizing configurations and benchmarking
against prior models, the study improves diagnostic reliability and trust in Al-driven
predictions.

MATERIALS AND METHODS

In the proposed methodology, there are three main components: dataset acquisition, data
pre-processing, and an overview of the proposed model (See Fig. 1). Each of the
submodules is described in more detail below:

Dataset acquisition
In this study, UCT’s repository was used to access Wisconsin Breast Cancer Diagnostic
(WDBC) data (UCI Machine Learning Repository, 2019) available publically at: https://
archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28diagnostic%29. There are
569 instances in the data set overall, and each instance has 32 properties. A total of 357 of
the 569 cases are benign, while 212 are malignant. The dataset there has no missing record.
Details of the given WDBC dataset are presented in Fig. 2.

A fine needle aspiration (FNA) is used to create the characteristics of the digital images.
One type of biopsy procedure is called FNA, where samples are taken by inserting a tiny,
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pointed needle into a region of bodily fluid or tissue that seems abnormal. In the images
the attributes/characteristics of the visible nuclei determine input features (Darya, Nassif ¢
Al-Shabi, 2022). In total, thirty attributes were computed for each image, including the
worst, highest, mean, and standard error (SE). The values of all features are recorded using
four significant digits (Abdulla, Sagheer ¢ Veisi, 2021).

Data splitting strategy

The Wisconsin Breast Cancer Diagnostic dataset, while widely used and appropriate for
breast cancer classification, is recognized as limited in diversity due to its reliance on a
single data source. To mitigate potential biases and ensure robust evaluation, the dataset
was divided into training, validation, and testing sets using a stratified sampling approach,
ensuring balanced representation of malignant and benign cases (see Fig. 3).
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Stratification ensured that the proportion of malignant and benign cases in each subset
mirrored the overall dataset distribution, thereby preserving the class balance during
model training and evaluation.
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The dataset was divided into three subsets:

o Training set: 80% of the data, used for model training.
* Validation set: 20% of the training set, employed for hyperparameter tuning.

o Testing set: 20% of the data, reserved for evaluating the final model’s performance.

This approach helps maintain a consistent class distribution and reduces the risk of
overfitting or bias during evaluation. Future studies will address the dataset’s limitations by
incorporating additional publicly available breast cancer datasets and performing external
validation to improve generalizability across diverse populations.

Treatment of data

Cross fold validation (CFV) is used to validate the model. Subset of the training instance
are created and stored at each level. The basis for our investigation was a different
“holdout” approach. The sample with greatest F1 score was selected as the holdout sample.

Pre-processing

The first and most important stage in getting the best categorization results is pre-
processing. Before classifying the data, it is often applied to ensure the intended results are
produced.

Feature selection
Feature selection (FS) has confirmed to be an effective and efficient data preparation
method for a range of DM and ML tasks. This is especially true for multi-dimensional data.
The primary objectives of the feature selection procedure are to provide data that is easily
comprehensible and to enhance data mining performance (Jasim et al., 2022).

In this study, the Extra Trees Classifier (ETC) feature selection approach was used.

Rationale for choosing the extra trees classifier

FS is critical for improving the interpretability and efficiency of machine learning models.
In this study, we employed the ETC for FS, which is an ensemble learning method known
for its ability to handle high-dimensional data while preventing overfitting. The ETC ranks
features based on their importance derived from decision-tree splits, providing both
computational efficiency and interpretability.

Compared to alternatives such as principal component analysis (PCA) and Lasso, the
ETC offers several advantages. PCA, while effective in dimensionality reduction,
transforms features into uncorrelated components, which compromises interpretability—a
key requirement in medical diagnostics. Lasso regression, though capable of feature
selection, is sensitive to multicollinearity and may require extensive hyperparameter
tuning to achieve optimal performance. By contrast, the ETC explicitly identifies the most
informative features without such limitations.

The Extra Trees Classifier, sometimes called the Extremely Randomised Tree (ERT)
Classifier, is a type of ensemble ML algorithm that generates classification outputs by
aggregating the observations of several disconnect DT collected in a forest (AlindGupta,
2023). In a technique that is similar to random forest, Extra Trees Classifier jumbles up

Alzahrani et al. (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2806 8/32


http://dx.doi.org/10.7717/peerj-cs.2806
https://peerj.com/computer-science/

PeerJ Computer Science

certain decisions and subsets of data to prevent overfitting and overlearning from the data
(Li et al.,, 2018).

In this instance, information gain (IG) and entropy are what determine which traits are
the best (Islam et al., 2024). Below are the formulas for entropy and information gain.

Entropy(E) = ZZ: —h;log, (h;) (1)
=1

|Ec|
—Ec

IG(E,G) =E — Z (2)

c€Values(G)
where z = number of uniquely labeled output classes, h; = “the proportion of rows with an
output label is " and entropy (E) = “training set”.

An ETC model was built after splitting the data set between 0.80 and 0.20 in order to
evaluate the significance of each feature. We selected a subset of 18 variables to develop our
learning model from the breast cancer diagnostic dataset. Table 2 presents the top 18
attributes selected using ETC, prioritized based on their relevance to the output feature.
Attributes with the highest scores were given preference, as they exhibited a strong
correlation and dependency on the output class. These features were utilized for training
the BILSTM-CNN model, playing a crucial role in enhancing its diagnostic performance.

Table 2 provides useful insights into feature importance and correlation but raises
several critical concerns. The top features, such as perimeter_worst and area_worst,
dominate the model, suggesting potential over-reliance on a limited subset. Meanwhile, the
marginal contributions of other features question their practical relevance. While high
correlations reflect strong linear relationships, they overlook nonlinear dependencies and
interactions that advanced models might exploit. Additionally, redundancy among
features, such as radius_mean and area_mean, may introduce multicollinearity, impairing
model interpretability.

Unbalanced dataset management
To address the class imbalance in the WDBC dataset (357 benign and 212 malignant
cases), we applied random oversampling to equalize the number of samples in each class
(Das et al., 2023). The minority class (malignant) was oversampled to match the majority
class (benign), resulting in a balanced dataset of 714 instances (357 per class).

To ensure that oversampling did not introduce bias or overfitting:

1) Cross-validation: We employed 10-fold cross-validation, where the dataset was split
into training and testing folds at each iteration. Oversampling was performed
exclusively on the training folds to prevent data leakage into the testing folds, ensuring
an unbiased evaluation of the model’s performance.

2) Performance metrics: Metrics such as accuracy, precision, recall, and F1-score were
monitored to assess the model’s generalization. High recall and F1-scores for the
minority class indicated that the oversampling approach improved classification
without compromising model reliability.
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Table 2 Top 18 features selected for optimal classification.

Feature Importance (ETC) Correlation (r)
perimeter_worst 0.152 0.84
area_worst 0.143 0.81
radius_mean 0.129 0.78
texture_mean 0.102 0.76
smoothness_worst 0.098 0.74
compactness_mean 0.089 0.73
concavity_mean 0.081 0.71
concave points_worst 0.075 0.69
radius_se 0.071 0.67
area_mean 0.068 0.65
fractal_dimension_mean 0.064 0.63
symmetry_mean 0.061 0.61
compactness_worst 0.058 0.59
concavity_worst 0.054 0.57
symmetry_worst 0.049 0.55
texture_worst 0.045 0.53
fractal_dimension_worst 0.041 0.51
smoothness_mean 0.037 0.49

3) Regularization: Dropout layers (rate 0.3) were incorporated in the BiILSTM-CNN
architecture to prevent overfitting during training on the augmented dataset.

Label encoding and feature scaling

There are 32 properties in the provided data set; the first one, id, adds nothing to our ability
to determine if the data set is benign or malignant. As a result, the dataset’s id column was
removed. “Diagnosis” is one of the features in the dataset, which belongs to the character
class. As it is widely recommended that DL models only receive numeric data, the label
encoder in the scikit-learn package transforms this column into a numeric type (Roy et al.,
2021).

A crucial aspect of many ML and DL models is ensuring that the data is scaled sensibly.
Feature scaling is a standardization method ensure that the data free scaled by converting
the statistical scattering of the data into the following format: There is zero mean. The one
is standard deviation (SD) (Asghar et al., 2021).

Equation (3) was used for feature scaling to standardize the dataset:

zi = (si—3)/0. (3)

In each feature, the (s) mean and (o) standard deviation will be calculated. The feature
standardized values are obtained by deducting the mean from each observation and
dividing the result by the standard deviation. Once the given data has been distributed into
training and test sets, standardization is performed. To standardize the training and test

Alzahrani et al. (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2806 10/32


http://dx.doi.org/10.7717/peerj-cs.2806
https://peerj.com/computer-science/

PeerJ Computer Science

‘_---------------------.\

N,
AR AR IR b )

LA R AR | Y
LAR AR JR
AR AR

-
BiLSTM layer

CNNLayer  \

.

e

=~

o

Dropout layer

Dataset | |

_§L Preprocessing |y

€
e

‘_
eeoee LIRS

Pooling Laver

Filter Mat
'—_\

oo e-
€

L3

Output Layer

»| -
[o[e[e]e]
T

o
T e s e e e e e e e e e S e e e 8

Cd
/Flatten Laver
-

Figure 4 BiLSTM-CNN hybrid model architecture. Full-size Ka] DOT: 10.7717/peerj-cs.2806/fig-4

data sets, “StandardScalar().fit_transform()” and “StandardScalar().transform()” were
used.

In the following section, data is supplied into a proposed approach (BiLSTM-CNN)
after pre-processing. An explanation of the Bi-LSTM+CNN model for identifying BC is
provided in this section.

Breast cancer diagnoses using deep learning hybrid models

To diagnose BC, a BILSTM with a CNN model is being established. When BC is detected,
the technique categorises it as “Malignant” (cancerous tumour) or “Benign” (normal
tumour). Fig. 4 explains the basic framework of the proposed study.

Novelty and rationale for the BiLSTM-CNN architecture
The proposed BILSTM-CNN hybrid architecture represents a novel approach for breast
cancer diagnosis using tabular data, addressing limitations in existing methods. BiLSTM, a
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bidirectional extension of LSTM, excels at capturing sequential patterns and temporal
dependencies, which are crucial for extracting meaningful feature interactions in
structured datasets. Complementing this, CNN efficiently identifies localized dependencies
among features through convolution operations. This synergy enhances both diagnostic
accuracy and interpretability, providing a richer data representation for subsequent
analysis.

Unlike traditional machine learning models or standalone deep learning architectures
(e.g., CNN or LSTM), this hybrid approach uniquely integrates spatial and sequential
feature modeling tailored for tabular data. This dual capability not only boosts predictive
performance but also facilitates deeper insights into the data through explainability
techniques such as SHAP (Aziz et al., 2024). The inclusion of CNN aids in hierarchical
feature extraction, while BiLSTM ensures the preservation of contextual information
across feature sequences, which is particularly beneficial for medical diagnostics. This
novel combination has demonstrated superior performance in diagnostic accuracy and
interpretability compared to benchmark studies, as evidenced by the results presented in
this work.

Comprehensive design of the BILSTM-CNN model

The BiLSTM-CNN model was optimized by systematically testing various configurations
during the experimental phase. The final architecture consisted of two bidirectional LSTM
layers, followed by two convolutional layers, a max-pooling layer, a dropout layer, and a
fully connected dense layer. The BiLSTM layers, designed to capture sequential
dependencies, comprised 64 and 128 units, respectively, and employed the Tanh activation
function. To prevent overfitting, a dropout rate of 0.3 was applied to both BiLSTM layers.
The convolutional layers, tasked with feature extraction, were configured with 32 filters
each and a kernel size of 7, with ReLU activation. The max-pooling layer utilized a pool
size of 2x2 to reduce dimensionality while preserving essential feature information. Finally,
a fully connected dense layer with a sigmoid activation function enabled binary
classification, distinguishing between malignant and benign cases.

The model was trained for 50 epochs using a batch size of 32, with the Adam optimizer
(learning rate of 0.001) employed for efficient gradient descent. Early stopping with a
patience of five epochs was implemented to mitigate overfitting. The dataset was split into
training, validation, and testing subsets, ensuring that 20% of the training data was
reserved for validation. To evaluate the model’s robustness, a 10-fold cross-validation
approach was employed, with performance assessed using metrics such as accuracy,
precision, recall, F1-score, and the area under the receiver operating characteristic curve
(AUC-ROC). All experiments were conducted on an NVIDIA Tesla V100 GPU (32 GB
VRAM) using TensorFlow/Keras (version 2.9.1) in a Python 3.8 environment.

The Bi-LSTM layer

As a result of its ability to incorporate past and future context, as well as sequence
information, the Bi-LSTM model has been receiving considerable attention in recent years.
As a result, it prevail over the limitations of traditional DL model (RNN), which can only
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hold data for a short while and on other hand LSTMs, which can only remember context
from the past (Mulani, 2022).

The Bi-LSTM layer is composed of the forward and backward LSTM subnetworks.
Given an input sequence of (x1, x2, x3,..., xn) words, both forward and backward hidden
layer vectors are(:_coglputed by the Bi-LSTM. Representations of the right and left
sequences (I = [, ') are concatenated to form the output sequence (11, 12, 13,..., 1t).
Afterward, it becomes an input for the upper layer, which generates predictions based on
every input (Alghazzawi et al., 2021).

Dropout layer

Using the drop-out layer keeps the neural network from overfitting. There is a range from
0 to 1 for the dropout parameter (rate). Depending on how the BiLSTM layer implements
dropout, neuron activity is blocked or deleted randomly. In this system, convolutional
layer extracts feature, max pooling layer reduces input dimensionality, and flatten layer
converts pooling layer’s output into feature vectors. In the following section, we will
explain the CNN layers. But firstly, we discuss, why CNN has been chosen.

CNNss are traditionally used for spatial data due to their ability to capture local
dependencies via convolution operations. However, their applicability extends to tabular
datasets by treating features as structured inputs. In this study, CNNs are employed to
capture interactions between features by using 1D convolutional layers. These layers,
combined with max-pooling operations, extract hierarchical feature representations,
reducing dimensionality and enhancing the learning process. When integrated with
BiLSTM, CNNs provide enriched input sequences that improve the temporal context
understanding of the hybrid model. To adapt CNNs for tabular data, specific
modifications, such as 1D convolutions with tailored filter sizes and strides, were
implemented to emphasize feature-level relationships.

Convolutional layer
A convolution is an procedure that transforms two functions into a third by adding
mathematical operations. Using this procedure, you’ll need an input matrix KeR™, the
filter matrix PER™, and the output matrix (F), which is also referred to as a feature map
(Roy et al., 2021; Asghar et al., 2021).

The following is the representation of the feature mapping F:

an = R(G O Snint+k—1,m+c—1 + b) (4)

« »

where “-” is the convolution operation between KER™" and PER™ where R denotes
Activation Function ReLU, b is the bias vector and G is the weight matrix.

Max-pooling layer

As a result of the convolutional layer, the input feature maps are downsampled, which are
then turned into sub-sampled feature maps by the MaxPooling layer. There is a reduction
in the dimensionality of the feature map without a corresponding reduction in information
volume It also shortens computation times and minimises overfitting (Mulani, 2022).
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Mathematically, the MaxPooling operation is written as:

Mpm = maX(Fn+k—1,m+c— 1 ) (5)

Flatten layer

Max-pooling output is transformed into feature vectors by flattening. A vector is created
from the features so that the last set of fully connected layers can be applied to it,
concluding the modeling process. The flatten layer can be used as follows (Ambreen et al.,
2024):

L = Reshaped polled[(x —s + 1) * (y —u+ 1)] (6)

Output layer/classification layer

For the final layer, sigmoid function output and CNN output are used to estimate the
likelihood of recognizing the target labels accurately. In order to find the result at the end,
use Eq. (7):

Ci = Z giVi + b (7)

«_ »

where “G” is the weight vector, “b” is the bias, and “v” is the input vector. Equation (8)
explains how to calculate the sigmoid function.

Sigmoid(Ci) = 1/1 4 ¢ ¢ (8)

Explainable Al with SHAP

Shapley Additive Explanations (SHAP) improves diagnostic transparency by assigning
importance scores to individual features influencing model predictions. This ensures that
healthcare practitioners can interpret and trust the model’s diagnostic decisions
(Alghazzawi et al., 2021).

While multiple interpretability methods are available, SHAP was selected due to its
theoretical robustness and practical advantages. SHAP, based on Shapley values, ensures
consistency and additivity in feature importance explanations. This is particularly crucial
for the hybrid BiILSTM-CNN model, where complex interactions between temporal and
feature-based inputs require reliable interpretability. Unlike LIME, which depends on local
data sampling and may produce inconsistent results, SHAP provides stable explanations
across both global and local perspectives. Additionally, SHAP effectively captures feature
dependencies, a limitation of permutation importance, making it more suitable for models
with intricate architectures. This choice aligns with the study’s emphasis on transparent
and trustworthy predictions for medical diagnostics (Alghazzawi et al., 2025).

SHAP theory

Based on this approach, a SHAP value is determined for each attribute in the deep learning
model to determine how each attribute contributes to the target value. Based on the
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conditional expected value determined by deep learning, SHAP values are determined for
every feature. In cooperative game theory, a solution idea known as a Shapley value divides
the total gain that is attained through collaboration among game participants according to
the insignificant contributions of each player. Using the formula below, we can determine
the SHAP value (Alghazzawi et al., 2025):

[S|'(M — |S| - 1)!

oi(f) = M

SC{L--M\{i}

[f(SU{i}) —£(S)] ©)

f(S) is the output of the model when considering only the features in S and f(SU{i}) is the
model’s output when considering feature, I in addition to the features in S. Where M is the
total number of features, S is a subset of features excluding feature I, and |S| indicates the
cardinality of the subset S.

SHAP integration for explainable breast cancer diagnosis

The hybrid BILSTM+CNN model calculates SHAP values, for the temporal features (from
BiLSTM) and spatial features (from CNN). This helps determine the factors that
influenced the models decisions and makes it easier for clinicians to understand the models
predictions. In breast cancer diagnosis, as an example; SHAP can point out regions in an
image or critical moments, in a patients record that influenced whether a diagnosis was
malignant or benign. To enhance interpretability, the SHAP framework was utilized to
explain the predictions of the BILSTM-CNN model. SHAP was implemented using the
SHAP Python library (version 0.41.0), leveraging the KernelExplainer method for feature
attribution. The explainer was initialized with the pre-trained BILSTM-CNN model and a
random subset of 100 training samples to compute Shapley values, thereby quantifying the
contribution of each input feature to the model’s predictions. The analysis focused on the
18 features selected via the Extra Tree Classifier, which were shown to have the highest
relevance for breast cancer diagnosis.

SHAP values were calculated to provide both local and global interpretability. Local
explanations were derived for individual predictions, highlighting the specific features
influencing the classification of a given instance as malignant or benign. Global
explanations were generated to identify the overall importance of features across the
dataset. Visualizations, including summary plots, force plots, and decision plots, were
produced using SHAP’s visualization toolkit and Matplotlib (version 3.5.2). These
visualizations provided actionable insights for clinicians by elucidating the rationale
behind the model’s diagnostic decisions.

To validate the reliability of the SHAP analysis, multiple iterations were performed to
ensure consistency in feature importance rankings. Additionally, the SHAP results were
cross-compared with alternative interpretability techniques, such as Local Interpretable
Model-agnostic Explanations (LIME) and permutation importance, confirming the
robustness of the feature attributions. The SHAP framework’s consistency and theoretical
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robustness make it particularly suitable for the hybrid BILSTM-CNN architecture, which
involves complex interactions between temporal and spatial features.

Applied example
With the help of the available dataset, numerous calculations were carried out to predict
breast cancer diagnoses. Based on Eq. (7), the offered DL hybrid model is well capable to
explain the functions it performs.
In the case of Malignant, the class label is “C1”.
Cl=gixvi+g&Xxv+b
Cl1=09x%x07+0.7x%x06+0.5=1.55
In the case of benign, the class label is “C2”.
C2=g XVi+g&XV,+b
C2=04x02+03x0.2+0.5=0.64
With the sigmoid activation function (8), each label’s likelihood is calculated as follows:
Sigmoid(C;) = 1/1 + ¢ ¥
Sigmoid(Cy) = 1/1 + e > = 0.826
In the same way, activation function (sigmoid) was calculated for the other second class:
Sigmoid(C;) = 1/1 + e~ @
Sigmoid(C,) = 1/1 + e %% = 0.657
Based on this calculation, the C1-Malignant (breast cancer) had the highest probability.
Based on this given data, we can predict that the chance of breast cancer is “C1” (Fig. 5).
The model’s outputs for various feature combinations:
f({F1}) = 0.2, f({F2}) = 0.4, f({F3}) = 0.6, f({F4}) = 0.3, f({F1,F2}) = 0.5,
F({F1,F3}) = 0.7, f({F2, F3}) = 0.8, f({F1, F4}) = 0.45, f({F2, F4}) = 0.65,
f({F3, F4}) = 0.75, f({F1,F2,F3}) = 0.9, f({F1, F2, F4}) = 0.7,
f({F1, F3, F4}) = 0.85, f({F2, F3, F4}) = 0.95.

Calculations:

1. SHAP Value for F1: $F1(f) = [(0.9 — 0.5) + (0.9 — 0.7) + (0.9 — 0.45) + (0.9 — 0.75)
+ (0.9 — 0.65) + (0.9 — 0.3)] /(2* — 2°) % (0.2 4+ 0.4 + 0.6)pF1(f) = [0.4 + 0.2 + 0.45
40.154 0.25 4 0.6]/6 % 1.2¢F1(f) = 2.1/6 * 1.2¢F1(f) = 0.42

2. SHAP Value for F2: ¢F2(f) = [(0.9 — 0.5) 4 (0.9 — 0.8) + (0.9 — 0.45)
+ (0.9 —0.65) + (0.9 — 0.3) + (0.9 — 0.75)] / 6 % 1.2 ¢pF2(f) = [0.4+ 0.1 + 0.45
+0.2540.640.15] / 6% 1.2 ¢F2(f) = 1.95 / 6 % 1.2 pF2(f) = 0.39

3. SHAP Value for F3: ¢F3(f) =[(0.9 — 0.7) + (0.9 — 0.8) + (0.9 — 0.45)
+ (0.9 —10.65) 4+ (0.9 —0.3) + (0.9 — 0.5)] / 6 x 1.2 F3(f) =[0.2 + 0.1 4+ 0.45
+0.25+0.6+0.4] /6% 1.2 pF3(f) =2.0 / 6 x 1.2 ¢F3(f) = 0.4
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Figure 5 Use of the sigmoid function to diagnose breast cancer.
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4. SHAP Value for F4: ¢F4(f) = [(0.9 — 0.5) + (0.9 — 0.6) + (0.9 — 0.7) 4 (0.9 — 0.3)
+ (0.9 —0.45) + (0.9 — 0.5)] / 6% 1.2 ¢FA(f) = [0.4 4 0.3 + 0.2 + 0.6 + 0.45 + 0.4]
/6% 1.2 pF4(f) =2.35 / 6 % 1.2 pF4(f) = 0.47

In this below example (Fig. 6) we can see how SHAP (SHapley Additive exPlanations)
aids in understanding the predictions of a BILSTM + CNN model, for diagnosing breast
cancer cases. This tabulated information showcases how various features contribute to the
models forecast for a scenario and categorizes the outcome as malignant or benign.

The SHAP values in Fig. 6 highlight key features influencing breast cancer diagnosis.
Positive SHAP values indicate malignancy, while negative values suggest benignity. For
malignant cases, tumor size (F1: 0.34, 0.35), shape (F2: 0.35), and irregular borders (F3:
0.37) contribute positively. Conversely, for benign cases, tumor size (-0.15) and borders
(=0.05) have negative SHAP values, reducing malignancy likelihood. Lymph node
involvement (F5: 0.39) strongly signals malignancy, whereas negative values indicate
benignity. This analysis identifies critical diagnostic factors and enhances interpretability
of the model’s decisions.

RESULTS

Addressing RO1: To apply hybrid deep learning (BiLSTM+CNN)
technique and explainable Al to diagnose breast cancer

We optimized the BILSTM-CNN model by systematically testing various configurations
during the experimental phase. Table 3 summarizes the final architecture and
hyperparameters used to achieve the best performance for breast cancer classification. The
model comprises two BiLSTM layers (64 and 128 units, bidirectional), followed by two
convolutional layers (32 filters each, filter size of 7) with ReLU activation. To prevent
overfitting, a dropout layer (rate 0.3) is included, along with a max-pooling layer (pool size
2x2).

The final dense layer employs a sigmoid activation function for binary classification,
enabling the model to differentiate between malignant and benign cases. Training was
conducted for 50 epochs using a batch size of 32, with the Adam optimizer (learning rate
0.001) ensuring efficient gradient descent. This configuration delivered an accuracy of
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F2: SHAP
Value for
Tumor
for Shape
Tumor (irregular,

Size round, etc.)

Sample Prediction Bl
ID SHAP
Value

1 Malignant

2 Benign -0.15 02
3 Malignant 0.35 015
4 Benign -02 01
=] Malignant 0.18 005
6 Benign -0.12 018
i Malignant 0.28 008
8 Benign -0.17 022
L Malignant 0.32 012
10 Benign -0.16 019
11 Malignant 02 003
12 Benign -0.14 021

F3: SHAP Value
for Tumor

(circumscribed,
irregular, etc.)

F4: SHAP
Value for
Single Cell
Nucleoli
(present,
absent)

F5:SHAP
Value for
Lymph Node
Involvement
(yes, no)

Borders

0.37
-0.05 -0.1 -0.05
0.25 01 0.2
-0.15 -0.05 -0.1
0.22 0.12 0.25
-0.08 -0.07 -0.12
0.18 0.15 0.28
-0.06 -0.09 -0.13
0.2 0.11 0.27
-0.07 -0.08 -0.11
0.17 0.13 0.26
-0.09 -0.06 -0.12

Figure 6 Sample entries for different features along with SHAP values.

Full-size K&l DOT: 10.7717/peerj-cs.2806/fig-6

Table 3 Final BILSTM-CNN model configuration.
Layer

Configuration

Input layer

BiLSTM layers
Convolutional layers
Dropout layer

Max pooling layer
Flatten layer

Dense layer (output)
Training parameters

Optimization algorithm

Input size: 569, Input vector size: 18

2 layers, units: 64 and 128 (bidirectional)

2 layers, Filters: 32, filter size: 7; ReLU activation
Dropout rate: 0.3

Pool size: 2x2

Converts feature maps to feature vectors
Sigmoid activation for binary classification
Epochs: 50, batch size: 32

Adam optimizer; learning rate: 0.001

Table 4 Performance comparison of BILSTM-CNN configurations.

Model name Number of filter BILSTM unit Filter-size Accuracy (%) Precision Recall F-score
BILSTM+CNN-(1) 4 8 2 96.0 0.95 0.96 0.95
BILSTM+CNN-(2) 8 12 4 96.8 0.96 0.97 0.96
BILSTM+CNN-(3) 16 16 5 97.2 0.97 0.96 0.97
BILSTM+CNN-(4) 24 20 6 97.5 0.98 0.97 0.98
BILSTM+CNN-(5) 32 24 7 98.0 0.98 0.98 0.98
BILSTM+CNN-(6) 32 30 8 98.3 0.98 0.98 0.98
BILSTM+CNN-(7) 40 35 9 98.5 0.99 0.98 0.99
BILSTM+CNN-(8) 50 40 10 98.8 0.99 0.98 0.99
BILSTM+CNN-(9) 64 45 11 99.0 0.99 0.99 0.99
BILSTM+CNN-(10) 64 50 12 99.3 0.99 0.99 0.99
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Table 5 Impact of feature selection on BILSTM-CNN performance.

Model assessments Without FS (%) With FS (%)
Proposed model accuracy 95 99.3
Proposed model precision 96 99

Proposed model re-call 96 99

Proposed model F-score 96 99

Model accuracy

1.00 1 = Train A \ \
- o

0.98 1

0.96 1

Accuracy
o
w0
-
1

0.92 1

0.90 1

0.88 1

T T T T T

0 20 40 60 80 100
Epoch

Figure 7 Accuracy vs. epochs—convergence of model training.
Full-size K&] DOT: 10.7717/peerj-cs.2806/fig-7

99.3%, precision of 99%, recall of 99%, and F1-score of 99%, as detailed in the subsequent
performance analysis.

There were ten different BILSTM-CNN models created by combining the parameters in
Table 4 regarding the no. of filters, filter Size, and the unit of BiLSTM layers. BILSTM-
CNN-(10), a model with 64-filters, 12 filter-size, and 50-BiLSTM units, surpassed all other
models by accuracy of 99.3%. The number of BiLSTM units impacted the amount of
training time required for the model. The BILSTM-CNN-(10) model exceeded the others
with accuracy 99.3%, precision = 0.99, recall = 0.99, and F1 score = 0.99.

A comparison of Table 5 illustrates how feature selection increases model efficiency over
not using it. As a result of the investigation, the deep learning model appears to be capable
of predicting BC in a variety of real-life situations.
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Figure 8 Loss vs. epochs—error reduction during training.
Full-size k] DOT: 10.7717/peerj-cs.2806/fig-8

To examine the effectiveness of our proposed model, the accuracy vs. epochs and Loss
vs. epochs plots is illustrated in Figs. 7 and 8, respectively.

Results analysis for explainable Al (XAl) module
SHAP provides both global and local explanations of feature contributions to the
BiLSTM-CNN model’s predictions, enabling clinicians to understand the rationale behind
diagnostic outcomes (see Fig. 9). As shown in Fig. 9, perimeter_worst = 119.4,
smoothness_worst = 0.155, and area_worst = 915.3 are the most important feature values
influencing the model’s decision that the patient has breast cancer. Features like
perimeter_mean = 107.1 influenced the model’s decision that the patient does not have
breast cancer.

Global predictions from the model, visualized in Fig. 10, use SHAP values to determine
a base threshold of —0.1734. A patient is classified as having the disease if the total value
exceeds —0.1734 and as disease-free if it falls below this threshold.

At diverse values, the impact of attributes on the prediction is visualized using a SHAP
summary plot (Fig. 11). The attributes or features that add more value to the model than
the bottom values are on top. Features like perimeter_worst dominate the predictions.
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Figure 9 Local SHAP plot—feature contributions for a single prediction.
Full-size K&] DOT: 10.7717/peerj-cs.2806/fig-9

Figure 10 Global SHAP plot—overall feature importance.
Full-size E&] DOI: 10.7717/peerj-cs.2806/fig-10

Addressing RO2: Considering similar studies, how efficient are

other deep learning models for breast cancer detection compared to
traditional ML classifiers?

The proposed BILSTM-CNN model was contrasted with various traditional ML and DL
classifiers. Their performances are assessed based on the F1-score, recall, accuracy, and
precision. With over 97% accuracy, SVM outperformed the other machine learning
models. Based on both the suggested Hybrid DL model and traditional ML classifiers, an
overview of the results is shown in Table 6.
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Figure 11 SHAP summary plot—ranked feature influence on predictions.
Full-size K&l DOT: 10.7717/peerj-cs.2806/fig-11

Additionally, the BILSTM-CNN model was compared to standalone DL architectures
such as CNN, RNN, and LSTM. The results are summarized in Table 7:

ROC curve analysis
The evaluation of the proposed BiLSTM-CNN model included area under the receiver
operating characteristic curve (AUC-ROC) analysis to assess its classification performance
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Table 6 BiLSTM-CNN vs. traditional ML models for breast cancer prediction.

Metric SVM Naive Bayes (NB) K-NN Decision Tree (DT) Random Forest (RF) Proposed (BiLSTM-CNN)
Accuracy (%) 94 91 90 87 93 99.3

Precision (%) 94 89 88 85 92 99

Recall (%) 92 90 87 83 91 99

F1-score (%) 93 90 88 84 92 99

Table 7 Performance comparison of BILSTM-CNN with CNN, RNN, LSTM, and BiLSTM.

Model CNN RNN LSTM BILSTM Proposed (BiLSTM-CNN)

Accuracy (%) 91.2 92.9 85.9 88.5 99.3

Precision (%) 94 93 85 87 99

Recall (%) 89 93 87 87 99

Fl-score (%) 91 93 85 87 99
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Figure 12 ROC curve.

Full-size K&l DOT: 10.7717/peerj-cs.2806/fig-12

comprehensively. The AUC-ROC metric quantifies the model’s ability to distinguish

between cancerous and non-cancerous cases across varying threshold values. For the
BiLSTM-CNN model, an AUC-ROC value of 1.00 was achieved, indicating exceptional
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Table 8 Overall performance metrics for the BILSTM-CNN model.

Metric Value (%)
Accuracy 99.3
Precision 99.0
Recall (Sensitivity) 99.0
F1 score 99.0
AUC-ROC 100.0

Table 9 10-fold cross-validation results for the BILSTM+CNN model.

Model MA (%) SD (MA) MP (%) SD (MP) MR (%) SD (MR) F1IM (%) SD (F1M)
Random Forest (RF) 94 0.04 94 0.05 93 0.03 93 0.04
BiLSTM 92 0.06 91 0.07 91 0.04 90 0.07
CNN 95 0.03 94 0.04 95 0.02 94 0.03
Proposed (BiLSTM-CNN) 97.8 0.02 97 0.03 97 0.02 97 0.02

diagnostic accuracy and robustness in classification. The ROC curve (Fig. 12) illustrates the
relationship between true positive rate (sensitivity) and false positive rate, demonstrating
the model’s ability to minimize misclassifications effectively, even in cases of class
imbalance.

Table 8 presents the model’s overall performance, highlighting its high precision, recall,
F1-score, and accuracy:

Cross-validation

To evaluate the performance and generalizability of the BILSTM-CNN model, a 10-fold
cross-validation approach was applied. This method ensured that the dataset was
systematically split into training and validation subsets across multiple iterations, reducing
potential biases and improving robustness.

The BiLSTM-CNN model achieved consistently high performance across all
cross-validation folds, with an average accuracy of 97.8% and an F1-score of 97%,
demonstrating its stability and reliability in breast cancer classification.

Table 9 presents the mean and standard deviation (SD) values for key evaluation
metrics (macro accuracy, macro precision, macro recall, and F1-mean), highlighting the
model’s performance consistency across the validation folds.

The low standard deviation (SD) values across all metrics indicate that the
BiLSTM-CNN model performed consistently well across different folds, reducing the
likelihood of overfitting or underfitting.

Impact of data balancing on model performance

To assess the effect of data balancing on model performance, the BILSTM-CNN model was
evaluated on both the original unbalanced dataset and the balanced dataset (created using
random oversampling). The impact of this balancing process is summarized in Table 10.
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Table 10 Performance metrics before and after data balancing.

Metric Unbalanced dataset (%) Balanced dataset (%)
Accuracy 94.4 99.3
Precision 94.0 99.0
Recall 94.0 99.0
F1-score 94.0 99.0

Table 11 Performance of ablation models compared to the full model.

Model Feature selection Data balancing BiLSTM CNN Accuracy (%) Precision (%) Recall (%) Fl-score (%) % Change (Accuracy)

Model 1 X
Model 2 v
Model 3 X
Model4 v
Model 5
Full model v/

v

OSSN X x

v v 97.2 97.0 97.0 97.0 =21
v v 96.5 96.0 97.0 96.0 -2.8
v v 95.8 96.0 96.0 96.0 =35
X v 94.4 94.0 94.0 94.0 -4.9
v X 94.7 95.0 95.0 95.0 -4.6
v v 99.3 99.0 99.0 99.0 0.0

The results indicate a significant improvement in all performance metrics after applying
data balancing. The recall score increased from 94% to 99%, demonstrating the model’s
enhanced ability to correctly classify malignant cases. F1-score, accuracy, and precision
also improved, showing better overall classification reliability.

Addressing RO3: To assess the efficiency of the proposed model
using ablation study

To assess the efficiency of the BILSTM-CNN model, an ablation study was conducted by
systematically removing key components—BiLSTM, CNN, feature selection, and data
balancing—and evaluating the impact on model performance. The results, summarized in
Table 11, demonstrate how each component contributes to classification accuracy,
precision, recall, and F1-score.

The removal of CNN and BiLSTM layers resulted in the most significant performance
drop, with accuracy decreasing by 4.6% and 4.9%, respectively. Feature selection and data
balancing also played essential roles, as their exclusion led to lower precision and recall
scores. These results confirm that the full BILSTM-CNN model achieves optimal
performance by leveraging all four key components.

The performance of the proposed BILSTM-CNN hybrid model was evaluated using an
ablation study to assess the contribution of individual components, including feature
selection, data balancing, BILSTM, and CNN. The results are summarized in Table 11,
which presents the accuracy, precision, recall, F1-score, and the percentage change in
accuracy for different model configurations.
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Error analysis

To ensure the reliability of the BILSTM-CNN model, a detailed error analysis was
conducted, focusing on false positives (FP) and false negatives (FN). The cross-validation
strategy confirmed the model’s stability, with an average accuracy of 97.8% (+0.02) and
F1-score of 97% (+0.02).

A breakdown of misclassified cases revealed that false positives occurred when benign
cases were misclassified as malignant, often due to overlapping feature values. In contrast,
false negatives arose when malignant tumors exhibited feature values similar to benign
cases, which could delay critical treatment.

Additionally, the ROC curve and AUC analysis confirmed the model’s ability to
distinguish between classes. The AUC value of 1.00 demonstrated near-perfect
classification across different threshold values, further validating the model’s diagnostic
efficiency.

DISCUSSION

Addressing RO1: Model performance and architecture

The results demonstrate that the BILSTM-CNN hybrid model effectively captures the
complexities of breast cancer classification. By combining CNN’s feature extraction
capabilities with BILSTM’s sequential dependency modeling, the architecture delivers high
accuracy (99.3%) and F1-score (99%).

Explainability through SHAP

The integration of SHAP provides interpretable predictions, making the model clinically
valuable. Features such as perimeter_worst and area_worst align with known clinical
factors, demonstrating the model’s reliability in diagnostic decision-making.

Addressing RO2: Comparative analysis

When compared to traditional ML models like SVM and standalone DL architectures like
CNN, the hybrid BiLSTM-CNN model consistently outperformed these approaches, as
highlighted in Tables 4 and 5. Traditional ML methods like SVM, while accurate, lacked
the robustness and interpretability offered by the hybrid approach. DL architectures like
CNN and LSTM performed relatively poorly due to their inability to fully capture spatial
and temporal feature dependencies.

ROC curve analysis

The ROC curve analysis confirms the high sensitivity and specificity of the BILSTM-CNN
model, which is critical for medical diagnostics where false negatives must be minimized.
The proximity of the ROC curve to the top-left corner further reinforces the model’s ability
to make accurate predictions, reducing the risk of misclassification.

The AUC-ROC score of 1.00 is particularly significant, as it outperforms many
traditional machine learning models used for breast cancer diagnosis. While metrics such
as accuracy, precision, and recall provide valuable insights, AUC-ROC offers a more
holistic measure of the model’s performance across different classification thresholds.
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Additionally, the ROC curve visualization enhances interpretability, making it easier for
clinicians and researchers to understand the model’s decision-making process. The
integration of AUC-ROC analysis strengthens the study’s evaluation framework and
further validates the BILSTM-CNN model’s suitability for real-world medical applications.

Cross-validation

Cross-validation results confirm the robustness of the BILSTM-CNN model,
outperforming traditional ML and deep learning classifiers. Its high macro accuracy
(97.8%) and low standard deviation (0.02) indicate stable performance across data splits.
Compared to random forest and standalone BiLSTM or CNN models, BILSTM-CNN
achieved superior accuracy and F1-score, with random forest showing higher variability
(SD = 0.04). The BiLSTM component captures temporal dependencies, while CNN
enhances feature extraction, boosting classification performance. Low SD values confirm
generalizability, making BiLSTM-CNN a reliable tool for breast cancer diagnosis. Future
validation on multi-center datasets can further enhance clinical applicability.

Impact of data balancing on model performance

The data balancing process significantly enhanced the BILSTM-CNN model’s
performance by addressing class imbalance, a common challenge in medical datasets.
Initially, the model exhibited bias toward benign cases, resulting in a higher false-negative
rate. After balancing, recall improved from 94% to 99%, reducing missed malignant cases,
while the F1-score increased to 99%, ensuring a better precision-recall trade-off. Model
accuracy rose from 94.4% to 99.3%, highlighting the impact of balancing on classification
reliability. Clinically, minimizing false negatives is critical in breast cancer diagnosis to
prevent delayed treatment. These findings emphasize the necessity of data balancing in
Al-driven healthcare models.

Addressing RO3: To assess the efficiency of the proposed model
using ablation study

The ablation study confirms the importance of BiLSTM, CNN, feature selection, and data
balancing in optimizing model performance. Removing BiLSTM and CNN reduced
accuracy by 4.9% and 4.6%, respectively, highlighting their critical roles. Feature selection
improved precision by eliminating irrelevant features, while data balancing enhanced
recall, reducing false negatives. These findings validate the BILSTM-CNN hybrid model,
achieving 99.3% accuracy and reinforcing the need for class imbalance handling in medical
Al Future work can explore attention mechanisms or transformer-based models for
further improvement in breast cancer detection.

Error analysis

The error analysis underscores the importance of minimizing false negatives, as
misclassifying malignant cases as benign poses significant clinical risks. Although the
model exhibited low error rates (FP = 1.2%, FN = 1.3%), the presence of false negatives
highlights the need for continuous refinement. Enhancing feature selection techniques and
incorporating attention mechanisms could further reduce misclassification.
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Additionally, the high AUC-ROC value (1.00) confirms the model’s strong sensitivity
and specificity, reinforcing its suitability for real-world breast cancer diagnosis. Future
work should explore external dataset validation and adaptive learning strategies to further
improve diagnostic accuracy and reduce classification errors in diverse clinical settings.

Threats to validation

Threats to the validation of the proposed hybrid BiILSTM-CNN model for breast cancer
diagnosis must be critically examined. The reliance on the Wisconsin Diagnostic Breast
Cancer (WDBC) dataset, despite its widespread use, introduces concerns regarding dataset
homogeneity, potentially restricting the model’s generalizability to diverse clinical
populations. Additionally, the model’s high performance metrics, achieved through
stratified sampling and 10-fold cross-validation, may signal overfitting, given the dataset’s
limited size and the model’s complexity. The absence of external validation using
independent datasets further constrains the assessment of robustness and applicability in
real-world scenarios. Moreover, the study’s exclusive reliance on SHAP for model
explainability may not fully capture all interpretability dimensions, limiting the depth of
insights provided to clinicians. Lastly, the model’s dependence on high-performance
computational resources raises concerns about its replicability in resource-constrained
settings. Addressing these challenges is crucial for ensuring the model’s reliability and
clinical utility.

CONCLUSIONS AND FUTURE WORK

This study introduced a novel hybrid BILSTM-CNN model for breast cancer diagnosis
using tabular data, achieving impressive performance metrics, including accuracy of
99.3%, precision of 99%, recall of 99%, and an F1-score of 99%. By integrating BiLSTM for
capturing sequential dependencies and CNN for extracting complex feature interactions,
the model outperformed traditional machine learning and standalone deep learning
approaches. Additionally, XAI techniques, specifically SHAP, were employed to provide
interpretable insights, allowing clinicians to better understand and trust the model’s
predictions. The dataset was split into training, validation, and testing subsets using a
stratified sampling strategy to ensure consistent class distribution across subsets and
maintain methodological rigor.

Limitations

Despite these promising results, several limitations must be acknowledged to provide a
balanced interpretation of the study. The model was trained and evaluated on the
Wisconsin Diagnostic Breast Cancer (WDBC) dataset, which is relatively small and
homogeneous, thereby limiting the generalizability of the findings to diverse clinical
settings. Furthermore, a single feature selection technique, Extra Tree Classifier, was used,
which, while effective, might not be optimal for other datasets or scenarios. The study also
relied solely on SHAP for explainability, whereas integrating additional techniques such as
LIME or permutation importance could provide complementary perspectives. Moreover,
the BIiLSTM component utilized raw embeddings rather than pre-trained embeddings
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such as GloVe, word2vec, or fastText, which could enhance feature extraction and improve
model generalization. Finally, the architecture was limited to a BILSTM-CNN
combination, and the potential of alternative hybrid deep learning models remains
unexplored.

Future Work

To address these limitations and build on the findings, future research should focus on
several key areas:

1) Dataset diversity and external validation: While the WDBC dataset serves as a
foundational resource for breast cancer diagnosis studies, its limited size and scope
constrain the generalizability of the proposed model. Expanding the dataset to include
larger and more diverse samples, such as multi-center clinical data, would enable more
comprehensive validation and improve the model’s adaptability to diverse clinical
settings. Incorporating external validation across independent datasets is critical to
establishing the model’s reliability in real-world applications

2) Feature selection and pre-trained embeddings: Exploring alternative and
ensemble-based feature selection methods, such as mutual information or principal
component analysis, could refine feature representation and improve model
performance. Additionally, incorporating pre-trained embeddings like word2vec,
GloVe, or fastText into the BiLSTM component may enhance feature extraction and
improve overall generalization.

3) Explainability techniques: Complementing SHAP with additional explainability
methods, such as LIME or integrated gradients, would provide diverse perspectives on
model interpretability and further strengthen clinicians’ trust in the system.

4) Alternative architectures: Future studies should investigate alternative hybrid deep
learning architectures, such as attention-based mechanisms or transformer models, to
further improve classification accuracy and interpretability. These architectures may
provide better performance and more meaningful representations of complex data.

5) Integration into clinical workflows: Lastly, integrating the model into real-world
clinical workflows and evaluating its usability, effectiveness, and scalability in practical
diagnostic settings would provide valuable insights into its clinical utility. Testing across
diverse healthcare systems and patient demographics will enhance the model’s
reliability and utility as a robust tool for breast cancer diagnosis.

By addressing these aspects, future research will build on the foundation laid by this
study and significantly contribute to the development of Al-driven diagnostic systems in
healthcare.
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