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ABSTRACT
This article introduces Multimodal Adaptive Patch Embedding with Vision
Transformer (MAPE-ViT), a novel approach for RGB-D scene classification that
effectively addresses fundamental challenges of sensor misalignment, depth noise,
and object boundary preservation. Our framework integrates maximally stable
extremal regions (MSER) with wavelet coefficients to create comprehensive patch
embedding that capture both local and global image features. These MSER-guided
patches, incorporating original pixels and multi-scale wavelet information, serve as
input to a Vision Transformer, which leverages its attention mechanisms to extract
high-level semantic features. The feature discrimination capability is further
enhanced through optimization using the Gray Wolf algorithm. The processed
features then flow into a dual-stream architecture, where an extreme learning
machine handles multi-object classification, while conditional random fields (CRF)
manage scene-level categorization. Extensive experimental results demonstrate the
effectiveness of our approach, showing significant improvements in classification
accuracy compared to existing methods. Our system provides a robust solution for
RGB-D scene understanding, particularly in challenging conditions where traditional
approaches struggle with sensor artifacts and noise.

Subjects Artificial Intelligence, Computer Vision, Neural Networks
Keywords Scene classification, Patterns recognition, Multimodal, Vision Transformer, Deep
learning

INTRODUCTION
In the field of computer vision, scene understanding involves analyzing images or videos to
interpret the visual environment. To achieve this, various techniques and algorithms have
been developed to recognize and categorize entities within a scene and understand the
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spatial relationships between those entities. Scene understanding plays a pivotal role in
diverse applications, including autonomous vehicles (Chen & Huang, 2017), context-aware
augmented reality (Tahara, Ushiku & Harada, 2020), surveillance and security (Calavia
et al., 2012), and agriculture (Tsouros, Bibi & Sarigiannidis, 2019). However, despite the
advancements in this area, numerous challenges persist, such as variations in scale and
viewpoints, high computational demands, and issues related to generalization and
overfitting. Specifically, using RGB-D data introduces additional complexities,
including limitations of depth sensors, occlusions, data gaps, and misalignments between
depth and color images. These challenges make accurate scene representation and analysis
a difficult task.

RGB-D scene classification has advanced significantly in recent years, yet most existing
methods continue to rely heavily on convolutional neural networks (CNNs) and other
conventional paradigms. As demonstrated by Eitel et al. (2015) and Song, Lichtenberg &
Xiao (2017), Ahmed et al. (2024) CNN approaches are effective at extracting spatial
features from RGB-D data. However, such methods often struggle with the complexities of
multi-modality and intricate scene structures. One of the primary issues is that CNNs
frequently fail to properly align depth and RGB channels, especially when affected by
background noise, occlusions, or misalignment caused by sensor shifts. Additionally,
CNNs prioritize local or global features without effectively balancing the two. This can be
problematic in tasks like scene classification, where understanding the relationships
between objects in space and preserving object boundaries are crucial (Jia et al., 2021).
Research has further indicated that current methods inadequately address challenges
related to sensor misalignment, noise distortion, and multi-modal data fusion, especially
when preserving the structural integrity of objects within the scene (He et al., 2022).
Despite their success in capturing long-range dependencies, attention-based models face
challenges in efficiently processing high-resolution RGB-D data. When handling dense
spatial information, these models often struggle with computational scalability and
memory constraints. Sequence models, while effective for temporal data, have shown
limitations in capturing spatial hierarchies and maintaining local feature consistency in
RGB-D fusion tasks (Silberman et al., 2012a, 2012b; Zhang, Li & Zhang, 2020; Ahmed &
Jalal, 2024a).

Current transformer-based approaches for RGB-D scene understanding face
several key challenges. First, their self-attention mechanisms, while powerful for modeling
global relationships, often struggle to effectively balance local and global feature
representation (Meena, Kumar & Yadav, 2024). Second, the fixed-size patch embedding
commonly used in Vision Transformers can lead to information loss at object
boundaries and struggle with varying scales of objects in scenes (Li et al., 2023). Third,
existing attention-based models often fail to effectively handle the unique
characteristics of depth information, particularly in cases of sensor noise and missing data
(Park et al., 2023).
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To address these limitations, we propose a novel method that builds upon recent
advancements in scene understanding. Our key contributions can be summarized as
follows:

. We propose an enhanced Vision Transformer architecture incorporating masked
pre-training techniques fromMAPE-ViT and adaptive patch integration, enabling better
feature learning and scene understanding across different scales.

. We introduce a novel multi-modal feature extraction approach that combines wavelet
coefficients with maximally stable extremal regions (MSER), significantly improving
both local feature detection and global context understanding in scene analysis.

. We develop an efficient classification framework that integrates an extreme learning
machine (ELM) with a Grey Wolf Optimizer (GWO) for optimal feature selection,
enhancing the model’s accuracy and computational efficiency.

. We demonstrate state-of-the-art performance on both SUN RGB-D and NYU v2
datasets through extensive experimentation, validating the effectiveness of our proposed
architecture in indoor scene understanding tasks.

. We provide comprehensive ablation studies and analyses that validate the effectiveness
of each component in our proposed framework, offering insights into the contribution of
each architectural decision.

The rest of the article is structured as follows: The “Related Work” section represents
previous work in this field. “Materials and Methods” covers the proposed methodology,
including the stages of pre-processing, RGB and depth image fusion, segmentation, feature
extraction, feature-level fusion, and classification. “Results” compares the experimental
results with conventional object segmentation, detection, and classification methods. In
“Conclusions” we conclude with some key insights and future directions.

RELATED WORK
In recent years, there’s been a lot of progress in detecting and classifying objects in RGB
images. Various methods are being used by moving from traditional machine learning to
advanced deep learning models. For example, convolutional neural networks (CNN), You
Only Look Once (YOLO), Faster region-based convolutional neural network (R-CNN),
and solid state drive (SSD) are the most widely used and are well-known for object
recognition performance. Meanwhile architectures such as ResNet, Inception, and
EfficientNet have proven quite effective for classification. Lately, attention-based models
like Vision Transformers have become quite popular, offering new ways to understand
images. Researchers have also explored ensemble methods and integrated semantic
segmentation with object detection, as seen in Mask R-CNN, to enhance scene
comprehension (Gupta et al., 2014; Al Mudawi et al., 2024; Zhou et al., 2022a, 2022b).

From Table 1, it is clear that multi-object detection and scene classification is still a
challenging task for RGB-D images. The comprehensive literature review presented above
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Table 1 Literature review for existing scene classification models.

State-of-the-
art models

Main contributions Limitations

Ikeda &
Ikehara
(2023)

In this article for RGB-D images they propose the saliency and edge
reverse attention (SERA) technique, which combines saliency and
edge feature fusion with reverse attention mechanisms. The
researchers also present the multi-scale interactive module
(MSIM) to capture global image information across various
scales.

Although the model achieved good accuracy, it considered
limited static activities such as drinking glass and pouring water.

Xiong, Yuan
& Wang
(2021)

This article proposes a framework for RGB-D scene recognition
that adaptively selects key local features to address spatial
variability in scene images. A differentiable local feature selection
(DLFS) module is used for extracting and selecting image features
connected to the scene at both theme and object levels, helping in
utilizing the relationship between RGB and depth modalities. A
variation mutual information maximization loss is proposed to
ensure the selection of discriminative features. The DLFS module
is also scalable to different feature sizes, improving overall
accuracy.

The construction of the multi-modal graph can be
computationally expensive, especially for high-resolution
inputs, and the separate CNN backbones for RGB and depth
may not fully leverage the complementary nature of the
modalities during early feature extraction.

Couprie et al.
(2014)

This article centers on using a multiscale convolutional neural
network to learn features directly from RGB and depth images for
indoor scene segmentation. The network processes the input at
multiple scales using a Laplacian pyramid representation and is
trained end-to-end to predict pixel-wise semantic labels for
indoor scenes. As a post-processing step, superpixels are
employed to smooth the network predictions. The authors utilize
temporally consistent superpixels for video sequences to improve
frame-to-frame consistency in the segmentation results.

The system is only evaluated on a single dataset NYU Depth V2
which is one main concern about the model’s generalization on
indoor environment.

Zeng et al.
(2019)

This article involves a multi-modal deep neural network and DS
evidence theory for RGB-D object recognition. It preprocesses
RGB and depth images and train two convolutional neural
networks. Using a quadruplet samples-based objective function, it
fine-tunes network parameters for multi-modal feature learning.
Two sigmoid SVMs provide probability classification results,
fused using DS evidence theory to exploit discriminative and
correlation information between modalities.

The model is computationally expensive as it uses multiple neural
networks. Moreover, the model’s effectiveness depends on the
quality and quantity of RGB-D data.

Chen et al.
(2021)

The proposed RD3D model for RGB-D salient object detection
introduces a novel approach using 3D convolutional neural
networks. It performs pre-fusion of RGB and depth modalities in
an inflated 3D encoder, followed by in-depth feature fusion in a
3D decoder equipped with rich back-projection paths (RBPP).
This progressive fusion strategy ensures effective integration of
RGB and depth streams, enhancing detection accuracy.

The model is computationally expensive, using a 3D
convolutional network in encoders and decodes. also, it requires
high memory usage. The model uses fix temporal dimensions,
which can limit model scalability to other tasks

Jin et al.
(2021)

The proposed complementary depth network (CDNet) integrates
RGB and depth streams through four stages: employing VGG
encoders for feature extraction, estimating informative depth
maps to enhance saliency detection, dynamically fusing depth
features based on saliency potential, and employing a two-stage
cross-modal fusion scheme. CDNet utilizes original depth maps
with high saliency for training and enhances them with estimated
depth maps for better performance in RGB-D salient object
detection (SOD). This approach aims to leverage both high-level
depth features for object localization and low-level features for
edge details, improving overall SOD accuracy.

CDNet relies on accurate initial depth maps for effective feature
fusion, struggling when maps are of low quality, limiting its
predictive capability. Its simplistic depth estimation and
reliance on existing RGB-D data hinder robustness in
real-world scenarios
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Table 1 (continued)

State-of-the-
art models

Main contributions Limitations

Rafique et al.
(2022)

The article proposes a novel multi-object detection and scene
recognition model that segments and analyzes objects in RGB
and depth images using CNNs. Deep CNN, DWT, and DCT
features are extracted from segmented objects and fused in
parallel. A genetic algorithm optimizes feature selection for
neuro-fuzzy-based object detection and recognition. Object-to-
object relations are evaluated via probability scores, facilitating
scene label prediction with a decision tree.

The model’s heavy reliance on pre-trained CNN models may
limit its ability to generalize to novel object types or scenes not
represented in the training data.

Chen, Li & Su
(2019)

The proposed model adopts a stage-wise training approach to
bridge the gap between RGB and depth data distributions and
address the scarcity of RGB-D training samples. It initially trains
separate RGB-induced and depth-induced saliency detection
networks, then combines them into a multi-path, multi-scale,
multi-modal fusion network (MMCI net). This approach
leverages shared architecture and parameter initialization to
enhance model robustness and mitigate overfitting risks, utilizing
the same training dataset across all stages for comprehensive
learning.

The method relies on a stage-wise training process, where the
RGB and depth networks are trained separately before being
combined. This may not fully leverage the complementary
information between modalities during the initial training
stages

Zhou et al.
(2023)

The BCINet model addresses the limitation of integrating
higher-level contextual information with lower-level features by
introducing a bilateral cross-modal interaction module (BCIM)
to bilaterally fuse complementary cues from RGB and depth data,
as well as a hybrid pyramid dilated convolution module (HPDC)
to capture diverse contextual information along both spatial
directions. Additionally, a context-guided module (CGM) is
proposed to progressively refine segmentation by transmitting
higher-level contextual information to lower-level features.

The BCIM and the hybrid pyramid dilated convolution module
HPDC introduce additional computational overhead, which
may increase the computational complexity of the model. This
could potentially impact the model’s efficiency and inference
speed.

Ma et al.
(2024)

Adjacent-scale multimodal fusion network (ASMFNet) is a
specialized semantic segmentation network for remote sensing
data that excels in multimodal feature fusion through its
adjacent-scale interaction mechanism. The network’s design
centers around two key components: the hierarchical scale
attention (HSA) module, which processes features at different
abstraction levels to understand object-context relationships, and
the adaptive modality fusion module, which intelligently
combines different sensor modalities using pixel-level spatial
weights. Through feature concatenation and filtering, the
network evaluates modality importance and integrates
cross-modal information effectively, while maintaining
computational efficiency.

The model’s performance and efficiency are directly tied to how
well it can extract multiscale features, suggesting that poor
feature extraction could significantly impact results. Moreover,
the lack of global modeling capabilities, indicating the model
might struggle with capturing long-range dependencies or
global scene understanding.

Zhou et al.
(2022c)

Multi-task attention network (MTANet) demonstrates significant
advantages over other multi-task learning (MTL) models in
medical image analysis, particularly through its innovative
attention mechanisms. Unlike traditional MTL approaches that
often struggle to balance local and global feature extraction,
MTANet employs a reverse addition attention module to
enhance segmentation precision by effectively fusing global and
boundary cues from high-resolution features.

Although the attention mechanisms in MTANet enhance feature
extraction, they may still encounter challenges in capturing
long-range dependencies effectively, particularly in complex
medical images with significant variability in lesion shapes and
sizes.

(Continued)
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Table 1 (continued)

State-of-the-
art models

Main contributions Limitations

Wan et al.
(2023)

MFFENet, or the multiscale feature fusion and enhancement
network, is designed for accurately parsing RGB-thermal urban
road scenes. It comprises two encoders that extract features from
RGB and thermal images, followed by a feature fusion layer that
integrates these multi-scale features. This architecture aims to
enhance the robustness of scene parsing, particularly in
challenging conditions where traditional methods may struggle.

MFFENet may struggle in extreme weather conditions or varying
lighting scenarios, affecting the quality of RGB and thermal
images. This sensitivity can lead to inaccuracies in scene parsing
when the environmental context changes significantly.

Zhou et al.
(2022c)

The frustum-range networks (FRNet) method aims to restore
contextual information in range images by leveraging
corresponding frustum LiDAR point clouds. It employs a frustum
feature encoder to extract per-point features within the frustum
region, preserving scene consistency for point-level predictions. A
frustum-point fusion module hierarchically updates the per-point
features, allowing each point to capture more surrounding
context from the frustum features. Lastly, a head fusion module
combines features from different levels to make the final semantic
prediction. By fusing range image and LiDAR data, FRNet can
effectively incorporate contextual information for improved
scene understanding.

The 3D-to-2D projection process can introduce corrupted
contextual information, negatively impacting the segmentation
quality. This loss of context can lead to inaccuracies in
identifying and classifying objects within the scene.

Weng et al.
(2024)

The bimodal fusion rectification network (BFRNet) features a
dual-branch architecture for end-to-end semantic segmentation.
Its channel and spatial fusion rectification (CSFR) module
integrates multimodal features across dimensions. The edge
fusion refinement (EFR) module enhances edge feature extraction
using bimodal interactive attention, reducing edge loss from
single modalities. Lastly, the multiscale feature fusion (MSFF)
module combines features from CSFR and EFR for robust
multiscale outputs, showcasing improved performance in
multimodal data utilization.

The number of pixels representing the background often far
exceeds those representing foreground objects. This imbalance
can lead to difficulties in training the model effectively, as it may
become biased towards predicting the background more
frequently than the foreground, especially for smaller or less
frequent object.

Zhou et al.
(2022c)

Cross-layer interaction and multiscale fusion network (CIMFNet)
offers a multimodal fusion module that explores the similarities
and differences between features from both modalities, ensuring a
more comprehensive fusion process. This method introduces
hierarchical feature interactions by acknowledging the limitations
of traditional down sampling operations such as pooling and
striding, which can improve feature representativeness but often
lead to the loss of spatial details and segmentation errors. This
strategy effectively mitigates the adverse effects of downsampling
by preserving essential spatial information. Furthermore,
implementing a two-way interactive pyramid pooling module
allows for the extraction of multiscale contextual features, guiding
the feature fusion process and resulting in improved accuracy in
segmentation tasks.

The model contends with the high dimensionality of remote
sensing data, which can include multi-spectral and
hyperspectral images. This complexity can complicate feature
extraction and increase computational demands, potentially
leading to slower processing times and reduced efficiency.

Li et al.
(2024)

This article presents a unified masked image modeling (MIM)
framework for learning representations from multimodal and
multi-seasonal remote sensing data. It integrates multimodal data
using a concat-style strategy and handles seasonal variations via a
siamese network. A temporal-Multimodal (TM) fusion block
enhances feature fusion during pretraining. The model follows a
multi-stage pretraining strategy, transitioning from unimodal to
multimodal and finally to seasonal-multimodal learning for
comprehensive feature extraction.

The model’s performance may degrade under extreme weather
conditions or when applied to very high-resolution satellite
data. While it supports multimodal data integration,
incorporating additional sensor types could further enhance its
capabilities.
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reveals several critical research gaps in existing RGB-D scene understanding approaches.
Current methods like CDNet and BCINet struggle with effective RGB-D fusion,
particularly in handling sensor misalignment and noise. While models like Multi-task
attention network (MTANet) and multi-modal feature fusion network (MFFNet) attempt
to address this through attention mechanisms, they still face challenges in preserving
structural integrity during fusion, especially at object boundaries. Current methods
predominantly use fixed-size processing units (convolutional kernels or transformer
patches), limiting their ability to effectively handle varying object scales. While models like
saliency and edge reverse attention (SERA) and differentiable local feature selection
(DLFS) attempt to address this through multi-scale processing, they still struggle with
dynamic scene compositions. Existing architectures often fail to strike an optimal balance
between local and global feature representation. While attention-based models excel at
capturing global relationships, they struggle with local feature consistency. These gaps
highlight the need for a more comprehensive approach that can effectively balance feature
quality, and robustness while maintaining strong performance across varying scales and
conditions. Our proposed MAPE-ViT framework aims to address these limitations
through its novel integration of adaptive patch embedding, wavelet coefficients, and MSER
regions.

MATERIALS AND METHODS
Figure 1 shows the structural diagram of our proposed model for scene understanding by
combining RGB and depth data. Initially, RGB and depth images undergo preprocessing to
enhance quality and remove noise. The preprocessed images are fused using our Fusion
Model, combining complementary information from both modalities for efficient

Table 1 (continued)

State-of-the-
art models

Main contributions Limitations

Wu, Hong &
Chanussot
(2022)

The article proposes a novel CNN-based framework for
multimodal remote sensing data classification, integrating
optical, SAR, and LiDAR data through a hybrid early-late fusion
strategy to leverage complementary features. It achieves state-of-
the-art accuracy on benchmark datasets, demonstrating
robustness across diverse environments and sensor conditions.
The architecture incorporates resource-efficient designs, such as
lightweight subnetworks and data augmentation, enhancing
scalability for real-world applications while addressing challenges
like limited labeled data and computational constraints.

The model’s computational complexity and reliance on large,
co-registered datasets limit practicality in resource-constrained
settings. Performance may degrade with domain shifts and
misaligned modalities, and the fusion strategy might not fully
exploit cross-modal correlations.

Hong et al.
(2023)

The article introduces the C2Seg dataset, a multimodal remote
sensing benchmark designed for cross-city semantic
segmentation, incorporating hyperspectral, multispectral, and
SAR data from urban scenes in Berlin-Augsburg (Germany) and
Beijing-Wuhan (China). It proposes HighDAN, a high-resolution
domain adaptation network, which uses adversarial learning and
a high-to-low resolution fusion strategy to address domain gaps
between cities while preserving spatial topology. The model also
incorporates Dice loss to mitigate class imbalance issues.

The primary limitation of this work is its focus on only two
cross-city scenarios, which may limit the dataset’s applicability
to broader global urban environments. Additionally, the
computational complexity of HighDAN could pose challenges
for real-time or resource-constrained applications.
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processing. The fused images are segmented using the proposed Multi-dimensional
Gradient-Aware Segmentation method. We propose a novel feature extraction method,
Multimodal Adaptive Patch Embedding with Vision Transformer (MAPE-ViT), which
extracts relevant and discriminative features from the segmented images. For multi-object
classification, we employ the extreme learning machine (ELM).The ELM classifier takes
the optimized features as input and accurately classifies objects in the scene. Lastly, we
utilize conditional random fields (CRFs), a powerful probabilistic graphical model for
scene classification. The CRF integrates information from multi-object classification
results, contextual information extracted using a MAPE-ViT, and depth data from the
original images.

RGBDFusionNet
The fusion of RGB and depth information for indoor scene understanding is challenging
due to the variations between these images. The RGB and depth data exhibit different
characteristics, making it difficult to fuse them efficiently to prepare them for segmentation

Figure 1 Structural overview of our proposed model for scene classification. Full-size DOI: 10.7717/peerj-cs.2796/fig-1
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tasks (Farahnakian & Heikkonen, 2022; Radford et al., 2021). To effectively integrate RGB
and depth information for indoor scene understanding, we propose the FuseNet
architecture, which employs an attention-based fusion strategy. The network architecture
is split into two parallel channels in which the first stream handles RGB inputs, while on
the other hand the second stream handles the depth data. The RGB and the depth streams
are processed in parallel and consist of two residual block and two convolution layers. Each
layers has a 3 × 3 kernel which is followed by a batch normalization and ReLU activation
function (Kazakos, Nikou & Kakadiaris, 2018).

The outputs of these streams are then combined along the channel dimension to create a
fused feature map. The important thing to note here is instead of simply element wise
adding the feature maps of the two modalities, we incorporate an attention mechanism
which helps to weight the features accordingly. This attention module has two
convolutional layers. We used 1 × 1 kernel and it will reduce the dimension of the channel
to half before passing it to ReLU activation. The second layer which is also 1 × 1 kernels is
used to provide a single-channel attention map. A point wise multiplication is performed
between attention map and fused feature map in order to emphasize on salient features.

These fused representation from the attention weights are then passed to two more
convolutional layers. The first layer consist of 3 × 3 kernel and a ReLU activation function
while the second layer consist of 3 × 3 kernel. With the help of this attention-based fusion
approach, the proposed FuseNet architecture tries to address issues which arise from the
large differences between the RGB and depth modalities, and the nature of depth maps
uncertainty. The implementation of selective feature weighting makes it possible for the
network to harness complementary information from both modalities; thus, it could
enhance performance in indoor scene understanding tasks. The proposed multimodal
fusion process is illustrated in Fig. 2 which integrate RGB and depth modalities. The RGB

Figure 2 Architectural diagram of our RGB and depth fusion model. Full-size DOI: 10.7717/peerj-cs.2796/fig-2
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input undergoes three convolutional layers to extract spatial features, while the depth input
is processed through a similar pathway to capture depth-related details. These feature
maps are concatenated, forming a unified representation that incorporates both
modalities. This fusion enables the model to leverage complementary information from
RGB and depth inputs, resulting in more robust image fusion.

Segmentation
Multi-dimensional gradient aware segmentation
This method is derived from density based clustering that include DBSCAN (Brahmana,
Mohammed & Chairuang, 2020) with the addition of a distance function tailored for fused
image analysis. MGAS uses spatial information, color values together to form local
gradients from the fused image and it offers a similarity measure for each pixel.

The prosped distance metric between two pixels p and q is defined as

d p; qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xs : dspatial p; qð Þ2 þ xc : dcolor p; qð Þ2 þ xg : dgradient p; qð Þ2

q
(1)

here, dspatial p; qð Þ is the euclidean distance in pixel coordinates, dcolor p; qð Þ is the difference
in color values, dgradient p; qð Þ is the combined difference in local color gradients,
xs; xc and xg are weights for the spatial, color and gradient components, respectively

(Ahmed & Jalal, 2024b). Each component of the distance metric is defined as follows:

dspatial p; qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPx � qxÞ2 þ py � qy

� �2q
(2)

where, ðPx � pxÞ and ðqx � qyÞ are the cordiantes of pixel p and q.

dcolor p; qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R pð Þ � R qð Þð Þ2 þ ðG pð Þ � G qð Þð Þ2 þ B pð Þ � B qð Þð Þ2

q
(3)

where, RðpÞ;GðpÞ;BðpÞ and RðqÞ;GðqÞ;BðqÞ are the red, green and blue color values at
pixels p and q, respectively.

dgradient p; qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gxc pð Þ � Gxc qð Þð Þ2 þ Gyc pð Þ � Gyc qð Þ� �2q

: (4)

This approach preserves object boundaries by emphasizing local gradients and spatial
coherence, addressing the challenge of boundary degradation in cluttered scenes. By
integrating depth gradients into the distance metric, it enhances segmentation accuracy in
regions with ambiguous color/texture but distinct geometric profiles, directly improving
scene parsing for complex indoor environments. Figure 3 illustrates the stages of data
processing using our novel fused and segmentation approach; column 1 shows RGB
images, which provide the color and texture information of the scenes. Column 2
shows depth images, column 3 depicts fused images that combine the complementary
features of RGB and depth modalities, enhancing the richness of extracted features,
and column 4 displays the segmented images showcase the final semantic segmentation
results, where different objects in the scene are accurately identified and labeled with
distinct colors.
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Feature extraction
This innovative feature extraction method for RGB-D images integrates several advanced
techniques in order to create an adaptable approach for image analysis. We propose a
novel MAPE-ViT feature extraction which initially, the feature detection involves the
identification of maximally stable extremal regions that ensure the stability of regions of
interests in an image. The next step is wavelet transform which presents the image at
different scales and with its coefficients selectively considering global and local features.
The method innovatively combines the information from MSER and wavelet transform,
affecting the weighting by MSER regions to the wavelet transform. The final
transformation yields a concentration of the enhanced representations of principal image
features. This is followed by segmenting the image into adaptive patches where each patch
size depends on the MSER region’s position. In the following, these patches reserve the
original image pixels together with their wavelet coefficients as well as the data that relate
to the corresponding MSER region. These multi-modal patches are then re-shaped into an
appropriate format to be fed into a Vision Transformer. In this framework, the Vision
Transformer is a feature extractor, which conducts the attention mechanism to work with
the patch embeddings and generate the features on higher levels. These extracted features
can then be used as input to various classifiers for the final image classification task.

A B C D

Figure 3 Segmentation results (A) RGB images (B) depth images (C) fused images and (D) segmented images.
Full-size DOI: 10.7717/peerj-cs.2796/fig-3
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Maximally stable external region
MSER plays an important role in our novel feature extraction model; it identifies stable and
distinctive regions within the fused image by detecting blob-like structures that remain
consistent across various threshold values, which helps to enhance the overall feature
extraction process. The algorithm operates by thresholding the image at all possible
intensity levels and identifying connected components exhibiting stability (Zhao, Wang &
You, 2023). For each threshold t, the stability of a region Qt is computed using: Eq. (5):

q Qtð Þ ¼
QtþD

Qt�D

����
����

Qt
(5)

where D represents a small change in threshold, and ∣⋅∣ denotes the cardinality of a set. A
region is maximally stable at t* if:

q t�ð Þ < q t� � Dð Þ f or some small D > 0: (6)

The MSER outputs a set of stable regions {RD1, RD2, RD3,……RDn} for the depth
component. Each Ri is associated with a stability score which can be calculated using
Eq. (7):

Si ¼ 1
q tið Þ (7)

where ti is the threshold at which Ri is maximally stable. The use of MSER in this feature
extraction method offers several advantages. MSER regions are invariant to affine intensity
changes, ensuring robustness to lighting variations and minor viewpoint changes, which is
valuable for real-world image classification. MSER excels at detecting regions distinctly
different from their surroundings, often corresponding to important object parts or
textures, aiding in identifying salient, discriminative features (Tripathi & Rani, 2024;
Matas et al., 2004).

Wavelet transform
Following the MSER computation, we apply a 3D discrete wavelet transform (3D-DWT)
to the entire segmented image. The main idea of selecting of 3D-DWT for integration with
Vision Transformers is motivated by several key advantages as it provides multi-resolution
analysis through one approximation and seven detail coefficient subbands that naturally
complement the patch-based architecture of Vision Transformers, it also captures
directional information through detail coefficients (cH, cV, cD) and cross-detail
coefficients (cHV, cHD, cVD, cHVD) that enhance spatial relationship understanding,
moreover it efficiently integrates with MSER regions through our weighting scheme to
emphasize stable features, and lastly, it maintains computational efficiency while providing
rich feature representations compared to alternatives like Fourier transforms or Gabor
filters. Combining wavelets with Vision Transformers thus creates a powerful framework
for extracting comprehensive features from RGB-D data. The 3D-DWT decomposes the
input depth image I(x,y,z) into one approximation coefficient subband cA and seven detail
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coefficient subbands cH, cV, cD, cHV, cHD, cVD, cHVD at each decomposition level
(Al-Qerem et al., 2020).

Combination of MSER and wavelet
In this step, we leverage the MSER regions identified in step 1 to guide the emphasis of
wavelet coefficients obtained in step 2. This combination allows us to focus on the most
stable and informative parts of the image in both color and depth domains.

For each wavelet coefficient w, we compute a weight a xð Þ based on its overlap with the
MSER regions as shown in Eq. (8):

a xð Þ ¼ 1þ b
XM
i¼1

si � overlap x;Rið Þð Þ (8)

where M is the total number of MSER regions from RGB and depth components. si is the
stability score of the ith MSER region, overlap x; Rið Þ is the degree of overlap between the
wavelet coefficient w and the i-th MSER region, β is a scaling factor to control the influence
of MSER regions.

We then obtain the emphasized wavelet coefficients W by:

W 0 ¼ fa xð Þ � xjx 2 Wg: (9)

This process enhances the wavelet coefficients corresponding to stable regions in both
color and depth data, effectively combining the strengths of MSER and wavelet analysis.

Patch creation
Using the information from the previous steps, we create adaptive patches that focus on
the most informative areas of the RGB-D image. The size of each patch P(x,y,z) is
determined by Eq. (10).

P x; y; zð Þ ¼ Pminþ Pmax � Pminð Þ:max Si : Ri x; y; zð Þð Þ (10)

where Pmin and Pmax are predefined minimum and maximum patch sizes, Si is the
stability score of the ith MSER region and Ri x; y; zð Þ is the indicator function of the ith
MSER region. This adaptive approach ensures that larger patches are created around more
stable regions, allowing for more detailed feature extraction in these areas (Dosovitskiy
et al., 2020). Each patch contains original RGB-D image voxels Ip emphasized 3D wavelet
coefficient WP and MSER information MP.

Patch embedding and vision transformer input
In the final step, we create embedding for each patch and prepare them as input for a
Vision Transformer. The patch embedding ep is computed as

ep ¼ fRGB�D Ip
� �

; fwavelet Wp
� �

; fMSER Mp
� �

; fSpatial xc; yc; Zcð Þ� �
(11)

where fRGB�D is a function that processes the original RGB-D voxels, fwavelet processes the
emphasized wavelet coefficients, fMSER incorporates the MSER information, and fSpatial
encodes the spatial position of the patch center xc; yc; Zcð Þ. These embeddings are then
normalized and arranged into a sequence.
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E ¼ e1norm; e2norm; . . . ::; eNnorm½ �: (12)

Finally, we prepare the information for Vision Transformer for feature extraction.

Z0 ¼ eclass; E½ � þ Epos (13)

where, eclass is a learnable classification token and Epos is positional encoding, which are
finally fed to transformer encoder for feature extraction process.

Extreme learning machine for multi-object recognition
The extracted features sets obtained fromMAPE-ViT are fed into an ELM for multi-object
recognition. The ELM architecture is chosen for its rapid training speed and strong
generalization capabilities which makes it suitable for complex multi-object classification
tasks with varying numbers of objects per image (Wang & Wang, 2021).

ELM architecture
The ELM consist of three layers, the first layer is the input layer, then a single hidden
layer, and third layer is the output layer. The input layer contains 128 nodes which
corresponds to the dimension of the optimized feature vectors. The hidden layer has 512
neurons, which are determined through extensive experimentation in order to balance
performance and computational efficiency. The last layer which is the output layer
contains m nodes, where m represents the total number of possible object classes in the
dataset. Figure 4 represents an ELM with three layers: an input layer (1,024 neurons) for
receiving feature vectors, a hidden layer (1,536 neurons) with a sigmoid activation
function for nonlinear transformations, and an output layer for generating

1

i

1024

1

i

1536

1

i

m

Hidden Layer
Sigmoid Activation

Output layer
Threshold 0.4

Input Layer
Feature Vector

Figure 4 Extreme learning machine used in our model for classification.
Full-size DOI: 10.7717/peerj-cs.2796/fig-4
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predictions. The input and hidden layers are fully connected with fixed random weights,
while the hidden-to-output connections are trained. The output layer applies a threshold
of 0.4 for binary classification. This structure ensures fast training and efficient
computation.

The ELM output is interpreted as a set of probability scores for multi-object recognition
for each object class. The final output is computed as:

output ¼ Hb: (14)

A threshold of 0.4 is applied to the output probabilities to determine the presence of
each object class. This thresholding approach allows for recognizing a variable number of
objects in each image.

Scene classification with conditional random field
For scene classification, we used a conditional random field (CRF) which will
receive three inputs: multi-object classification probabilities, contextual information
from the Vision Transformer output, and depth gradient statistics of the images. Depth
gradient statistics describe spatial and geometric properties of depth images which are
essential for describing scene structure. These gradients are then analyzed to extract
various statistical measures that describe the distribution and behavior of the depth
gradients across the image. Specifically, we compute mean, variance, skewness, and
kurtosis.

Figure 5 Scene classification using CRF taking input as multi objects, attention maps and depth information.
Full-size DOI: 10.7717/peerj-cs.2796/fig-5
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CRF formulation for scene classification
The CRF (Cao et al., 2020) is employed to refine scene classification by integrating
multi-object classification probabilities, contextual information from the Vision
Transformer, and depth gradient statistics. The CRF models the conditional probability of
scene labels Y given the input features X as follows:

PðY j XÞ ¼ 1
z Xð Þ exp

X
i

wu Yi; Xð Þ þ
X
i;j

wp Yi; Yj; X
� � !

(15)

where Z Xð Þ is the partition function ensuring normalization, wu is the near potential,
which captures the relationship between each scene label and the input features. It is
computed using:

wu Yi; Xð Þ ¼ xMO : PMO Yið Þ þ xDGS : DGS Yið Þ (16)

where, xMO and xDGS are the weights learned during the training. PMO Yið Þ is multi object
classification probabilities, and DGS(Yi) are the depth gradient statistics (Li et al., 2020).
Similarly, the pairwise potential wp models the dependencies between neighborhood scene
labels as shown in Eq. (17)

wp Yi; Yj; X
� � ¼ xpair : exp � Xi � Xj

�� ���� ��2� 	
(17)

wherexpair is a weight that controls the strength of the pairwise relationship, and Xi and Xj

are the input features at positions i and j, respectively. Figure 5 illustrates the classification
of the scene using CRF that combines probability of multiple objects predication by ELM,
contextual information of Vision Transformer outputs and DGS that quantifies the
geometrical features using statistical measure as mean, skewness and Kurtosis. The CRF
leverages these features to refine scene labels and ensure spatial coherence.

COMPUTING INFRASTRUCTURE
We conducted the experiments using a PC which is equipped with an x64-based Windows
10 operating system, an Intel Core i3-4010U 1.70.GHz CPU, 4GB RAM. The system’s
performance was evaluated using two benchmark datasets: SUN RGB-D and NYU v2.
Table 2 represents the hyper parameter of MAPE-ViT framework.

DATASETS DESCRIPTION
The NUY-Dv2 (Silberman et al., 2012a) dataset contains labeled and unlabeled images
from indoor scenes. The dataset consists of different scenes which includes bathroom,
bedroom, bookstore, cafe, kitchen, living room, and office. These scenes encompass a
diverse range of objects, including beds, bookshelves, books, cabinets, ceilings, floors,
pictures, sofas, tables, TVs, walls, windows, and various background elements. We also
used Sun-RGBD (Silberman et al., 2012a) dataset for the experiment purposes which also
include scenes from indoor environment. From both the datasets we chose 10 common
classes for our experimentation.
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Table 2 Hyper parameters for MAPE-ViT framework.

Component Task Hyperparameter Value

FuseNet (RGB-D fusion) Modality fusion Attention layers 2

Kernel size (RGB/Depth streams) 3 × 3

Batch size 32

Learning rate 0.0001

MGAS (Segmentation) Scene segmentation 2 (DBSCAN threshold) 0.5

Spatial weight (ws) 0.4

Color weight (wc) 0.3

Gradient weight (wg) 0.3

MAPE-ViT (Feature extraction) Feature extraction Adaptive patch size range 8 × 8 to 32 × 32

Wavelet decomposition levels 3

MSER stability threshold (D) 0.1

Wavelet coefficient scaling (b) 0.8

ViT patch size 16 × 16

ViT heads (multi-head attention) 8

ViT layers 12

Embedding dimension 768

Learning rate 0.00005

CRF Scene classification CRF learning rate 0.001

CRF iterations (mean-field) 10

xMO (object weight) 0.6

xDGS (depth weight) 0.4

Table 3 Confusion matrix result for scene classification over NYU-Dv2 dataset.

Classes BDR KIT LVR BTR DRM OFF HOF CLS BST OTH

BDR 0.802 0 0.181 0 0.017 0 0 0 0 0

KIT 0 0.902 0.048 0 0.050 0 0 0 0 0

LVR 0 0 0.845 0 0.155 0 0 0 0 0

BTR 0 0 0 0.923 0 0 0 0 0 0.077

DRM 0 0 0.023 0 0.987 0 0 0 0 0

OFF 0 0 0 0 0 0.762 0.238 0 0 0

HOF 0 0 0 0 0 0.206 0.804 0 0 0

CLS 0 0 0 0 0.115 0 0 0.885 0 0

BST 0 0 0 0 0 0 0 0 0.983 0.017

OTH 0 0 0 0 0 0.015 0 0 0 0.985

Mean ACC = 88.79%

Note:
BDR, Bedroom; KIT, kitchen; LVR, living room; BTR, bathroom; DRM, dining room; OFF, office; HOF, house office;
CLS, Classroom; BST, book store; OTH, others.
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RESULTS
The experimental results presented in the article demonstrate the effectiveness of the
proposed method in scene classification tasks using RGB-D data. The combination of
MSER, wavelet transforms, and Vision Transformers for feature extraction has proven to
be a robust and discriminative approach, overcoming challenges related to sensor
misalignment, depth noise, and object boundary preservation. One of the key strengths of
our method is its ability to accurately classify scenes with distinct visual characteristics and
depth patterns. It was highly accurate with offices, bedrooms, and living rooms, primarily
due to clearer structural patterns and furniture arrangements. This can be attributed to the
introduction of MSER-guided image patches, and Vision Transformers whereby these
methodologies are capable of independent scene analysis due to their inherent capability of

Table 4 Confusion matrix result for scene classification over SUN RGB-D dataset.

Classes BDR KIT LVR BTR DRM OFF HOF CLS BST OTH

BDR 0.785 0 0.145 0 0 0 0 0 0 0.070

KIT 0 0.811 0 0.029 0 0 0 0 0.039 0.121

LVR 0.197 0 0.722 0.034 0 0 0 0.047 0 0

BTR 0 0.038 0 0.783 0 0.048 0 0 0 0.131

DRM 0 0 0.083 0 0.837 0 0.020 0.060 0 0

OFF 0 0 0 0 0.019 0.795 0.137 0.049 0 0

HOF 0 0.159 0 0 0.054 0.227 0.672 0 0 0.112

CLS 0 0.029 0 0 0 0.198 0 0.772 0 0.001

LIB 0 0 0 0 0 0.047 0.054 0 0.881 0.018

OTH 0.073 0.015 0 0.036 0 0.058 0 0.020 0 0.798

Mean ACC = 78.56%

Note:
BDR, Bedroom; KIT, kitchen; LVR, living room; BTR, bathroom; DRM, dining room; OFF, office; HOF, house office;
CLS, Classroom; LIB, Library; OTH, others.

Table 5 Precision, recall, and mAP results over NYU-Dv2 dataset.

Classes Precision Recall mAP

BDR 1.000 0.962 0.962

KIT 1.000 0.979 0.979

LVR 0.815 0.845 0.689

BTR 1.000 0.953 0.953

DRM 0.844 0.977 0.824

OFF 0.754 0.782 0.590

HOF 1.000 0.904 0.904

CLS 1.000 0.895 0.895

BST 1.000 0.973 0.973

OTH 0.905 0.935 0.846

Mean 0.931 0.920 0.862
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capturing both local and global features, object boundaries, as well as spatial relationships.
The classification results of both datasets are shown in Tables 3 and 4 using confusion
matrix which is one of the ways to display the detailed breakdown of the model’s
performance for all the classes in dataset. It highlights the insight of the scene or object
categories which confuses with one another. It displays true positives (TP), false positives
(FP), false negatives (FN), and true negatives (TN) for each class present in the dataset.

The confusion matrices reveal that bedrooms in both datasets suffer from FP with living
rooms due to shared structural features, such as beds and sofas. Similarly, kitchens and
dining rooms exhibit mutual confusion, primarily caused by overlapping objects like
countertops and tables. In the NYU-Dv2 dataset, living rooms are often misclassified as
dining rooms (15.5% FP rate) due to shared furniture layouts. On the SUN RGB-D dataset,
bathrooms face challenges with other categories (13.1% FP rate), potentially due to clutter
or poor lighting. Lastly, offices and house offices show mutual misclassification across both
datasets, reflecting difficulties in distinguishing desk-based environments with similar
setups.

The performance of a model is often evaluated using key metrics: precision, recall and
mAP as displayer in Tables 5 and 6. Precision measures the accuracy of the positive
predictions made by the model. It indicates the proportion of true positive instances
among all instances that the model identified as positive. This means that a high precision
score reflects a model that returns mostly relevant results, minimizing the number of
incorrect positive predictions. Conversely, recall assesses the model’s ability to identify all
relevant instances within a dataset. It captures how many true positive instances were
correctly predicted by the model out of all actual positive instances. The mAP incorporates
the trade-off between precision and recall and considers both false positives (FP) and false
negatives (FN).

Precison ¼ TP
TPþ FP

(18)

Table 6 Precision, recall, and mAP results over SUN-RGBD dataset.

Classes Precision Recall mAP

BDR 0.724 0.685 0.496

KIT 0.802 0.811 0.650

LVR 0.780 0.722 0.563

BTR 0.765 0.783 0.599

DRM 0.813 0.837 0.680

OFF 0.671 0.695 0.466

HOF 0.728 0.672 0.489

CLS 0.772 0.772 0.596

BST 0.854 0.881 0.752

OTH 0.815 0.798 0.650

Mean 0.772 0.765 0.594
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Recall ¼ TP
TP þ FN

(19)

mAP ¼ 1
N

XN
i¼1

APi: (20)

Our proposed model performs remarkably in both scene classification and object
segmentation tasks on the challenging NYU-Dv2 and SUN-RGBD datasets. Notably, the
model identifies specific scene types like bedrooms, kitchens, bathrooms, closets, and
bookstores, exhibiting near-perfect precision and high recall. However, it encounters some
challenges with visually similar or cluttered scenes such as living rooms, dining rooms,

Figure 6 Scene classification using RGB, depth and both RGB and depth images.
Full-size DOI: 10.7717/peerj-cs.2796/fig-6

Table 7 Comparison of proposed method with existing approaches.

SOTA methods SUN RGB-D NYUv2

Song, Chen & Jiang (2017) – 66.9

Song et al. (2018) 53.8 67.5

Xiong, Yuan & Wang (2020) 56.2 68.1

Du et al. (2019) 56.7 69.2

Rafique et al. (2022) 63.1 72.8

Cai & Shao (2019) 48.7 79.3

Seichter et al. (2022) 61.8 76.5

Pereira et al. (2024a) 62.3 77.8

Pereira et al. (2024b) 63.7 80.1

Proposed model 78.56 88.79
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offices, and home offices, particularly on the NYU-Dv2 dataset, where either precision or
recall suffers. Interestingly, the model performs relatively better across all scene categories
on the SUN-RGBD dataset, potentially due to cleaner or more distinct scene
representations.

Ablation study
In Fig. 6, we present the ablation study of our proposed model, comparing the scene
classification performance using RGB images, depth images, and a fused approach. The
results demonstrate that the fused images consistently yielded the highest classification
accuracy across both datasets. Specifically, RGB images achieved 72% accuracy on the SUN
RGB-D dataset and 82% on the NYU v2 dataset. Depth images, on the other hand,
produced 67% and 76% accuracy on the respective datasets. In contrast, the fused RGB-D
images significantly outperformed the individual modalities, achieving 78.56% accuracy on
the SUN RGB-D dataset and 88.79% on the NYU v2 dataset. The better performance of the
fused approach highlights the complementary nature of RGB and depth information and
when combined, it provides a better understanding of the scene. This fusion leverages the
strengths of both modalities, capturing both the color and texture information from RGB
images and the spatial and structural details from depth images.

Table 7, shows the comparison of our proposed model with the state of the art model.
Our model outperformed SOTA methods in both of the datasets by achieving the 78.56%
and 88.79% scene classification accuracies on SUN RGB-D and NYUv2 datasets
respectively. These results are credited to our novel feature extractor methods which
extract features for classification and also as we provide very enrich input to CRFmodel for
scene classification which comprises of multi-object classification probabilities, contextual
information from the Vision Transformer, and depth gradient statistics.

DISCUSSION
The experiments conducted on our novel MAPE-ViT model for multimodal scene
understanding have yielded promising results, validating the effectiveness of our approach
in addressing key challenges in RGB-D image classification specifically issues related to
sensor misalignment, noise distortion, and the fusion of multi-modal data. It demonstrates
exceptional performance across various environmental conditions and complex scene
structures. The MAPE-ViT model, with its innovative combination of MSER and wavelet
coefficients, extracts important information from complex multimodal data. By integrating
RGB and depth information through our adaptive patch embedding technique, it captures
both local and global features which is one of the fundamental factor for accurate scene
classification. The incorporation of Vision Transformers for processing these patch
embedding further enhances the model’s ability to handle intricate spatial relationships
and sensor misalignment issues which is one of the common challenge in RGB-D fusion.
We used the Grey Wolf Optimizer for feature selection and the extreme learning machine
for final classification which is shown significant improvements in both accuracy and
efficiency compared to traditional approaches. As a result it helps to take informed
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decision for applications like autonomous navigation and augmented reality as it enhances
the object detection and classification process.

LIMITATIONS
Although our model has produced good results across both the datasets. They key aspects
for achieving state of the art results across both dataset is the multi modal data fusion and
novel MAPE-ViT based feature extraction. However, there are some challenges and
limitations like our model is evaluated on two datasets SUN RGB-D and NYU v2, both
these datasets focus mainly on the indoor scenes. So, this limits our model generalizability
on outdoor scenes which will be addressed in future work. Another important thing to
note is that the attention method used in MAPE-ViT, heavily relies on global self attention.
This make it less focused on local details as a result the objects with larger size and
dominate features plays vital role in feature extractions which some times can add bias
towards larger objects in scenes. The proposed framework is specifically designed and
tested for RGB-D images. It does not currently support data from other sensors, such as
LiDAR or thermal imaging. Adapting the model to handle such modalities would require
additional research and modifications to the data fusion and feature extraction
mechanisms, which we plan to explore in subsequent studies. The attention method in
MAPE-ViT relies heavily on global self-attention, which can sometimes overshadow local
details. This may introduce bias toward larger or more dominant features in the scene,
potentially underrepresenting smaller or subtler objects. We aim to refine the attention
mechanism by incorporating localized attention strategies or hierarchical attention layers
in future iterations to mitigate this issue.

CONCLUSION AND FUTURE WORK
In this article, we presented a novel scene classification method that uses novel Multimodal
Adaptive Patch Embedding with Vision Transformer for feature extraction which
combines MSER, wavelet transforms, and Vision Transformers to effectively address
challenges in RGB-D image analysis such as sensor misalignment, depth noise, and object
boundary preservation. In our method, we use the MSER stable regions connected with the
wavelets coefficients to construct more comprehensive descriptors. The generation of rich,
multi-modal patch embedding and their processing by Vision Transformers allow our
method to learn complex relationships between RGB and depth information, enabling dual
outputs for multi-object and scene classification. In addition, the anisotropic diffusion and
GrayWolf Optimization improve the stability and identification capability of the proposed
method as shown in experimental results.

Our research opens up several promising directions for future work, particularly in
extending our model’s capabilities to diverse domains. A primary direction is adapting the
MAPE-ViT framework for outdoor scene understanding, where challenges include
varying lighting conditions, weather effects, and dynamic object interactions. This would
require enhancing our RGB-D fusion technique to handle larger depth ranges and
variable environmental conditions. Another significant direction is extending our
framework to remote sensing applications. This would involve adapting MAPE-ViT to

Ahmed et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2796 22/27

http://dx.doi.org/10.7717/peerj-cs.2796
https://peerj.com/computer-science/


process multi-spectral and hyperspectral imagery alongside RGB-D data. The model’s
wavelet-based feature extraction and adaptive patch embedding could be
particularly valuable for analyzing satellite and aerial imagery, enabling applications
such as land use classification, urban planning, and environmental monitoring. We
plan to modify our architecture to handle the unique characteristics of remote sensing
data, including different spatial resolutions, multiple spectral bands, and varying
viewing angles.
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