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ABSTRACT
This study presents an augmented hybrid approach for improving the diagnosis of
malignant skin lesions by combining convolutional neural network (CNN)
predictions with selective human interventions based on prediction confidence. The
algorithm retains high-confidence CNN predictions while replacing low-confidence
outputs with expert human assessments to enhance diagnostic accuracy. A CNN
model utilizing the EfficientNetB3 backbone is trained on datasets from the ISIC-
2019 and ISIC-2020 SIIM-ISIC melanoma classification challenges and evaluated on
a 150-image test set. The model’s predictions are compared against assessments from
69 experienced medical professionals. Performance is assessed using receiver
operating characteristic (ROC) curves and area under curve (AUC) metrics,
alongside an analysis of human resource costs. The baseline CNN achieves an AUC
of 0.822, slightly below the performance of human experts. However, the augmented
hybrid approach improves the true positive rate to 0.782 and reduces the false
positive rate to 0.182, delivering better diagnostic performance with minimal human
involvement. This approach offers a scalable, resource-efficient solution to address
variability in medical image analysis, effectively harnessing the complementary
strengths of expert humans and CNNs.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision, Data Mining and Machine
Learning, Neural Networks
Keywords Convolutional neural networks, EfficientNetB3, International skin imaging
collaboration, Skin cancer diagnosis, EfficientNet, Deep learning, Medical imaging, Machine
learning, International skin imaging collaboration (ISIC), CNN

INTRODUCTION
Early and precise detection of skin lesions is essential for effective treatment and improved
patient outcomes (Houssein et al., 2024; Ali et al., 2022). Despite advancements in medical
imaging technologies, significant challenges remain in achieving high diagnostic accuracy
and efficiency in real-world clinical environments (Jackson et al., 2025; Esteva et al., 2019).
Skin cancer stands out as a prevalent and aggressive cancer type, impacting over five
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million individuals annually around the world (Liu et al., 2020; Kurvers et al., 2019). Swift
and accurate diagnosis is key to effective treatment, prompting substantial investment in
refining diagnostic tools (Kiziloluk et al., 2024; Shaikh, 2009).

Existing literature on skin lesion classification highlights three primary research
categories, each addressing distinct challenges in medical diagnostics (Ahmad et al., 2024;
Zalaudek et al., 2006). The first focuses on enhancing human decision-making processes to
bolster accuracy (Yang et al., 2024; Kurvers et al., 2021a, 2021b). This involves
consolidating expert opinions (Liu et al., 2024) or devising diagnostic techniques that yield
heightened precision (Combalia et al., 2019; Brinker et al., 2018). However, while these
efforts have improved diagnostic accuracy, they are resource-intensive, requiring multiple
experts for consensus (Hernández-Pérez et al., 2024; Kousar et al., 2024).

The second category revolves around artificial intelligence (AI) (Hosseinzadeh et al.,
2024 Sadeghi et al., 2024), particularly advancements in convolutional neural networks
(CNN) for malignancy classification in medical images (Chatterjee, Gil & Byun, 2024;
Shaikh et al., 2022). Several studies have demonstrated that CNNs outperform individual
clinicians in skin cancer detection tasks, underscoring their potential to enhance diagnostic
accuracy (Chen et al., 2024; Bingol & Alatas, 2021; Rezvantalab, Safigholi & Karimijeshni,
2018). Yet, the generalizability of AI systems remains a challenge, as most studies are
conducted under controlled conditions, making it difficult to translate these results directly
into clinical settings (Haenssle et al., 2020; Hekler et al., 2019; Haenssle et al., 2018).

The third category explores hybrid models that integrate the first two categories of
human expertise with AI predictions, to achieve superior performance (Tschandl et al.,
2019; Brinker et al., 2018; Shaikh & Lashari, 2017). For example, studies have shown that
ensemble models combining the opinions of multiple clinicians tend to outperform
individual diagnoses, provided that their performance levels are comparable (Kurvers et al.,
2019). However, when performance varies significantly among the experts, ensemble
methods may underperform compared to the top-performing individual clinician
(Chatterjee, Gil & Byun, 2024). This variability highlights the complexity of
human-machine collaboration, where balance and structure are essential for optimal
results (Jafar et al., 2024; Shaikh et al., 2022; Han et al., 2018).

Similarly, Haenssle et al. (2020), Marchetti et al. (2020), Brinker et al. (2019), Kurvers
et al. (2019), Mahbod et al. (2019), Haenssle et al. (2018), and Esteva et al. (2017) used
CNNs and compared them against human experts in classifying skin lesions through
image analysis. All these studies consistently showcased the superiority of machines over
humans in this domain. This assertion supports multiple other studies (Akram et al., 2025;
Ali et al., 2022; Marchetti et al., 2020). A comprehensive analysis by Haggenmüller et al.
(2021) concluded that all 19 studies they covered in their comparison demonstrated
superior or at least equivalent performance of CNN-based classifiers compared with
clinicians.

Despite these advancements, there remains a critical gap in practical and scalable
solutions that combine human and machine intelligence while considering real-world
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constraints (Park et al., 2023; Brady & Neri, 2020; Topol, 2019). Many of the comparative
studies mentioned above were conducted under controlled conditions. Furthermore, as
highlighted byHoussein et al. (2024), Nugroho, Ardiyanto & Nugroho (2023), Cassidy et al.
(2022), and Haenssle et al. (2020), many comparative studies place clinicians in an
unfamiliar setting by requiring them to make predictions solely from images, without
access to other clinical information. This study addresses this gap by proposing a hybrid
algorithm, coined the “augmented hybrid approach”. This approach aims to optimize
diagnostic performance through selective collaboration between human experts and AI
models. It offers an economically viable solution with the potential to improve outcomes
and save lives (Tao & Alatas, 2024; Shaikh et al., 2021a; Mahbod et al., 2019).

This augmented hybrid approach extends the concept outlined in studies by Pirrera &
Giansanti (2023), Brady & Neri (2020), Topol (2019), Han et al. (2018), which enhances
predictive capabilities by providing clinicians with CNN prediction scores as
supplementary information.

In this scenario, when a human expert is uncertain about a diagnosis and the algorithm
demonstrates high confidence, the expert defers to CNN’s prediction, leading to more
informed decision-making. This methodology assumes that both human and algorithmic
performances align with their confidence in their respective predictions. However, humans
often struggle to accurately estimate their confidence, leading to suboptimal use of
AI-generated insights (Akhund et al., 2024a; Ha, Liu & Liu, 2020; GitHub, 2024a). As a
result, augmented intelligence may not reach its full potential if CNN predictions are
underutilized by humans (Ali et al., 2023; Shaikh, 2018). To address this, our study
proposes an algorithmic framework that reverses the traditional approach of relying on
human confidence. We use CNN prediction confidence as a proxy for certainty. By
replacing human responses with CNN predictions in cases where the network exhibits
high uncertainty, we demonstrate a significant improvement in overall performance. This
approach is based on prior research, focusing on CNN prediction certainty rather than
human confidence estimation (Ahmad et al., 2024; Deotte, 2020).

This augmented hybrid approach aims to enhance diagnostic precision and the efficient
utilization of human resources. Combining the strengths of CNNs with the expertise of
medical professionals offers a cost-effective solution to reduce clinician workload and
ultimately elevate the quality of treatment (De, Mishra & Chang, 2024; Saeed et al., 2024;
Dayananda et al., 2023; Secinaro et al., 2021).

For performance evaluation, this research develops a hybrid algorithm that employs the
EfficientNetB3 backbone for CNN training, utilizing the ISIC-2019 and ISIC-2020 datasets
(ISIC, 2024)—the two comprehensive, widely popular, and open-access datasets used in
the SIIM-ISIC (Society for Imaging Informatics in Medicine—International Skin Imaging
Collaboration) melanoma classification challenges (Saghir, Singh & Hasan, 2024; ISIC,
2024; Tan & Le, 2019; Codella et al., 2018; Gutman et al., 2016).

By comparing the performance of this hybrid model with both the baseline CNN and
human experts, we demonstrate the feasibility and benefits of integrating AI into
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dermatological diagnostics of skin lesion classification (Farea et al., 2024; Gholizadeh,
Rokni & Babaei, 2024; Pirrera & Giansanti, 2023; GitHub, 2024a, 2024b; Kassem et al.,
2021; Kassani & Kassani, 2019; Han, Mao & Dally, 2015). This study suggests a hybrid
approach that combines CNN predictions with human expertise, potentially improving
diagnostic performance by mitigating human errors and machine inaccuracies.

The ISIC-2019 and ISIC-2020 datasets (ISIC, 2024) provide benchmarks for training
and evaluation, ensuring alignment with current practices and validated methodologies
(Jackson et al., 2025; Gouda et al., 2022; Adegun & Viriri, 2021). These datasets also
highlight the effectiveness of EfficientNet models, which are recognized for their
computational efficiency (Tan et al., 2024; Debelee, 2023; Tan & Le, 2019). In this study,
data augmentation techniques are employed to further enhance the performance and
generalization of the EfficientNet model across diverse medical images (Kumar et al., 2024;
Batool & Byun, 2023; Hekler et al., 2020). This adaptability is essential for real-world
clinical settings, where imaging conditions vary significantly (Shaikh et al., 2022; Shorten &
Khoshgoftaar, 2019). Additionally, we collected expert evaluations from 170 medical
professionals, primarily dermatologists, to ensure the reliability and robustness of the
comparative analysis. From this pool, 69 participants with extensive experience in
dermoscopy were selected based on stringent inclusion criteria, reflecting real-world
clinical scenarios and providing meaningful insights into the proposed augmented hybrid
model’s effectiveness. Ultimately, this work contributes to advancing medical imaging by
offering a scalable, efficient, and reliable framework for AI-assisted diagnosis (Akhund
et al., 2024b; Alam et al., 2022; Khamparia et al., 2021; Mahbod et al., 2019; Han, Mao &
Dally, 2015).

The article is as follows; related studies are discussed in the following section. The
section provides an analysis of data, including preprocessing, model selection, computing
infrastructure, data evaluation, training data, and train-test split. In “Empirical Study” we
conduct research, which involves choosing the model and assessing the metrics. “Training
a CNN” covers the training of CNN detailing our attempt and the challenges faced. Our
baseline experiments are outlined in “Baseline Experiments”. The hybrid algorithm is
explained in “Hybrid Algorithms”. We discuss the limitations of our study in “Study
Limitations” and conclude the article in “Conclusion” by presenting our study results and
suggesting areas for further research.

RELATED WORKS
This section aims to represent the works related to the present objectives of the study.
There are three primary research directions.

Aggregation of expert opinions
The first research direction focuses on aggregating opinions, which proves beneficial when
the ensemble members exhibit similar performance levels (Hosseinzadeh et al., 2024;
Freeman et al., 2020; Kay et al., 2018; Lane et al., 2017; Shaikh & Khoja, 2012). This
approach stands to enhance clinical performance but demands substantial resources, as a
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majority consensus requires soliciting input from multiple clinicians for each case
(Wubineh, Deriba & Woldeyohannis, 2024; Hussain et al., 2023; Bejnordi et al., 2017).

CNNs vs. human experts
The second research direction asserts that CNNs demonstrate comparable or superior
proficiency to humans in categorizing skin lesion malignancies (Navarrete-Dechent,
Liopyris & Marchetti, 2020). However, further inquiry remains imperative in this domain
as current algorithms have yet to reach a level where they can replace human classification
(Chatterjee, Gil & Byun, 2024; Esteva et al., 2017). Consequently, investigating hybrid
methodologies represents a logical progression in research (Hasan et al., 2022). Various
hybrid approaches have been presented, demonstrating superior performance compared
to individual human or machine capabilities (Bozkurt, 2023; Goceri, 2020). Despite the
potential of hybrid intelligence to save lives (Brinker et al., 2019; Liu et al., 2020; Tschandl
et al., 2019; Ketkar & Santana, 2017), a critical gap in the literature pertains to the expenses
associated with such methods (Wubineh, Deriba & Woldeyohannis, 2024; Chollet &
Chollet, 2021), which can make even highly effective approaches impractical for real-world
implementation (Topol, 2019). For instance, the study by Hekler et al. (2019) involved the
use of multiple clinicians to assess a single image, which would be infeasible in clinical
practice.

Hybrid methodologies and the challenges of AI
Similar findings were observed by Houssein et al. (2024), Koçak et al. (2024), Secinaro et al.
(2021), Tschandl et al. (2020), who highlighted that less experienced clinicians benefited the
most from computer predictions. However, they cautioned that faulty AI could mislead
clinicians across all experience levels, posing a threat to the usability of hybrid approaches
(Kaluarachchi, Reis & Nanayakkara, 2021; Han et al., 2018; Chollet & Chollet, 2021).
Blindly trusting AI decisions could undermine the superior performance achieved through
human-machine collaboration, as demonstrated in these studies (Brinker et al., 2018;
Goodfellow, 2016; Shaikh & Khoja, 2011). For example, Ha, Liu & Liu (2020), Marchetti
et al. (2020) pursued a systematic approach where human participants rated their
confidence in each image. By supplementing low-confidence ratings with
machine-generated predictions, performance improved, particularly for medical residents,
but less so for professional dermatologists. Although this method mitigates the risk of
over-reliance on CNN predictions, it remains susceptible to flawed AI (Gómez-Carmona
et al., 2024; Krakowski et al., 2024; Keerthana, Venugopal & Nath, 2023).

Ensemble approaches for skin lesion classification
The third research direction is the use of ensemble approaches (Aboulmira et al., 2025;
Hekler et al., 2019). By aggregating predictions using a boosting algorithm, Gulli & Pal
(2017) found that combining human and computer decisions yielded the best results for
multiclass and binary lesion classification. This ensemble approach prevents human
reliance solely on machine-generated results and appears to be a more feasible real-world
implementation (Yang et al., 2024; Reddy et al., 2024). However, comprehensive
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comparisons of these approaches are still lacking (Ali et al., 2023). In the examination of
existing literature (De, Mishra & Chang, 2024; Kumar et al., 2024; Tschandl et al., 2020;
Shaikh & Khoja, 2014), the majority of studies focused on skin lesion classification relied
on the utilization of one or more pre-trained networks as a foundational framework for
their models.

In Table 1 we present a well-rounded comparative analysis of recent advancements,
hybrid models, and interpretability-focused essential and recent studies in skin lesion
classification literature that align closely with the objectives and key themes of this study.

DATA
This study utilizes three distinct datasets for analysis: the original BCN20000 dataset of the
three-point checklist of dermoscopy (Combalia et al., 2019) and the ISIC-2019 and ISIC-
2020 datasets (ISIC, 2024). The BCN20000 dataset comprises 165 images alongside
corresponding human responses. This dataset is deemed suitable for constructing and
validating the ensemble technique (Freeman et al., 2020; Shaikh et al., 2019), serving as the
evaluation dataset herein. However, its size proves insufficient for adequate CNN training
(Saeed et al., 2024; Batool & Byun, 2023; Sun et al., 2023). Therefore, substantially larger
datasets, ISIC-2019 and ISIC-2020, denoted as the training datasets, were employed for
this purpose. The subsequent sections delineate the procedures involved in gathering and
preprocessing these datasets, with priority given to an initial overview of the evaluation
dataset.

Data preprocessing
During the research, preparing the data was crucial to train CNN models efficiently (Pérez
& Ventura, 2022; Marchetti et al., 2020). These initial steps were necessary to get the
dataset ready, for training and evaluation guaranteeing that the CNNs could learn well and
provide predictions (Koçak et al., 2024; Hekler et al., 2020; Brinker et al., 2019).

All images were uniformly downsized to a resolution of 256 × 384 pixels. This decision
balanced the need for detail preservation and computational efficiency, as higher
resolutions would increase training time without guaranteeing better performance
(Aboulmira et al., 2025; Ali et al., 2021). To enhance the training dataset, an
ImageDataGenerator was used to perform various augmentation techniques such as
rotation, zoom, and horizontal flipping (Bozkurt, 2023; Shaikh et al., 2021b; Goceri, 2020).
This approach helped in creating a more robust model by exposing it to a variety of image
transformations, thereby improving generalization (Hekler et al., 2020; Han et al., 2018).

During the training and validation phases, we opted for a batch size of 64 to ensure a
mix of classes, in each batch which is important for addressing class imbalances
(Aboulmira et al., 2025). When it came to testing, we used a batch size of 1 to maintain the
image order and ensure alignment between predictions and actual data (Shaikh et al., 2024;
Shaikh & Khoja, 2014). The images were normalized to standardize the input data aiding
in speeding up the CNNs learning process by ensuring that the data distribution has an
average of zero and a standard deviation of one (Chollet & Chollet, 2021; Brinker et al.,
2019).
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Justification of model types and selection method
Model types
This study employed EfficientNetB3 models for skin lesion classification, chosen for their
balance of high performance and computational efficiency (Aboulmira et al., 2025; Kassem
et al., 2021; Tan & Le, 2019). The justification for selecting EfficientNetB3 and the model
types used are based on several key factors.

Performance and efficiency
EfficientNets have shown better results than networks having a similar parameter count, as
seen in Hasan et al. (2021), Huang et al. (2022). They deliver outcomes in tasks, like image
classification while being computationally effective making them a budget-friendly option
for this research (Aboulmira et al., 2025; Ali et al., 2022; Zalaudek et al., 2006). EfficientNet
model EfficientNetB3 uses parameters compared to various conventional CNN designs
(Alhichri et al., 2021; Li et al., 2018). This efficiency helps decrease the workload during
training, which is essential considering the limited computing resources accessible for this
study (Akhund et al., 2024a; Ha, Liu & Liu, 2020; Hekler et al., 2020).

Demonstrated effectiveness
EfficientNets, especially the EfficientNetB3 variant, were prominently used in
high-ranking submissions of the 2019 and 2020 SIIM-ISIC melanoma classification
challenges (ISIC, 2024). This track record of success in similar dermatological imaging
tasks is also seen in Reddy et al. (2024), Gouda et al. (2022), and Feng et al. (2022),
underscores their suitability for skin lesion analysis.

To prevent overfitting, the study employed various regularization techniques, including
data augmentation and dropout layers (Marchetti et al., 2020; Srivastava et al., 2014;
Argenziano et al., 2003). EfficientNetB3’s design allows for the integration of these
techniques (Aboulmira et al., 2025; Kim & Bae, 2020), further enhancing its performance
on the validation set and ensuring better generalization to new data (Salman & Liu, 2019).

Table 1 Summary of pre-trained models.

Reference Network(s) used

Brinker et al. (2019) ResNet50

Abdelrahman & Viriri
(2023)

EfficientNetB3, EfficientNetB4, EfficientNetB5, EfficientNetB6, EfficientNetB7, Se-ResNext101, ResNest101

Han et al. (2018) ResNet-152

Hekler et al. (2020) ResNet50

Haenssle et al. (2018) InceptionV4

Haenssle et al. (2020) MoleAnalyzerPro

Li et al. (2020) Custom

Esteva et al. (2017) Inception V3

Haggenmüller et al. (2021) AlexNet, VGG16, VGG19, GoogleNet, ResNet-50, ResNet-101, ResNet-152, Inception-V3, Inception-V4, DenseNets,
SeNets, PolyNets

Han et al. (2020) SeNet, Se-ResNet50, VGG19

Tschandl et al. (2020) ResNet34
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Selection method
The selection method for determining the most suitable model involved the study
exploring a grid of models with variations in label encoding (binary/multiclass), model
head capacity (shallow/deep), and dropout layer strength (0/0.2/0.4/0.6) (Jackson et al.,
2025; Bergstra & Bengio, 2012). This comprehensive grid search identified the optimal
combination of these parameters to maximize model performance (Tuba et al., 2021).
Early stopping was implemented to terminate training when no improvement in validation
loss was observed for seven consecutive epochs (Tuba et al., 2021; Yu, Song & Ren, 2013).
This approach ensured that models did not overfit, and training resources were used
efficiently (Saghir, Singh & Hasan, 2024; LeCun et al., 1998; Smith, 2017; Dietterich, 1995).

To expedite the training process, models were trained in parallel and grouped by target
label and model capacity (Nugroho, Ardiyanto & Nugroho, 2023; Huang et al., 2017). This
strategy significantly reduced the total training time, allowing for a thorough exploration
of the model grid within a feasible timeframe (Akram et al., 2025; Brinker et al., 2019).
After optimizing models on the validation set, their performance was evaluated on an
independent test set (Huang et al., 2022; Abadi et al., 2016). This final evaluation step
ensured that the selected models generalize well to new, unseen data (Loshchilov & Hutter,
2016).

In summary, EfficientNetB3 was chosen for its demonstrated performance and
efficiency (Chollet & Chollet, 2021; Tschandl et al., 2019), with the selection method
ensuring robust and generalizable model performance through a systematic and
resource-efficient training process (Hosseinzadeh et al., 2024).

Computing infrastructure
We required enormous computing power to conduct this research because of the nature
and large scale of the deep learning models and datasets utilized (NVIDIA Corporation,
2020).

The research made use of Linux-based operating systems for their reliability and
efficiency (Gulshan et al., 2016), in handling tasks and compatibility with various deep
learning frameworks (Khalil et al., 2023). Training learning models, such as CNNs like
EfficientNet demand GPU power (Jouppi et al., 2017). The study employed
high-performance NVIDIA GPUs optimized for learning tasks (Kang & Tian, 2018;
NVIDIA Corporation, 2020). While the research considered solutions utilizing TPUs
(Tensor Processing Units) known for their efficiency in tensor operations in networks, the
practical implementation primarily depended on GPU resources due to their availability
and infrastructure limitations (Jouppi et al., 2017; Abadi et al., 2016; Nair & Hinton, 2010).
Multi-core CPUs played a role in preprocessing data and overseeing workflow
management.

Handling large datasets such as BCN20000, ISIC-2019, and ISIC-2020 requires
high-capacity storage solutions (Ali et al., 2022; Nguyen et al., 2019; ISIC, 2024). Fast SSDs
were used to ensure quick data access and processing speeds (Aboulmira et al., 2025;
Kumar et al., 2024). Training complex models and processing large datasets necessitated
large amounts of RAM to handle data efficiently during training phases.
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The main tool for developing and training models was TensorFlow (Jang, 2025; Pang,
Nijkamp & Wu, 2020; Dillon et al., 2017; Abadi et al., 2016). This framework is widely
supported on Linux (Abadi et al., 2016; Nair & Hinton, 2010). It provides a range of tools
for creating and improving neural networks. Kaggle Notebooks were used for model
testing (Mostafavi Ghahfarokhi et al., 2024; Mukhlif et al., 2024). To benefit from
community-shared solutions, these notebooks offered an adaptable environment for
conducting experiments with computing requirements. Various personalized scripts—for
processing, enhancing, and assessing the data—were created to customize the workflows
according to the study’s needs (Akhund et al., 2024b; Banachewicz & Massaron, 2022;
Abadi et al., 2016).

The computing setup relied on GPUs, ample memory, spacious storage, and reliable
deep-learning software, on a Linux system to support smooth and productive model
training and assessment procedures (Haggenmüller et al., 2021; Nair & Hinton, 2010).

Evaluation data
Image dataset description

The BCN20000 dataset comprised 165 images selected randomly from a larger collection
of 2,621 images. The sole criteria for inclusion were adequate image quality and the
presence of hemoglobin pigmentation in either the entire lesion or part thereof (Mostafavi
Ghahfarokhi et al., 2024; Combalia et al., 2019; Esteva et al., 2017). Among these 165
images, 15 were allocated for training purposes, facilitating participant familiarity with the
process of utilizing the three-point checklist for evaluation. The remaining subset of 150
images served as the basis for assessing performance in this study. This set of 150 images,
along with the corresponding human evaluations, forms the core of the evaluation dataset
employed in this research endeavor (Rotemberg et al., 2021; Tschandl et al., 2020).
Specifically, the BCN20000 dataset offered the following components:

. JPEG (JPG) files with a resolution of 512 × 768 pixels for each image.

. Individual evaluations by participants utilizing the three-point checklist for each image.

. Ground truth data corresponding to each image.

. Metadata associated with the images.

. Metadata associated with the participating individuals

Each image in the BCN20000 dataset was presented at a resolution of 512 pixels in
height and 768 pixels in width, thereby establishing an aspect ratio of 1:1.5 (Hernández-
Pérez et al., 2024). To ensure consistency in training and testing processes with similar
images, the training images referred to in the preceding section were adjusted to the same
aspect ratio (Tan et al., 2024; Combalia et al., 2019).

Image classification and ground truth
The investigation focuses on categorizing images through binary classification,
distinguishing between a “benign” and a “malignant” category. The benign class represents
a negative status denoting no cause for concern, while the malignant class signifies the
presence of cancer (Chatterjee, Gil & Byun, 2024;Marchetti et al., 2020). Study participants

Ajabani et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2795 9/45

http://dx.doi.org/10.7717/peerj-cs.2795
https://peerj.com/computer-science/


were not directed to categorize images as benign or malignant; instead, they assessed each
image based on three distinct characteristics: asymmetry (about color and/or structure, not
shape), atypical network (characterized by a pigment network displaying thick lines and
irregular holes), and blue-white structures (indicating the presence of blue and/or white
coloration within the lesion) (Mostafavi Ghahfarokhi et al., 2024; Tschandl et al., 2019).
When two or more of these characteristics were identified, the lesion was classified as
malignant. To establish malignancy scores for each participant and image, the responses
for each criterion were converted into binary form, where 0 represented “not present” and
1 indicated “present”. The analysis discerns the classification of images into negative or
positive classes for each participant (Jackson et al., 2025; Marchetti et al., 2020). The
ground truth of each image was established via histopathological examination (Esteva
et al., 2019). Among the 165 images, 116 were benign instances and 49 were malignant
instances, indicating an incidence rate of 29.7% (Haenssle et al., 2018). This rate notably
exceeds that of the training images, which could potentially impact the outcomes
(Marchetti et al., 2020). Accompanying each image is metadata detailing the subject of the
image, encompassing age, sex, and the lesion’s anatomical location, akin to the information
provided in the ISIC-2019 and ISIC-2020 datasets (ISIC, 2024; Tan & Le, 2019).
Nonetheless, the decision was made to exclude metadata from the model.

Participant selection criteria
The evaluation encompassed 170 participants, who provided background information
related to their professional roles and medical experience. This information included
details such as:

. Professional background: Participants were primarily dermatologists or medical
professionals with substantial expertise in skin lesion analysis.

. Country of origin: The participants came from various regions, ensuring geographic
diversity. This may have helped capture a range of diagnostic approaches and
perspectives.

. Experience with dermoscopy: Participants were asked to report their prior experience
with dermoscopy, including whether they were routinely engaged in diagnosing skin
lesions through dermoscopy in clinical practice.

. Years of experience: The number of years participants had been performing
dermoscopies was recorded to ensure that only individuals with sufficient experience
were included in the performance evaluation.

. Frequency of yearly dermoscopies: To further quantify their expertise, participants also
reported how often they perform dermoscopies each year. This helped in distinguishing
between frequent and less frequent users of the technique.

For the scope of this study, the inclusion was limited to participants who had completed
at least 126 out of the 150 images in the evaluation dataset. This threshold was set to ensure
a reliable assessment of each participant’s performance. Based on this criterion, 69
experienced participants were selected for the analysis. This approach was designed to
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reflect a real-world clinical scenario and to provide a meaningful comparison between
human evaluators and the CNN model (Lee et al., 2025).

Training data
A substantial volume of high-quality images is crucial to train a CNN effectively (Ali et al.,
2022; Rotemberg et al., 2021). For instance, the ImageNet Challenge used 1.2 million
images across 1,000 categories, averaging 1,200 images per category (Hekler et al., 2019;
Gutman et al., 2016; Deng et al., 2009). However, gathering and verifying these images is
labor-intensive, resulting in limited datasets for computer vision tasks (Tan et al., 2024).
Exploring skin lesion datasets, the PH2 dataset provided only 200 images, insufficient for
CNN training (Gouda et al., 2022). The SIIM-ISIC challenges between 2016 and 2020 saw
a significant expansion (ISIC, 2024) as shown in Table 2.

The ISIC-2020 dataset included 33,126 images (ISIC, 2024; Rotemberg et al., 2021),
curated from various sources after thorough quality checks. Despite the volume, the ISIC-
2020 dataset had a low positive incidence rate of 1.76%, potentially causing imbalances in
training. To address this, merging the BCN20000 dataset with a 17.85% incidence rate was
necessary, providing more positive instances for better model learning. Both datasets were
used for this reason. The inclusion of metadata (patient age, sex, lesion site) in skin lesion
classification models has shown promise. Studies suggest that incorporating such data
enhances diagnostic accuracy for clinicians (Reddy et al., 2024; Haggenmüller et al., 2021).
However, some winning Kaggle models (Lee et al., 2025; Ha, Liu & Liu, 2020; Lopez et al.,
2017) did not benefit from metadata fusion, opting for different strategies. Haenssle et al.
(2018) also highlight the potential of metadata but suggest varying benefits depending on
the model structure (Naseri & Safaei, 2025; Codella et al., 2018). Aligning labels for both
datasets, as shown in Table 3, involved treating the “MEL” class as positive and others as
negative. Yet, using multiclass labels poses a risk: it might improve performance but limit
overall utility (Shen et al., 2019; Deng et al., 2009). To counter this, we experimented with
training models using both binary and multiclass labels.

Train-test split
Neural networks, due to their high capacity, are prone to overfitting, making it unsuitable
to evaluate them on the same data used for training (Abbas et al., 2025; Ophir et al., 1991).
Standard practice involves splitting the data into three sets: training, validation, and test
sets. The training set is used to optimize the model’s performance, but overfitting can occur
if the model memorizes the training data (Alotaibi & AlSaeed, 2025; Salman & Liu, 2019).
A validation set, derived from the training set, helps identify overfitting by monitoring the
loss on both training and validation sets after each epoch (Liu et al., 2025; LeCun et al.,
1998). Overfitting is detected when training loss decreases while validation loss increases
(Srivastava et al., 2014). The validation set also determines when to stop training to avoid
further overfitting (Debelee, 2023). However, models optimized excessively on the
validation set risk “overfitting to the validation set”, where some models perform better by
chance rather than reflecting the true model. To mitigate this, a test set—a separate
subset—is used to assess the final model’s ability to generalize new, unseen data. After
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optimizing the validation set, the model’s performance on the test set ensures its suitability
for predicting novel images (Aboulmira et al., 2025; Tan & Le, 2019).

In this study, we employed a 15% validation split (Liu et al., 2024, 2020; Chollet &
Chollet, 2021). Due to differing incidence rates in the ISIC-2019 and ISIC-2020 datasets
(Hernández-Pérez et al., 2024; ISIC, 2024; Rotemberg et al., 2021), a stratified
train-validation split was implemented, using an 85-15 division for each dataset before
combining them (Naseri & Safaei, 2025; Ali et al., 2022; Deotte, 2020). Table 4 shows the
class distribution for these splits. The test set provided by the 2020 Kaggle competition was
used directly, omitting the need for a custom test set. This test set of the ISIC-2020 dataset
comprises 10,982 images without ground truth, preventing model-specific tuning (ISIC,
2024). Instead, Kaggle accepts model predictions for scoring, facilitating performance
comparisons with competition participants (ISIC, 2024; Ha, Liu & Liu, 2020).

EMPIRICAL STUDY
An analysis was conducted with more than 30 pre-trained networks available for selection.
Table 1 comprehensively illustrates the prevalent use of ResNet networks as foundational
structures for skin lesion analysis. However, the prominent submission in the 2020
SIIM-ISIC melanoma classification challenge predominantly leveraged EfficientNets to
highlight the consistently superior performance of EfficientNets compared to other
networks with similar parameter counts (ISIC, 2024; Tan et al., 2024). This suggests these
networks might be more cost-effective due to their lower parameter count, demanding less

Table 2 ISIC competition in the year 2016–2020.

Year # of images

2016 900

2017 2,000

2018 12,609

2019 25,331

2020 33,126

Table 3 Alignment procedure for the 2019 and 2020 ISIC data labels.

2019 Diagnosis 2020 Diagnosis Target

NV Nevus NV

MEL Melanoma MEL

BCC BCC BCC

BKL Seborrheic keratosis, lichenoid keratosis, solar lentigo, lentigo NOS BKL

AK AK

SCC SCC

VASC VASC

DF DF

Cafe-au-lait macule, atypical melanocytic proliferation, unknown Unknown
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computational resources during training (Gouda et al., 2022). A comprehensive review of
pre-trained networks within the Keras package further substantiates the effectiveness of
EfficientNets (ISIC, 2024). They exhibit creditable performance in the ImageNet Challenge
while necessitating fewer parameters and reasonable training durations (Houssein et al.,
2024; Hekler et al., 2019). Given constrained computational resources, opting for an
EfficientNet seems a judicious choice for this study (Ali et al., 2022). Specifically, selecting
the EfficientNet B3 variant aligns with the models utilized (Hosseinzadeh et al., 2024; Tan
& Le, 2019; Ophir et al., 1991).

Regularization
Deep neural networks, specifically Deep CNNs, exhibit extensive model capacity, making
them susceptible to overfitting. Techniques employed to counter overfitting are known as
regularization methods and encompass various approaches.

In this study, four key regularization techniques—data augmentation, dropout layers,
capacity regulation, and weight regularization—are optimized following prior research
(Srivastava et al., 2014; Argenziano et al., 2003). Chollet & Chollet (2021) suggests
exploring model capacity until overfitting appears, followed by applying regularization
methods to improve test performance. This process is iterative, time-consuming, and
requires expertise from the data scientist (Hekler et al., 2019). Data augmentation prevents
overfitting by altering input data, ensuring the model learns general features rather than
specific images. This technique is crucial for small datasets and also improves
generalization in larger datasets (Goodfellow, 2016). Rotation, zooming, and horizontal
flipping are used in this study to introduce variations, helping the model handle novel
orientations (Hekler et al., 2019; Zalaudek et al., 2010). Although shear is a common
augmentation strategy, Zalaudek et al. (2006) highlight its potential to distort asymmetrical
features, crucial for detecting malignant melanomas, which led to its exclusion. Based on
prior literature observations (Hernández-Pérez et al., 2024; Chollet & Chollet, 2021;
Goodfellow, 2016; Srivastava et al., 2014), data augmentation remains a vital part of
regularization in all models.

Table 4 Class distribution in training and validation sets.

Category Training share % Validation share %

AK 1.5 1.6

BCC 5.6 6.0

BKL 4.9 4.6

DF 0.4 0.4

MEL 8.8 8.6

NV 31.0 30.3

SCC 1.1 1.1

Unknown 46.3 47.1

VASC 0.4 0.4
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Dropout layers, situated between hidden layers in a neural network, employ a binary
mask to deactivate part of the activation, compelling subsequent layers to operate with
incomplete information (Hernández-Pérez et al., 2024; Srivastava et al., 2014). This
technique effectively converts the model into a correlated ensemble without multiple
model instances (Hekler et al., 2019). Regulating the capacity of a neural network involves
adjusting its depth and width, impacting the number of parameters. EfficientNets were
developed by striking a balance between these dimensions, aiming for an optimal structure
(Mukhlif et al., 2024; Haggenmüller et al., 2021; Tan & Le, 2019; Dillon et al., 2017;
Goodfellow, 2016). Chollet & Chollet (2021) suggest an approach involving the deliberate
construction of a complex network, followed by applying regularization techniques to
counter overfitting. However, due to the substantial complexity of datasets and models, an
alternative strategy of concurrently training multiple models with varied capacities and
regularization methods is employed in this study. Weight decay, a regularization technique
imposing a penalty function on complexity, reduces the network’s tendency to overfit
(Houssein et al., 2024; Loshchilov & Hutter, 2016). L2 weight decay, a common form,
adjusts the relative contribution of the norm penalty function through a weight parameter.
Finding an optimal alpha value (determining the degree of regularization) necessitates
experimentation tailored to the specific situation (Sterkenburg, 2025; Hastie, Tibshirani &
Friedman, 2009). Initial attempts to implement L2 weight decay into the network using
specific values encountered technical challenges, causing conflicts within TensorFlow and
subsequent crashes (Jang, 2025; Pang, Nijkamp & Wu, 2020; Hekler et al., 2019; Hastie,
Tibshirani & Friedman, 2009). As a result, prioritizing other aspects of the study overcame
these obstacles.

Metrics
When assessing the performance of a model in a classification task, a frequently employed
and straightforward metric is prediction accuracy (Mohammed & Meira, 2020; Davis &
Goadrich, 2006). This metric, as defined by Mohammed & Meira (2020), serves as a
common evaluation criterion:

Accuracy ¼ 1
n

Xn
i¼1

Iðyi ¼ byiÞ: (1)

In a scenario with ‘n’ observations, accuracy measures how well a model’s estimates
match the actual answers. Yet, accuracy can fall short for imbalanced datasets, where it
may inflate due to a majority class bias, rendering them less useful (Liaw et al., 2025; He &
Garcia, 2009). To counter this, the receiver operating characteristic curve (ROC)/area
under curve (AUC) analysis proves valuable, unaffected by such imbalances (Ozel et al.,
2025; Ha, Liu & Liu, 2020; Esteva et al., 2019; Fawcett, 2006). Additionally, the connection
between CNN outputs and ROC thresholds has made ROC analysis prevalent in evaluating
skin lesion CNNs. ROC analysis hinges on the true positive rate (TPR) and false positive
rate (FPR), explained through confusion matrices (Gouda et al., 2022; Yap, Yolland &
Tschandl, 2018). In a binary classification scenario with ‘n’ observations, ‘yi’ represents true
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labels, and ‘byi’ signifies estimated labels for each observation indexed from 1 to ‘n’,
distinguishing positive (‘c1’) and negative (‘c2’) classes (Hernández-Pérez et al., 2024;
Hekler et al., 2019; Kassem et al., 2021).

Hence, in line with commonly used metrics in skin lesion classification research, as
demonstrated in Houssein et al. (2024), Ali et al. (2022), Yap, Yolland & Tschandl (2018),
Esteva et al. (2019), we employ AUC-ROC, TPR, and FPR for performance evaluation.

TRAINING A CNN
This section outlines the prevalent strategy of employing a pre-trained network derived
from the ImageNet challenge as the foundation for training a CNN aimed at skin lesion
classification (Reddy et al., 2023; Ha, Liu & Liu, 2020). This method finds frequent
application in research articles (refer to Table 1) and has been proven instrumental in
securing victory in a significant Kaggle competition (Banachewicz & Massaron, 2022). It is
endorsed in dedicated deep-learning literature (Hernández-Pérez et al., 2024; Ali et al.,
2022). Subsequent sections delineate endeavors in constructing and training CNN.

Preliminary training approach
The primary objective was to train a CNN using the EfficientNetB3 architecture (Alhichri
et al., 2021), with a Flattening layer followed by three Dense layers. The goal was to explore
a large hyperparameter space that extended beyond the scope outlined in “Empirical
study”. A full search, excluding learning rate tuning, would require training 1,024 models,
which was impractical. To address this, the Keras tuner package Hyperband (Li et al.,
2018) was used, applying a multi-armed bandit strategy to systematically evaluate models
within the hyperparameter space (Ali et al., 2022). Hyperband’s heuristic approach creates
a subset of models, trains them briefly for a few epochs, saves the models, and discards
inferior performers (Alhichri et al., 2021; Hekler et al., 2019). The top-performing models
are iteratively refined through further training, allowing resources to focus on the most
promising candidates (Chen et al., 2024; Li et al., 2018). A preliminary test with Hyperband
used 320 training images (less than 1% of the total 50,000) and 160 validation images (192
× 158 pixels). Training for 15 epochs took approximately 7 h, during which 90 models
were evaluated, identifying the best-performing one. This model’s base was unfrozen and
fine-tuned with 10 additional epochs. As shown in Table 5, the final model had more
parameters in the Dense layers, driven by the Flattening layer’s large output size.

However, four issues emerged during the evaluation:

1) Image dimension error: Images were incorrectly encoded as (192,158) instead of
(128,192), affecting performance (Goodfellow, 2016).

2) Runtime limitations: Testing on a cloud setup led to suboptimal node utilization, with
training marked by performance spikes and inefficiencies. Enlarging the images to
(512,768) increased the epoch runtime by 12×, rendering a full-scale test infeasible
(Chollet & Chollet, 2021).
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3) Dataset inconsistency: Initially, only the HAM10000 subset of the 2019 dataset was
downloaded, encoding eight classes instead of nine. The complete dataset was later
obtained and re-encoded to meet the required specifications (Tschandl et al., 2019).

4) Prediction imbalance: Despite achieving low loss values, the model’s predictions
overestimated prevalent classes while assigning low probabilities to less common ones,
limiting its generalization (Bria, Marrocco & Tortorella, 2020).

Optimizing the training strategy
The initial strategy faced obstacles that required significant time and effort to resolve. An
analysis of the winning solution from the 2019 and 2020 Kaggle competition (GitHub,
2024a, 2024b; Lin et al., 2017) revealed available code on GitHub (GitHub, 2024a, 2024b),
but the training process demanded extensive computational resources, exceeding our
infrastructure. Additional exploration uncovered contributions from a Kaggle
grandmaster, who utilized TPUs—resources not available to us (Banachewicz &Massaron,
2022). Another submission by Jang (2025) provided valuable insights but also relied on
TPUs, requiring image rescaling to a 1:1 ratio. We evaluated this model after resizing
images to (256,256), achieving an AUC score of 0.773. Through iterative reviews and
small-scale testing, we identified promising adjustments that improved training by
focusing on image features rather than class distributions. Key observations included:

. Implementation of GlobalAveragePooling instead of Flattening layers between the base
and head, substantially enhancing performance while reducing the parameters in the
initial dense layer (Ali et al., 2022; Minderer et al., 2022).

. Experimentation with binary-labeled training sets, inspired by Tensorflow (Jang, 2025;
Pang, Nijkamp & Wu, 2020; Dillon et al., 2017), demonstrated quick and satisfactory
results despite potential information loss compared to multilabel training (Houssein
et al., 2024; Bria, Marrocco & Tortorella, 2020).

. Adoption of a learning rate schedule aligned with Chollet & Chollet’s (2021)
recommendation, diverging from the reviewed models’ approaches, showcased
substantial performance enhancements (Ha, Liu & Liu, 2020; Loshchilov & Hutter,
2016).

Table 5 Model summary of the best model.

Layer Output shape Number of parameters

EfficientNetB3 (functional) (None, 6, 5, 1,536) 10,783,535

Flatten (None, 46,080) 0

Dropout (None, 46,080) 0

Dense1 (None, 256) 11,796,736

BatchNorm (None, 256) 1,024

Dense2 (Dense) (None, 160) 41,120

Dense (Dense) (None, 8) 1,288
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. Construction of models with shallow heads akin to Tensorflow (Jang, 2025; Pang,
Nijkamp & Wu, 2020; Dillon et al., 2017) designs resulted in significantly fewer
parameters than conventionally proposed by Chollet & Chollet (2021).

. Integration of class weights into the optimizer, following the Tensorflow approach
(Pang, Nijkamp &Wu, 2020;Dillon et al., 2017), counteracted skewed class distributions,
notably improving model predictions (Lin et al., 2017).

The collective impact of these methodologies substantially enhanced our models’
capability to discern image features rather than relying solely on class distribution
information (Hernández-Pérez et al., 2024). Consolidating these strategies, a new model is
crafted, expected to surpass the evaluation set performance achieved by the Tensorflow
model (Pang, Nijkamp & Wu, 2020; Dillon et al., 2017).

Final model training and evaluation
The final configuration focused on three key parameters: label encoding (binary/
multiclass), model head capacity (shallow/deep), and dropout layer strength (0/0.2/0.4/
0.6). Initially, we attempted to use two dropout sizes (0/0.5) and an L2 kernel regularizer in
the first Dense layer. However, this setup caused compatibility issues with EfficientNetB3,
leading to recurring errors. As L2 regularization was absent in similar models, we shifted
focus to exploring more dropout configurations. A total of 16 models were trained with
varying parameter combinations.

To balance convergence and training time, we set the maximum epoch limit to 50 with
an early stopping callback (patience = 7). The best model, based on validation loss, was
retained. Early stopping minimized computational overhead by halting training when no
improvement was observed over seven consecutive epochs (Caruana & Niculescu-Mizil,
2006).

While EfficientNet models can handle higher resolutions, they increase computational
demands without guaranteed performance improvements (Tan & Le, 2019). Thus, we
downscaled all images to (256,384) for training, validation, testing, and evaluation. Initial
trials showed each epoch took just over two hours. Following prior studies (Ali et al., 2022;
Shaikh & Khoja, 2013), we estimated 35–40 h of total training time per model over 15
epochs.

To speed up training, we ran models in parallel, grouped by target label and model
capacity. Four separate scripts were developed, each using one of the four dropout
configurations. These scripts applied identical preprocessing steps with an
ImageDataGenerator to resize and augment images (Chollet & Chollet, 2021). Training
batches were set to 64 to ensure the representation of smaller categories, while test batches
used a size of 1 to maintain image order alignment with predictions. Each script’s total
execution time ranged between 8 and 12 days.

BASELINE EXPERIMENTS
This section outlines three key aspects. Initially, the performance of 69 relevant individuals
on the evaluation dataset is detailed, and their average performance establishes a human
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baseline. Subsequently, the selection process for determining the CNN baseline among 16
trained CNNs is presented. Finally, an evaluation and comparison of this CNN baseline
against both human performances and the Tensorflow (Pang, Nijkamp &Wu, 2020; Dillon
et al., 2017) model is provided.

The performance of each individual is quantified as a pair of FPR and TPR values. The
FPR is calculated as the ratio of false positives to the total number of actual negatives, while
the TPR, also known as Sensitivity or Recall, is the ratio of true positives to the total
number of actual positives (Hanley & McNeil, 1982). These metrics are essential for
evaluating model performance, especially in medical imaging contexts where class
imbalances can significantly impact results.

Establishing a human baseline is critical for understanding the performance of
automated systems in clinical settings. Previous studies in dermatology have emphasized
the variability of human diagnostic capabilities, often indicating that dermatologists can
achieve TPRs in the range of 0.70 to 0.85 (Rawat, Rajendran & Sikarwar, 2025; Khan et al.,
2024). The selection process for identifying the CNN baseline among the 16 trained models
should involve comparing metrics like AUC-ROC and cross-validation performance to
ensure robustness (Rawat, Rajendran & Sikarwar, 2025; Ophir et al., 1991). Comparing the
CNN baseline to human performance allows for assessing the effectiveness of the model in
mimicking or surpassing human diagnostic capabilities (Ali et al., 2022; Esteva et al., 2017).

Figure 1 illustrates the performance of individual humans, accompanied by an average
FPR and TPR denoted by a blue dot. This average value does not signify an ensemble value
but represents the mean performance level of humans. It serves as a benchmark for human
performance for subsequent analysis and comparison. The average FPR stands at 0.196,
while the average TPR is 0.765 (Grzybowski, Jin & Wu, 2024).

All 16 trained models, as expounded, undergo evaluation using the ROC/AUC metrics
stipulated in “Empirical Study” across training, validation, test, and evaluation datasets.
The AUC scores for these models are tabulated in Table 6, with the highest scores per
category highlighted in boldface. An examination of the table reveals pertinent
observations:

1) Overfitting indicators: Scores typically peak on the training data, a common
occurrence in machine learning owing to model feature acquisition from the training
data. Substantial disparities between training and validation/test scores could signal
overfitting (Khan et al., 2025; Goodfellow, 2016). Test scores tend to be marginally lower
than validation scores. Two plausible explanations arise. Firstly, dissimilar incidence
rates between the training set (derived from the 2019 Kaggle competition) and the test
set could lead to biased performance if the model learned this incidence distribution.
Similarly, the evaluation method’s difference, where the built-in AUC measure for the
Keras package assesses AUC scores based on all prediction values rather than solely the
“MEL” category, might inflate train and validation scores.

2) Dataset quality and incidence rates: Evaluation data scores fall below test scores,
potentially due to qualitative differences in datasets. The Kaggle datasets are thoroughly
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processed, potentially possessing higher quality than the evaluation images
(Banachewicz &Massaron, 2022; Khan et al., 2022; Esteva et al., 2019). Additionally, the
test dataset might bear a closer resemblance to the training images compared to the
evaluation set, causing bias favoring test set performance. Furthermore, differences in
incidence rates could contribute to this discrepancy.

Figure 1 Dermatologists’ performance. Full-size DOI: 10.7717/peerj-cs.2795/fig-1

Table 6 Overview of the different models.

ID Labels Depth Dropout Train_AUC Val_AUC Test_AUC Eval_AUC

1. Binary Deep 0 0.995 0.940 0.868 0.806

2. Binary Deep 0.2 0.99 0.948 0.895 0.766

3. Binary Deep 0.4 0.987 0.931 0.807 0.801

4. Binary Deep 0.6 0.988 0.946 0.883 0.746

5. Binary Shallow 0 0.971 0.912 0.751 0.705

6. Binary Shallow 0.2 0.990 0.940 0.824 0.799

7. Binary Shallow 0.4 0.994 0.950 0.885 0.763

8. Binary Deep 0.6 0.990 0.950 0.886 0.795

9. Multiclass Deep 0 0.990 0.940 0.887 0.809

10. Multiclass Deep 0.2 0.986 0.983 0.549 0.593

11. Multiclass Deep 0.4 0.984 0.690 0.897 0.822

12. Multiclass Deep 0.6 0.981 0.981 0.885 0.762

13. Multiclass Shallow 0 0.981 0.927 0.766 0.762

14. Multiclass Shallow 0.2 0.978 0.934 0.713 0.747

15. Multiclass Shallow 0.4 0.986 0.981 0.863 0.737

16. Multiclass Shallow 0.6 0.983 0.980 0.886 0.737

Note:
The bold text indicates the highest score per category.
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3) Model 10 displays anomalous behavior. While training performance is robust, the
remaining scores notably plummet. Examination of probability outcomes reveals
similarities to the initial model. Visual inspection of AUC progression and loss during
training indicates normal initial training, followed by a severe decline in performance—
an occasional occurrence possibly stemming from stochastic weight initialization
(Sutskever et al., 2013). The primary criterion for model selection centers on
performance with novel data, specifically test and evaluation set performances. Under
these criteria, Model 11 emerges as the superior performer. Notably, it demonstrates
optimal performance on novel data while mirroring performance consistency across
training and validation sets, indicating an absence of overfitting.

Visual inspection of TensorBoard output underscores a model rapidly learning training
data but stabilizing after approximately 17 epochs, exhibiting consistent performance on
both the AUC score and loss function between training and validation data. Thus, this
model is deemed the baseline CNN model for this study.

On the test set, the baseline CNN attains:

. AUC score: AUC score of 0.897, placing it at the 37th percentile from the bottom,
considerably distant from the winning score of 0.949 in the Kaggle competition field.

. Evaluation dataset score: AUC score of 0.822 on the evaluation dataset, surpassing the
0.773 scored by Tensorflow model.

Nonetheless, compared to human baseline performances, the CNN baseline falls short.

. TPR comparison: At comparable FPR rates, the average human exhibits TPR = 0.765,
whereas the CNN records TPR = 0.694.

. FPR comparison: At analogous TPR rates, the average human demonstrates FPR =
0.196, while the CNN displays FPR = 0.320.

A visual comparison of these CNN models and the human average is depicted in Fig. 2.
A juxtaposition between the final model and the initial training outcomes demonstrates a
substantial enhancement in model performance and behavior. Notably, the final model
comprises only 201,188 parameters, significantly fewer than the 11,840,195 parameters in
the initial training model, as evident in Table 7. Additionally, Table 8 shows a broader
range of prediction values across almost all categories in the final model. This discrepancy
signifies the final model’s capability to discern image features rather than merely learning
the training distribution.

In summary, the baseline CNN converges effectively, outperforming the model (Pang,
Nijkamp & Wu, 2020) but falling short of the average human performance in the study.
The subsequent section will introduce and evaluate hybrid algorithms founded on
predictions from both the human and CNN baselines.
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HYBRID ALGORITHMS
Augmented hybrid approach
In certain instances, image classification poses varying levels of difficulty, presenting
disparities between human and machine capacities (Kaluarachchi, Reis & Nanayakkara,
2021). The study by Han et al. (2018) demonstrated discrepancies in image interpretation,
where image challenges for human subjects exhibited notably high performance when
processed by algorithms. Similarly, Marchetti et al. (2020) revealed enhancements in
performance by replacing uncertain human responses with predictions generated by a

Figure 2 ROC curves for Jang’s (2025) model and CNN baseline model.
Full-size DOI: 10.7717/peerj-cs.2795/fig-2

Table 7 Model summary of the top-performing model.

Layer Output shape Number of parameters

EfficientNetb3 (Functional) (None, 1,536) 10,783,535

dropout (Dropout) (None, 1,536) 0

dense 6 (Dense) (None, 128) 196,763

dense 7 (Dense) (None, 128) 4,128

dense 8 (Dense) (None, 9) 297

Table 8 Descriptive statistics of the probability estimates from the top-performing model on the test
set.

Label 0 1 2 3 4 5 6 7 8

Min 4.5e−11 9.3e−12 3.8e−09 2.6e−11 3.9e−07 2.0e−6 1.4e−11 7.5e−08 1.1e−11

Median 5.5e−06 9.3e−12 6.1e−05 2.3e−06 6.6e−04 3.9e−3 1.8e−06 0.99 1.8e−06

Max 0.94 0.59 0.15 0.75 0.996 1.0 0.29 1.0 0.15
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CNN. Defining a mutual relationship in the difficulty of image interpretation—where
some images present challenges for humans but not for machines, while others are easily
interpreted by humans yet pose complexity for computational systems (Archana &
Jeevaraj, 2024). Moreover, it proposes leveraging CNN prediction values as indicators to
delineate images deemed “easy” or “difficult” by the system (Sun et al., 2023). If
substantiated, this insight could facilitate the construction of a synthesized list comprising
both human and computer predictions, derived from the certainties inherent in CNN
predictions (Jackson et al., 2025).

Algorithm
In the scenario presented in Eqs. (2)–(7), there exists an array denoted as A, comprising
prediction values a1 through an, where ‘n’ represents the count of assessed images. The task
involves arranging this array in ascending order, leading to the formation of array B,
consisting of elements b1 through bn. Simultaneously, it is imperative to maintain a clear
correspondence or mapping between the index values of the original array A and the
resulting array B. Introducing a parameter labeled as ‘s’, let us define ‘i’ and ‘j’ as follows:

i ¼ n
s

���
��� (2)

j ¼ s� 1ð Þn
s

����
����: (3)

The constraint stipulates that ‘s’must be greater than 2 to uphold the condition where ‘i’
is less than ‘j’. Subsequently, the partitioning of ‘B’ into three lists can be executed as:

Blower ¼ b1; b2; . . . ; bi½ � (4)

Binner ¼ biþ1; biþ2; . . . ; bj
� �

(5)

Bupper ¼ bjþ1; bjþ2; . . . ; bn
� �

: (6)

The merging of Blower and Bupper is designated as Bouter .

Bouter ¼ b1; b2; . . . ; bi; bjþ1; bjþ2; . . . ; bn
� �

: (7)

The array denotes values extracted from B that demonstrate heightened “certainty” by
their proximity to either 0 or 1. Conversely, the Binner signifies values from B characterized
by reduced certainty, specifically those closer to 0.5. Upon the establishment of both the
internal and external lists, the indices corresponding to the images within one of these lists
can be utilized as inputs for Algorithm 1, designated as the “Subset index list”.
Subsequently, this algorithm substitutes the CNN predictions linked to the Subset index
list with human responses randomly chosen for those specific images (lines 4–11), thereby
generating a substituted predictions list.

Following this, an analysis employing standard ROC/AUC methodology, as introduced
in “Empirical Study”, is conducted on this list. Due to the algorithm’s random selection of
human predictions for each index, stochasticity becomes inherent, resulting in varying
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outcomes across different trials. Addressing this variability involves executing the setup
multiple times, as per the tenet of the strong law of large numbers, which asserts that the
anticipated result from an infinite number of trials will converge toward the population
parameter. In the algorithm’s specified lines (18–23), a sequence of 1,000 trials was
executed, collecting ROC curves and AUC scores for each trial. These values were
subsequently consolidated using averaging. The method employed for averaging involved

Algorithm 1 Augmented hybrid approach.

START

input: CNN predictions, Human predictions, Ground truths, Subset index list, Number of iterations,
threshold list

output: ROC Curve; AUC score

1 ROC Curves ¼ 3DTensor

2 AUC Scores ¼ list

3 for each iteration do

4 Create substituted prediction list:

5 sub predictions ¼ list

6 for each index in CNN prediction do

7 if index in Subset index list then

8 Pick random human prediction for corresponding image

9 sub predictions index½ �  humanpredictions index½ �
10 else

11 sub predictions index½ �  CNNpredictions index½ �
12 for loop end

13 Create ROC Curves & AUC Scores:

14 ROC; AUC  ROC=AUCAnalysisðinput ¼ sub predictions; Groundtruths; thresholdlistð Þ
15 UpdateROC Curves  ROC stacking the dataframes on top of each otherð Þ
16 UpdateAUC scores  AUC

17 for loop end

18 Generate average ROC Curve:

19 for each cell cijn in ROC curve do

20 cij  1
n

Xn

n¼1 cijn

����
21 for loop end

22 Plot ¼ Lineplot showing Sensitivity and Specificity measures

23 Average AUC  1
n

Xn

n¼1 AUC scores

24 Return Plot; Average AUC

END
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treating individual ROC curves as distinct DataFrames, each composed of (FPR and TPR)
pairs. These DataFrames were concatenated vertically, forming a 3D Tensor structure. In
this arrangement, each cell could be denoted as cijn, where ‘i’ signifies the row index, ‘j’
represents the column index, and ‘n’ indicates the depth corresponding to the specific
iteration number. The subsequent step involved computing the average values across the
depth dimension, resulting in the derivation of a final DataFrame.

Testing differences between humans and CNNs
The hybrid algorithm operates under the premise that humans and CNNs exhibit varying
proficiency in analyzing distinct images, with their performances showing minimal
correlation (Bozkurt, 2022). A strong correlation exists between their performances,
substituting one entity’s prediction with the other should yield negligible or no impact. To
validate this presumption, the CNN predictions were segregated into inner and outer lists
following Eqs. (5) and (7). A value of s = 4 was employed to maintain equal list sizes
(Wang, Wong & Lu, 2020; Fawcett, 2006). Both lists underwent evaluation by both the
baseline CNN model and human evaluators. The outcomes, depicted in Fig. 3, highlight
differential ease in identifying certain images. The CNN’s performance appears least
optimal for the inner list, registering an AUC of 0.664, while demonstrating superior
performance on the outer list, yielding an AUC of 0.917. Similarly, human evaluators
displayed lower performance on the inner list and higher performance on the outer list.
Notably, their TPR exhibited variation between the lists, whereas the FPR remained
relatively consistent. This substantiates the assertion that certain images pose greater
classification challenges while suggesting the feasibility of utilizing CNN predictions to
specifically target these challenging images (Müller et al., 2024). For the inner list, CNN’s
performance significantly trails behind human performance. Conversely, on the outer list,
CNN’s performance marginally surpasses human performance (Mahmood et al., 2024).

Figure 3 Performance of humans and CNN for the inner and outer sub-lists.
Full-size DOI: 10.7717/peerj-cs.2795/fig-3
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These findings corroborate the notion that humans and CNNs encounter difficulties in
analyzing dissimilar images, thereby supporting the argument against a strong correlation
between their performances (Mahmood et al., 2024).

Augmented hybrid results
After demonstrating variations in image difficulty for classification and the lack of a strong
correlation between human and CNN performance, the subsequent phase involves
ensembling human and CNN responses into a unified list (Ganaie et al., 2022; Wu et al.,
2022). It is postulated that an arrangement where human answers constitute the inner
elements and CNN predictions form the outer elements will outperform the baseline
performances (Akram et al., 2025; Archana & Jeevaraj, 2024). To evaluate this hypothesis,
Algorithm 1 is executed twice: once with the inner list as the “Subset index list” and once
with the outer list in the same role. Both instances of the algorithm are run 1,000 times,
with an expectation of convergence towards the anticipated ROC curve and AUC values.
Figure 4 presents the outcomes derived from generating and scrutinizing the inner and
outer substitution lists.

The outer substitution list broadly mirrors the CNN baseline model, deviating slightly at
the extremities, showcasing an AUC score of 0.798—marginally lower than the baseline
CNN score of 0.822 (Archana & Jeevaraj, 2024). In contrast, the inner substitution line
exhibits a distinct pattern: below the CNN baseline within FPR [0, 0.17], surpassing the
baseline within FPR [0.17, 0.4], and descending below the baseline within FPR [0.4, 1]. Its
AUC score of 0.772 falls slightly beneath the CNN baseline. Nevertheless, the inner
substitution line boasts a higher TPR (0.782) compared to the human baseline at similar
FPR levels, while also demonstrating a lower FPR (0.182) compared to the human baseline
at similar TPR values (Shahid et al., 2025; Caruana & Niculescu-Mizil, 2006).

STUDY LIMITATIONS
There are certain limitations of this study. Addressing these limitations could strengthen
the robustness and applicability of the study’s findings in real-world clinical practice.

Ethical considerations
The ethical considerations around having machine-driven decisions in life-critical medical
situations using the pure augmented hybrid algorithm are not fully explored. Granting
final decision authority to humans is mentioned as a solution but not fleshed out. This
study is the first step toward a hybrid algorithm. Nonetheless, this could be addressed by
granting a human final decision-making authority which is aligned with the global concept
of human-in-the-loop (Sasseville et al., 2025; Schuitmaker et al., 2025; Siddique et al., 2024;
van den Berg, 2024; Topol, 2019).

Limited dataset size and generalizability
The study’s findings may not be directly applicable to all dermatological settings due to the
specific dataset used, which consists of 150 images focused on particular characteristics of
skin lesions (Reddy et al., 2023; Shahid et al., 2025; Tschandl et al., 2019). The small size of
the evaluation dataset and the potential selection bias limits the generalizability of the
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results (Sabazade et al., 2025; Esteva et al., 2017). The study does not explicitly address
whether the dataset fully represents real-world clinical scenarios (Liu et al., 2024; Bejnordi
et al., 2017). Different populations, imaging techniques, or lesion types may yield different
results (Grzybowski, Jin & Wu, 2024; Winkler et al., 2019; Bejnordi et al., 2017). A larger,
more diverse dataset in future studies would help address these concerns and strengthen
the conclusions (Yan et al., 2025; Chen et al., 2024; Tschandl et al., 2020).

Model complexity and interpretability
While the CNN models used, particularly EfficientNetB3, demonstrate strong
performance, they inherently function as “black boxes,” limiting interpretability (Räz,
2024). This lack of transparency is a critical concern in medical settings, where clinicians
require not only accurate predictions but also insights into the reasoning behind them to
build trust and validate results. Without interpretability, it becomes difficult to detect
biases, troubleshoot errors, or confidently apply the model’s predictions in high-stakes
scenarios. Incorporating techniques such as saliency maps, attention mechanisms, or
SHAP values could enhance transparency by identifying which features or regions of an
image influence the model’s output (Cohen-Inger et al., 2025; Deng et al., 2024; Soomro,
Niaz & Choi, 2024). Hybrid approaches, combining interpretable rule-based models with
deep learning, may also strike a balance between performance and explainability (Khalil
et al., 2023; Caruana & Niculescu-Mizil, 2006). While this study focuses primarily on
performance, interpretability remains a crucial area for future research to ensure reliable
clinical integration (Coots et al., 2025; Baumann et al., 2024). Addressing the trade-off
between model complexity and interpretability will be key to gaining practitioner trust and
achieving better patient outcomes (Guyton, Pak & Rovira, 2025; Bria, Marrocco &
Tortorella, 2020).

Figure 4 An average of 1,000 simulations of the inner and outer hybrid lists.
Full-size DOI: 10.7717/peerj-cs.2795/fig-4
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Inclusion of metadata
The decision to exclude metadata from the model may overlook potentially valuable
information that could improve diagnostic accuracy (Khan et al., 2025; Duan et al., 2024;
Wang, Wong & Lu, 2020). Incorporating metadata, such as patient age and lesion location,
might enhance the model’s performance (Guermazi et al., 2024; Kania, Montecinos &
Goldberg, 2024; Esteva et al., 2019).

Resource intensive training
Training deep learning models, especially on large datasets with complex architectures,
requires significant computational resources and time (Rahman et al., 2021; Bria,
Marrocco & Tortorella, 2020; Litjens et al., 2017). This limitation could hinder the broader
adoption and replication of the study’s findings, particularly in resource-constrained
settings (Zhang et al., 2024a, 2024b; Topol, 2019).

Dependency on histopathological examination
The ground truth labels for the dataset were established via histopathological examination,
which itself has limitations (McCaffrey et al., 2024; Göndöcs & Dörfler, 2024), including
sampling bias (Wang et al., 2024; Webb et al., 2024) and interobserver variability (Pinello
et al., 2025; Shinde et al., 2025). Reliance solely on histopathology may introduce errors in
the dataset labels (Zhang et al., 2024b).

Human baseline variability
The human baseline performance was established using a subset of participants
experienced in dermoscopy. However, individual variability in human performance
(Naseri & Safaei, 2025; Stevens et al., 2025; Naeem et al., 2024), even among experienced
dermatologists (Gupta et al., 2025; Rubegni et al., 2024), could introduce uncertainty
(Sanz-Motilva et al., 2024) in comparison with the CNN models (Miller et al., 2024; Ali
et al., 2023).

Dataset imbalance
The dataset used for training and evaluation may suffer from class imbalance issues (Liu
et al., 2020;He & Garcia, 2009), particularly with the low incidence rate of malignant cases
(Gurcan & Soylu, 2024). This imbalance could affect the model’s performance and
generalizability (Fang et al., 2025).

Exploring model enhancements for improved performance
This study demonstrates how a hybrid approach—combining CNN predictions with
human expertise—outperforms individual baselines (Nugroho, Ardiyanto & Nugroho,
2023), including both standalone CNNs (Liu et al., 2025) and human assessments (Selvaraj
et al., 2024; Esteva et al., 2017). However, the AUC scores achieved are lower than those
reported in recent studies, such as Houssein et al. (2024) and Nugroho, Ardiyanto &
Nugroho (2023), which utilize more advanced CNN architectures and training techniques.

Future work will focus on testing our hybrid approach with these newer methods and
exploring ways to adapt or incorporate them into our framework to achieve further
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performance gains. Benchmarking against these recent advancements will help ensure our
approach remains competitive and aligned with the latest developments in skin lesion
classification.

CONCLUSION
This research introduces a novel augmented hybrid approach that combines the strengths
of CNNs with selective human intervention, aimed at enhancing skin lesion classification
accuracy. By leveraging the EfficientNetB3 backbone, known for its balance between
performance and efficiency, this study advances the field of medical image analysis with a
focus on practicality and scalability (Esteva et al., 2019). The hybrid algorithm prioritizes
high-confidence CNN predictions while delegating uncertain cases to medical experts,
thereby optimizing diagnostic outcomes with minimal human resource expenditure.

Our comprehensive evaluation of the ISIC-2019 and ISIC-2020 datasets compared
against 69 trained medical professionals demonstrates the promise of this approach (ISIC,
2024). The baseline CNN model achieved a competitive AUC score of 0.822, performing
close to human experts. However, the hybrid model improved upon these results,
achieving a TPR of 0.782 and reducing the FPR to 0.182, showcasing the effectiveness of
combining human and machine intelligence. These findings underscore the practical
potential of integrating CNNs into clinical workflows while ensuring that human expertise
remains central to decision-making (Rawat, Rajendran & Sikarwar, 2025; Gholizadeh,
Rokni & Babaei, 2024).

While the hybrid approach offers improved diagnostic accuracy and resource efficiency,
challenges persist. Issues such as dataset imbalance, model interpretability, and
computational resource demands highlight the need for further research to refine and
generalize the methodology (Strika et al., 2025; Char, Shah & Magnus, 2018). The
exclusion of metadata, though intentional in this study, also points to opportunities for
future work that may enhance diagnostic performance by incorporating contextual clinical
information (Hermosilla et al., 2024; Jones et al., 2022). Moreover, ethical considerations
surrounding human-in-the-loop frameworks require careful attention to ensure that the
technology serves as a support system, not a replacement, for clinical judgment (Lee et al.,
2025).

This research contributes to the growing body of literature on AI-assisted diagnostics by
demonstrating the potential of hybrid intelligence models to bridge the gap between
human expertise and algorithmic efficiency. The results indicate that well-structured
collaboration between CNNs and medical professionals can mitigate the limitations of
both systems. Moving forward, this hybrid framework offers a scalable, pragmatic solution
for clinical settings, fostering more reliable and accurate skin lesion diagnosis while
efficiently managing healthcare resources.
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