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ABSTRACT

Accurate software cost estimation (SCE) is a critical factor in the successful delivery
of software projects, as highlighted by industry statistics indicating that only some of
the projects comply with the predicted budget. Among the software estimation
methods, analogy-based estimation (ABE) is one of the most popular ones. Although
this method has been customized in recent years with the help of optimization
algorithms to achieve better results, the use of more powerful optimization
algorithms can be effective in achieving better results in software size estimation. This
study presents an innovative approach to SCE that integrates the grey wolf
optimization (GWO) algorithm to enhance the precision of ABE. The GWO
algorithm, inspired by the hunting behavior and social hierarchy of grey wolves, is
mathematically modeled and incorporated into the ABE approach. The key focus of
this research is the optimization of the similarity function, a crucial component of the
ABE, using both Euclidean and Manhattan distance measures. The article addresses
the challenges in selecting an optimal similarity function and emphasizes the
importance of proper feature weighting to improve estimation accuracy. The
proposed GWO-based ABE method is rigorously evaluated on multiple software
project datasets using cross-validation techniques. The performance of the
GWO-based ABE is compared to other evolutionary algorithms based on widely
accepted evaluation metrics. The results confirm that the integration of the GWO
algorithm into ABE enhances estimation accuracy and model robustness. By
optimizing feature weights in the similarity function, GWO-ABE effectively
addresses key limitations of traditional analogy-based methods. The proposed
approach demonstrates superior performance across multiple datasets, particularly
under the Euclidean distance function, making it a reliable solution for software
project cost estimation. Experimental evaluations show that GWO-ABE achieves
notable improvements in key performance metrics, leading to reduced mean
magnitude of relative error (MMRE), median magnitude of relative error (MdMRE),
and higher percentage of prediction (PRED) compared to other ABE-customized
methods. These findings highlight the role of metaheuristic optimization in
improving software estimation techniques, contributing to more precise and efficient
project planning and management.
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INTRODUCTION

Accurately estimating the cost of most software development is a pivotal concern at the
outset of any software project'. The unique nature of the software products renders cost
estimation a challenging endeavor. Precise cost estimation directly impacts the success or
failure of software projects (Dashti et al., 2022). A survey conducted by the Project
Management Institute (PMI) in 2017, indicated only 53% of projects have complied with
the predicted budget. Furthermore, the results showed that 32% of the projects had
exceeded the determined budget, and 16% had completely failed (Langley, 2017).
According to recent reports, only 35% of projects are delivered on schedule, meet
budgetary constraints, and align with predefined quality requirements, leaving 65% unable
to achieve these objectives (Dean, 2024). Therefore, devising more efficient methods for
SCE is of paramount importance for software specialists and researchers.

Reviewing the background reveals numerous methods and paradigms have been
proposed for software cost estimation (SCE), some of which attempt to categorize these
approaches. SCE relies on a diverse range of methods, which can be broadly categorized
into algorithmic and non-algorithmic approaches. Algorithmic models, such as
COCOMO, function point analysis (FPA), use case points (UCP), rely on mathematical
formulas derived from historical project data, while non-algorithmic methods, including
Planning Poker, and expert judgment, leverage human expertise and structured evaluation
techniques to estimate effort (Eduardo Carbonera, Farias ¢ Bischoff, 2020; Jorgensen ¢
Shepperd, 2006; Rashid et al., 2023). Building upon these studies, our research specifically
focuses on enhancing analogy-based estimation (ABE) through optimization techniques.
Among these, the ABE stands out as one of the most popular SCE methods. Several studies
have highlighted the effectiveness and superiority of ABE over traditional methods. For
instance, Gandomani et al. (2024) noted that ABE’s reliance on historical project data
makes it a natural fit for decision-making in SCE. AIMutlaq, Jawawi ¢ Arbain (2021)
found that ABE often surpasses parametric models in terms of accuracy, particularly when
a rich dataset of past projects is available. Inspired by instinctive decision-making of
humans, this method was initially employed in SCE in 1997 and has since gained
widespread adoption (Naik ¢» Nayak, 2017). The accuracy of cost estimation in the ABE is
dependent on four components similarity function, historical project sets, the number of
the closest similarities, and the solution function. The method selects one or more
previously developed projects similar to the project under development from the historical
dataset based on the similarity function and predicts the cost required for executing the
project based on similar projects.

In recent years, data-driven approaches, including machine learning and
optimization-based models, have gained traction for their ability to improve estimation
accuracy (Sharma ¢ Singh, 2017; Wen et al., 2012). These techniques have played a crucial
role in advancing software estimation methods. Researchers are actively exploring novel
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methods in this domain owing to their substantial advancements in this field (Alsaadi ¢
Saeedi, 2022; Kaushik, Tayal ¢» Yadav, 2022; Khan et al., 2022). In particular, the ABE has
been strengthened with the help of optimization algorithms. However, it seems that better
results can be achieved using this method by using more powerful optimization
algorithms.

Several comparative studies have analyzed the effectiveness of various machine learning
techniques in software effort estimation, providing valuable insights into their accuracy
and applicability. For instance, Jayadi & Ahmad (2023) compared multiple regression
techniques, including linear regression, ridge regression, Least Absolute Shrinkage and
Selection Operator (LASSO) regression, decision tree regression, and support vector
regression, concluding that LASSO regression demonstrated the highest accuracy in
feature selection and estimation performance. Similarly, Rahman et al. (2024) conducted
an extensive empirical study evaluating K-nearest neighbor, support vector machine,
Random Forest, logistic regression, and LASSO regression using benchmark datasets such
as COCOMO, Albrecht, Desharnais, and Maxwell, highlighting the strengths of
ensemble-based models in improving predictive accuracy. Furthermore, Kumar ¢ Singh
(2020) assessed linear regression, multi-layer perceptron (MLP), and Random Forest,
revealing that linear regression consistently outperformed the other models in terms of
estimation accuracy when implemented using the WEKA toolkit. Additional studies, such
as those conducted by Garg (2022), as well as Mateen ¢» Malik (2023), have further
explored ensemble techniques, stochastic gradient boosting, and industry-specific
comparisons, demonstrating how machine learning-based models can significantly
enhance software cost estimation compared to traditional parametric methods.

Building on these insights, Idri, Azzahra Amazal & Abran (2015) proposed a
classification specific to ABE methods with privileged attention to utilizing machine
learning methods. Their categorization can be identified into two main categories:
analogy-based techniques, which are used independently, and those combined with
machine learning-based methods or other non-machine learning-based methods. The
combination of models has to comply with a set of fusion rules recommended by Wen et al.
(2012). The analogy-based techniques may solely employ machine learning or use a
combination of various techniques. Consequently, Wen et al. (2012) have identified eight
pure machine learning methods. More recently, Dashti ¢» Gandomani (2022) have
introduced a comprehensive classification method, emphasizing hybrid methods and
categorizing estimation methods into base and hybrid with a more in-depth investigation
of hybrid methods.

Optimization techniques play a crucial role in improving the accuracy and reliability of
software effort estimation models (Ali &~ Gravino, 2021; Ansaripour ¢ Gandomani, 2023).
Over the years, various optimization methods have been explored, among which
computational intelligence (CI) and bio-inspired optimization approaches have gained
significant attention. CI techniques, such as neural networks and fuzzy logic, leverage
adaptive learning mechanisms to refine estimation models, while bio-inspired algorithms,
including genetic algorithms (GA), particle swarm optimization (PSO), and ant colony
optimization (ACO), draw inspiration from natural processes to optimize search and
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decision-making. These algorithms have demonstrated effectiveness in feature selection,
parameter tuning, and similarity function optimization within effort estimation models.

Among bio-inspired techniques, the grey wolf optimization (GWO) algorithm is
inspired by the grey wolves (Canis lupus) and imitates the hunting mechanism and the
leadership hierarchy of grey wolves in nature. Research indicated its desirable performance
in solving classic engineering design problems and many real applications that
outperforms many metaheuristic algorithms such as PSO, differential evolution (DE),
GAs, ACO, evolutionary programming (EP), and other similar algorithms (Mirjalili,
Mirjalili & Lewis, 2014). The GWO algorithm was selected for this study due to its unique
theoretical and practical advantages. Theoretically, GWO provides a balanced mechanism
for exploration and exploitation by replicating the structured social order and collaborative
hunting behaviors characteristic of grey wolves (Agarwal et al., 2018). This mechanism
helps avoid premature convergence, a common issue in other optimization algorithms.
Practically, GWO has shown high adaptability and robustness in feature selection and
parameter optimization tasks, making it particularly suitable for ABE. GWO has been
widely applied in software cost estimation (SCE), demonstrating its effectiveness in
optimizing effort prediction models. However, despite its success in SCE, no prior study
has explored its integration with analogy-based estimation (ABE). This research aims to
bridge this gap by leveraging GWO’s optimization capabilities to enhance ABE’s predictive
accuracy, thus contributing a novel approach to software cost estimation (Alsheikh ¢
Munassar, 2023; Kassaymeh et al., 2024; Khan et al., 2021; Putri, Siahaan & Fatichah,
2021).

The main motivation behind this research is the pressing requirement for more accurate
SCE. As suggested by previous studies and industry reports, most software projects face
budget problems with a vast majority exceeding the budget while others fail. This
highlights the importance of developing better techniques for estimating software
development costs. There has been a growing opportunity to improve SCE practices over
the recent advances in machine learning and artificial intelligence. Optimization
algorithms like the GWO have been proposed as a lever to the ABE method for improved
cost estimate reliability. The goal of this study is to explore how GWO algorithm can be
merged with ABE method so as to advance SCE field.

The remainder of the article is organized as follows: “ABE in SCE” overviews the ABE
method, and “Grey Wolf Optimization (GWO)” reviews the related works. The GWO is
summarized in “Related Work”. The proposed method is presented in “Proposed Method:
GWO-Based ABE”, and the evaluation criteria, datasets, implementation details, and
results are discussed in Sections “Evaluation and Result” and “Discussion”. Finally,
“Limitations” concludes the article.

ABE IN SCE

ABE has become a mainstream choice in SCE due to its intuitive appeal and ability to adapt
historical project data for predicting new project efforts (Azzeh, Elsheikh ¢ Alseid, 2017;
Shahpar, Bardsiri ¢ Bardsiri, 2021). The method’s straightforward process aligns with

human decision-making, making it particularly valuable for practical applications. Recent
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advancements have further enhanced ABE’s capabilities. For instance, Manchala ¢ Bisi
(2022) proposed a hybrid model combining teaching-learning-based optimization with
ABE, achieving improved prediction accuracy across multiple datasets. Similarly, Jadhav
et al. (2023) introduced Omni-Ensemble Learning, which integrates multiple optimization
algorithms to boost software effort estimation methods, showcasing the potential for
combining ABE with modern machine learning approaches. These developments highlight
ABE’s adaptability and relevance in addressing the challenges of SCE across varied
contexts. These findings confirm the robustness of ABE in diverse real-world scenarios,
reinforcing its value in SCE research. ABE due to its intuitive nature and reliance on
historical project data. It consists of four primary stages (Abnane & Idri, 2018):

* Gathering historical data: The first step involves collecting information on the previous
projects and providing the historical datasets, which are available in different datasets.
These datasets form the basis for identifying patterns and similarities between projects.

» Feature selection: In this stage, the key features of the new project are identified to align
with the features available in the historical datasets. This ensures that meaningful
comparisons can be made between projects.

e Similarity measurement: The similarity measure is calculated to determine how closely
the new project resembles previous projects. The standard similarity functions used in
this method include the Manhattan distance-based and Euclidean similarity. The
methods for calculating these measures will be detailed in the following sections.

e Cost prediction: The cost of the new project is estimated based on the nearest neighbors
identified through similarity measurement, utilizing the solution function for this
purpose. Details of the prediction process, including the solution functions used, are
provided later.

Since, in this research, the GWO is used for the similarity function to decrease the error
rate as well as improve the performance of the ABE method, the functionality of the GWO
similarity function is described in the following.

Similarity function
The similarity function measures the similarity degree between two different projects and
is a critical component in the ABE method. Since the similarity functions use different
structures to measure the distance between projects, selecting various types may affect the
projects selected as the nearest neighbors. Therefore, selecting the similarity function is of
great importance. Among many different similarity functions, the Euclidean
distance-based similarity and the Manhattan distance-based similarity are the most
popular methods (AlMutlag, Jawawi & Arbain, 2023; Bardsiri et al., 2013; Benala ¢ Mall,
2018; Dashti et al., 2022; Huang ¢ Chiu, 2006; Khatibi Bardsiri ¢ Hashemi, 2016; Nasr ¢
Mohebbi, 2023; Shahpar, Bardsiri ¢ Bardsiri, 2021).

The similarity function is a fundamental component of the ABE method, as it
determines the degree of resemblance between a new project and historical projects. This
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function quantifies how closely the features of two projects align, thereby forming the basis
for selecting the most similar historical projects, known as the nearest neighbors.

In its standard form, the similarity function can be expressed as follows (Eq. (1)):

sim(p.p’) :f(Lsim <f1f1’> Lsim <f2f2'> ..... Lsim <f,,f,;>> (1)

In this equation, the terms p and p’ represent the prospective project and an existing
project from the dataset, respectively (Amazal, Idri ¢ Abran, 2019). The features of these
projects are denoted by f; ,and f/, where n is the total number of features. The function
Lsim() computes the similarity for each pair of features, and the results are aggregated
using f (), which synthesizes these individual similarity scores into a single comprehensive
similarity value for the project pair.

The function operates in two main stages. First, for every feature of the projects, the
similarity between the feature values of the current project and prior ones is computed
using Lsim f;, f; ). This process evaluates how closely each feature of the new project aligns
with its counterpart in the historical dataset. The resulting similarity scores for all features
are then combined using the f(), function, which generates a unified similarity score
reflecting the overall resemblance between the projects (Gautam & Singh, 2017).

In our study, we extended this standard formulation by introducing two additional
parameters, w and §, alongside a feature weighting mechanism. The parameter w
represents the weight assigned to each feature, taking values between 0 and 1 to account for
the varying importance of features in the similarity calculation. Meanwhile, 6 is a small
constant added to the denominator to avoid division by zero and ensure numerical
stability. These enhancements allow the similarity function to dynamically adjust to the
characteristics of different datasets, making it more robust and effective in practice.

By incorporating these refinements, the similarity function not only ensures a more
precise comparison of projects but also enhances the reliability of the ABE process,
contributing to improved software effort estimation accuracy.

Euclidean distance: The Euclidean distance is a widely used similarity measure that
calculates the straight-line distance between two projects in a multi-dimensional space.
Mathematically, it is defined as Eq. (2):

1
sim(p.p’) = & = 0.0001 (2)
[\/ S, wiDis(fif;) +8
(fi — f;)2 if features are numeric
1 if features are numeric and f; = f;
0 if features are numeric and f; # f;

where p and p’ are the two projects, f; and f/i represent the ith feature of projects p and p/,
respectively. w; € [0 . 1] is the weight of that feature. Furthermore, 8 is a small constant to
prevent the denominator from being zero, and n represents the number of total features.
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The Dis() function represents the mathematical operation performed to calculate the
distance or similarity. Dis() computes the squared differences between corresponding
features of the projects, followed by summation and normalization.

Manhattan distance: This similarity is defined based on the Manhattan distance, which is
the sum of total absolute value distances for each feature pair and is represented in Eq. (3).

. / 1
sim(p.p’) = ; o = 0.0001 3
PP = e Dis(f) 1 0] ©
’fi — f; if features are numeric
1 if features are numeric and f; = f;
0 if features are numeric and f; # f;.

As with the Euclidean distance, p, p’, f;, f;’, w;, and 8 retain the same definitions.

There are other types of similarity criteria in the background, such as maximum
distance-based similarity, Minkowski distance-based similarity (Angelis ¢» Stamelos, 2000),
and rank mean similarity, which is the mean of ranking value of each feature of the project
(Walkerden & Jeffery, 1997). Table 1 summarizes some similarity functions employed in
previous studies.

Some background studies have compared the performance of different similarity
functions; however, as Table 1 illustrates, the Euclidean and Manhattan distance-based
similarity are the most popular ones due to the simple geometrical distance definition they
provide for the distance between two points in a k-dimension Euclidean space.

Moreover, studies such as those (Angelis ¢ Stamelos, 2000) concluded that the
Euclidean, Manhattan, and maximum distance-based similarities provide almost the same
results, probably affected by the dataset selection. This claim is also confirmed in a study
performed by Huang ¢ Chiu (2006). In total, no solution for this problem determines
when to prefer what similarity function so far. The present article employs the Euclidean
and Manhattan similarity functions based on the results of Table 1.

According to the similarity function in relations Eqs. (1) and (2), it seems different
features may have different significances for the similarity functions. For example,
“function points (FPs)” are more important than the “programming language” in many
cost models. Furthermore, numerous researchers state that there is a high potential for
improving the precision of ABE by assigning proper weights to proper features. In this
regard, multiple studies have determined the optimal weight for each feature (feature
weighting). Some of the most important ones are introduced in the related studies section.

K-nearest neighbors

The KNN algorithm is pivotal in analogy-based SCE. After calculating distances, KNN
identifies the Kk’ nearest projects (analogies) that are most similar to the unseen project.
Choosing the appropriate “k” is vital for accurate results. The parameter ‘k’ denotes the
count of closest neighbors considered in the estimation (Ali ¢» Gravino, 2021). A small ‘K’
can lead to classifications that are highly sensitive to noise or outliers. In contrast, a large k’

Javdani Gandomani et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2794 7/43


http://dx.doi.org/10.7717/peerj-cs.2794
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 A summary of the employed similarity functions.

Reference Year Euclidean Manhattan Maximum Minkowski Rank mean
distance distance distance distance similarity
Shepperd & Schofield (1997) 1997 Yes No No No No
Walkerden & Jeffery (1997) 1999 No No No No Yes
Angelis & Stamelos (2000) 2000 Yes Yes Yes No No
Leung ¢ Fan (2002) 2002 No Yes No No No
Mendes, Mosley & Counsell (2003) 2003 Yes No Yes No No
Molokken & Jorgensen (2003) 2003 Yes No No No No
Auer et al. (2006) 2006 Yes No No No No
Huang & Chiu (2006) 2006 Yes No No No No
Chiu & Huang (2007) 2007 Yes Yes No Yes No
Li et al. (2007) 2007 Yes No No No No
Mittas, Athanasiades & Angelis 2008 Yes No No No No
(2008)
Li ¢ Ruhe (2008) 2008 Yes No No No No
Keung, Kitchenham & Jeffery (2008) 2008 Yes No No No No
Li, Xie ¢ Goh (2009b) 2009 Yes Yes No No No
Bardsiri et al. (2013) 2013 Yes Yes No No No
Benala & Mall (2018) 2018 Yes Yes No No No
Shah et al. (2020) 2020 Yes Yes No No No
Shahpar, Khatibi & Bardsiri (2021) 2021 Yes Yes No No No
Dashti et al. (2022) 2022 Yes Yes No No No

may result in overly generalized decisions, missing important local data details. Therefore,
it is crucial to assess the data’s features and the specific project requirements to determine
the optimal “k” value. This optimal value balances capturing significant patterns and
minimizing the impact of noise.

In this study, we selected k = 3 after conducting preliminary experiments and
reviewing similar studies in the field. Several studies have demonstrated that
choosing k = 3 provides a balance between minimizing noise sensitivity and
preserving the local structure of the data , leading to improved estimation accuracy
(Bardsiri et al., 2013; Benala ¢ Mall, 2018; Dashti et al., 2022). This value was chosen as it
ensures that the algorithm captures meaningful patterns without overfitting or underfitting
the model.

Solution function

Solution function is a critical component in ABE methods, responsible for determining
the predicted value (e.g., effort) based on the characteristics of similar projects. It
aggregates the outcomes of selected analogies to produce a single estimation value.
Commonly used solution functions in ABE include closest analogy, mean, and median, as
they balance the influence of outliers and ensure a robust estimate of software
development effort (Jorgensen ¢ Shepperd, 2006). Furthermore, addressing noise in
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historical datasets and assigning appropriate weights to project features are essential for
enhancing solution function reliability (Madari ¢ Niazi, 2019). Research shows that
choosing a suitable solution adaptation technique in ABE significantly impacts accuracy
(Phannachitta et al., 2017). However, selecting an appropriate solution function relies on
the data distribution and the particular demands of the estimation task (Rashid et al.,
2025). In the following, different types of solution functions employed in software cost
estimation are presented.

* Closest analogy method estimates cost by identifying the single most similar historical
project and using its cost value as the estimate. This approach assumes that the most
similar project provides the best reference for the new project.

e Mean method involves averaging the cost values of several similar projects to obtain an
estimate. This technique helps to smooth out anomalies or variations in individual
projects, providing a more balanced estimate.

e Median method calculates the cost by finding the middle value of the cost values from
the selected similar projects. This approach reduces the impact of outliers and extreme
values, offering a more robust estimate in the presence of skewed data.

GREY WOLF OPTIMIZATION

The GWO was introduced by Mirjalili, Mirjalili ¢ Lewis (2014) and is inspired by the
hierarchical structure and hunting behavior of Grey wolves. It is initially discussed with a
focus on the inspiration of the proposed method, then the mathematical model is
provided.

« Inspiration

Grey wolves belongs to the Canidae family. Grey wolves are considered the apex predators,
i.e., they are situated at the top of the food chain and prefer to live in a pack. A pack usually
includes 5-12 wolves. The precise social management of the pack is interesting; the wolves
are divided into four subsections alpha, beta, omega, and delta. These subsections are, in
fact, the components of a hierarchy, each of which has its duties. The main wolves, alphas,
are comprised of a male and a female wolf, responsible for major decisions regarding
hunting, sleeping location, wake-up time, efc., (Mech, 1999). The second level includes the
grey beta wolves; they are subordinate wolves, helping the alpha with decision-making or
the other activities of the pack. The omega is the lowest ranked grey wolf, which has a more
limited privilege compared to the other members. They are the last wolves allowed to eat.
However, it should be noted that if the omega is eliminated, the pack confronts inner
severe problems. If a wolf is not an alpha, beta, or omega, it is called a delta. The delta
wolves are to be submissive to alphas and betas, yet dominant over omegas. These wolves
protect the pack, guarantee the pack’s immunity, and take care of weak, sick, and injured
wolves. In addition to their social position, another interesting behavior of grey wolves is
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their pack hunting. According to Muro et al. (2011) the main steps of grey wolf hunting are
as follows:

1. Tracing, chasing, and approaching the prey.
2. Chasing, surrounding, and harassing the prey until it stops moving.

3. Attacking the prey.

o Mathematic model and algorithm

The alpha (@) is considered the best solution in the mathematical modeling of the wolves’
social hierarchy when designing GWO. Therefore, the second and third solutions are
called beta (B) and delta (0), respectively. The rest of the candidate solutions are assumed
as omega (w). In the GWO algorithm, the hunting is led by o, , and J. The w wolves are
submissive to these three wolves.

o Prey surrounding equations (Eqs. (4) and (5))

D= |CX,(t) — X(t)| (4)
X(t+1) = X,(t) — AD (5)
where t indicates the current iteration, A and C are the coefficient vectors, )_{p is the

position of the prey, and X shows the position vector of a grey wolf. The A and C vectors
are calculated as Egs. (6) and (7):

A=2af -1 (6)
C=2% (7)
where the components of @ are decreased linearly from two to zero, gld T}, I, are random
vectors in the interval [0, 1]. By setting the values of vectors A and C, different positions
around the best agent are achievable considering the current position.

o Hunting

For mathematical simulation of the hunting behavior of the Grey wolves, it is assumed that
the alpha is the best-nominated solution, and beta and data have better information about
the potential position of the prey. Therefore, we save the first three solutions as the
best-captured solutions, and compel the rest of the searching agents—including the

omega—to update their positions according to the positions of the best search agents. The
Eqgs. (8)-(10) are proposed in this regard:

Do = |GiXe — X|. Bp = |CoXp — X|. By = [CoXs — X| ®)
%= %o A . (Ba). K= Xp— Ky . (Bp). Xy=%s— A, . (Bs) 9)
X(t+1)= X+X+Xs (10)

3
o Attacking the prey (exploitation)
As mentioned above, the grey wolves finalize the hinting by attacking the prey, when it has
stopped moving. To mathematically model the prey approaching, we decrease the amount
of @. Note that the oscillation range of A also decreases with @. With the operands defined
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Initialize the grey wolf population X; (i = 1,2,...,n)
Initialize a, A, and C
Calculate the fitness of each search agent
X, = the best search agent
Xp = the second best search agent
Xs = the third best search agent
while (t < Max number of iterations)
for each search agent
Update the position of the current search agent by equation (9)
end for
Update a, A, and C
Calculate the fitness of all search agents
Update X, Xg, and X
t=t+1
end while
return X,

Figure 1 Pseudocode of the grey wolf algorithm. Full-size K&] DOT: 10.7717/peerj-cs.2794/fig-1

so far, the GWO algorithm allows its search agents to update their positions according to
the positions of alpha, beta, and delta, and attack the prey.

o Search for prey (exploration)

Grey wolves mostly search according to the position of the alpha, beta, and delta. They
diverge to search for the prey and converge to attack the prey. For the mathematical
modeling of divergence, we use A with random values greater than 1 or less than -1 to
make the search agent diverge from the prey. This step emphasizes exploration, allowing
the grey wolf algorithm to search globally. The other component of GWO helping the
exploration is C. This component helps the algorithm show a more random behavior
during the optimization, supporting the exploration and preventing stuck in a local
optimum. Vector C could be seen as the natural hurdle preventing the wolves from
approaching the prey. Because the hurdles that exist in nature, appear on the path of the
wolves and prevent their fast approach and readily attack the prey, which is applied by
vector C.

The pseudocode of the GWO is provided in Fig. 1.

RELATED WORK

This section introduces the most important works related to ABE. Li et al. (2007) proposed
a decision-based process model by modeling the existing effort estimation methods using
similarity. The common decision-making problems are identified as a section of the model
in different stages of the process, and a vast spectrum of alternative solutions are studied to
solve these problems. Eventually, they provide a prototype of a process model. Then, in a
different study, they proposed an adaptive method named AQUA, which overcomes the
limitations of the previous methods—because they believed that the existing
simulation-based methods are limited because of their inability to confront the uneven
data anomalies (Li, Al-Emran ¢ Ruhe, 2007). They proposed a hybrid of two ABE
methods’ ideas, including case-based reasoning and interactive filtering, which increases
the prediction precision. The researchers also performed another study called AQUA+ in
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2008. They conducted a qualitative analysis using the rough sequence analysis (RSA) to
evaluate the features. The results of this study indicated that AQUA+ outperforms AQUA,
and provides better results compared to the other ABE methods (Li ¢» Ruhe, 2008).

Most researchers employ search-based software techniques using machine learning
methods and collective intelligence to improve the performance of ABE methods (Ahmed,
Saliu & AlGhamdi, 2005; Azzeh, Neagu ¢ Cowling, 2010; Galinina, Burceva & Parshutin,
2012; Jafari & Ziaaddini, 2016). Most of these studies aim to enhance the precision of
software development cost estimation. These studies could be divided into two groups
feature weighting and feature selection. Since feature weighting is used in this current
study, the focus in this section is more on the works related to this method.

The GA is the most prevalent optimization algorithm for calculating the weights of
features. In 2006, Huang ¢ Chiu (2006) concluded that the similarity metrics among
feature pairs play a key role in analogy-based evaluation models. They investigated the
influence of GA on the estimation precision of similarity metrics and used three similarity
methods, i.e., unequal weight method, linear weight method, and non-linear weight
method. Their study results indicated the non-linear weight similarity outperforms other
methods in terms of precision (Huang ¢ Chiu, 2006). In 2009, Li, Xie ¢ Goh (2009b)
proposed a technique called the project selection technique for ABE (PSABE), in which a
small subset of projects is selected, representing the whole main projects. The PSABE
technique, then, combines the weight of the feature with a GA, called FWSPACE.
Accordingly, they attempted to complete ABE (Li, Xie ¢» Goh, 2009b). In 2015, Kumari ¢
Pushkar (2015) employed the GA for selecting projects based on numerous criteria to
improve the similarity estimation process; their method was suitable for reusing a previous
project in defining a new project.

The PSO algorithm is another common method in SCE. In 2010, Lin ¢ Tzeng (2010)
initially used the Pearson product-moment correlation coefficient and one-way ANOVA
to select multiple agents; then, they used the k-means clustering algorithm for clustering
the software projects. After project clustering, they used PSO and optimized the
parameters of the model.

Bardsiri et al. (2013) claimed that PSO computationally performs better than GA. In this
regard, they used PSO for optimizing the weight in the similarity functions of the ABE
model, which resulted in better identification of similar projects. They believed that the
proposed method is sufficiently flexible to be used in different datasets. After that, Liu ef al.
(2014) attempted to use PSO to improve the estimation by minimizing errors in the
training of datasets. They performed this task by optimizing non-orthogonal space
distance (NoSD) according to the PSO algorithm. In 2016, Azzeh et al. (2016) stated in a
study that three decision-making variables affect the successfulness of estimation, i.e., the
number of the nearest projects (k), the set of required optimal features for adaptation, and
weight compliance. They employed PSO for identifying the optimal decision-making
variable based on the optimization of multiple evaluation criteria in order to capture the
exchange between different evaluation criteria.

Bardsiri et al. (2012) believed ABE and artificial neural networks (ANN) are the
most popular methods used in cost estimation. Therefore, they proposed a hybrid
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method of fuzzy clustering, ABE, and ANN, and utilized two big, real datasets to
evaluate the performance of their proposed method; the results were eventually promising.
They also studied the software services development effort estimation in another research,
to create an efficient and reliable model by combining the ABE method and the DE
algorithm (Khatibi Bardsiri & Hashemi, 2016). Benala ¢ Mall (2018) studied the
effectiveness of the DE algorithm for optimizing the feature weights of the ABE similarity
functions using five mutation strategies. They simulated their studies over the
experimental set of the PROMISE repository to capture the effectiveness of their proposed
technique.

Dashti et al. (2022) investigated the learnable evolution model (LEM), and Shah et al.
(2020) investigated the artificial bee colony (ABC) algorithm. They investigated guided
ABE methods in two different studies in which the algorithms are combined with
similarity functions and yield different weights for a more precise estimation; the most
appropriate one in the ABE similarity function in the training stage is injected into the
model, and then evaluated in the experiment stage.

Most studies in ABE have successfully utilized bio-inspired algorithms, such as PSO,
ACO, GA, LEM, and ABC, to enhance feature weighting or improve similarity measures
(Ansaripour ¢ Gandomani, 2023). These methods have demonstrated considerable
promise in addressing the challenges of SCE by leveraging natural phenomena to optimize
complex problems. For example, Nasr ¢ Mohebbi (2023) proposed a hybrid approach that
combines PSO and GA to optimize feature weights in ABE. Their study demonstrated
significant improvements in MMRE and PRED criteria on the Maxwell and Desharnais
datasets. Similarly, AIMutlaqg, Jawawi & Arbain (2023) introduced the firefly algorithm
(FA) for feature weighting, achieving superior results compared to PSO and GA across
multiple datasets. Moreover, Gandomani et al. (2024) extended the potential of ABE by
integrating regression methods with weighted similarity functions, achieving higher
accuracy and reliability in SCE.

Despite these advancements, each algorithm has its limitations, which can impact its
performance in ABE. For instance, PSO is widely appreciated for its simplicity and ability
to converge quickly to solutions. However, it often suffers from premature convergence,
particularly in multi-dimensional spaces, where the algorithm may settle on local optima
rather than the global optimum. This limitation can lead to suboptimal feature weighting
in ABE, reducing the accuracy of cost estimation.

Similarly, ACO is an effective approach inspired by the behavior of ants in finding
optimal paths. It excels in problems involving discrete search spaces and has been applied
successfully to various optimization problems. However, ACO’s high computational
complexity can make it less suitable for real-time applications or large-scale datasets, such
as those found in SCE. The time and resources required for the algorithm to iterate
through multiple cycles can be prohibitive in practical scenarios.

GA, on the other hand, is a robust and versatile algorithm that simulates the process of
natural selection. While GA is highly effective in exploring a wide search space, it often
struggles with maintaining a balance between exploration and exploitation (Vasuki, 2020).
This imbalance can result in slow convergence or the algorithm failing to fine-tune
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solutions effectively, which can be a drawback in the context of ABE, where precision in
feature weighting is crucial.

LEM presents a unique hybrid approach that combines evolutionary algorithms with
machine learning techniques. While it has shown potential in certain domains, its
applicability to ABE is limited by the need for extensive training data and computational
resources. Additionally, the model’s complexity may hinder its practical implementation,
particularly when dealing with dynamic or incomplete datasets typical of SCE.

ABC, inspired by the foraging behavior of honey bees, is another notable bio-inspired
algorithm. ABC algorithms are known for their ability to balance exploration and
exploitation effectively, making them suitable for various optimization tasks. However, in
the context of ABE, ABC may face scalability challenges due to the high communication
overhead required to simulate bee colony dynamics. Moreover, optimizing its parameters
to attain peak performance can be a resource-intensive and time-consuming process
(Nevena Rankovic, Ivanovic & Lazié, 2024).

These limitations highlight the need for an alternative approach that not only addresses
tackles the unique challenges of ABE while ensuring a balance between computational
efficiency, convergence reliability, and adaptability to various datasets (Srinadhraju,
Mishra ¢ Satapathy, 2024). GWO was selected for this study due to its unique capability to
balance exploration and exploitation, a critical factor in feature weighting for ABE. Unlike
other methods, GWO mimics the social hierarchy and hunting behavior of grey wolves,
enabling it to dynamically adjust the search process and avoid premature convergence.
Furthermore, its simplicity and low computational overhead make it particularly suitable
for large-scale datasets in software effort estimation. This choice aligns with the goal of
enhancing ABE while addressing the limitations observed in previous methods.

The main objective of all related studies is to improve accuracy or reduce the error rate
in SCE. Different studies attempted to use various methods to achieve this objective. As it
seems using Al and machine learning algorithms has improved ABE, we use the grey wolf
algorithm in the feature weighting method in this study, considering its main features and
advantages.

PROPOSED METHOD: GWO-BASED ABE

In this section, we propose a new ABE-customized method by integrating ABE and GWO.
As mentioned before, feature weighting performs through the similarity function.
Accordingly, we use GWO to define the weight of features in the stage of determining the
similarity of projects. Generally, the proposed model is comprised of two parts. These parts
are about model training and model testing. Each part is described in detail in the
following.

Model training

In this model, the effort (cost) feature in the datasets is considered the target feature or
dependent feature, and the rest of the features are classified as independent features for
software development cost estimation. In the training section, whole projects are initially
divided into three different sets, i.e., training (60%), validation (20%), and testing (20%).
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This split is a widely adopted practice in machine learning and SCE studies as it ensures a
balanced distribution of data for model training. The chosen 60/20/20 split aligns with
recommendations from previous research, which suggest that this proportion offers a good
balance between training and evaluation while maintaining the reliability of the results
(Bardsiri et al., 2013; Karimi & Gandomani, 2021). In this setup, the training set is used to
train the model, while the validation set plays a crucial role in hyperparameter tuning and
model selection, ensuring that the trained model generalizes well before final evaluation.
The test set remains completely unseen during training and validation and is solely used
for final performance assessment. By maintaining this clear separation between training,
validation, and testing, we ensure that the model’s predictive performance is evaluated on
entirely new data, reducing the risk of overfitting. The first two sets are used to train and
optimize the model, and the third set is used to test the model. The training and testing
projects are compared to the base projects for the appropriate weights to be found from the
training projects and to evaluate the precision of the estimation model through the testing
projects.

Initially, when the model is being trained, the weight of features could be set either
equally (all zeros or ones, for example) or randomly. It should be noted that the random
value must be chosen from interval [0, 1].

In this part, one project is selected as the target project in each iteration and undergoes
Euclidean or Manhattan similarity functions. Every time the project goes through these
functions, a series of optimized weights are generated in the interval [0, 1] and are assigned
to the independent features. The optimized weights are generated using the grey wolf
algorithm and are injected into the model. Then, the comparison operation is performed
between the selected project and the training datasets for the KNN to be found.

When the most similar projects are found using the similarity measures defined in
Egs. (2) and (3), the amount of cost is calculated through the solution function—which can
be mean or median—for the selected project. In fact, the most similar projects refer to the
projects in the historical dataset that exhibit the highest similarity to the new project based
on their features. The captured cost is evaluated using our intended evaluation criterion,
i.e., MRE. This trend is repeated until there is no project to be selected in the training
datasets. The architecture of the training part is shown in Fig. 2.

Model testing

In this part, test datasets are used to determine the precision performance of the model
trained in the previous part. This part is mainly similar to the previous part. The only
difference is that this part uses the optimized weights generated in the model training part,
and the grey wolf algorithm is not executed again.

In this part, a project is selected from test datasets and sent to the similarity
functions; then, the generated optimal weights in the model testing part are put
alongside each feature as coefficients and, like the previous method, the number of
KNN and the solution function is executed as well. Figure 3 shows the architecture of the
testing part.
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EVALUATION AND RESULTS

Evaluation criteria

Evaluation criteria are essential for the experimental validation of cost estimation methods.
In this study, we evaluated the performance of the proposed model using MMRE and
PRED(q), which are widely adopted in ABE research. These metrics were selected because
they specifically measure the relative estimation error, making them more suitable for
assessing the accuracy of effort estimation models (Idri, Azzahra Amazal ¢» Abran, 2015;
Jorgensen ¢ Shepperd, 2006). While absolute error-based metrics such as mean absolute
error (MAE) and mean squared error (MSE) are commonly used in regression-based
models, they do not account for the proportionality of the error in relation to the actual
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effort values, which is crucial in ABE studies. Additionally, R* is more applicable in models
where the goal is to measure variance explained by independent variables, whereas in ABE,
the focus is on minimizing relative estimation errors to improve prediction accuracy. In
the following, each evaluation criterion is introduced separately.

The magnitude of relative error (MREi): Error criterion in the class of relative error-based

criteria, known as MRE], is defined as Eq. (11):

G -G
Gi

MRE; = (11)

where C; indicates the actual cost of the ith project, and C; represents the estimated cost for
the ith project.
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The mean magnitude of relative error (MMRE): MMRE is defined as Eq. (12):

C—GC
Gi

1 n
MMRE = sz

i=1

= Mean (MRE) (12)

where n indicates the number of projects to be estimated, C; indicates the actual cost of the
ith project, and C; represents the estimated cost for the ith project. Low amounts of MMRE
indicate a low level of estimation error.

Prediction at level ¢ (PRED(q)): PRED is the percentage of the predictions lying in a specific
percentage of the actual cost (Eq. (13)):

PRED(q) = % x > 8(MRE; — q) (13)
i=1
1 <0
Blx) = { 0 >0

where q is a predefined threshold. PRED(q) calculates the percentage of predictions whose
MRE values are equal to or less than q. Most of the articles set q to 0.25 or 0.30. We set q to
0.25 because the comparison articles set the same value for q (Ahadi ¢ Jafarian, 2016;
Beiranvand ¢ Zare Chahooki, 2023; ul Hassan et al., 2022).

The median magnitude of relative error (MdAMRE): The MAMRE is the median of the
MREs, which is shown in Eq. (14) and is calculated using the median function.

MdMRE = median(MRE). (14)

Datasets

We used four different, freely available datasets in this study, which are vastly utilized in
the research community of software effort estimation. We believe utilizing different
datasets may help provide a more transparent evaluation. Research has shown that
leveraging multiple datasets in software effort estimation can provide more robust and
generalizable outcomes (Rahman, Goncalves ¢» Sarwar, 2023). The utilized datasets in this
study include Desharnais, Albrecht, China, and Maxwell. Table 2 provides the details of
these datasets, including the number of features and their related information.

The Desharnais dataset contains data from 81 real-world software projects, making it
one of the most commonly used datasets in this domain. It provides essential attributes
such as the actual effort required for project completion (measured in person-months), the
size of the development team, the function point’s number (FP) as a measure of software
functionality, and the total development time in months (Karimi, Gandomani ¢ Mosleh,
2023). These attributes are particularly relevant for estimating software development
efforts. The Albrecht dataset, introduced by Albrecht and Gaftney in 1983, originates from
IBM software projects. It has been pivotal for FPA and software project estimation,
exploring the relationship between software size and the effort required for development.
The dataset includes information about the number of function points, source lines of code
(SLOC), and actual effort in person-hours, which are key metrics for assessing software
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Table 2 The utilized datasets.

Dataset No. of projects No. of features
Albrecht 24 7

Desharnais 77 11

Maxwell 62 27

China 499 19

project performance. The China dataset includes information on 499 software projects
executed by Chinese companies (Corazza et al., 2013). It includes 19 distinct attributes that
focus primarily on functional components such as input, output, query, file, and interface.
These components are integral to calculating function points, a critical metric for
estimating both software size and development effort. The substantial size and extensive
features of this dataset render it highly valuable for assessing the generalizability of SCE
models (Wen et al., 2012). The Maxwell dataset comprises 62 industrial software projects,
predominantly developed in Finland by major commercial banks (Ali ¢» Gravino, 2021).
This dataset provides insights into real-world software development processes and
includes attributes such as project size, measured in terms of lines of code (LoC),
qualitative metrics for project complexity, and the total effort required for each project
(measured in person-hours). Its focus on industrial applications enhances its relevance to
real-world scenarios. All datasets and developed codes used in this study are available in
the Supplemental Files to ensure the reproducibility of our work.

These datasets indicate an exciting set of software projects, including a unique software
company or different companies’ data, illustrating various application domains and
projects’ features.

Experiment design

In SCE problems, data preprocessing is necessary before injecting it into the model.
Otherwise, the training quality will decrease dramatically. For this, we use the min-max
equation for the values of the independent features to lie in the interval [0, 1], so-called
normalization (Eq. (15)). Normalization makes all features have a similar impact on the
dependent feature.

X - Xmin

X = T
Xmax - Xmin

(15)
where X represents the original value, X,,,;, and X, denote the minimum and maximum
values of the feature, respectively, and X’ and is the normalized value (Krishnan et al,
2021). This approach has been extensively employed in research on SCE (Wani, Giri ¢
Bashir, 2019).

In the next step of the model training, we should divide the datasets into training and
testing datasets. For this, we use the cross-validation method. Here, we employ a three-fold
cross-validation technique, which is widely used in SCE studies (Amazal, Idri & Abran,
2014; Huang & Chiu, 2006; Li, Xie ¢ Goh, 2009a; Rahman et al., 2023). Datasets in this
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Table 3 Three-fold cross-validation.

Dataset

Base dataset (Setl) Training dataset (Set2) Testing dataset (Set3)
Foldl setl set2 set3

setl set3 set2
Fold2 set2 setl set3

set2 set3 setl
Fold3 set3 set2 setl

set3 setl set2

method are threefold base, training, and testing datasets, which are selected randomly from
the intended dataset. In this process, the data is partitioned into three groups: two groups
are utilized as training datasets, while the remaining group is designated as the testing
dataset. This division is repeated three times to ensure that each group serves as the testing
dataset once (Guo et al., 2023). Table 3 shows the three-fold cross-validation.

About the cross-validation, it should be noted that the number of projects in each set is
the same. The performance is measured for two separate sequences in each step, whose
mean is considered as the resulting step. The final results are determined by averaging the
mean values across the three steps, ensuring consistency and reliability in the performance
evaluation.

We use the Manhattan and Euclidean similarity functions in this study. We set k = 3 for
the number of nearest neighbors because most articles have set this value for k (Alsaadi ¢
Saeedi, 2022; Benala & Mall, 2018; Dashti et al., 2022). We use the mean and median for
the solution function. To design the experiment, we systematically evaluated different
combinations of the control parameters—similarity function, k value, and solution
function—to identify the optimal configuration. Finally, we select the fittest resulting
model to be compared to other algorithms.

In the GWO algorithm, the encoding scheme represents the feature weights in ABE as a
vector comprising continuous values bounded within the range [0, 1] (Shahpar, Bardsiri ¢
Bardsiri, 2021). Each element of the vector corresponds to the weight assigned to a
particular feature in the similarity function, ensuring consistency with the normalized
data. The fitness function evaluates the quality of each candidate solution based on its
ability to minimize the mean magnitude of relative error (MMRE). The fitness value for
each wolf is calculated as Eq. (16):

Actual Effort; — Estimated Effort,

1 n
Fitness = — 16
e n ; Actual Effort; (16)

where Actual Effort is the observed effort for a project, Estimated Effort is the predicted
effort, and n is the total number of projects in the training set.
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For GWO, the population size was set to 8 as it produced the best results in our
preliminary experiments. This value was chosen based on empirical testing to balance
exploration and exploitation while ensuring computational efficiency. The number of
iterations was set to 200, based on our preliminary experiments, which indicated that this
value provides a balance between convergence speed and computational cost. A higher
number of iterations showed diminishing improvements in accuracy, while lower
iterations led to insufficient convergence. This approach ensures that the optimization
process runs efficiently without unnecessary computational overhead. The convergence
parameters (a, A, and C) were determined following the approach outlined in Mirjalili,
Mirjalili & Lewis (2014). The parameter a linearly decreases from 2 to 0 over iterations,
allowing the algorithm to transition from exploration to exploitation. The coefficient A
and C is dynamically adjusted using the Eqs. (6) and (7). These adjustments help the
algorithm maintain an effective balance between global and local search, preventing
premature convergence to local optima.

A standardized experimental setup was implemented to ensure the results’ reliability.
All algorithms were tested on the same datasets, under identical preprocessing and
evaluation conditions. Each algorithm was executed 30 times to account for the stochastic
nature of metaheuristic optimization, and the reported results represent the mean
performance over these runs to ensure statistical reliability. For a fair comparison, we
adopted the default parameter settings for baseline methods from their original research
articles, as these configurations have been optimized and widely validated in prior studies.
This ensures that each algorithm operates under its best-recommended settings without
arbitrary modifications that could introduce bias. Furthermore, all experiments were
conducted on the same hardware and software environment to eliminate any discrepancies
due to computational resources. The datasets used in this study remained unchanged
across all experiments, ensuring that each algorithm was evaluated on identical data
partitions. Table 4 summarizes the key parameters and their values used in this study to
provide a clear overview of the experimental settings.

Execution time analysis

To provide a fair comparison of computational efficiency, we measured the execution
times of all AI algorithms under identical hardware and software conditions. Table 5
presents these times, demonstrating that GWO-ABE maintains a competitive efficiency
performance.

The results indicate that while traditional ABE is the fastest due to its simplicity,
evolutionary algorithms such as GA, PSO, and ABC require longer execution times due to
their iterative optimization processes. GWO effectively balances accuracy and
computational efficiency, outperforming several metaheuristic algorithms while
maintaining a competitive execution speed.

This observation is consistent with previous research on GWO, which demonstrated
superior exploration and exploitation balance, better convergence speed, and robustness in
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Table 4 Summary of experimental parameters and settings.

Parameter

Description

Value used

Similarity function

k (nearest neighbors)
Optimization algorithm
Population size
Number of iterations
Solution function
Evaluation metrics
Normalization method
Cross-validation

Baseline methods

Distance metric for analogy comparison
Number of nearest neighbors in ABE

The metaheuristic used

Number of search agents in GWO
Iterations in optimization process
Function used for cost estimation

Metrics used to assess model performance
Data scaling technique

Validation technique used

Parameter settings for GA, PSO, and ABC

Euclidean, Manhattan

3

GWO

8

200

Mean, Median

MMRE, MdMRE, PRED(0.25)
Min-Max Normalization
3-fold cross-validation

Adopted from original research articles

Table 5 Execution time comparison of artificial intelligence (AI) algorithms.

Algorithm Execution time (seconds)
ABE (Baseline) 12.3
GA-ABE 18.7
PSO-ABE 15.4
ABC-ABE 20.1
GWO-ABE 14.6

solving optimization problems compared to PSO and DE (Mirjalili, Mirjalili & Lewis,
2014; Shial, Sahoo ¢ Panigrahi, 2023). GWQO'’s ability to dynamically balance exploration
and exploitation through adaptive parameter tuning allows it to avoid local optima more
effectively, leading to higher accuracy with relatively low computational cost compared to
other evolutionary techniques.

Efficiency comparison
For comparing different utilized algorithms in this field, it should be considered that
datasets, evaluation criteria, and sampling distances are selected the same, so the results are
reliable. This research attempts to compare the performance of the proposed model with
other methods. One consideration is that the evaluation criteria of the estimator functions
are the same to perform a sound comparison. As mentioned before, the value of k is set to
three. The performance of the model is initially tested with the base model ABE and then
tested with evolutionary algorithms used in this field, including PSO-ABE, GE-ABE,
DABE, ABC-ABE, and LEMABE. These methods were selected as they are frequently cited
in the literature and have been extensively analyzed in the related work section. All
mentioned estimation models are trained using historical datasets, ensuring consistency in
evaluation, while the algorithm parameters are set automatically based on their
recommended configurations from previous studies.

The required experiments were conducted on a PC equipped with a Ryzen 7900 CPU,
an Nvidia RX 580 8GB GPU, and 16GB of RAM. Additionally, the model was
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Table 6 Project cost estimation results in Desharnais dataset compared to other ABE-customized methods.

Similarity function Solution function Response function ABE GA-ABE PSO-ABE DABE LEMABE ABC-ABE GWO-ABE
Euclidean Mean MMRE 0.3190  0.36508  0.46717 0.31061 0.34079 0.48797 0.31265
MdMRE 0.2222  0.33333  0.52778 0.36111 0.38889 0.41667 0.50
PRED 0.1818  0.26551 0.27273 0.3254  0.42857 0.37302 0.5671
Euclidean Median MMRE 0.53992  0.53247  0.31109 0.40356 0.32071 0.80147 0.41438
MdMRE 0.61111 0.66667  0.16667 0.38889 0.33333 0.66667 0.66667
PRED 0.23232  0.29437  0.40332 0.33983 0.53576 0.41775 0.57319
Manbhattan Mean MMRE 0.80438 0.52862  0.48148 0.58249  0.39899 0.65067 0.49391
MdMRE 0.97778 0.44444  0.59259 0.77778 0.52778 0.66667 0.12121
PRED 0.09697 0.19048  0.18182 0.24242  0.27273 0.045455 0.61111
Manbhattan Median MMRE 0.34909 0.39526  0.49222 0.84596  0.29293 0.4326 0.3634
MdMRE 0.33333  0.52778  0.24669 0.83333 0.33333 0.3142 0.38889
PRED 0.32756  0.2619 0.42279 0.33333  0.60606 0.6470 0.59524
Table 7 Project cost estimation results in Maxwell dataset compared to other ABE-customized methods.
Similarity Function Solution Function Response function ABE GA-ABE PSO-ABE DABE LEMABE ABC-ABE GWO-ABE
Euclidean Mean MMRE 0.70685 0.7585 0.95527 0.56948 0.45036 0.29997 0.53684
MdMRE 0.37954 0.38117  0.58796 0.24877 0.25833  0.28571 0.2254
PRED 0.35294 0.22181  0.40441 0.40196 0.56863 0.53186 0.71569
Euclidean Median MMRE 0.40418 1.2613 0.41049 0.25915 0.5628 0.61111 0.38157
MdMRE 0.34722  0.9375 0.34921 0.17778 0.23056 0.22222 0.13889
PRED 0.14216 0.42525  0.47549 0.56863 0.71936  0.78064 0.82353
Manhattan Mean MMRE 0.34161 0.34566  0.4822 1.2498  0.38598  0.4837 0.4231
MdAMRE 0.20106 0.17593  0.16138 0.87963  0.22906 0.28241 0.29762
PRED 0.68627 0.6973 0.70588 0.37255 0.65441 0.40441 0.42647
Manbhattan Median MMRE 0.45532  0.55905  0.66391 1.0408 0.55349  0.28048 0.51626
MdAMRE 0.42619 0.30952  0.28373 0.83333 0.26111 0.21429 0.19511
PRED 0.23529 0.38358  0.36275 0.40564 0.68627 0.68137 0.6973

implemented using MATLAB 2022. Tables 6-9 display the comparative results across

various datasets.

As can be seen from the above tables, the amount of MMRE and MdMRE is lower in the
GWO-ABE algorithm compared to the other algorithms. For a more transparent

indication, in Figs. 4 to 7, we show two methods according to the Euclidean similarity of

different sets. Next, we evaluate these two with the Manhattan similarity, whose results are

shown in Figs. 8 to 11.

In Figs. 8 to 11, it can be seen that the proposed algorithm has managed to yield better

results compared to the other algorithms. It should be noted in the charts that the

proposed algorithm achieves better results in the Euclidean distance compared to the

Manbhattan distance. As mentioned before, the PRED (0.25) is another evaluation criterion,

which is investigated. For the resulting information from this criterion to be represented
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Table 8 Project cost estimation results in China dataset compared to other ABE-customized methods.

Similarity function Solution function Response function ABE GA-ABE PSO-ABE DABE LEMABE ABC-ABE GWO-ABE
Euclidean Mean MMRE 1.4796 1.1209 0.56695 1.0179  0.93469  0.71703 0.6083
MdMRE 0.8744 0.6553 0.33986 0.1479  0.58273 0.38016 0.3182
PRED 0.087719 0.1328 0.49875 0.5720  0.50376 0.5213 0.5288
Euclidean Median MMRE 1.2353 0.69445  0.71826 0.99567 0.6948 0.88975 0.55912
MdJMRE 0.85648  0.50387  0.47821 0.53297 0.3651 0.44963 0.26709
PRED 0.16792  0.16792  0.20802 0.17544 0.5088 0.51378 0.54637
Manbhattan Mean MMRE 1.8934 1.4125 0.68333 0.97565 0.78542 0.71158 0.6862
MdMRE 1.2063 0.99499  0.39841 0.55 0.48413 0.43333 0.5556
PRED 0.085213 0.15539  0.18045 0.18546 0.18546 0.19048 0.2130
Manbhattan Median MMRE 1.2674 0.6627 1.0649 1.726 0.62217 0.46034 0.9903
MdMRE 0.69048  0.39099  0.61905 0.92976 0.28376 0.31339 0.5259
PRED 0.16291  0.19048  0.20802 0.4386  0.50125  0.49123 0.5038
Table 9 Project cost estimation results in Albrecht dataset compared to other ABE-customized methods.
Similarity function Solution function Response function ABE GA-ABE PSO-ABE DABE LEMABE ABC-ABE GWO-ABE
Euclidean Mean MMRE 0.73303  0.43954  0.42897 0.38054 0.32836 0.42472 0.36446
MdJMRE 0.77814  0.41059  0.42546 0.38161 0.33895  0.55556 0.3795
PRED 0.11111  0.15873  0.38889 0.48413 0.49206 0.50361 0.55556
Euclidean Median MMRE 0.49931  0.6102 0.53359 0.42549 0.71868 0.40343 0.15404
MdMRE 0.50458  0.65879  0.60318 0.44456 0.71489 0.41893 0.083333
PRED 0.095238 0.10317  0.10317 0.15079 0.20635  0.30159 0.72727
Manbhattan Mean MMRE 0.48583  0.47416  0.42881 0.80701 0.41023 0.87233 0.38648
MdMRE 0.47204  0.4565 0.45207 0.70844 0.41615 0.54292 0.44444
PRED 0.0125 0.047619 0.33333 0.20635 0.44444 0.38095 0.55195
Manhattan Median MMRE 0.47482 047416  0.80701 0.42881 0.41023  0.87233 0.38648
MdMRE 0.44125  0.4565 0.70844 0.45207 0.41615 0.54292 0.44444
PRED 0.0259 0.047619 0.20635 0.33333 0.44444 0.38095 0.55195

with more clarity, we express it using the Euclidean and Manhattan distances as well as

mean and mean solution functions separately for different datasets in Figs. 12 to 15.

As can be seen from Figs. 12 to 15, the PRED (0.25) criterion in the proposed algorithm

has managed to yield more desirable results.

DISCUSSION

This section compares and discusses the results of different evolutionary algorithms (ABE,
GA-ABE, PSO-ABE, DABE, LEMABE, ABC-ABE, GWO) for project cost estimation using
the different datasets, specifically focusing on various metrics (MMRE, MAMRE, PRED)
under different similarity (Euclidean and Manhattan) and solution functions (mean and

median).
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Figure 4 Evaluation representation of MMRE and MdMRE criteria in the Desharnais datasets using the Euclidean similarity function.
Full-size k&l DOT: 10.7717/peerj-cs.2794/fig-4
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Figure 5 Evaluation representation of MMRE and MdMRE criteria in the Maxwell datasets using the Euclidean similarity function.
Full-size k&l DOI: 10.7717/peerj-cs.2794/fig-5
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Figure 6 Evaluation representation of MMRE and MdMRE criteria in the China datasets using the Euclidean similarity function.
Full-size K&l DOT: 10.7717/peerj-cs.2794/fig-6
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Figure 7 Evaluation representation of MMRE and MdMRE criteria in the Albrecht datasets using the Euclidean similarity function.
Full-size k&l DOI: 10.7717/peerj-cs.2794/fig-7

Desharnais dataset

According to the main results (Tables 6-9), when the Euclidean distance measure was
applied, DABE exhibited the lowest MMRE (0.31061), closely followed by GWO (0.31265),
suggesting superior prediction accuracy compared to other methods. For MAMRE,
PSO-ABE demonstrated the lowest value (0.16667), indicating its proficiency in generating
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Figure 8 Evaluation representation of MMRE and MAMRE criteria in the Desharnais datasets using the Manhattan similarity function.
Full-size k&l DOT: 10.7717/peerj-cs.2794/fig-8
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Figure 9 Evaluation representation of MMRE and MdMRE criteria in the Maxwell datasets using the Manhattan similarity function.
Full-size k&l DOT: 10.7717/peerj-cs.2794/fig-9

accurate predictions as well. Conversely, a higher PRED value signifies better prediction
performance. ABC-ABE and GWO yielded the highest PRED values (0.5671 and 0.57319,
respectively), showcasing their effectiveness in prediction. These observations imply that
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Figure 10 Evaluation representation of MMRE and MdMRE criteria in the China datasets using the Manhattan similarity function.
Full-size K&l DOT: 10.7717/peerj-cs.2794/fig-10
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Figure 11 Evaluation representation of MMRE and MdMRE criteria in the Albrecht datasets using the Manhattan similarity function.
Full-size K&l DOT: 10.7717/peerj-cs.2794/fig-11
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Figure 13 PRED (0.25) criterion representation in the Maxwell dataset. Full-size K&l DOT: 10.7717/peerj-cs.2794/fig-13

DABE excels at reducing mean errors, PSO-ABE handles median errors proficiently, and
ABC-ABE and GWO identify the largest share of acceptable predictions.

Under the Manhattan distance measure, DABE again showcased the lowest MMRE
(0.39899), closely trailed by LEMABE (0.4326), suggesting their effectiveness in generating
precise predictions based on the Manhattan distance measure. For MAMRE, GA-ABE and
ABC-ABE demonstrated the lowest value (0.3142), followed by GWO (0.3634), indicating
their proficiency in accurate predictions. ABC-ABE exhibited the highest PRED value

Javdani Gandomani et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2794 I 29/43


http://dx.doi.org/10.7717/peerj-cs.2794/fig-12
http://dx.doi.org/10.7717/peerj-cs.2794/fig-13
http://dx.doi.org/10.7717/peerj-cs.2794
https://peerj.com/computer-science/

PeerJ Computer Science

MABE mGA mPSO mDE mlEM mABC mGWO

0.5
0.54637

-]
oom g & E g & 2on oz
g 2 < = 2 2 : 2 3
= S s < T 3
3
o
]
=
s
S S
o
N o 23 ¢ 2 £ % 3 g £
g g & = 2 & = 9w I ° 8 = °
R = a 2 3 3 e 3 s
2 S 3 S 2
g = o
[N =
s s
PRED(ES/MEAN) PRED(ESMEDIAN) PRED(MS/MEAN) PRED(MS/MEDIAN)
Figure 14 PRED (0.25) criterion representation in the China dataset. Full-size K&l DOT: 10.7717/peerj-cs.2794/fig-14
MABE mGA mPSO mDE mlEM mABC mGWO
~
R
R
R
o
z . .
-2 E s S 3
: § &
3 s g s g
2 - E - E
S b s o s
- : o
& a 7
z 3 b
8
e
B M -
2 2 2
o ] 2 ]
2 g S s s
g g g =
S g 2 2 g -
w3 2 =
I I I S .
3 =
=
=1 m
PRED(ES/MEAN) PRED(ESMEDIAN) PRED(MS/MEAN) PRED(MS/MEDIAN)
Figure 15 PRED (0.25) criterion representation in the Albrecht dataset. Full-size K&l DOT: 10.7717/peerj-cs.2794/fig-15

(0.61111), closely followed by GWO (0.59524), showcasing their effectiveness in prediction
according to this metric.

Overall, DABE and LEMABE excelled in MMRE, while GA-ABE, ABC-ABE, and GWO
performed well in MAMRE and PRED.
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Maxwell dataset

In the context of the Fuclidean distance measure, ABC-ABE stood out with the lowest
MMRE value of 0.29997. Following closely is LEMABE with an MMRE of 0.45036,
indicating its effectiveness in generating accurate predictions using this measure. About
MdAMRE ABC-ABE showcased the lowest MAMRE at 0.2254, closely trailed by LEMABE at
0.25833. These results underscore the proficiency of both algorithms in generating precise
predictions based on the median. For PRED, GWO demonstrated the highest PRED value
at 0.71569, closely followed by ABC-ABE at 0.53186. These results highlight the strength of
GWO and ABC-ABE in terms of prediction according to this metric. A higher PRED value
signifies better prediction performance, making GWO and ABC-ABE stand out in this
regard under the Euclidean distance measure.

In the realm of the Manhattan distance measure, ABC-ABE exhibited remarkable
performance, displaying the lowest MMRE at 0.28048, closely followed by LEMABE at
0.38598, showcasing their effectiveness in accurate predictions using this distance measure.
ABC-ABE demonstrated exceptional proficiency, securing the lowest MAMRE of 0.19511,
closely trailed by LEMABE at 0.21429, indicating their aptitude in generating precise
predictions based on the median. ABC-ABE also emerged as a frontrunner, displaying the
highest PRED value at 0.6973, highlighting its strength in prediction according to this
measure under the Manhattan distance measure. While GWO still performed well in
certain criteria, Maxwell highlights scenarios where ABC-ABE may edge out other
approaches.

China dataset

In the China dataset, when analyzing the results using the Euclidean distance measure, In
the context of MMRE, GWO exhibited the lowest MMRE value of 0.6083, showcasing its
remarkable predictive performance. Conversely, PSO-ABE displayed the poorest
performance in MMRE with the highest value of 0.56695 among all methods. Shifting the
focus to MAMRE, GWO again showcased the most impressive performance with the
lowest MAMRE value of 0.3182. On the contrary, PSO-ABE displayed the least effective
performance in MAMRE with the highest value of 0.33986, emphasizing its comparatively
poorer predictive capability. Considering PRED, GWO outperformed all other methods
with the highest PRED value of 0.5288, suggesting its strong predictive abilities.
Conversely, GA-ABE exhibited the weakest performance in PRED with the lowest value of
0.1328, indicating its limitations in prediction according to this metric.

In the examination of results using the Manhattan distance measure, Within the
domain of MMRE, GWO emerged as the frontrunner with the lowest MMRE value of
0.6862, denoting its exceptional predictive accuracy. Conversely, ABE demonstrated the
least effective performance in MMRE, displaying the highest value of 1.8934, marking it as
the weakest performer in this regard among all methods considered. Shifting the focus to
MdAMRE, GWO once again exhibited the most outstanding performance, boasting the
lowest MAMRE value of 0.5556. Conversely, ABE showed the poorest performance in
MdMRE, having the highest value of 1.2063, underlining its limited predictive capability
based on the median. Considering PRED, GWO stood out with the highest PRED value of
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Table 10 Overview of best-performing methods per dataset and distance measure.

Dataset Distance Best method (MMRE) Best method (MdMRE) Best method (PRED (0.25))
Desharnais Euclidean DABE (0.31061) PSO-ABE (0.16667) GWO (0.57319)

Manhattan DABE (0.39899) GA-ABE & ABC-ABE (0.3142) ABC-ABE (0.61111)
Maxwell Euclidean ABC-ABE (0.29997) ABC-ABE (0.2254) GWO (0.71569)

Manhattan ABC-ABE (0.28048) ABC-ABE (0.19511) ABC-ABE (0.6973)
China Euclidean GWO (0.6083) GWO (0.3182) GWO (0.5288)

Manhattan GWO (0.6862) GWO (0.5556) GWO (0.2130)
Albrecht Euclidean GWO (0.36446) GWO (0.3795) GWO (0.55556)

Manhattan GWO (0.38648) GWO (0.44444) GWO (0.55195)

0.2130, affirming its robust predictive abilities. Conversely, PSO-ABE demonstrated the
weakest performance in PRED, showcasing the lowest value of 0.085213, suggesting its

limitations in prediction according to this metric.

Albrecht dataset

In the evaluation of project cost estimation using the Euclidean distance measure for the

Albrecht datasets, GWO exhibited superior predictive accuracy, achieving the lowest
MMRE (0.36446) and MdMRE (0.3795) values, showcasing its proficiency in generating
precise predictions, especially based on the median. Conversely, ABE displayed the highest
MMRE (0.73303), indicating the least accurate predictions. Moreover, GWO
demonstrated the highest PRED value (0.55556), implying robust prediction capabilities,
while PSO-ABE exhibited the lowest PRED value (0.38889), suggesting relatively weaker

prediction performance.

In the assessment of project cost estimation employing the Manhattan distance measure

for the Albrecht datasets, GWO demonstrated superior predictive accuracy, displaying the
lowest MMRE (0.38648) and MdMRE (0.44444) values, indicating precise median-based
predictions. Conversely, PSO-ABE exhibited the highest MMRE (0.80701), signifying less
accurate predictions. GWO also stood out with the highest PRED value (0.55195),
denoting strong prediction capabilities, while ABE showcased the weakest predictive

performance with the lowest PRED value (0.0125).

In light of these observations, Table 10 provides a concise overview of which method
ranked best for each metric (MMRE, MAMRE, PRED) under Euclidean and Manhattan
distance measures. While some algorithms such as ABC-ABE and DABE dominate specific

metrics in particular datasets (e.g., Desharnais or Maxwell), GWO stands out in the China

and Albrecht datasets for most or all metrics.

As part of a deeper comparison, we computed how GWO-ABE’s performance improves
(or deteriorates) against each competing method (ABE, GA-ABE, PSO-ABE, DABE,
LEMABE, ABC-ABE) under the Euclidean+Mean setting. We then averaged these
percentage improvements across all four datasets. Tables 11 through 14 depict the results
for each dataset in metrics MMRE, MAMRE, and PRED; Table 15 compiles the final overall

improvement when summing up all comparisons.
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Table 11 Percentage improvement of GWO-ABE on Desharnais dataset.

Method Imp. in MMRE (%) Imp. in MAMRE (%) Imp. in PRED (%)
ABE +1.99% -125.10% +212.00%
GA-ABE +14.36% -50.00% +113.60%
PSO-ABE +33.06% +5.26% +107.90%

DABE —0.66% —38.47% +74.20%

LEMABE +8.26% —28.57% +32.30%
ABC-ABE +35.93% —-20.00% +52.00%

As shown in Tables 11-14, each dataset reveals unique comparative insights when
evaluating GWO-ABE against other ABE-based methods under the same configuration. In
most cases particularly for Desharnais, China, and Albrecht GWO-ABE demonstrates
significant reductions in MMRE and MdMRE, as well as increases in PRED(0.25).
Nonetheless, there are instances (e.g., with LEMABE in the Maxwell dataset or ABC-ABE
in certain metrics) where the competing methods achieve lower errors or higher PRED
values. These variations confirm that dataset characteristics, algorithmic design, and
optimization strategies all contribute to the final performance.

To provide a consolidated view of how GWO-ABE compares with other ABE-based
methods under identical conditions, we aggregated the percentage improvements in
MMRE, MdMRE, and PRED(0.25) across all datasets and competing methods. These
improvements were first computed for each dataset (Desharnais, Maxwell, China,
Albrecht) relative to each algorithm (ABE, GA-ABE, PSO-ABE, DABE, LEMABE, and
ABC-ABE), then averaged to yield a single value per metric. Table 15 compiles the final
overall improvement when summing up all comparisons.

As shown in Table 15, GWO-ABE yields a moderate but consistent reduction in error
rates, indicated by its positive average improvements of 15.63% for MMRE and 3.64% for
MdMRE. More strikingly, its improvement in PRED(0.25) exceeds 100%, suggesting that,
on average, GWO-ABE more than doubles the percentage of acceptable predictions
compared to the other methods. This marked performance in PRED(0.25) can be
attributed to the algorithm’s capacity for assigning more suitable weights to key project
features, thus improving the accuracy of identifying projects with similar attributes.

While certain methods occasionally surpass GWO in specific metrics or datasets, the
summarized findings suggest that GWO-ABE remains highly competitive overall. It
achieves moderate reductions in average error (MMRE and MdMRE) and exhibits a
substantial increase in PRED. Consequently, GWO-ABE appears to be a particularly
promising enhancement to analogy-based cost estimation, combining robust error
minimization with a high likelihood of generating practically usable predictions.

LIMITATIONS

The present research investigates how software effort estimation can be improved using an
analogy-based approach and GWO algorithm; however, this method has some limitations
that must be considered.
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Table 12 Percentage improvement of GWO-ABE on the Maxwell dataset.

Method Imp. in MMRE (%) Imp. in MAMRE (%) Imp. in PRED (%)
ABE +24.06% +40.63% +102.80%
GA-ABE +29.23% +40.86% +222.60%
PSO-ABE +43.80% +61.70% +77.00%

DABE +5.73% +9.39% +78.00%

LEMABE -19.20% +12.75% +25.86%
ABC-ABE -78.96% +21.12% +34.57%

Table 13 Percentage improvement of GWO-ABE on the China dataset.

Method Imp. in MMRE (%) Imp. in MAMRE (%) Imp. in PRED (%)
ABE +58.90% +63.61% +503.00%
GA-ABE +45.73% +51.46% +298.00%
PSO-ABE -7.29% +6.37% +6.03%

DABE +40.25% -115.20% -7.56%

LEMABE +34.93% +45.40% +4.97%

ABC-ABE +15.17% +16.30% +1.44%

Table 14 Percentage improvement of GWO-ABE on the Albrecht dataset.

Method Imp. in MMRE (%) Imp. in MAMRE (%) Imp. in PRED (%)
ABE +50.30% +51.20% +400.00%
GA-ABE +17.08% +7.58% +250.00%
PSO-ABE +15.05% +10.80% +42.86%

DABE +4.23% +0.55% +14.76%

LEMABE -11.00% -12.00% +12.90%
ABC-ABE +14.18% +31.70% +10.31%

Table 15 Overall improvement (%) of GWO-ABE across all comparisons.

Metric Average improvement (%)
MMRE +15.63

MdJMRE +3.64

PRED (0.25) +111.23

One major limitation of this study, similar to other research in software development

effort estimation, is the reliance on a small number of publicly available standard datasets.

These datasets were chosen for their relevance and widespread use in prior studies, as they

provide a reliable benchmark for comparing estimation models (Fivero, Casanova ¢

Pimentel, 2022; Tawosi, Moussa & Sarro, 2022). However, their limited size and scope may

not fully capture the diverse and complex nature of software development projects (Li

et al., 2024). To mitigate this limitation, future research can explore alternative datasets

that cover a broader range of projects, industries, and development methodologies.
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Additionally, dataset replication techniques, such as synthetic data generation or
augmentation strategies, could be employed to create more diverse and representative
datasets while preserving the integrity of real-world data distributions. Collaborating with
industry partners to access proprietary datasets under confidentiality agreements may also
enhance the robustness and applicability of software effort estimation models.

Unlike recent studies leveraging large-scale industrial datasets, such as Deep-SE and
GPT2SP, which analyzed datasets containing over 23,000 issues, this research is
constrained by the lack of access to proprietary datasets due to privacy and organizational
restrictions. Consequently, while the datasets used here are well-established and suitable
for evaluating the proposed model, their smaller size may restrict the generalizability of the
findings.

The specific characteristics and contexts of these datasets may lead to a model that
performs well on these particular datasets but may not generalize effectively to other
datasets with differing attributes or complexities. Further validation using a broader range
of datasets, particularly large-scale industrial data, is necessary to enhance the robustness
and applicability of the proposed method.

Another important limitation is that there are no comprehensive features relating to
human factors in the existing datasets used. Factors such as team experience, individual
productivity, and management practices significantly impact software effort estimation.
Nevertheless, due to a lack of detailed information regarding these factors in these sets, the
accuracy and reliability of the effort estimates are limited. In future studies, this limitation
could be overcome by providing more information about human factors through
questionnaire surveys and supplementary metadata or qualitative data derived from

interviews or questionnaires.

MANAGERIAL INSIGHTS

This study highlights several key insights for practitioners, decision-makers, and
policymakers in the software industry and similar domains. These insights aim to bridge
the divide between theoretical advancements and practical applications, facilitating
informed decision-making and strategy development:

Optimized cost estimation with GWO: By integrating optimization algorithms like GWO
into ABE methods, organizations can achieve more accurate and reliable cost estimates.
This minimizes the risk of budget overruns and project setbacks, which are common
challenges in software development (Ali, Ren & Wu, 2024). The GWO's ability to
dynamically adjust feature weights and balance exploration and exploitation makes it
particularly effective for industries relying on data-driven project estimations.

Practical adoption of enhanced ABE methods: Implementing enhanced ABE methods
requires access to high-quality historical datasets and a focus on feature optimization.
Organizations can adopt these methods to improve project planning, resource allocation,
and risk management. Furthermore, training teams to understand and utilize these
techniques can ensure smoother adoption and better integration with existing workflows
(Nevena Rankovic, Ivanovic & Lazié, 2024).
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Leveraging data-driven approaches: High-quality data is the foundation of effective cost
estimation. Decision-makers should prioritize collecting, curating, and maintaining
standardized datasets to enable reliable predictions. The insights from this study
emphasize the importance of using structured and comprehensive data for improving
accuracy in cost estimation models, which can also be applied across various sectors
beyond software development.

Policy recommendations for data standardization: Policymakers have a critical role in
promoting the adoption of advanced cost estimation techniques. Encouraging the
standardization of data formats and collection processes across industries can significantly
enhance the generalizability and scalability of such models. Additionally, fostering
collaborations between academia and industry for data sharing can provide richer datasets,
enabling further advancements in estimation accuracy.

Strategic planning and budgeting: For managers and decision-makers, this study highlights
the strategic value of incorporating Al-driven cost estimation models into budgeting
practices. By leveraging these models, organizations can identify potential risks early,
allocate resources more effectively, and improve overall project outcomes. These benefits
are particularly relevant for industries dealing with complex, large-scale projects where
traditional estimation methods often fall short.

By providing these insights, this study not only enhances the understanding of advanced
cost estimation techniques but also offers actionable guidance for stakeholders to
implement these methods in practice, ensuring better decision-making and project success.

CONCLUSION

This research introduces an innovative method for SCE by combining the GWO algorithm
with the ABE technique. The findings highlight the efficacy of the proposed GWO-based
ABE approach, which outperformed ABE-customized methods across multiple datasets
and evaluation metrics. Compared to such ABE methods like ABC-ABE and PSO-ABE,
the GWO-based ABE achieved up to 15% reduction in mean MMRE and 111%
improvement in PRED (0.25). These enhanced conclusions can be attributed to the GWO
algorithm’s ability to optimize the feature weights in the similarity function, a crucial
component of the ABE method.

The integration of the GWO algorithm addresses the limitations of customized-ABE
methods and leverages the strengths of metaheuristic optimization to provide more robust
and efficient SCE. These results advocate for the GWO-based ABE as a promising
approach to enhance the accuracy and reliability of software project planning and
management. However, it is essential to acknowledge that these conclusions are based on
the analysis of the four datasets employed in this study. The experimental results indicate
that GWO-ABE achieved the highest accuracy on the China dataset, with the most
significant improvement in PRED, while the lowest accuracy was observed on the Maxwell
dataset, where the model exhibited a decrease in MMRE and limited improvement in
PRED. While these datasets were chosen for their relevance and consistency with related
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research, further validation on a broader range of datasets is needed to confirm the
generalizability of the findings.

Future research directions may explore the application of other optimization algorithms
and investigate the impact of dataset characteristics on the performance of the proposed
method. For instance, algorithms such as the whale optimization algorithm (WOA) or
cuckoo search algorithm could be examined for their potential to enhance feature
weighting and similarity measurement in ABE methods. Overall, this study adds to the
expanding body of work focused on advancing SCE by leveraging the combined strengths
of machine learning and optimization methods.
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