Submitted 31 January 2020
Accepted 25 May 2020
Published 6 July 2020

Corresponding authors

Nicola Uras, nicola.uras@unica.it
Lodovica Marchesi,
lodovica.marchesi@unica.it

Academic editor
Anwitaman Datta

Additional Information and
Declarations can be found on
page 23

DOl 10.7717/peerj-cs.279

© Copyright
2020 Uras et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Forecasting Bitcoin closing price series
using linear regression and neural
networks models

Nicola Uras’, Lodovica Marchesi’, Michele Marchesi and Roberto Tonelli

Department of Mathematics and Computer Science, University of Cagliari, Cagliari, Italy

" These authors contributed equally to this work.

ABSTRACT

In this article we forecast daily closing price series of Bitcoin, Litecoin and Ethereum
cryptocurrencies, using data on prices and volumes of prior days. Cryptocurrencies
price behaviour is still largely unexplored, presenting new opportunities for researchers
and economists to highlight similarities and differences with standard financial prices.
We compared our results with various benchmarks: one recent work on Bitcoin
prices forecasting that follows different approaches, a well-known paper that uses
Intel, National Bank shares and Microsoft daily NASDAQ closing prices spanning
a 3-year interval and another, more recent paper which gives quantitative results
on stock market index predictions. We followed different approaches in parallel,
implementing both statistical techniques and machine learning algorithms: the Simple
Linear Regression (SLR) model for uni-variate series forecast using only closing prices,
and the Multiple Linear Regression (MLR) model for multivariate series using both
price and volume data. We used two artificial neural networks as well: Multilayer
Perceptron (MLP) and Long short-term memory (LSTM). While the entire time series
resulted to be indistinguishable from a random walk, the partitioning of datasets into
shorter sequences, representing different price “regimes”, allows to obtain precise
forecast as evaluated in terms of Mean Absolute Percentage Error(MAPE) and relative
Root Mean Square Error (relativeRMSE). In this case the best results are obtained using
more than one previous price, thus confirming the existence of time regimes different
from random walks. Our models perform well also in terms of time complexity, and
provide overall results better than those obtained in the benchmark studies, improving
the state-of-the-art.

Subjects Data Mining and Machine Learning, Data Science

Keywords Blockchain, Bitcoin, Time Series, Forecasting, Regression, Machine Learning, Neural
Networks, Cryptocurrency

INTRODUCTION

Bitcoin is the world’s most valuable cryptocurrency, a form of electronic cash,
invented by an unknown person or group of people using the pseudonym Satoshi
Nakamoto (Nakamoto, 2008), whose network of nodes was started in 2009. Although
the system was introduced in 2009, its actual use began to grow only from 2013. Therefore,
Bitcoin is a new entry in currency markets, though it is officially considered as a commodity
rather than a currency, and its price behaviour is still largely unexplored, presenting new

How to cite this article Uras N, Marchesi L, Marchesi M, Tonelli R. 2020. Forecasting Bitcoin closing price series using linear regression
and neural networks models. Peer] Comput. Sci. 6:279 http://doi.org/10.7717/peerj-cs.279


https://peerj.com/computer-science
mailto:nicola.uras@unica.it
mailto:lodovica.marchesi@unica.it
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.279
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

opportunities for researchers and economists to highlight similarities and differences with
standard financial currencies, also in view of its very different nature with respect to more
traditional currencies or commodities. The price volatility of Bitcoin is far greater than that
of fiat currencies (Briere, Oosterlinck ¢ Szafarz, 2013), providing significant potential

in comparison to mature financial markets (Mclntyre ¢» Harjes, 2014; Cocco, Tonelli

& Marchesi, 2019a; Cocco, Tonelli ¢ Marchesi, 2019b). According to CoinMarketCap
(https://www.coinmarketcap.com), one of the most popular sites that provides almost
real-time data on the listing of the various cryptocurrencies in global exchanges, on
May 2019 Bitcoin market capitalization value is valued at approximately 105 billion of
USD. Hence, forecasting Bitcoin price has also great implications both for investors and
traders. Even if the number of bitcoin price forecasting studies is increasing, it still remains
limited (Mallqui & Fernandes, 2018). In this work, we approach the forecast of daily closing
price series of the Bitcoin cryptocurrency using data on prices and volumes of prior days.
We compare our results with three well-known recent papers, one dealing with Bitcoin
prices forecasting using other approaches, one forecasting Intel, National Bank shares and
Microsoft daily NASDAQ prices and one on stock market index forecasting using fusion
of machine learning techniques.

The first paper we compare to, tries to predict three of the most challenging stock
market time series data from NASDAQ historical quotes, namely Intel, National Bank
shares and Microsoft daily closed (last) stock price, using a model based on chaotic
mapping, firefly algorithm, and Support Vector Regression (SVR) (Kazem et al., 2013). In
the second one Mallqui ¢ Fernandes (2018) used different machine learning techniques
such as Artificial Neural Networks (ANN) and Support Vector Machines (SVM) to predict,
among other things, closing prices of Bitcoin. The third paper we consider in our work
proposes a two stage fusion approach to forecast stock market index. The first stage involves
SVR. The second stage uses ANN, Random Forest (RF) and SVR (Patel et al., 2015). We
decided to predict these three share prices to give a sense of how Bitcoin is different from
traditional markets. Moreover, to enrich our work, we applied the models also to two other
two well-know cryptocurrencies: Ethereum and Litecoin. In this work we forecast daily
closing price series of Bitcoin cryptocurrency using data of prior days following different
approaches in parallel, implementing both statistical techniques and machine learning
algorithms. We tested the chosen algorithms on two datasets: the first consisting only of
the closing prices of the previous days; the second adding the volume data. Since Bitcoin
exchanges are open 24/7, the closing price reported on Coinmarketcap we used, refers to the
price at 11:59 PM UTC of any given day. The implemented algorithms are Simple Linear
Regression (SLR) model for univariate series forecast, using only closing prices; a Multiple
Linear Regression (MLR) model for multivariate series, using both price and volume data;
a Multilayer Perceptron and a Long Short-Term Memory neural networks tested using
both the datasets. The first step consisted in a statistical analysis of the overall series. From
this analysis we show that the entire series are not distinguishable from a random walk. If
the series were truly random walks, it would not be possible to make any forecasts. Since we
are interested in prices and not in price variations, we avoided the time series differencing
technique by introducing and using the novel presented approach. Therefore, each time

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 2/25


https://peerj.com
https://www.coinmarketcap.com
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

series was segmented in shorter overlapping sequences in order to find shorter time regimes
that do not resemble a random walk so that they can be easily modeled. Afterwards, we
run all the algorithms again on the partitioned dataset.

The reminder of this article is organized as follows. ‘Literature Review’ presents the
methodology, briefly describing the data, their pre-processing, and finally the models used.
‘Methods’ presents and discuss the results. ‘Results’ concludes the article.

LITERATURE REVIEW

Over the years many algorithms have been developed for forecasting time series in
stock markets. The most widely adopted are based on the analysis of past market
movements (Agrawal, Chourasia ¢ Mittra, 2013). Among the others, Armano, Marchesi ¢
Murru (2015) proposed a prediction system using a combination of genetic and neural
approaches, having as inputs technical analysis factors that are combined with daily prices.
Enke & Mehdiyev (2013) discussed a hybrid prediction model that combines differential
evolution-based fuzzy clustering with a fuzzy inference neural network for performing an
index level forecast. Kazem et al. (2013) presented a forecasting model based on chaotic
mapping, firefly algorithm, and support vector regression (SVR) to predict stock market
prices. Unlike other widely studied time series, still very few researches have focused on
bitcoin price prediction. In a recent exploration McNally, Roche & Caton (2018) tried

to ascertain with what accuracy the direction of Bitcoin price in USD can be predicted
using machine learning algorithms like LSTM (Long short-term memory) and RNN
(Recurrent Neural Network). Naimy ¢ Hayek (2018) tried to forecast the volatility of
the Bitcoin/USD exchange rate using GARCH (Generalized AutoRegressive Conditional
Heteroscedasticity) models. Sutiksno et al. (2018) studied and applied «-Sutte indicator
and Arima (Autoregressive Integrated Moving Average) methods to forecast historical
data of Bitcoin. Stocchi ¢» Marchesi (2018) proposed the use of Fast Wavelet Transform to
forecast Bitcoin prices. Yang ¢» Kim (2016) examined a few complexity measures of the
Bitcoin transaction flow networks, and modeled the joint dynamic relationship between
these complexity measures and Bitcoin market variables such as return and volatility.
Bakar & Rosbi (2017) presented a forecasting Bitcoin exchange rate model in high volatility
environment, using autoregressive integrated moving average (ARIMA) algorithms.
Catania, Grassi & Ravazzolo (2018) studied the predictability of cryptocurrencies time
series, comparing several alternative univariate and multivariate models in point and density
forecasting of four of the most capitalized series: Bitcoin, Litecoin, Ripple and Ethereum,
using univariate Dynamic Linear Models and several multivariate Vector Autoregressive
models with different forms of time variation. Vo ¢ Xu (2017) used knowledge of statistics
for financial time series and machine learning to fit the parametric distribution and model
and forecast the volatility of Bitcoin returns, and analyze its correlation to other financial
market indicators. Other approaches try to predict stock market index using fusion of
machine learning techniques (Patel et al., 2015). Akcora et al. (2018) introduced a novel
concept of chainlets, or bitcoin subgraphs, to evaluate the local topological structure of the
Bitcoin graph over time and the role of chainlets on bitcoin price formation and dynamics.

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 3/25


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

200001 — Bull Market —— Bear Market
a b
17500 ) )
15000

12500

10000

Prices ($)

7500

5000

2500

o ¥
RO
2 1

INg N S N S\ A I\ INg > N S N hed 1N
o o° 3 . "% N (% (3 (3 (3 (3 (3 & o
S S < ) ) 5 ¥ o o o o S ¥ ¥
1° 2 ° 1° 1° 2° 1 2 ° 2 ° ° ° °

Dates Dates

Figure 1 Bull (A) and Bear (B) price dynamics for Bitcoin market.
Full-size Gal DOI: 10.7717/peerjcs.279/fig-1

Greave & Au (2015) predicted the future price of bitcoin investigating the predictive power
of blockchain network-based, in particular using the bitcoin transaction graph. Since the
cryptocurrencies market is at an early stage, the cited papers that deals with forecasting
bitcoin prices had the opportunity to train and test their models on a quite narrow
dataset. In particular, bitcoin market has been at first characterized by an almost constantly
ascending price trend, the so-called bull-market condition. However, since 2018, it has
been characterized by a strong descending price trend, the so-called bear-market condition.
Therefore, the cited papers trained their models on data of the first market condition, and
tested them on data of the second type. These market conditions are shown in Fig. 1 (Fig.
1A: bull-market condition; Fig. 1B: bear-market condition). Our study spans over a period
of more than 4 years, characterized by different price dynamics. Therefore, we were able to
train and test our models, including in each stage both bull- and bear- market conditions.
For these reasons, our study enriches the state-of-the-art, as it is the most updated and
deals with the biggest and more complete dataset.

METHODS

In this section we first introduce some notions on time series analysis, which helped us
to take the operational decisions about the algorithms we used and to better understand
the results presented in the following. Then, we present the dataset we used, including its
pre-processing analysis. Finally we introduce our proposed algorithms with the metrics
employed to evaluate their performance and the statistical tools we adopted.

Time series analysis
Time series components

Any time series is supposed to consist of three systematic components that can be described
and modelled. These are ’base level’, *trend’ and ’seasonality’, plus one non-systematic
component called 'noise’. The base level is defined as the average value in the series.

A trend is observed when there is an increasing or decreasing slope in the time series.

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 4/25


https://peerj.com
https://doi.org/10.7717/peerjcs.279/fig-1
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

Seasonality is observed when there is a repeated pattern between regular intervals, due to
seasonal factors. Noise represents the random variations in the series. Every time series is a
combination of these four components, where base level and noise always occur, whereas
trend and seasonality are optional. Depending on the nature of the trend and seasonality,
a time series can be described as an additive or multiplicative model. This means that each
observation in the series can be expressed as either a sum or a product of the components
(Hyndman ¢ Athanasopoulos, 2014). An additive model is described by following the linear
equation:

y(t) = BaseLevel 4+ Trend + Seasonality 4+ Noise (1)
A multiplicative model is instead represented by the following non-linear equation:
y(t) = BaseLevel x Trend * Seasonality x Noise (2)

An additive model would be used when the variations around the trend does not vary
with the level of the time series whereas a multiplicative model would be appropriate
if the trend is proportional to the level of the time series. This method of time series
decomposition is called “classical decomposition” (Hyndman ¢ Athanasopoulos, 2014).

Statistical measures

The statistical measures we calculated for each time series are the mean, labelled with .,
the standard deviation o and the trimmed mean /i, obtained discarding a portion of data
from both tails of the distribution. The trimmed mean is less sensitive to outliers than the
mean, but it still gives a reasonable estimate of central tendency and can be very helpful
for time series with high volatility.

Collected data

We tested our algorithms on six daily price series. Three of them are stock market series, all
the data were extracted from the "Historical Data’ available on (http://www.finance.yahoo.
com) website; the other ones are cryptocurrencies, namely Bitcoin, Ethereum and Litecoin
price daily series, all the data were extracted from (http://www.coinmarketcap.com)
website.

e Daily stock market prices for Microsoft Corporation (MSFT), from 9/12/2007 to
11/11/2011.

e Daily stock market prices for Intel Corporation (INTC), from 9/12/2007 to 11/11/2010.

e Daily stock market prices for National Bankshares Inc. (NKSH), from 6/27/2008 to
8/29/2011.

e Daily Bitcoin, Ethereum and Litecoin price series, from 15/11/2015 to 12/03/2020.

We state once more that we choose these price series and the related time intervals as
benchmark to compare our results with well known literature results obtained by using
other methods.

Specifically, we have chosen for the stock market series the same time intervals chosen
in Kazem et al. (2013). The choice of Bitcoin as criptocurrency is quite natural since
it represents about 60 % of the Total Market Capitalization. We chose Ethereum and

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 5/25


https://peerj.com
http://www.finance.yahoo.com
http://www.finance.yahoo.com
http://www.coinmarketcap.com
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

Litecoin since they are among the most important and well-known cryptocurrencies. It
is worth noting that, for the stock market series we used the same data of the work we
compare to, whereas for the cryptocurrencies we used all the available data to have more
significant results.

The dataset was divided into two sets, a training part and a testing part. After some
empirical test the partition of the data which lead us to optimal solutions was 80 % of the
daily data for the training dataset and the remaining for the testing dataset.

Data pre-processing

For both models we prepared our dataset in order to have a set of inputs (X) and outputs
(Y) with temporal dependence. We performed a one-step ahead forecast: our output Y is
the value from the next (future) point of time while the inputs X are one or several values
from the past, i.e., the so called lagged values. From now on we identify the number of
used lagged values with the lag parameter. In the Linear Regression and Univariate LSTM
models the dataset includes only the daily closing price series, hence there is only one single
lag parameter for the close feature. On the contrary, in the Multiple Linear Regression and
Multivariate LSTM models the dataset includes both close and volume (USD) series, hence
we use two different lag parameters, one for the close and one for the volume feature. In
both cases, we attempted to optimize the predictive performance of the models by varying
the lag from 1 to 10.

Univariate versus multivariate forecasting

A univariate forecast consists of predicting time series made by observations belonging to
a single feature recorded over time, in our case the closing price of the series considered.
A multivariate forecast is a forecast in which the dataset consists of the observations of
several features. In our case we used:

e for BTC, ETH and LTC series all the features provided by Coinmarketcap website: Open,
High, Low, Close, Volume.

e for MSFT, INTC, NKSH series all the features provided by Yahoofinance website: Date,
Open, High, Low, Close, Volume.

We observed that adding features to the dataset did not lead to better predictions, but
performance and sometimes also results worsened. For this reason, we decided to use in
the multivariate analysis only the close and volume features, that provided the best results.

Statistical analysis

As a first step we carried out a statistical analysis in order to check for non-stationarity in the
time series. We used the augmented Dickey-Fuller test and autocorrelation plots (Banerjee
et al., 1993; Box & Jenkins, 1976). A stochastic process with a unit root is non-stationary,
namely shows statistical properties that change over time, including mean, variance and
covariance, and can cause problems in predictability of time series models. A common
process with unit root is the random walk. Often price time series show some characteristics
which makes them indistinguishable from a random walk. The presence of such a process
can be tested using a unit root test.

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 6/25


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

The ADF test is a statistical test that can be used to test for a unit root in a univariate
process, such as time series samples. The null hypothesis Hy of the ADF test is that there
is a unit root, with the alternative H, that there is no unit root. The most significant results
provided by this test are the observed test statistic, the Mackinnon’s approximate p-value
and the critical values at the 1%, 5% and 10% levels.

The test statistic is simply the value provided by the ADF test for a given time series.
Once this value is computed it can be compared to the relevant critical value for the
Dickey-Fuller Test.

Critical values, usually referred to as « levels, are an error rate defined in the hypothesis
test. They give the probability to reject the null hypothesis Hy. So if the observed test
statistic is less than the critical value (keep in mind that ADF statistic values are always
negative (Banerjee et al., 1993), then the null hypothesis Hy is rejected and no unit root is
present.

The p-value is instead the probability to get a “more extreme” test statistic than the one
observed, based on the assumed statistical hypothesis Hy, and its mathematical definition
is shown in Eq. (3).

H0>. (3)

Pvalue = P (t 2 tobserved

The p-value is sometimes called significance, actually meaning the closeness of the p-value
to zero: the lower the p-value, the higher the significance.

In our analysis we performed this test using the adfuller() function provided by the
statsmodels Python library, and we chose a significance level of 5%.

Furthermore, the autocorrelation plot, also known as correlogram, allowed us to calculate
the correlation between each observation and the observations at previous time steps,
called lag values. In our case we employed the autocorrelation_plot() function provided by
the python Pandas library (Mckinney, 2011).

Forecasting

We decided to follow two different approaches: the first uses two well-known statistical
methods: Linear Regression (LR) and Multiple Linear Regression (MLR). The second uses
two very common neural networks (NN): Multilayer Perceptron (MLP) NN and Long
Short-Term Memory (LSTM) NN. The reasons of this choices are explained below.

Linear regression and multiple linear regression
Linear regression is a linear approach for modelling the relationship between a dependent
variable and one independent variable, represented by the main equation:

y=by+b; -3, (4)

where y and X; are the dependent and the independent variable respectively, while by is
the intercept and by is the vector of slope coefficients. In our case the components of the
vector X, our independent variable, are the values of the closing prices of the previous days.
Therefore, X; size is the value of the lag parameter. In our case y represents the closing
price to be predicted.

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 7125


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

This algorithm aims to find the curve that best fits the data, which best describes the
relation between the dependent and independent variable. The algorithm finds the best
fitting line plotting all the possible trend lines through our data and for each of them
calculates and stores the amount (y — 7)2, and then choose the one that minimizes the
squared differences sum ) _;(y; — 7;)?, namely the line that minimizes the distance between
the real points and those crossed by the line of best fit.

We then tried to forecast with multiple independent variables, adding to the close price
feature the observations of several features, including volume, highest value and lowest value
of the previous day. These information were gained from Coinmarketcap website. In these
cases we used a Multiple Linear Regression model (MLR). The MLR equation is:

n
y=bo+bi-Fi+..+byFn=bo+ Y bi'% (5)
i=1
where the index i refers to a particular independent variable and # is the dimension of the
independent variables space.

We used the Linear and Multiple regression model of scikit learn (Pedregosa et al., 2012).
We decided to use this two models for several reasons: they are simple to write, use and
understand, they are fast to compute, they are commonly used models and fit well to
datasets with few features, like ours. Their disadvantage is that they can model only linear
relationships.

Multilayer perceptron

A multilayer perceptron (MLP) is a feedforward artificial neural network that generates a
set of outputs from a set of inputs. It consists of at least three layers of neurons: an input
layer, a hidden layer and an output layer. Each neuron, apart from the input ones, has a
nonlinear activation function. MLP uses backpropagation for training the network. In our
model we keep the structure as simple as possible, with a single hidden layer. Our inputs are
the closing prices of the previous days, where the number of values considered depends on
the lag parameter. The output is the forecast price. The optimal number of neurons were
found by optimizing the network architecture on the number of neurons itself, varying it
in an interval between 5 and 100. We used the Python Keras library (Chollet, 2015).

LSTM networks

Long Short-Term Memory networks are nothing more than a prominent variations of
Recurrent Neural Network (RNN). RNN’s are a class of artificial neural network with a
specific architecture oriented at recognizing patterns in sequences of data of various kinds:
texts, genomes, handwriting, the spoken word, or numerical time series data emanating
from sensors, markets or other sources (Hochreiter ¢ Schmidhuber, 1997). Simple recurrent
neural networks are proven to perform well only for short-term memory and are unable
to capture long-term dependencies in a sequence. On the contrary, LSTM networks are
a special kind of RNN, able at learning long-term dependencies. The model is organized
in cells which include several operations. LSTM hold an internal state variable, which is
passed from one cell to another and modified by Operation Gates (forget gate, input gate,
output gate). These gates control how much of the internal state is passed to the output

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 8/25


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

-e epoch 300
—e— epoch 400
-e- epoch 500
--@- epoch 600
0.055 * —-- epoch 700

0.050

w
a
é 0.045

0.040

0.035 £ v

batch_size

Figure 2 Bitcoin hyperparameters tuning results.
Full-size Gal DOI: 10.7717/peerjcs.279/fig-2

and work in a similar way to other gates. These three gates have independent weights and
biases, hence the network will learn how much of the past output and of the current input
to retain and how much of the internal state to send out to the output.

In our case the inputs are the closing prices of the previous days and the number of
values considered depends on the lag parameter. The output is the forecast price. We used
the Keras framework for deep learning. Our model consists of one stacked LSTM layer with
64 units each and the densely connected output layer with one neuron. We used Adam
optimizer and MSE (mean squared error) as a loss.

We optimized our LSTM model searching for the best set of epochs and batch size
“hyperparameters” values. These hyperparameters strongly depend on the number of
observations available for the experiment. Due to the recently birth of the cryptocurrency
markets, the dimensions of our datasets are quite limited (around 1000 observations),
therefore we decided to vary the epochs hyperparameter from 300 to 800 with a step of 100.
The Keras LSTM algorithm we used sets as default value for batch size 32. So, for each fixed
epoch, we trained the model varying the batch size within the interval [22, 82] with a step of
10. We did not take into account values less than 300 epochs, nor greater than 800 in order
to avoid underfitting and overfitting problems. Furthermore, we did not consider batch
size values less than 22, since they would lead to extremely long training times. Similarly,
batch size values greater than 82 would not allow to find a good local minimum point of
the chosen loss function during the learning procedure. The results obtained during the
hyperparameters tuning are shown in Fig. 2.

This figure shows the MAPE error as a function of the batch size hyperparameter, for
each fixed epoch. As can be seen from the figure, we considered the batch size equal to 72
to be the optimal value. In fact, it is an excellent compromise, having a low MAPE value,
which is also practically the same for all tested epochs. The optimal choice for the epochs

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 9/25


https://peerj.com
https://doi.org/10.7717/peerjcs.279/fig-2
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

hyperparameter is 600, which is the one that minimizes the MAPE error for batch size
equal to 72, and is consistently among the best choices for almost all batch sizes considered.
Therefore, the best set of epochs and batch size "hyperparameters” values we chose is 600
and 72, respectively.

Time regimes

The time series considered are found to be indistinguishable from a random walk. This
peculiarity is common for time series of financial markets, and in our case is confirmed
by the predictions of the models, in which the best result is obtained considering only the
price of the previous day.

The purpose is to find an approach that allow us to avoid time series differencing
technique, in view of the fact that we are interested in prices and not in price variations
represented by integrated series of d-order. For this reason, each time series was segmented
into short partially overlapping sequences, in order to find if shorter time regimes are
present, where the series do not resemble a random walk. Finally, to continue with the
forecasting procedure, a train and a test set were identified within each time regime.

For each regime we always sampled 200 observations - namely 200 daily prices. The
beginning of the next regime is obtained with a shift of 120 points from the previous one.
Thus, every regime is 200 points wide and has 80 points in common with the following
one.

We chose a regime length of 200 days because, in this way, we obtain at least 5 regimes
(from 5 to 12) for each time series to test the effectiveness of our algorithms, without
excessively reducing the number of samples needed for training and testing. The choice
was determined also according to the following: we performed the augmented Dickey-Fuller
test on subsets of the data, starting from the whole set and progressively reducing the data
window and sliding it through the data. The first subset of data that does not behave as
random walks appears at time interval of 230 days, which we rounded to 200.

Since the time series considered have different lengths, the partition in regimes has
generated:

e Bitcoin, Ethereum and Litecoin: 12 regimes
e Microsoft: 8 regimes
e Intel and National Bankshares: 5 regimes

From a mathematical point of view, the used approach can be described as follows.

Let us target a vector OA along the t axis, with length 200. This vector is identified by
the points O(1,0), A(a,0) = (200,0). The length of this vector represents the width of each
time regime.

Let OH be a fixed translation vector along the t axis, identified by the points O(1,0)
and H (h,0) = (120,0). The length of (7{ represents the translation size.

For the sake of simplicity, let us label the OA and OH vectors with A and H.

Let A’ be the vector A shifted by H and A" the vector A shifted by 7 times H.

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 10/25


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

Therefore, the vector that identifies the nth sequence to be sampled along the series is
given by:
A"=A+4nH (6)
where n € [0, %], being D the dimension of the sampling space, A the time regimes width
and h the translation size.

So the nth time regime is given by:
R'=f(A")=f(A+nH) (7)

where f is the function that maps the values along the ¢ axis (dates) to the respective
regimes y values (actual prices).

Performance Measures
To evaluate the effectiveness of different approaches, we used the relative Root Mean Square
Error (rRMSE) and the Mean Absolute Percentage Error (MAPE), defined respectively as:

1 yi—fin2
relativeRMSE = —Z (L) (8)
NN i
N
1 yi—fi
MAPE = — —_— (9)
N 2 Vi

i=1
In both formulas y; and f; represent the actual and forecast values, and N is the number
of forecasting periods. These are scale free performance measures, so that they are well
appropriate to compare model performance results across series with different orders of
magnitude, as in our study.

RESULTS

Time series analysis

In Fig. 3 we report the decomposition of Bitcoin (Fig. 3A-3D) and Microsoft (Fig 3E-3H)
time series, for comparison purposes, as obtained using the seasonal_decompose() method,
provided by the Python statsmodels library (Skipper ¢ Perktold., 2010).

The seasonal_decompose() method requires to specify whether the model is additive or
multiplicative. In the Bitcoin time series, the trend of increase at the beginning is almost
absent (from around 2016-04 to 2017-02); in later years, the frequency and the amplitude
of the cycle appears to change over time. The Microsoft time series shows a non-linear
seasonality over the whole period, with frequency and amplitude of the cycles changing
over time. These considerations suggest that the model is multiplicative. Furthermore, if
we look at the residuals, they look quite random, in agreement with their definitions. The
Bitcoin residuals are likewise meaningful, showing periods of high variability in the later
years of the series.

It is also possible to group the data at seasonal intervals, observing how the values are
distributed and how they evolve over time. In our work we grouped the data of the same

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 11/25


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

Bitcoin - multiplicative decomposition Microsoft - multiplicative decomposition
20000
FIE)] T30
§ 10000 g
S S201e)
0
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000
b 30
g 10000 ) E
= =
204f)
0
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000
1.01 1.01
T c K]
2 1.00 g
8 8 1.00
& 0.99 & g
0 200 400 600 800 1000 1200 1400 1600 o 200 400 600 800 1000
11
125
2 :
2 1.00 310
$ 3
%o £ 094h)
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000

Figure 3 Decomposition of Bitcoin (A-D) and Microsoft (E-H) time series.
Full-size Gal DOI: 10.7717/peerjcs.279/fig-3

Bitcoin Microsoft

20000

a)
17500

b)
15000

H
]
- ik inn | ” *
- Iiii T,
0 H

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

close

Figure 4 Seasonality of Bitcoin (A) and Microsoft (B) time series.
Full-size Gal DOI: 10.7717/peerjcs.279/fig-4

month over the years we considered. This is achieved with the ’Box plot’ of month-wide
distribution, shown in Fig. 4 (Fig. 4A: Bitcoin; Fig. 4B: Microsoft). The Box plot is a
standardized way of displaying the distribution of data based on five numbers summary:
minimum, first quartile, median, third quartile and maximum. The box of the plot is a
rectangle which encloses the middle half of the sample, with an end at each quartile. The
length of the box is thus the inter-quartile range of the sample. The other dimension of
the box has no meaning. A line is drawn across the box at the sample median. Whiskers
sprout from the two ends of the box defining the outliers range. The box length gives an
indication of the sample variability, and for the Bitcoin samples shows a large variance,
in almost all months, except for April, September and October. Not surprisingly, bitcoin
volatility is much higher than Microsoft one. The line crossing the box shows where the

Uras et al. (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.279 12/25


https://peerj.com
https://doi.org/10.7717/peerjcs.279/fig-3
https://doi.org/10.7717/peerjcs.279/fig-4
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

Table 1 Time series statistical measures.

Series L o 1!
BTC 4,931,3 3,970,0 4,593,1
ETH 216,8 239,8 171,2
LTC 55,9 58,0 45,6
MSFT 26,2 3,9 26,3
INTC 19,9 3,6 19,9
NKSH 24,3 3,9 24,5

sample is centred, i.e., the median. The position of the box in its whiskers and the position
of the line in the box also tell us whether the sample is symmetric or skewed, either to
the right or to the left. The plot shows that the Bitcoin monthly samples are therefore
skewed to the right. The top whiskers is much longer than the bottom whiskers and the
median is gravitating towards the bottom of the box. This is due to the very high prices that
Bitcoin reached throughout the period between 2017 and 2018. These large values tend
to skew the sample statistics. In Microsoft, an alternation between samples skewed to the
left and samples skewed to the right occurs, except for the sample of October that shows
a symmetric distribution. Lack of symmetry entails one tail being longer than the other,
distinguishing between heavy-tailed or light-tailed populations. In the Bitcoin case we can
state that the majority of the samples are left skewed populations with short tails. Microsoft
shows an alternation between heavy-tailed and light-tailed distributions. We can see that
some Microsoft samples, particularly those with long tails, present outliers, representing
anomalous values. This is due to the fact that heavy tailed distributions tend to have many
outliers with very high values. The heavier the tail, the larger the probability that you will
get one or more disproportionate values in a sample.

Tables 1 and 2 show the statistics calculated for each time series and for each short time
regime. The unit of measurement of the values in the tables is the US dollar ($). In Table 1
we can observe that the only series for which the trimmed mean, obtained with trim_mean()
method provided by the Python scipy library (Jones, Oliphant ¢ Peterson, 2001), with a
cut-off percentage of 10%, is significantly different from the mean are Bitcoin, Ethereum
and Litecoin. In particular the trimmed mean decreased. This is due to the fact that
these cryptocurrencies, for a long period of time, registered a large price increment and
this implies a shift of the mean to the right (i.e., to highest prices). This confirms that
cryptocurrencies distribution is right-skewed. Table 2 shows that stock market series time
regimes present a lower o than BTC, ETH and LTC ones, namely that cryptocurrencies
distribution has higher variance.

Figures 5 and 6 show the autocorrelation plots of BTC and MSFT series. The others
stock market series are not presented because they show the same features of the MSFT
series. Both autocorrelation plots (Figs. 5C and 6C) show a strong autocorrelation between
the current price and the closest previous observations and a linear fall-off from there to
the first few hundred lag values. We then tried to make the series stationary by taking the
first difference. The autocorrelation plots of the ’differences series’ (Figs. 5C and 5D) show

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 13/25


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

Table 2 Regimes statistical measures.

Series h v o 72
0 419,7 39,6 421,6
120 551,2 97,3 549,6
240 707,9 122,5 693,2
360 1110,1 358,8 1048,8
480 2481,2 1107,4 2414,0
BTC 600 7446,4 4808,8 6870,7
720 10359,6 3082,8 9966,1
840 7536,5 1130,1 7424,8
960 5810,9 1382,3 5859,4
1,080 4509,6 1101,3 4349,9
1,200 8016,9 2752,9 8048,3
1,320 9154,5 1477,4 9080,2
0 6,0 4,6 5,8
120 11,7 2,0 11,6
240 10,8 1,7 10,8
360 34,6 39,0 26,3
480 195,8 114,6 194,5
ETH 600 441,9 281,8 385,5
720 695,9 251,4 682,0
840 487,4 159,1 486,4
960 239,6 118,0 228,2
1,080 144,6 34,0 141,8
1,200 204,7 52,5 201,1
1,320 186,8 42,5 181,7
0 3,5 0,4 3,4
120 3,9 0,5 3,9
240 3,9 0,2 3,9
360 8,2 8,1 6,2
480 33,8 19,3 33,3
LTC 600 102,6 85,4 86,1
720 167,0 65,0 163,7
840 107,6 40,2 105,3
960 52,9 17,9 52,2
1080 50,5 19,9 48,7
1200 87,4 23,8 85,7
1320 67,2 22,3 64,5

(continued on next page)
no significant relationship between the lagged observations. All correlations are small, close
to zero and below the 95% and 99% confidence levels.

As regards the augmented Dickey-Fuller results, shown in Table 3, looking at the observed
test statistics, we can state that all the series follows a unit root process. We remind that the
null hypothesis Hy of the ADF test is that there is a unit root. In particular, all the observed

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 14/25


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

Table 2 (continued)

Series h v o I3
0 30,7 2,8 30,5
120 26,1 3,2 26,4
240 20,6 3,9 20,4
MSET 360 22,8 3,8 22,8
480 28,2 2,3 28,4
600 26,8 2,2 26,7
720 26,1 1,3 26,1
840 26,0 1,2 26,0
0 23,5 2,4 23,5
120 20,0 3,6 20,3
INTC 240 15,4 2,3 15,1
360 17,3 2,3 17,4
480 20,6 1,4 20,4
0 18,5 0,9 18,5
120 22,2 3,0 22,2
NKSH 240 26,5 1,4 26,5
360 25,9 1,9 26,0
480 26,5 2,5 26,3
—— Prices 1.01 —— Prices
35 0.8
. 06
30 s
B 044
g, 5 o2
== —— ——
20 = -0.24 )
—0.41 Cc
" a) 0.4
0 200 400 600 800 1000 0 200 400 600 800 1000

usb

—— Price differences

b)

Autocorrelation

d)

—— Price differences

0 200 400 600 800

1000

0 200 400 600 800 1000

Figure 5 Microsoft time series autocorrelation plots (A: Microsoft price behavior; B: first-difference
prices plot; C: prices autocorrelation plot; D: price differences autocorrelation plot).

Full-size Gal DOI: 10.7717/peerjcs.279/fig-5

test statistics are greater than those associated to all significance levels. This implies that we

can not reject the null hypothesis Hy, but does not imply that the null hypothesis is true.

Observing the p-values, we notice that for the stock market series we have a low

probability to get a “more extreme” test statistic than the one observed under the null
hypothesis H. Precisely, for both MSFT and INTC we got a probability of 29%, for NKSH
a probability of 25%. The same considerations also apply to the Bitcoin, Ethereum and

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279

15/25


https://peerj.com
https://doi.org/10.7717/peerjcs.279/fig-5
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

20000
— Prices 10 — Prices
17500 s
15000 a) c)
c
12500 s 06
=
3 10000 2 o4
s g
7500 S 02
5000 B O N P Ut Py At
0.0
25004 oo T T TN T
0 -0.2
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
Days Lag
0.15
—— Price differences —— Price differences
3000
b) 0.10 d)
2000 c
R e R R B B e L B e o
% 005
o 1000 <
3 5
0 g 000
2
-1000
-0.05 | I
-2000 | e
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600

Days Lag

Figure 6 Bitcoin time series autocorrelation plots (A: Bitcoin price behavior; B: first-difference prices
plot; C: prices autocorrelation plot; D: price differences autocorrelation plot).
Full-size Gal DOI: 10.7717/peerjcs.279/fig-6

Table 3 Augmented Dickey-Fuller test results.

Series ADF statistic p-value
BTC —2.12 0.24
ETH —2.17 0.22
LTC —2.34 0.16
MSFT —1.98 0.29
INTC —1.98 0.29
NKSH —2.10 0.25

Litecoin cryptocurrency time series. We conclude that Hy can not be rejected and so each
time series present a unit root process.
We conclude that all the considered series show the statistical characteristics typical of

a random walk.

Time series forecasting

Tables 4 and 5 show the best results, in terms of MAPE and rRMSE, obtained with the
different algorithms applied to the entire series. From now on, let us label the closing and
the volume features lag parameters with k, and k, respectively. In particular, Table 4 reports
the results obtained using the Linear Regression algorithm for univariate series forecast,
using only closing prices, and the Multiple Linear Regression model for multivariate series,
using both price and volume data.

Table 5 shows the results obtained with the LSTM neural network, distinguishing
between univariate LSTM, using only closing prices, and multivariate LSTM, using both
price and volume data.

Small values of the MAPE and rRMSE evaluation metrics suggest accurate predictions
and good performance of the considered model.

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 16/25


https://peerj.com
https://doi.org/10.7717/peerjcs.279/fig-6
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

Table 4 Linear and multiple linear regression results.

Linear regression Multiple linear regression
Series MAPE rRMSE k, MAPE rRMSE k, k,
BTC 0.026 0.040 1 0.026 0.037 1 1
ETH 0.031 0.049 1 0.039 0.053 6 3
LTC 0.034 0.050 1 0.045 0.058 2 2
MSFT 0.011 0.015 1 0.011 0.015 1 1
INTC 0.013 0.017 1 0.013 0.017 1 1
NKSH 0.014 0.019 12 0.013 0.018 7 5
Table 5 Univariate and multivariate LSTM results.
Univariate LSTM Multivariate LSTM
Series MAPE rRMSE k, MAPE rRMSE k, k,
BTC 0.027 0.041 1 0.038 0.048 2 1
ETH 0.034 0.052 6 0.057 0.076 2 1
LTC 0.035 0.051 1 0.039 0.054 1 1
MSFT 0.012 0.015 1 0.012 0.015 1 2
INTC 0.013 0.017 2 0.013 0.017 1 1
NKSH 0.014 0.020 7 0.013 0.018 1 2

From the analysis of the series in their totality, it appears that linear models outperforms
neural networks. However, for both models, the majority of best results are obtained for a
lag of 1,thus confirming our hypothesis that the series are indistinguishable from a random
walk.

In order to perform the time series forecasting, we also implemented a Multi-Layer
Perceptron model. Since the LSTM network outperforms the MLP one, we decided to show
only the LSTM results. This is probably due to the particular architecture of the LSTM
network, that is able to capture long-term dependencies in a sequence.

It should be noted that better predictions are obtained for stock market series rather than
for the cryptocurrencies one. In particular, the best result is obtained for Microsoft series,
with a MAPE of 0,011 and k, equal to 1. This is probably due to the high price fluctuations
that Bitcoin and the other cryptocurrencies have suffered during the investigated time
interval. This is confirmed by the statistics shown in Table 1. It must be noted that the
addition of the volume feature to the dataset does not improve the predictions.

In order to perform prices forecast we changed the approach and decided to split the
time series analysis using shorter time windows of 200 points, shifting the windows by 120
points, with the aim of finding local time regimes where the series do not follow the global
random walk pattern.

Tables 6 and 7 show the results obtained with our approach of partitioning the series
into shorter sequences. Let us label the moving step forward with h. Particularly, in Table 6
are presented the results obtained using the Linear Regression algorithm for univariate
series forecast, using only closing prices, and the Multiple Linear Regression model for

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 17/25


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

Table 6 LR and MLR results with time regimes.

Linear regression Multiple Linear Regression
Series h MAPE rRMSE k, MAPE rRMSE k, k,
0 0.015 0.025 4 0.012 0.014 8 10
120 0.007 0.010 7 0.007 0.011 1 1
240 0.029 0.050 4 0.031 0.052 5 1
360 0.034 0.041 1 0.037 0.045 1 2
480 0.041 0.062 2 0.039 0.061 2 1
BTC 600 0.065 0.082 2 0.065 0.080 2 2
720 0.028 0.035 1 0.026 0.035 1 5
840 0.017 0.024 7 0.018 0.024 7 1
960 0.030 0.040 4 0.029 0.040 1 10
1.080 0.029 0.039 1 0.022 0.031 3 3
1.200 0.018 0.025 8 0.021 0.026 8 2
1.320 0.020 0.026 5 0.021 0.027 7 7
0 0.045 0.060 7 0.042 0.056 10 6
120 0.022 0.029 1 0.022 0.028 1 1
240 0.031 0.047 4 0.033 0.046 1 3
360 0.053 0.078 1 0.053 0.078 2 2
480 0.048 0.077 1 0.050 0.077 1 1
ETH 600 0.060 0.080 1 0.053 0.069 3 8
720 0.039 0.051 1 0.036 0.049 1 7
840 0.048 0.070 7 0.064 0.084 5 1
960 0.051 0.068 1 0.055 0.071 4 1
1.080 0.032 0.046 3 0.020 0.027 10 7
1.200 0.024 0.031 8 0.022 0.029 1 8
1.320 0.025 0.033 1 0.028 0.035 1 1
0 0.027 0.034 4 0.023 0.027 8 8
120 0.011 0.018 3 0.011 0.017 1 4
240 0.030 0.046 5 0.031 0.047 5 2
360 0.075 0.098 1 0.074 0.094 3 3
480 0.073 0.111 1 0.074 0.112 1 1
LTC 600 0.077 0.096 2 0.058 0.074 8 7
720 0.040 0.049 1 0.040 0.047 1 1
840 0.032 0.045 9 0.031 0.043 9 3
960 0.047 0.060 3 0.048 0.062 1 1
1.080 0.037 0.047 9 0.023 0.028 7 7
1.200 0.026 0.032 8 0.027 0.034 8 1
1.320 0.026 0.036 1 0.026 0.037 1 1

(continued on next page)

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279

18/25


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

Table 6 (continued)

Linear regression Multiple Linear Regression
Series h MAPE rRMSE k, MAPE rRMSE k, k,
0 0.015 0.018 1 0.015 0.017 1 3
120 0.037 0.045 6 0.035 0.044 6 4
240 0.015 0.019 7 0.015 0.019 9 6
MSET 360 0.010 0.014 3 0.012 0.018 1 1
480 0.011 0.015 2 0.010 0.012 3 7
600 0.009 0.011 4 0.009 0.011 5 1
720 0.008 0.011 7 0.007 0.009 10 8
840 0.012 0.015 1 0.012 0.015 1 10
0 0.014 0.019 5 0.013 0.017 6 10
120 0.036 0.045 7 0.035 0.043 7 4
INTC 240 0.017 0.022 5 0.017 0.022 2 3
360 0.012 0.015 1 0.012 0.015 1 1
480 0.016 0.020 1 0.016 0.020 3 5
0 0.019 0.023 8 0.019 0.023 9 6
120 0.014 0.018 9 0.013 0.017 10 4
NKSH 240 0.014 0.018 4 0.012 0.016 1 4
360 0.019 0.026 2 0.019 0.026 2 1
480 0.009 0.012 7 0.009 0.012 10 5

multivariate series, using both price and volume data. This approach, has the advantage
of being simple to implement and requires low computational complexity. Nevertheless,
has led to good results, similar to those present in the literature, if not better as in the
Microsoft, Bitcoin and National Bankshares cases, where the MAPE error is lower that 1%.

Table 7 shows the results obtained with the LSTM neural network, distinguishing
between univariate LSTM, using only closing prices, and multivariate LSTM, using both
price and volume data. For each time regimes we show the best results obtained on a
specific time window defined by the k, and k, values reported in Tables 6 and 7. Note that
we highlighted the best results in bold. In particular, it is worth noting that introducing
the time regimes, the best result is obtained for the Bitcoin time series, outperforming also
the financial ones.

These results show how such innovative partitioning approach allowed us to avoid
the random walk problem”, finding that best results are obtained using more than one
previous price. Furthermore, this method leads to a significant improvement in predictions.
It is worth noting that, from this analysis the best result arise from the Bitcoin series, with a
MAPE error of 0.007, a temporal window k, of 7 and a translation step h of 120, obtained
using both regression models and LSTM network.

Another interesting consideration that arises from the results is that, as stated previously
in the analysis of the series in their entirety, the linear regression models generally
outperform the neural networks ones, while in the short-time regimes approach the
different models yielded to similar results.

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 19/25


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

Table 7 Univariate and multivariate LSTM results with time regimes.

Univariate LSTM Multivariate LSTM
Series h MAPE rRMSE k, MAPE rRMSE k, k,
0 0.022 0.034 3 0.021 0.030 3 1
120 0.007 0.011 4 0.007 0.010 2 1
240 0.044 0.058 3 0.065 0.077 3 1
360 0.088 0.105 2 0.187 0.233 3 3
480 0.043 0.066 4 0.041 0.061 1 1
BTC 600 0.068 0.088 1 0.078 0.127 2 1
720 0.027 0.035 2 0.027 0.043 1 2
840 0.017 0.023 1 0.017 0.031 3 1
960 0.027 0.035 6 0.033 0.067 2 1
1.080 0.025 0.038 3 0.030 0.106 3 1
1.200 0.021 0.028 1 0.024 0.033 1 1
1.320 0.018 0.025 1 0.020 0.028 1 2
0 0.051 0.065 6 0.054 0.068 3 1
120 0.022 0.028 1 0.023 0.031 1 3
240 0.034 0.049 1 0.035 0.048 1 2
360 0.217 0.248 5 0.284 0.349 3 3
480 0.049 0.077 2 0.050 0.076 1 1
ETH 600 0.074 0.109 3 0.164 0.396 1 1
720 0.039 0.052 3 0.037 0.079 3 1
840 0.067 0.092 1 0.052 0.252 1 1
960 0.053 0.067 1 0.062 0.101 1 1
1.080 0.031 0.042 3 0.039 0.082 1 1
1.200 0.026 0.035 1 0.025 0.049 1 3
1.320 0.021 0.031 2 0.022 0.031 1 1
0 0.045 0.054 5 0.063 0.079 3 1
120 0.010 0.016 2 0.011 0.018 3 1
240 0.035 0.052 6 0.051 0.069 1 1
360 0.395 0.409 6 0.397 0.443 3 2
480 0.086 0.117 3 0.090 0.120 3 1
LTC 600 0.136 0.164 1 0.167 0.431 1 3
720 0.040 0.051 3 0.040 0.075 1 2
840 0.034 0.045 1 0.035 0.062 1 2
960 0.047 0.059 1 0.053 0.107 2 1
1.080 0.047 0.055 1 0.034 0.121 1 3
1.200 0.026 0.035 1 0.026 0.048 1 3
1.320 0.028 0.038 2 0.028 0.038 1 1

(continued on next page)

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279

20/25


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

Table 7 (continued)

Univariate LSTM Multivariate LSTM
Series h MAPE rRMSE k, MAPE rRMSE k, k,
0 0.014 0.017 1 0.014 0.017 1 2
120 0.121 0.139 1 0.054 0.064 3 1
240 0.017 0.023 2 0.017 0.023 1 3
MSET 360 0.017 0.021 4 0.031 0.044 3 1
480 0.012 0.015 1 0.012 0.016 1 2
600 0.009 0.012 3 0.009 0.012 3 1
720 0.008 0.011 4 0.010 0.014 2 1
840 0.012 0.016 4 0.012 0.016 3 1
0 0.015 0.019 1 0.014 0.018 1 1
120 0.056 0.068 1 0.069 0.091 3 3
INTC 240 0.017 0.021 3 0.017 0.022 3 1
360 0.012 0.015 1 0.013 0.017 1 1
480 0.017 0.021 1 0.020 0.025 1 1
0 0.021 0.027 1 0.023 0.027 3 1
120 0.015 0.018 6 0.014 0.019 1 3
NKSH 240 0.016 0.022 1 0.017 0.022 1 3
360 0.020 0.027 1 0.023 0.030 1 3
480 0.010 0.014 1 0.010 0.013 1 1
Table 8 Best benchmarks results compared to ours.

Reference Series Model MAPE
Mallqui & Fernandes BTC SVM:0.9-1(Relief) 0.011
(2018)

Patel et al. (2015) S&P BSE SENSEX SVR 0.009
MSFT SVR-CFA 0.052
Kazem et al. (2013) INTC SVR-CFA 0.045
NKSH SVR-CFA 0.046
BTC LR 0.007
ETH MLR 0.020
Our Work LTC Univariate LSTM 0.010
MSFT MLR 0.007
INTC LR 0.012
NKSH LR 0.009

For a direct feedback we report in Table 8 the best results obtained in the papers we
compared to and our best ones. In the event that the best MAPE error results from different
models, we consider the model whose computational complexity is the least as best. It is
noticeable that our results outperform those obtained in the benchmark papers, providing
notable contribution to the literature.

Uras et al. (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.279 21/25


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

CONCLUSIONS

The results, obtained considering the series in their totality, reflect the considerations
made in the introduction of this paper. The predictions of the Bitcoin, Ethereum and
Litecoin closing price series are worse, in terms of MAPE error, than those obtained for the
benchmark series (Intel, Microsoft and National Bankshares). This is probably due to at
least two reasons: high volatility of the prices and market immaturity for cryptocurrencies.
This is confirmed by the statistics reported in Tables 1 and 2.

The results obtained partitioning the dataset into shorter sequences also confirmed the
correctness of our hypothesis of identifying time regimes that do not resemble a random
walk and that are easier to model, finding that best results are obtained using more than
one previous price. It is worth noting that, with this novel approach, we obtained the best
results for the Bitcoin price series rather than for the stock market series, as happened in
the analysis of the series in their totality. As stated before, this is probably due to the high
volatility of the Bitcoin price. In fact, it is no accident that the best result was found for
the time regime identified by a translation step / of 120, where the Bitcoin prices are more
distributed around the mean, showing a lower variance. This is confirmed by the standard
deviation values shown in Table 2.

It is important to emphasize that the innovative approach proposed in this paper,
namely the identification of short-time regimes within the entire series, allowed us to
obtain leading-edge results in the field of financial series forecasting.

Comparing our best result with those obtained in the considered benchmark papers,
our result represents one of the best found in the literature. We highlight that we obtained,
both for the Bitcoin and the traditional market series, better results than the benchmark
ones. Precisely, for Bitcoin we obtained a MAPE error of 0,007, while the benchmark
best one (Mallqui ¢ Fernandes, 2018) is 0,011. For the stock market series our algorithms
outperform those of benchmarks even more. In fact, our errors are as low as between 15%
and 30% with respect to the reference errors reported in the literature.

Also for the Ethereum and Litecoin time series, the best results are those obtained with
the time regimes approach, with a MAPE of 2% and 1% respectively.

As regards the implemented algorithms, the best results were found with both regression
models and LSTM network. However, from the point of view of execution speed, the linear
regression models outperform neural networks.

It is worth noting that, since Bitcoin and the other cryptocurrencies still are at an early
stage, the length of the time series is limited, and future investigation might yield different
results.

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 22/25


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This research is supported by the research project “EasyWallet” - POR FESR 2014-2020 -

Asse 1, Azione 1.1.3 Strategia 2 “Creare opportunita di lavoro favorendo la competitivita

delle imprese” Programma di intervento 3 “Competitivita delle imprese” Bando “Aiuti per
progetti di ricerca e sviluppo” Principal Investigator: Michele Marchesi, and by the research
project “Crypto-Trading”- POR FESR 2014-2020 - Asse 1, Azione 1.1.3 Strategia 2 “Creare
opportunita di lavoro favorendo la competitivita delle imprese”. Programma di intervento
3 “Competitivita delle imprese” Bando “Aiuti per progetti di ricerca e sviluppo”: Roberto
Tonelli. There was no additional external funding received for this study. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

EasyWallet: POR FESR 2014-2020 - Asse 1, Azione 1.1.3 Strategia 2.

Creare opportunita di lavoro favorendo la competitivita delle imprese.

Programma di intervento 3 “Competitivita delle imprese” Bando “Aiuti per progetti di
ricerca e sviluppo”.

‘Crypto-Trading”- POR FESR 2014-2020 - Asse 1, Azione 1.1.3 Strategia 2.

Creare opportunita di lavoro favorendo la competitivita delle imprese.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Nicola Uras performed the experiments, analyzed the data, performed the computation
work, prepared figures and/or tables, and approved the final draft.

e Lodovica Marchesi analyzed the data, performed the computation work, prepared figures
and/or tables, and approved the final draft.

e Michele Marchesi conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the paper, and approved the final draft.

e Roberto Tonelli conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
The code and data are available in the Supplementary Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.279#supplemental-information.

Uras et al. (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.279 23/25


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.279#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.279#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.279#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

REFERENCES

Agrawal ], Chourasia V, Mittra A. 2013. State-of-the-art in stock prediction techniques.
International Journal of Advanced Research in Electrical, Electronics and Instrumenta-
tion Engineering 2(4):1360-1366.

Akcora C, Dey AK, Gel YR, Kantarcioglu M. 2018. Forecasting Bitcoin price with graph
chainlets. In: Pacific-Asia conference on knowledge discovery and data mining..

Armano G, Marchesi M, Murru A. 2015. A hybrid genetic-neural architecture for stock
indexes forecasting. Information Sciences 170(1):3-33.

Bakar N, Rosbi S. 2017. Autoregressive Integrated Moving Average (ARIMA) model
for forecasting cryptocurrency exchange rate in high volatility environment: a new
insight of Bitcoin transaction. International Journal of Advanced Engineering Research
and Science 4(11):130-137 DOI 10.22161/ijaers.4.11.20.

Banerjee A, Dolado J, Galbraith J, Hendry D. 1993. Cointegration, error correction, and
the econometric analysis of non-stationary data Chapter 4.

Box GEP, Jenkins G. 1976. Time series analysis: forecasting and control. Holden-Day
1:21-43.

Briere M, Oosterlinck K, Szafarz A. 2013. Virtual currency, tangible return: portfolio
diversification with bitcoins.

Catania L, Grassi S, Ravazzolo F. 2018. Forecasting cryptocurrencies financial time
series. In: Centre for Applied Macro- and Petroleum Economics (CAMP), BI Norwegian
Business School, Working Papers No. 5/2018. Available at https://ideas.repec.org/ p/
bny/ wpaper/0063.html.

Chollet F. 2015. Keras. Available at https://keras.io (accessed on 20 June 2019).

Cocco L, Tonelli R, Marchesi M. 2019. An agent-based artificial market model for study-
ing the bitcoin trading. IEEE Access 7:42908—42920 DOI 10.1109/ACCESS.2019.2907880.

Cocco L, Tonelli R, Marchesi M. 2019b. An agent based model to analyze the bitcoin
mining activity and a comparison with the gold mining industry. Future Internet
11(1):8 DOI 10.3390/£i11010008.

Enke D, Mehdiyev N. 2013. Stock market prediction using a combination of stepwise
regression analysis, differential evolution-based fuzzy clustering, and a fuzzy
inference neural network. Intelligent Automation and Soft Computing 19(4):636—648
DOI 10.1080/10798587.2013.839287.

Greave A, Au B. 2015. Using the bitcoin transaction graph to predict the price of bitcoin.
Computer Science 4(3):22-27.

Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation
9(8):1735-1780.

Hyndman R, Athanasopoulos G. 2014. Forecasting: principles and practice, 2nd edition.
Chapter 6. Melbourne: Otext, 157-182.

Jones E, Oliphant T, Peterson P. 2001. SciPy: open source scientific tools for python.

Available at http://www.scipy.org/ (accessed on 20 June 2019).

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 24/25


https://peerj.com
http://dx.doi.org/10.22161/ijaers.4.11.20
https://ideas.repec.org/p/bny/wpaper/0063.html
https://ideas.repec.org/p/bny/wpaper/0063.html
https://keras.io
http://dx.doi.org/10.1109/ACCESS.2019.2907880
http://dx.doi.org/10.3390/fi11010008
http://dx.doi.org/10.1080/10798587.2013.839287
http://www.scipy.org/
http://dx.doi.org/10.7717/peerj-cs.279

PeerJ Computer Science

Kazem A, Sharifi E, Hussain FK, Morteza S, Hussain OK. 2013. Support vector regres-
sion with chaos-based firefly algorithm for stock market price forecasting. Applied
soft computing 13(2):947-958.

Mallqui D, Fernandes R. 2018. Predicting the direction, maximum, minimum and
closing prices of daily Bitcoin exchange rate using machine learning techniques.
Applied Soft Computing 75:596-606 DOI 10.1016/j.as0c.2018.11.038.

McIntyre KH, Harjes K. 2016. Order flow and the bitcoin spot rate. Applied Economics
and Finance 3:136—147.

Mckinney W. 2011. Pandas: a foundational python library for data analysis and statistics.
Python High Performance Science Computer. Available at https://www.dlr.de/sc/
Portaldata/ 15/ Resources/ dokumente/ pyhpc2011/ submissions/ pyhpc2011_submission_
9.pdf .

McNally S, Roche J, Caton S. 2018. Predicting the price of bitcoin using machine
learning. In: 26th Euromicro international conference on parallel, and network-based
processing PDP. 339-343.

Naimy VY, Hayek MR. 2018. Modelling and predicting the Bitcoin volatility using
GARCH models. International Journal of Mathematical Modelling and Numerical
Optimisation 8:197-215 DOI 10.1504/]JMMNO.2018.088994.

Nakamoto S. 2008. Bitcoin: a peer-to-peer electronic cash system. Available at https:

// bitcoin.org/ bitcoin.pdf , (accessed on 21 April 2020).

Patel J, Shah S, Thakkar P, Kotecha K. 2015. Predicting stock market index using fusion
of machine learning techniques. Expert Systems with Applications 42:2162—2172
DOI10.1016/j.eswa.2014.10.031.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Mller A, Nothman J, Louppe G, Prettenhofer P, Weiss R, Dubourg V, Vanderplas
J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. 2012. Scikit-learn:
machine learning in python. Journal of Machine Learning Research 12:2825-2830.

Skipper S, Perktold . 2010. Statsmodels: econometric and statistical modeling with
python. In: Proceedings of the 9th python in science conference.

Stocchi M, Marchesi M. 2018. Fast wavelet transform assisted predictors of streaming
time series. Digital Signal Processing 77:5-12 DOIT 10.1016/j.dsp.2017.09.014.

Sutiksno DU, Ahmar AS, Kurniasih N, Susanto E, Leiwakabessy A. 2018. Forecasting
historical data of Bitcoin using ARIMA and «-Sutte indicator. Journal of Physics:
Conference Series 1028: conference 1.

Vo N, Xu G. 2017. The volatility of Bitcoin returns and its correlation to financial mar-
kets. In: International Conference on Behavioral, Economic, Socio-cultural Computing
(BESC), Cracow, Poland. Piscataway: IEEE, 1-6.

Yang SY, Kim J. 2016. Bitcoin market return and volatility forecasting using transaction
network flow properties. In: IEEE Symposium Series on Computational Intelligence
(SSCI), Cape Town, South Africa. Piscataway: IEEE, 1778-1785.

Uras et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.279 25/25


https://peerj.com
http://dx.doi.org/10.1016/j.asoc.2018.11.038
https://www.dlr.de/sc/Portaldata/15/Resources/dokumente/pyhpc2011/submissions/pyhpc2011_submission_9.pdf
https://www.dlr.de/sc/Portaldata/15/Resources/dokumente/pyhpc2011/submissions/pyhpc2011_submission_9.pdf
https://www.dlr.de/sc/Portaldata/15/Resources/dokumente/pyhpc2011/submissions/pyhpc2011_submission_9.pdf
http://dx.doi.org/10.1504/IJMMNO.2018.088994
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1016/j.eswa.2014.10.031
http://dx.doi.org/10.1016/j.dsp.2017.09.014
http://dx.doi.org/10.7717/peerj-cs.279

