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Application of deep neural network is a rapidly expanding field now reaching many
disciplines including genomics. In particular, convolutional neural networks have been
exploited for identifying the functional role of genomic sequences. These approaches rely
on gathering a large set of sequences of a given length with known functional role,
extracting those sequences from whole-genome. These set is then split into learning, test
and validation sets in order to train the network. While the obtained networks perform well
on validation sets, they often perform poorly when applied on whole genomes in which the
ratio of positive over negative examples can be very different than in the training set. We
here address this issue by assessing the genome-wide performance of networks trained
with sets exhibiting different ratios of positive to negative examples. As a case study, we
use sequences encompassing gene start sites, obtained from the RefGene database, as
positive examples and random genomic sequences as negative examples. We also
demonstrate that models trained using data from one organism can be used to predict
gene start sites in a related species, when using training sets providing good genome-wide
performance. This cross-species application of convolutional neural networks provides a
new way to annotate any genome from existing high-quality annotations in a related
reference species. It also provides a way to determine whether the sequence motifs
recognised by chromatin-associated proteins in different species are conserved or not.
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ABSTRACT10

Application of deep neural network is a rapidly expanding field now reaching many disciplines including

genomics. In particular, convolutional neural networks have been exploited for identifying the functional

role of genomic sequences. These approaches rely on gathering a large set of sequences of a given

length with known functional role, extracting those sequences from whole-genome. These set is then split

into learning, test and validation sets in order to train the network. While the obtained networks perform

well on validation sets, they often perform poorly when applied on whole genomes in which the ratio

of positive over negative examples can be very different than in the training set. We here address this

issue by assessing the genome-wide performance of networks trained with sets exhibiting different ratios

of positive to negative examples. As a case study, we use sequences encompassing gene start sites,

obtained from the RefGene database, as positive examples and random genomic sequences as negative

examples. We also demonstrate that models trained using data from one organism can be used to predict

gene start sites in a related species, when using training sets providing good genome-wide performance.

This cross-species application of convolutional neural networks provides a new way to annotate any

genome from existing high-quality annotations in a related reference species. It also provides a way to

determine whether the sequence motifs recognised by chromatin-associated proteins in different species

are conserved or not.
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INTRODUCTION27

The improvement of DNA sequencing techniques lead to an explosion in the number and completeness28

of fully sequenced genomes. One of the major goals in the field is to annotate these DNA sequences,29

which is to associate a biological function with sequence motifs located at different positions along the30

genome [1]. In the human genome for instance, while some DNA sequences encode proteins, most31

sequences do not code for any protein. Many of these non-coding sequences are nevertheless conserved32

in other species and are necessary for the correct regulation of gene expression. Deciphering the function33

of these non-coding sequences has been increasingly achieved, notably through improvements in the34

throughput of next generation sequencing [2]. The 3.2 Billion base pair (bp) long human genome is now35

annotated with many functional and bio-chemical cues [3, 4]. While these annotations are becoming36

more numerous and precise, they cannot be determined experimentally for every organism and every cell37

type. Computational methods are therefore widely used to extract sequence information from known38

annotations and extrapolate the results to different genomes and/or conditions, e.g. [3, 5].39

An related question is to understand the link between these annotations and the underlying DNA40

sequence. To this end, supervised machine learning algorithms [6] have been particularly successful [7, 8].41

Among those, deep Convolution Neural Networks (CNN) are very efficient at detecting sequence features42

since they rely on the optimisation of convolution filters that can be directly matched to DNA motifs [9].43

Stacking several of these convolution layers together can lead to the detection of nested motifs at larger44

scales. Pioneering studies illustrated this ability of CNN to reliably grasp complex combinations of DNA45

motifs and their relationship with functional regions of the genome [10, 11, 12, 13, 14, 15].46

Min et al. [10] used a CNN to predict enhancers which are specific sequences that regulate gene47
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expression at a distance. This method reached very good scores ranking it above the state-of-the-art (i.e.,48

support vector machine methods). Similar tools were used in different contexts, aiming at identifying49

promoters [11, 15] or detecting splicing sites [16, 17]. In these approaches, a sample set is first created50

by taking all positive class sequences (e.g. enhancers) and adding the same amount of randomly picked51

negative class examples (e.g. non-enhancers). This sample set is then divided into training, validation52

and test sets. Balancing the data ensures that the model will be trained on the same number of positive53

and negative examples, thus giving the same importance to both classes. While these approaches are54

very successful when assessed on test sets derived from the sample set, we show here that they tend55

to perform poorly when applied on entire chromosome sequences as required for the task of complete56

genome annotation. This is due to the fact that the networks are optimised on a similar number of positive57

and negative examples during training, but that they will usually face very different ratios of negative over58

positive classes when used on a full chromosome sequence.59

Alternative approaches [12] [14] used unbalanced datasets for training (i.e., with more negative than60

positive examples) to predict DNA-binding sites for proteins and genome accessibility. In these two61

studies, however, the prediction performance of the model is also assessed on test sets derived from62

training sets, not on full genomic sequences. The task of genome-wide prediction has been assessed63

in a more recent study aiming at identifying regulatory elements [18]. The author used long (131 kb)64

non-overlapping windows covering the whole genome, a procedure which can be effective but requires a65

lot of memory.66

The methodology proposed here is inspired from this last study and presents two novelties for the67

development and for performance assessment of genome-wide predictions. Firstly, we do not use as a68

quality measure the classical prediction scores computed on test sets obtained by dividing the sample69

data into training, validation and test sets as commonly done in machine learning. We rather compute70

prediction scores that assess the ability of our model to annotate a full chromosome sequence by designing71

a specific metric (described in Material and Methods). Secondly, we change the ratio between positive72

and negative examples in order to obtain the highest prediction scores and show that this tuning is has73

an important effect on the outcome. As a proof of principle, we use in this work gene start sites (GSS)74

as features. DNA motifs around GSS are recognised by the transcription machinery and indicate the75

location of the initiation of transcription [19]. The DNA sequence surrounding GSS therefore contains76

the information that could in principle be used by an algorithm to identify in silico the GSS locations.77

We then propose a new application of CNN in genomics that leverages the fact that similar organisms78

tend to have similar regulatory mechanisms, i.e. rely on an homologous molecular machinery and on79

homologous DNA regulatory motifs. Exploiting these homologies, we first train a model on a dataset80

corresponding to a given organism and use it to predict the annotation on the genome of a related organism,81

opening new opportunities for the task of de-novo genome annotation. We show that a CNN trained on82

GSS containing regions in human is able to recover regions containing GSS in the mouse genome and83

vice versa. We also assess the generalisation of the approach to more distant species, taking as examples a84

fish and a bird.85

METHODS86

Input Generation87

The GSS positions are collected from the reference genomes for human (hg38) and mouse (mm10) species.88

Genome sequence datasets are available at89

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz and90

https://hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/chromFa.tar.gz.91

GSS positions over the entire human and mouse genomes datasets are available at92

http://egg.wustl.edu/, the gene annotation is taken from RefGene93

https://egg.wustl.edu/d/hg38/refGene.gz and94

https://egg.wustl.edu/d/mm10/refGene.gz.95

RefGene is a reference for well-characterized genes from the NCBI RNA reference sequences:96

http://varianttools.sourceforge.net/Annotation/RefGene.97

For the chicken and zebrafish analysis, similar datasets were downloaded from:98

https://hgdownload.soe.ucsc.edu/goldenPath/galGal4/bigZips/galGal4.fa.gz,99

https://egg.wustl.edu/d/galGal4/refGene.gz,100

https://hgdownload.soe.ucsc.edu/goldenPath/danRer10/bigZips/danRer10.fa.gz,101
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Figure 1. Overview of the CNN model. 299 bp-long sequences are one hot encoded into a 4×299

input matrix. The first CNN layer performs a convolution on each input matrix to recognise relevant

motifs. The next convolutional layers models the interplay among these motifs to grasp higher-level

features. Max-pooling layers reduce the dimensions of the layers. The model is trained to correctly label

input sequences as GSS or non-GSS. The output layer of the trained network then gives a probability for

any 299 bp region to contain a GSS. It can be applied along a full chromosome, i.e. on all 299 bp-long

sequences with a 1 bp shift.

https://egg.wustl.edu/d/danRer10/refGene.gz.102

As a positive input class, we use regions of 299 bp flanking GSS (i.e., ±149 bp around the GSS) which103

are supposed to contain multiple sequence signals indicating the presence of a GSS to the transcription104

machinery of the cell. Overall, 31,037 GSS positions are extracted on both DNA strands (15,798 for the105

positive strand and 15,239 for the negative strand). In a similar fashion, we extract 25,698 GSS positions106

from the mouse genome (12,938 for positive strand and 12,760 for negative strand). In order to generate107

the negative class, we select 31,037×Q sequences of 299 bp at random positions on a random strand,108

rejecting regions that do contain a GSS . The odds of getting at random a genomic region containing a109

GSS are close to 0.28%. For Q = 1, there is an equal number of negative and positive class examples.110

Unbalanced datasets are produced using different values of Q ranging from 1 to 100. For Q = 100, the111

negative class encompasses 1Gb, that is one third of the human genome.112

Convolution Neural Network (CNN)113

A CNN (see figure 1) is trained in order to predict the presence of a GSS in a DNA sequence of size114

299 bp. The shape of the input layer is c× b in which c = 4 is the number of different nucleotides115

and b = 299 is the length of the input sequence. The nucleotide sequences are one hot encoded so that116

A=(1,0,0,0), T=(0,1,0,0), C=(0,0,1,0), and G=(0,0,0,1). The training set contains N samples of labelled117

pairs (X (n),y(n)), for n ∈ {1, · · · ,N}, where X (n) are matrices of size c×b and y(n) ∈ {0,1}. Each X (n) is118

associated with y(n) = 1 when it corresponds to a region containing a GSS and y(n) = 0 otherwise. The119

first convolution layer consist in k kernels which are applied on b− s+1 successive sequences at positions120

p ∈ {1, · · · ,(b− s+1)} to recognise relevant DNA motifs of size s. This operation generates an output121

feature map of size k× (b− s+1) for an input X (n) of size c×b. The feature map M resulting from the122

convolution operation is computed as follows:123

Mp,i =
c

∑
j=1

s

∑
r=1

Wi, j,rXp+r−1, j +Bi, i ∈ {1, · · · ,k} (1)

where W denotes the network weights with size (k × c× s) and B denotes the biases with size124

(k×1) (see e.g. [6]). After the convolution layer a non-linear function is applied to the output, here a125

Rectified Linear Unit (ReLU). This activation function computes fReLU (M ) = max(0,M ) to incorporate126

non-linearity by transforming all negative values to zero. In order to reduce the input dimension we127
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apply a max-pooling process with a pool size m over the output of fReLU (M ). Similar convolution layers128

followed by ReLu and max-pooling are added sequentially on the input of the first layer to grasp higher129

order motifs. The output of the last max-pooling layer is then fed into a fully connected layer which130

output x is transformed by a sigmoid function (φ = 1
1+e−x ) in order to give the final output of the CNN.131

This final score of the input sequence is ideally 0 for non-GSS and 1 for GSS containing sequences. When132

we need to perform a classification we use a threshold of 0.5 to discriminate between the two classes.133

In the training phase, the weights and biases of the convolution layers and the fully connected layer134

are updated via back-propagation in a way which decreases the loss, which measures the discrepancy135

between the network predictions and the reality averaged over individual examples. We use here the136

binary cross-entropy computed as:137

L =−1/N
N

∑
i=1

[y(n)log(ŷ(n))+(1− y(n))× log(1− ŷ(n))] (2)

where ŷ(n) is the estimated score for the input sample X (n).138

As data are imbalanced for Q > 1, the model may reach an local optimum when predicting the139

non-GSS class for all input sequences. In order to deal with this issue, we attribute different weights to140

the positive and negative classes. We assign a greater importance to the less represented GSS class by141

multiplying the associated term in the loss by a weight CW = number of non-GSS
number of GSS

= Q.142

One of the important issues of any learning algorithm is overfitting. Overfitting occurs when one143

achieves a good fit of the model on the training and validation data, while it does not generalise well144

on new, unseen data. To deal with this issue, a regularisation procedure called dropout is usually used145

[20]. In the training step, some outputs of the pooling layers are randomly masked while the remaining146

information is fed as inputs for the next layer.147

Implementation148

We implement CNN using Keras library and Tensorflow [21] as back-end. Training on a GPU is typically149

faster than on a CPU. We use here a GTX 1070 Ti GPU. We use Adaptive Moment Estimation (Adam) to150

compute adaptive learning rates for each parameter [22]. Adam optimiser is an algorithm for first-order151

stochastic gradient-based optimisation of functions, based on adaptive estimates of lower-order moments.152

The network architecture (see figure 1) is detailed in Table 1. The models are trained for 150 epochs153

and they mostly converge rapidly (around 30-35 epochs). Hyper-parameters tuning is detailed in the154

supplementary materials.155

Source codes are available at https://github.com/StudyTSS/DeepTSS/.156

Genome wide performance measure157

Different measures have been developed in order to assess the performance of different models on158

conventional test sets, i.e. test sets derived from a subset of the initial data. Such measures are described in159

details in the corresponding supplementary materials section. In our case, we want to apply our model on160

all the 299 bp windows spanning a full chromosome and eventually chromosomes from other species. We161

therefore developed a measure to evaluate the performance of the trained models in this case. This metric,162

called λ , measures the enhancement of the predicted signal specifically in the regions surrounding the163

known GSS. We use in the present papers regions of length r =2000 bp or 400 bp. To compute λ , we first164

compute the genome-wide Z-score [23] Zg =
yg−µ̄

σ from the predictions yg where g denotes positions on165

the genome, and µ̄ and σ stand for the prediction mean and standard deviation, respectively. We extract166

ZGSS, the Zg signal over 10 kb windows centred on each GSS of the test region, e.g. a full chromosome.167

Zg is a 2D-array whose lines correspond to different genes and columns to different distances to the GSS.168

We then average element-wise ZGSS over all GSS, i.e. along all lines. This gives us S, the average of the169

Z-transformed prediction score in a 10 kb window around GSS. In order to measure the signal increase170

close to the GSS, that we call λ , we compute the average of the curve S on a region of r kbp centred on171

the GSS. A higher value of λ corresponds to a higher signal-to-noise ratio around the GSS.172
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Table 1. Network architecture of the CNN model. The first column depicts the different layers used

consecutively in the network. The ”layer shape” column reports the shape of the convolutional kernels,

the max-pooling windows and the fully connected layers. The ”output shape” column reports the

variation of layer shapes at each step.

Layer name Layer shape Output shape

Input - 4×299×1

Conv2D 32×4× (4×1) 32×284×1

Max-pooling 2×1 32×142×1

Dropout - 32×142×1

Conv2D 64×32× (4×1) 64×127×1

Max-pooling 2×1 64×63×1

Dropout - 64×63×1

Conv2D 128×64× (4×1) 128×48×1

Max-pooling 2×1 128×24×1

Dropout - 128×24×1

Dense 128 128

Dropout - 128

Dense (sigmoid) 1 1

RESULTS & DISCUSSION173

Training models for genome annotation of GSS174

The problem of detecting human GSS using deep neural networks has been tackled in [11]. We first follow175

a similar approach and use a balanced dataset (see Methods for details). The model is trained/validated on176

an equal number of 299 bp long positive and negative examples and is evaluated on a test set composed of177

15% of the input data. The specificity (Sp), the sensitivity (Sn) and the Matthews Correlation Coefficient178

(MCC) (see Supplementary materials for definition) were found to be similar to the ones found in [11]179

which used a similar approach albeit separating the sample data into TATA-containing GSS and non-TATA180

GSS (Sp = 0.94, Sn = 0.92 and MCC = 0.86).181

In order to assess how this model would perform as a practical tool for detecting GSS on a genome-182

wide scale, we apply it on all the sequences along chromosome 21 (which has been withdrawn from the183

training set) obtained using a 299 bp long window sliding with an offset of 1 bp. Figure 2A illustrates184

the predictions of the CNN model over a typical region of 300 kbp containing 7 out of the 480 GSS of185

chromosome 21. Although the predictions yield higher scores over GSS positions, they also yield high186

scores over many non-GSS positions reflecting a low signal-to-noise ratio. This is due to the fact that the187

reality is biased in the training phase during which the CNN model learns an equal number of examples188

from the positive and the negative classes [24]. Applied over all the 299-bp sequences of chromosome 21,189

the model encounters many more examples of the negative class and fails to generalise inductive rules to190

the new examples.191

To address this issue and train a network for genome annotation, we propose a heuristic approach.192

This approach consists in adding more negative examples into the balanced dataset to alleviating the193

importance of positive class in training phase and allocating more weight to the negative class. We call194

such datasets limited unbalanced datasets. We call Q the ratio between negative and positive training195

examples and denote as Q∗ models trained with the corresponding ratio. For instance, on Figure 2A the196

model trained on the balanced data yielding to blue signal predictions is denoted as 1∗. We train our197

CNN model on a 100* dataset (Q = 100) and assess the efficiency of the trained model. As depicted on198

Figure 2A by a red signal, the predictions for this model display a much higher signal-to-noise ratio, with199

significant peaks over each of the 7 GSS (C21orf54, IFNAR2, IL10RB, IFNAR1, IFNGR2, TMEM50B,200

DNAJC28) and a much weaker signal between these sites. Predicting GSS using the 100* model is thus201

expected to generate much less false positives than the 1* model, regardless the value of the threshold202

used to identify GSS-containing regions. In order to assess how changing the value of Q affects GSS203

classification, we apply a threshold on the prediction and compute the precision and the recall obtained204

for both models (i.e. 1* and 100*) at 600 bp resolution on a full chromosome. The precision recall curves205
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Figure 2. CNN predictions for two regions of chromosome 21. (A) Prediction scores for balanced

model 1* (Q = 1) and unbalanced model 100* (Q = 100), respectively in blue and red on a 300 kb region.

The position of genes is indicated below. The GC content (% of C or G bases in a 10 bp window) is

indicated as blue bars below the genes. Both models detect effectively 7 GSS positions. The model 1*

returns a noisier prediction. Adding negative examples using the model 100* mitigates the noise while

preserving the high scores over GSS. (B) Application of 30 CNN models, trained on different datasets,

over a 3.2 kb region of chromosome 21. At each site, the maximum and minimum prediction scores are

respectively displayed in black and red. Other prediction scores are plotted in grey.
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Figure 3. Comparison of the 1* and 100* model predictions on chromosome 21. (A) and (B) Heat

maps depict the Z-score of the prediction for the 1* and 100* models respectively on 5000 bp flanking

each GSS of chromosome 21. (C) and (D) Averaged Z-score of the predictions over each GSS of

chromosome 21. (E-H) Zoom on regions around randomly selected GSS. Genes are indicated at the

bottom of each plot. Averaged Z-score of the predictions over each GSS of mouse chromosome X for a

network trained on the other mouse chromosomes (I) and for networks trained on mouse/human

chromosomes (except X) and applied on human/mouse chromosome X (J,K).
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confirmed the compromising effect of a lower signal-to-noise ratio on the accuracy of the classification206

(Supplementary Figure 1). For the sake of exhaustiveness, the performances of more models (1*, 10*,207

20*, 30*, 50*, 100*) evaluated using conventional metrics, that is on test sets derived from the initial208

sample sets, can be found in Supplementary materials.209

Investigating the effect of random selection of the negative examples on predictions210

While positive examples are always the same in different sample sets, the negative examples are randomly211

picked out of the genome. The performance of the model in different regions of chromosome 21 can212

thus vary for different training sets [25]. To investigate this variation, we set up 30 balanced 1∗ datasets213

and train 30 CNN separately. The 30 models are then applied over human chromosome 21 to study the214

fluctuations of the predictions. The variation of 30 predictions is depicted in Fig 2B. The first observation215

is that almost all predictions present a peak over the DIP2A GSS. However, the large gap between the216

minimum and maximum predictions underlines the variability of predictions obtained with different217

training datasets. This variability illustrates the uncertainty of the predictions obtained from a single CNN218

trained on a balanced dataset and highlights the need to use limited unbalanced datasets for the task of219

genome annotation.220

Comparing 1* and 100* models over a full chromosome221

Models trained on 1* and 100* sets are applied to the full chromosome 21 and the Z-normalized prediction222

scores around GSS are presented as heat-maps. While the model 1* (Figure 3A) presents a noisy signal223

around GSS positions, the model 100* (Figure 3B) presents a higher signal-to-noise ratio. To investigate224

the performance of different models on a genome-wide scale we devised a custom metric λ which225

measures the average signal-to-noise ratio around GSS (see Methods for the definition of λ ).226

Figure 3C,D illustrate the average of the Z-score over all the GSS of chromosome 21 for the models227

1* and 100*, respectively and λ denotes the average of this average over a r=2 kb region centred on the228

GSS. A larger λ score corresponds to a higher signal-to-noise ratio. In this particular case, we find a λ229

score of 1.49 and 2.99 for the 1* and 100* model, respectively.230

To illustrate the variability of prediction scores achieved around different GSS, we randomly selected231

four GSS within the chromosome. The first GSS corresponds to the gene CXADR, shown in Figure232

3E. While the prediction of model 1* results in a low averaged Z-scores over all positions, the averaged233

Z-score of model 100* strongly peaks around the GSS position and shows low variations over non-GSS234

positions. Figure 3F depicts the second selected GSS corresponding to the KRTAP19-2 gene. This gene is235

part of a cluster of similar genes belonging to the family of Keratin Associated Proteins (highlighted by a236

yellow rectangle on Figure 3A,B). For this particular cluster, the predictions are poor for both 1* and 100*,237

probably reflecting a specific GSS signature that has not been grasped by the model. Another example of238

gene cluster with a poor prediction score for GSS is the t-RNA cluster, highlighted in green in Figure239

3A,B. Figure 3G,H displays the predictions around the GSS of the SCAF4 and, PCNT and C21ORF58240

genes, respectively. On these more typical GSS the 100* model shows a higher signal-to-noise ratio than241

the 1* and regions containing GSS are detected. These regions often stretch over 1 kb while our training242

sequence centred on each GSS is only 299bp long. This could indicate the presence either of alternative243

GSS close to the annotated GSS or of similar sequence patterns in broader regions surrounding the GSS244

[26, 27].245

Learning and predicting in human and mouse246

To show the potential of our annotation method in a different context, we replicate a similar GSS analysis247

in mouse. Models with values of Q ranging from 1 to 100 trained on mouse chromosomes (except X) are248

applied over the mouse chromosome X to assess the model performance (see Figure 3I, Supplementary249

Figure 2 and Supplementary Figure 3a,d,g). The averaged Z-score of λ reaches values of 1.47 and 2.18250

respectively for the 1* and 100* models in quantitative agreement with the model performance in human.251

Mammalians show a substantial degree of homologies in the DNA sequence found at GSS and earlier252

computational models were trained to recognise transcription start site in any mammalian species [28].253

Following this line, we next determine the possibility of predicting GSS in one organism with a network254

trained on a related organisms. This possibility has previously been shown to be effective for sequence255

variants calling [29] To this end, the mouse trained model is applied on human chromosome X and the256

human trained model is applied on mouse chromosome X. The two chromosomes carry homologous257

genes, the number of annotated GSS varies with a total of 4,968 GSS in human and 2,005 GSS in mouse.258
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Figure 4. Evaluation of the model performance for different RNA classes. (A) CG di-nucleotide

(CpG) number in 299bp regions centred on mRNA-GSS in test chromosomes (X). Three populations

(low, medium and high) can be identified. (B) Each box contains the λ values obtained when training the

network on the organism corresponding to each line and predicting the GSS on the chromosome X of the

organism corresponding to the column; λ scores are also computed for mRNA- and ncRNA-GSS

separately and finally for mRNA-GSS divided into three classes based on the CpG density populations

identified in (A).
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While the model trained and applied on mouse shows a better signal-to-noise ratio, the same model259

applied to human chromosome X still captures most of the GSS and gives a λ score of 2.28 for the 100*260

model (see Figure 3J and Supplementary Figure 3b,e,h). Similarly, the models trained on human capture261

most of GSS on the mouse X chromosome as shown in Figure 3K and Supplementary Figure 3c,f,i and262

reaches a λ score of 2.04 for the 100* model. In all cases, the signal-to-noise ratio is improved in the 100*263

models with respect to the 1* models. The values of λ for the cross-species comparison on chromosome264

X are summed up in Supplementary Figure 2. The human model applied on human provides the highest265

scores for both 1* and 100* models probably a signature of an overall better GSS annotation. In all cases,266

λ gradually increases for 10* up to 100* models. Since the performance of models 30* and 100* varies267

slightly, the 30* model can be used instead of 100* to perform cost-effective computations.268

Evaluation of the prediction for different GSS classes269

The potential of our trained networks to recover GSS containing regions along the human and mouse270

genomes is assessed in the previous parts without any distinction between different GSS classes. Since271

we find that some GSS are better predicted than others (Figure 3), we compute the λ score independently272

for the two main classes of GSS: mRNA-GSS and ncRNA-GSS. While λ is higher for the mRNA-GSS273

class, the model is versatile and is also able to predict the ncRNA-GSS (Figure 4B). In human and mouse,274

mRNA-GSS are found in different classes, that can be derived from the CG di-nucleotide (CpG) content275

of the region flanking the GSS. High CpG regions, also called ”CpG island” can be methylated and play276

an important role in gene regulation [30]. Figure 4A displays the distribution of the CpG number in277

299 bp regions surrounding the all mRNA-GSS for the mouse and human X chromosome. From this278

distribution, we identify three classes of mRNA-GSS with respectively a high, medium and low CpG279

content. High CpG GSS correspond to genes regulated by DNA methylation and have been shown to280

exhibit a different pattern of chromatin modifications [31]. Assessing the performance of the model for281

the three different classes, we find that stronger scores are obtained for CpG richer GSS (Figure 4B). The282

worst performing GSS are low CpG content GSS which are hardly recovered by our model.283

Application of the approach to other vertebrates284

The performance of a CNN trained on human GSS to recover mouse GSS is not surprising given the285

similarity between the two mammalian genomes [32]. We next set out to apply the same methodology on286

more diverse species, including a bird and a fish (Figure 5). Four CNN are trained on all the GSS of the287

Human, Mouse, Chicken and Danio rerio (Zebrafish) genomes which provide the most comprehensive288

GSS annotations for mammals, birds and fishes. These four CNN are then applied genome wide on each289

of the four species and the λ metric is computed for each chromosome independently, using a r value of290

400 bp (see Methods). Using a smaller value for r leads to higher absolute values for λ so that one should291

only compare values computed using the same r. The conclusions drawn however do not depend on the292

specific value chosen.293

The results for the human and mouse genomes are very similar, with only a slightly better performance294

when the model trained on a species is applied on the same species. The model trained on the Chicken295

genome performs less well when applied on the mammalian genomes and the model trained on the296

Zebrafish genome is not able recover the mammalian GSS as shown by a λ value of 0.297

When applied on the Chicken genome, the mouse and human models surprisingly outperform the298

chicken model, probably because the GSS annotation is better in the two mammals so that the training299

phase is more efficient. This result highlights the potential of the method when used across different300

species when the genome of one species is more precisely annotated.301

When applied on the Zebrafish genome on the other hand, the human, mouse and chicken models all302

show poor performances while the Zebrafish model performs well. This is in line with the fact that the303

CpG composition of Zebrafish regions around GSS if very different than in birds and mammals. CpG304

islands, which are high density CpG regions, are found upstream many GSS for coding genes in birds and305

mammals while they are absent in fishes. All together, these results suggest that the molecular machinery306

that is able to interpret the genome sequence in order to find the start sites of genes has a similar activity307

in human, mouse and chicken but a different activity in fishes.308

10/13PeerJ Comput. Sci. reviewing PDF | (CS-2019:10:42134:1:2:NEW 4 Mar 2020)

Manuscript to be reviewedComputer Science

jprocter
Highlight
You should really mention/cite this in the introduction.

jprocter
Highlight
See note on figure legend regarding the interpretation of these results

jprocter
Highlight
Please quote the ranges of 'High', 'Medium' and 'Low' here and very briefly describe how these divisions were decided (e.g. dividing range of CpG number into thirds, or some other strategy based on distribution of observed  CpG numbers ?)

jprocter
Inserted Text
were

jprocter
Cross-Out

jprocter
Inserted Text
from the genomes of 

jprocter
Cross-Out

jprocter
Inserted Text
. G.g. and D.r. are model organisms, and together with H.s. and M.m. provide 

jprocter
Cross-Out

jprocter
Inserted Text
were

jprocter
Cross-Out

jprocter
Inserted Text
n

jprocter
Highlight
Please state here why a different value of r was used for this set of calculations (presumably 2000 was used for lambda calculations in the other sections ?)

jprocter
Highlight
I find it surprising that this has not been already observed by other researchers (particularly epigeneticists working in D. rerio !) - suggest that you cite an appropriate reference here !



Figure 5. Lambda scores obtained with CNN trained on four different species: Human, Mouse,

Chicken and Zebrafish. Lambda scores are computed from GSS predictions done on (A) human, (B)

mouse, (C) Chicken and (D) Zebrafish chromosomes. The size of the window r on which λ is computed

is equal to 400 bp.

CONCLUSIONS309

With the surge of DNA sequencing technologies, one million of genome datasets are now available and310

millions of gigabases are sequenced every year to annotate these datasets with functional marks [33]. It has311

not escaped the notice of many computational biologists that deep neural networks are a key tool to deal312

with this exponentially increasing amount of data [33]. One possible application is to leverage datasets313

with good annotations in order to train neural networks and to predict annotations on other datasets. One314

of the practical issues when applying neural networks on genomic sequences is the unbalanced data, a315

well-known issue in the machine learning literature [24, 34, 35]. In the present paper, we address this316

problem using GSS as a case study. Indeed, GSS occupy only a few locations on the genome (31,037 GSS317

for human) leading to extreme unbalances in datasets (i.e., the ratio of GSS-containing 299 bp windows318

to non-GSS in the human genome is 1/400). In this case, the lack of examples of the minority class (i.e.,319

true GSS) deteriorates the learning process as conventional machine learning algorithms usually measure320

the model performance on the majority class (i.e., non-GSS) leading to biased or inaccurate prediction of321

the minority class. To deal with this disparity, we adopt a weighting strategy to decrease the importance322

of the majority class samples (non-GSS) during the learning process improving thereby identification323

of the rare minority class samples (GSS). Using this approach, we show that learning on imbalanced324

datasets can be performed effectively and that a ratio of 1 to 30 positive over negative examples is usually325

sufficient to achieve a good signal to noise ratio in the prediction. This approach can be easily extended to326

identify other functional regions in any annotated genome.327

We also show that our method can be efficiently used across genomes of different species, i.e. training328

the model on one genome and applying it to another genome. We use human and mouse GSS as case study329

and first apply both models on chromosome X of each organism. While the sequence of this chromosome330

has evolved differently in both species, many genes are homologous [36]. The fact that we are able to331

recover GSS in mouse/human with a model trained in the other organism, suggests that the machinery332

capable of recognising GSS in each organism is overall conserved. We also show that this methodology333

can be applied to more distant species, and use as examples a bird and a fish species. Our results point334

toward a higher similarity between mammal and bird species while fish species GSS cannot be efficiently335

predicted from mammal and bird sequences. While the genome sequence conservation can be computed336

directly from DNA sequences, further developments of our method may provide a new tool to address the337

conservation of the activity of the nuclear machinery that interprets the DNA sequences in vivo.338
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Figure 1
Overview of the CNN model.

299 bp-long sequences are one hot encoded into a $4 \times 299$ input matrix. The first
CNN layer performs a convolution on each input matrix to recognise relevant motifs. The next
convolutional layers models the interplay among these motifs to grasp higher-level features.
Max-pooling layers reduce the dimensions of the layers. The model is trained to correctly
label input sequences as GSS or non-GSS. The output layer of the trained network then gives
a probability for any 299 bp region to contain a GSS. It can be applied along a full
chromosome, i.e. on all 299 bp-long sequences with a 1 bp shift.
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Figure 2
CNN predictions for two regions of chromosome 21

(A) Prediction scores for balanced model 1* ($Q=1$) and unbalanced model 100* ($Q=100$),
respectively in blue and red on a 300 kb region. The position of genes is indicated below. The
GC content (\% of C or G bases in a 10 bp window) is indicated as blue bars below the genes.
Both models detect effectively 7 GSS positions. The model 1* returns a noisier prediction.
Adding negative examples using the model 100* mitigates the noise while preserving the
high scores over GSS. (B) Application of 30 CNN models, trained on different datasets, over a
3.2 kb region of chromosome 21. At each site, the maximum and minimum prediction scores
are respectively displayed in black and red. Other prediction scores are plotted in grey.
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Figure 3
Comparison of the 1* and 100* models predictions over chromosome 21
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Figure 4
Evaluation of the model performance for different RNA classes

(A) CG di-nucleotide (CpG) number in 299bp regions centred on mRNA-GSS in test
chromosomes (X). Three populations (low, medium and high) can be identified. (B) Each box
contains the $\lambda$ values obtained when training the network on the organism
corresponding to each line and predicting the GSS on the chromosome X of the organism
corresponding to the column; $\lambda$ scores are also computed for mRNA- and ncRNA-
GSS separately and finally for mRNA-GSS divided into three classes based on the CpG density
populations identified in (A)
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Figure 5
Lambda scores obtained with CNN trained on four different species: Human, Mouse,
Chicken and Zebrafish

Lambda scores are computed from GSS predictions done on (A) human, (B) mouse, (C)
Chicken and (D) Zebrafish chromosomes. The size of the window $r$ on which $\lambda$ is
computed is equal to 400 bp.
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