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ABSTRACT
The two leading causes of chronic kidney disease (CKD) are excessive blood pressure
and diabetes. Researchers worldwide utilize the rate of globular filtration and kidney
inflammation biomarkers to identify chronic kidney disease that gradually reduces
renal function. The mortality rate for CKD is high, and thus, a person with this illness
is more likely to pass away at a younger age. Healthcare professionals must diagnose
the various illnesses connected to this deadly disease as promptly as possible to
lighten the impact of CKD. A quantum machine learning (QML) based technique is
presented in this research to help with the early diagnosis and prognosis of CKD. The
proposed research comprises four phases: data pre-processing, data augmentation,
feature selection, and classification. In the first phase, Kalman filter and data
normalization techniques are applied to handle the missing and noisy data. In the
second phase, data augmentation uses sparse autoencoders to balance the data for
smaller classes. In the third phase, LASSO shrinkage is used to select the significant
features in the dataset. Variational Quantum classifiers, a supervised QML technique,
are employed in the classification phase to classify chronic kidney diseases. The
proposed system has been evaluated on the UCI dataset, which comprises 400 CKD
patients in the early stages with 25 attributes. The suggested system was assessed
using F1-score, precision, recall, and accuracy as evaluation metrics. With a 99.2%
classification accuracy, it was found that this model performed better than the other
traditional classifiers used for chronic kidney disease classification.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Neural Networks
Keywords Chronic kidney disease, Deep learning, Autoencoder, Quantum classifier, LASSO
shrinkage

INTRODUCTION
As chronic kidney disease has a high death rate, it has drawn a lot of interest in recent
times. The World Health Organisation (WHO) states that these kinds of chronic illnesses
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are becoming a threat to emerging nations. Around the world, chronic kidney failure
claimed the lives of 786 million people in 2018 (Shih et al., 2020). Of those, 354 million
were men, and 432 million were women. Kidney illness is referred to as “chronic” because
it impairs the ability of the urine system to operate and develops progressively and extends
for an extended period (Qin et al., 2019). Waste materials build up in the bloodstream and
cause many health issues, including diabetic complications, elevated or decreased pressure
levels, damage to the nervous system, and disorders of the bones that ultimately result in
coronary artery disease (De Almeida et al., 2020).

Presently, approximately 15% of people worldwide are afflicted with chronic kidney
disease, an excruciating and eventually fatal illness. This illness is made even more deadly
by the fact that it cannot be identified until significant kidney damage has already occurred
(Shankar et al., 2020). When a patient discovers they have the ailment, it becomes a tedious
and drawn-out process to get them tested, diagnose a potentially incorrect result, prescribe
medication based on the stage of chronic Kidney failure they may be in, and provide all the
care necessary to keep them alive (Deepika et al., 2020).

Patients with kidney diseases are at risk for hypertension, obesity, and heart failure.
Especially in the more advanced stages of the disease, these patients experience adverse
effects that impair their immunological and cognitive systems. Patients may progress to
the point where they require hemodialysis or a kidney replacement in underdeveloped
nations (Ma et al., 2020). Glomerular screening level, a measure of kidney function, is used
by healthcare providers to diagnose kidney disease. This measure is determined based on
variables like sex, lifespan, and outcomes of blood tests. Healthcare providers can
categorize this kidney disease into five phases based on the glomerular screening level
value: standard, mild, moderate, severe, and kidney failure (Haq et al., 2020).

Chronic kidney disease is most commonly detected by using a bloodstream molecular
composition and urinalysis or by finding the medical condition as a side effect of an
additional treatment. Less common manifestations include diminished generation of
urine, urinary tract infections, abdominal apprehension, excessive hemorrhages, and
frothy urine (Sabanayagam et al., 2020). People with severe chronic kidney failure have
symptoms such as exhaustion, decreased desire to eat, dizziness, vomiting, rusty flavor,
unanticipated shedding of pounds, irritation, modifications to their psychological state,
breathing problems, or regional swelling (Peng et al., 2021).

Kidney failure can be mitigated by treating persistent kidney disease and discovering it
promptly. Two diagnostic procedures are utilized in determining the presence of chronic
kidney disease: an examination of the blood to measure albumin or an examination of the
urinary tract to measure the filtrate produced by the kidneys (Kumar, Sinha & Bhardwaj,
2020). Computer-aided examinations are needed to support the clinical decisions by by
physicians and practitioners of the rising number of individuals with with chronic kidney
problems, the lack of expert medical professionals, and the expensive nature of treatment
and procedures, particularly in countries with limited resources (Daniel et al., 2021).
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The lack of a single, broadly helpful indicator that can distinguish between healthy and
sick individuals is a significant factor in chronic kidney disease and chronic illnesses
around the globe. This makes it more difficult for doctors and researchers to quickly and
accurately diagnose this illness, resulting in inaccurate predictions of illness (Parab et al.,
2021). The machine learning models that are supervised in nature are capable of
performing categorization and learning different data patterns. To increase test accuracy, a
robust classification model unaffected by changing circumstances is needed (Rashed-Al-
Mahfuz et al., 2021). With proper adjustments to the parametric variables and
sufficient input data, the neural network algorithms can distinguish those with chronic
kidney disease from other normal individuals with high precision during testing
(Roth et al., 2021).

Neural networks have been demonstrated to be beneficial in the administration of
medication to patients with chronic kidney failure. Neural networks are an excellent fit for
diagnosing chronic kidney disease since they have become increasingly proficient in
categorizing, forecasting, connecting, etc. (Jeong et al., 2020). Massive clinical data from
practical applications is the foundation upon which medical artificial intelligence has been
developed. It is difficult for individuals to directly study large data sets due to the time and
attention required to prevent human error and the need to extract the insights or
information in detail (Xin et al., 2020). It is evident that in some categories, artificial
intelligence systems outperform humans by orders of magnitude. Research on quantum
machine learning (QML) techniques for kidney illness is only getting started. The main
areas of focus for current research on the role of quantum systems in kidney disease are
prediction evaluation, planning for therapy, notification systems, and testing aids (Yuan
et al., 2020). This research aims to implement transfer learning strategies to obtain a
high-level accuracy classification on the NIH chest X-ray dataset, which includes images
with diseases of the chest, such as pulmonary lesions (Shamrat et al., 2023; Ghosh et al.,
2020). The research demonstrates how machine learning models can detect risk factors for
heart disease, which is an important issue. This seems to be because machine learning can
process large amounts of data and find patterns often beyond human capabilities (Ghosh
et al., 2021).

Kidney disease is a significant worldwide medical and public health burden due to its
high rates of hospitalization and premature death, as well as its substantial financial costs
associated with both short- and long-term kidney disease (Senan et al., 2021). Patients with
kidney disease exhibit significant variations in the look, course, and responsiveness to
therapy of their condition. Quantum-based techniques can help clarify targeted treatment
for more precise morphological and predictive results in kidney sickness.

Feature selection is an essential step in disease prediction and classification. An
automatic filtering method is a data analysis and feature selection approach that does not
rely on a classification algorithm (Kanda, Kanno & Katsukawa, 2019). While the learning
algorithm is occupied with other duties, this technique can remove unnecessary data
points from a dataset without involving the learning algorithm. Thus, the proposed work
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intends to employ a supervised QML technique for chronic kidney disease prediction, deep
learning-based data augmentation, and feature selection techniques.

Research contributions
The main contributions of this research are,

1) To leverage the variational quantum classifier to classify chronic kidney diseases to
enhance the prediction accuracy and efficacy.

2) Employ data augmentation techniques such as sparse autoencoder and feature selection
techniques such as LASSO shrinkage to mitigate the issue of multicollinearity in data.

3) To assess the performance of the proposed system and compare it with the existing
methods to demonstrate the significance of the suggested quantum-based classification
method.

Paper organization
The remainder of the article is organized as follows. “Related Works” presents the current
works using machine learning and deep learning in the literature concerning chronic
kidney disease prediction. “Proposed Methodology” describes the proposed methodology,
which includes stages such as preprocessing, augmentation, feature selection, and
classification. “Results and Discussion” discusses the outcomes of the experimental
assessment of the proposed system on the CKD dataset. “Conclusion” concludes the
present research.

RELATED WORKS
This section elaborates on the recent developments using machine learning and deep
learning algorithms for detecting and categorizing kidney disease. The authors proposed
the successive limit proximity and pixelwise categorization networks in Song et al. (2020)
for independent kidney delineation from ultrasound imagery. The investigators initially
described using previously trained neural networks with deep learning to classify
significant images from ultrasound scans. They then used these functions as input for a
secondary separation statistical network to learn kidney border visuals. Finally, they used
an algorithm to classify pixels and designate the identified border separation links into the
kidney pixels. To forecast the kidney and kidney borders in the conclusive learning
technique, the kidney imaging segmentation is based on sophisticated convolutional
neural networks.

Prospective authors in another work used MATLAB to analyze the surface properties of
ultrasound kidney images. Statistical processes were then applied to those images to
establish a distinction between the kidneys that were afflicted and those that were healthy.
Among the statistical procedures carried out, it was determined that the square root of the
average over the whole kidney area and the region of the cortex produced the best
categorization results. The 93% accuracy rate of the naive Bayes approach for kidney
disease detection reported in Belur Nagaraj et al. (2020) demonstrates that machine
learning methods performed adequately when applied to kidney datasets.
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Patients with chronic kidney disease frequently experience hemophilia, which increases
their susceptibility to the spread of infection. Delivering drugs in optimal condition and as
soon as feasible is imperative. Repetitive region framework intelligent control, which also
controls erythromycin, is a strategy described in Zhang et al. (2021) and may be used to
manage iron levels in patients with kidney diseases. In Segal et al. (2020), it was discovered
that boosting techniques, such as gradient boosting, extreme gradient boosting (XGBoost),
XGBoost and ID3 decision tree, helped assess the precision of kidney disease
categorization. In Krishnamurthy et al. (2021), it was demonstrated that Random Forest
was a more accurate kidney illness predictor than k-nearest neighbour and logistic
regression classifiers.

The intelligent fuzzy reasoning network was developed by Shang et al. (2021) to forecast
prolonged kidney damage. Here, the number of uncertain guidelines and the associative
functions of the initial variables coincide. Surface screening rates have been identified, and
the system’s reliability has been compared with other neural network methods. The models
based on the fuzzy technique for determining exceptionally reliable screening rates are
demonstrated by modeling the predictive results from the proposed networks. The
primary concerns of the clinicians include how well those with chronic kidney disease are
being treated, how often they are being monitored, and how to slow down the development
of the disease and avoid its eventual repercussions. A meaningful way to increase the
burden of this research is to use the reliable forecasting system that was started for
quantitative decision support about kidney conditions and their corresponding therapy.

According to the authors, the structure identification method was first implemented in
chronic kidney failure using the previously established revamped shared data (Schena
et al., 2021). This study presents an updated version of interrelated data that allows one to
distinguish between beneficial and detrimental relationships. Clinicians extensively
confirmed all sixteen relevant patterns the researchers revealed about the illness. They used
collaborative data to demonstrate the class relationship rules to the suggested schema to
reduce computational overhead. Using illness data, algorithmic evaluation was conducted,
and all the identified sixteen patterns were clinically generated. It could help in identifying
genetic markers that predict an individual’s response to certain treatments or their
likelihood of developing a disease (Li et al., 2024; Huang et al., 2022). Super-resolution
refers to the process of enhancing the resolution of an image, improving its clarity and
detail beyond the original capture quality (Jia, Chen & Chi, 2024; Song et al., 2024).
Enhanced images can aid in monitoring the progression of retinal diseases or the effects of
treatments (Fan et al., 2024).

The authors presented a novel method for applying transfer learning based on neural
network architectures such as DenseNet, ResNet, and Squeeze Net (Weber et al., 2020) and
compared them for detecting those with neurological disorders. All employed visuals had
been previously processed using logarithmic lengthening, and the three layers were given
unique cumulative coefficients for learning. The experimental results demonstrated that,
when compared to the most recent techniques, the suggested DenseNet model is the best.

Jeong et al. (2021) created a model for evaluating intracerebral perforation based on the
Mask R-CNN segmentation technique. The model uses Kalman reduction to eliminate
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distortion and improve the visual appearance, as well as sophisticated deep learning for
features to be extracted. Using the CNN classifier for prognosis and the multilayer
autoencoder model to extract the most efficient and valuable characteristics from the
chronic kidney disease dataset, Shih et al. (2020) developed a deep learning categorization
architecture that yielded a high precision of 95.3%. Imaging specialists can use the transfer
learning-based VGG-16 model to identify kidney disorders and aid in patient diagnosis.
Using data enhancement techniques such as random interpretation, brightness
rectification, chaos administration, expansion, and image whirling—VGG16 was
employed as the fundamental transfer learning system to enhance the efficacy of
classification. The prediction model developed and verified by Dovgan et al. (2020) with
data from the neighborhood healthcare chain was based on supervised machine learning
algorithms. Inference from the Isolation Forest method was used to build the framework,
and indicators of the degree of statistical fitting were used to assess it. Table 1 provides a
comparison of various chronic kidney disease methods.

Research gaps and motivations of current research
Current CKD diagnosis techniques rely on conventional machine learning models, which
have trouble with noisy medical data and class imbalance, resulting in less-than-ideal
accuracy and delayed detection. Quantum computing presents a promising solution for
handling big datasets more effectively and efficiently because it can represent and analyse
data in significantly larger spaces. Furthermore, the majority of studies do not use
quantum machine learning (QML) to increase classification performance or sophisticated
data augmentation strategies to solve class imbalance. This study investigates a QML-based
strategy with improved feature selection, data preprocessing, and classification methods to
close these gaps and increase the precision and resilience of early CKD diagnosis.
Compared to conventional models, quantum models such as VQCs can more thoroughly

Table 1 Comparison of state-of-the-art methods on chronic kidney disease.

References Techniques Inferences Performance

Haq et al. (2020) Support Vector Machine Limited number of data samples were used Accuracy = 85.2%

Sabanayagam et al. (2020) Artificial Neural Network Feature selection is not performed Accuracy = 90%

Kumar, Sinha &
Bhardwaj (2020)

Ensemble learning High training time Accuracy = 92.6%

Daniel et al. (2021) 11 classifiers High accuracy is achieved Accuracy = 95.9%

Rashed-Al-Mahfuz et al.
(2021)

Pre-trained CNN architectures System design is complex Accuracy = 91.4%

Roth et al. (2021) Deep Neural Network with Artificial Bee Colony
Optimization

Large and diverse dataset is used Accuracy = 92.6%

Xin et al. (2020) AdaBoost, Logistic Regression Decision support system for kidney disease
prediction is proposed

Accuracy = 93.5%

Yuan et al. (2020) Radial Basis Function Networks High values of training and validation loss is
achieved

Accuracy = 94.8%
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investigate an ample solution space by taking advantage of quantum superposition and
entanglement.

PROPOSED METHODOLOGY
The proposed methodology involves four different phases for the classification of chronic
kidney disease. The various phases in the proposed system include preprocessing, data
augmentation, feature selection, and classification, as shown in Fig. 1. Each of these phases
and their techniques are elaborated in detail in this section.

Data preprocessing
Preparing the data is the most important stage before using classification algorithms. The
prediction task cannot directly use real-world data due to its high noise, incompleteness,
and inconsistency. A preprocessing process is applied to appropriately represent the data
for predicting chronic kidney disease. Handling missing data and data normalization is
part of this research’s data preprocessing procedure.

Kalman filter
Two fundamental presumptions underlie the Kalman filter’s operation. First, the data is a
linear dynamic system, with the current state inferred from observations and past states.

Secondly, random measurement fluctuations follow a normal distribution because the
noise is Gaussian-distributed. The suitability of this technique to present research is
supported by the fact that the renal function biomarkers in CKD datasets show gradual,
smooth changes over time, which is consistent with the dynamic model of the Kalman
filter. Additionally, Gaussian noise can occur in medical measures because of
environmental influences, human error in input, or equipment sensitivity. The selection of
Kalman filtering was validated by exploratory data analysis, which showed that missing
values and variations in experiment outcomes were following Gaussian noise. Since the
Kalman filter can handle sequential and continuous data, like the time-series biochemical
indicators seen in the CKD datasets, it was selected above alternative imputation and noise
reduction techniques. Instead of making imprecise assumptions about missing data, the
Kalman filter efficiently estimates missing values by utilizing estimates from the past and
present states. The Kalman filter produces more accurate reconstructions of missing or
noisy values than static imputation techniques because it dynamically changes predictions
based on trends found in patient records.

Noise and missing values cause the prediction to be less accurate or produce a result that
is not reliable. This filter purges the data by eliminating noise, redundant information, and
contradictions. In the data filtering stage, two more independent filters are used to
substitute missing values and eliminate ineffectual data. The initial filter uses the median
and the average of the available data to fill in all missing values in the formatted dataset.
The subsequent filter eliminates meaningless attributes with a variance of ninety percent
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Figure 1 Proposed workflow. Full-size DOI: 10.7717/peerj-cs.2789/fig-1
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and above. The mathematical formulation for handling missing values is as given
in Eq. (1):

�H ¼ 1
K

X
HJn

m: (1)

In this equation, H represents the features in the dataset, J corresponds to the category
mapping of each feature, and �H denotes the average value of the features.

Data normalization
There are many features in the chronic kidney disease dataset, and each feature has a
distinct collection of numerical information, making computation more complicated.
Therefore, to reduce the numerical intricacy during the computational procedure of
kidney disease prediction, the data normalization technique is utilised to normalise the
dataset in the range between zero and one. The min–max normalization technique, as
represented in Eq. (2), is applied in the suggested system. In Eq. (2), Snorm denotes the
normalised form of the data value, S represents the value as per the dataset, Smax and Smin

corresponds to the maximum and minimum values in the dataset. The updated maximum
and minimum values are denoted as updmax and updmin; respectively.

Snorm ¼ S� Smin

Smax � Smin
� updmax � updmin½ � þ updmin: (2)

Data augmentation
When analyzing a dataset that comprises labels for all the features, it is common to observe
that certain classifications outnumber the rest of the data. This is a regular occurrence
within healthcare datasets, where samples with special conditions are used to make up a
smaller fraction than normal samples. This may result in classification algorithms
considering only the particularly congested classes, failing to pay attention to these smaller
classes. Sparse autoencoders are utilized in this study for data augmentation to address this
problem.

Sparse autoencoder
The primary characteristic of this autoencoder is that rather than just representing each
sample, the encoder learns the typical distribution of the input data. The hidden layer
samples a new element using the recently trained and typical distribution. After the
autoencoder is trained, it will produce additional elements of the dataset that fit into the
same typical distribution of original data whenever an additional data component is added
to the network. It is possible to create synthetic information comparable to the actual one
using this approximation type. The loss function needs to be modified to map the synthetic
data with the typical data distribution, which uses the KL divergence technique as shown in
Eq. (3):

SPloss ¼ j a� �aj jj2 þ KL ½T la;rað Þ; Tð0; 1Þ�: (3)
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In Eq. (3), �a denotes the newly constructed data, T la;rað Þ represents the typical data
distribution with average as well as standard deviation values such as la and ra
respectively. The value of KL divergence is computed as per the formulation shown
in Eq. (4):

KL i; j½ � ¼ �
Z

i að Þlog j að Þ da þ
Z

i að Þlog i að Þ da: (4)

L1 regularization method was introduced in the network to make the network utilize
only a minimal number of neurons during the training process. Hence, the weight
parameter is added to the loss function and represented as in Eq. (5),

SPloss ¼ Err u; ûð Þ þ c
XN
k¼1

Wk: (5)

In the above equation, Wk denotes the weight corresponding to kth neuron, c denotes
the multiplier parameter, u and û represents the actual and predicted data values. A larger
multiplier factor indicates a more significant impact of regularisation over the entire loss
computation. As a result, the network can describe the original data with additional
attributes, enabling it to examine the data from an alternative viewpoint.

Feature selection
Numerous features that might not be pertinent to the intended prediction can be found
within healthcare datasets. To focus the model on the most significant characteristics and
reduce the overall dimension of the data, feature selection approaches are especially
helpful. Feature selection aids in the construction of a more precise and effective model by
choosing the most pertinent features. It lowers the interference from superfluous or
extraneous characteristics, which could have a harmful effect on the model’s functionality.
This is especially crucial for the categorization of CKD since the presence of extraneous
variables can result in overfitting issues or incorrect forecasts. This study uses the Least
Absolute Shrinkage and Selection operator (LASSO) to select the features.

LASSO shrinkage
This technique is useful for choosing feature variables and enhancing the resulting model’s
comprehension and reliability for prediction. The LASSOmethod aids in choosing features
and the removal of variables by condensing the data values to a single spot. This kind of
technique works well with extremely overlapping or interrelated models. The LASSO
shrinkage adds an adjustment proportional to the absolute value of the coefficient
magnitudes; from that, some coefficients are finally removed from the model after
becoming zero, leaving a model with fewer coefficients because of variable removal. This
technique is aimed towards minimizing the formulation as represented in Eq. (6) as
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LS ¼
XN
m¼1

um �
X
m

amxdx

 !2

þ b
Xd
x¼m

jdxj: (6)

The parameter b in the above equation denotes the factor used for modifying the level of
shrinkage. After the shrinkage procedure, a particular group of values (d) becomes zero.
When b = 0, no variables are eliminated from the model. As b increases, more parameters
are removed from the model and set to zero. A decrease in b increases variability, while an
increase in b elevates bias values. The d value for a parameter indicates the significance of
that variable concerning its influence on the substrate variance. When d = 0, a variable is
deemed insignificant and disregarded. It should be mentioned that LASSO regression
produces deceptive findings when there is instability in the dataset, which could lead to
choosing inappropriate and crucial variables when LASSO is applied to the entire dataset.
If a method is used that runs the LASSO repeatedly and arbitrarily selects subgroups from
the dataset, the impact of instability in data will be lessened. In most iterations, majority
voting chooses the higher than zero variables based on d values.

Classification
Classification is the problem of identifying the class label for an unknown data point for T
number of total classes. For any given dataset with labels, the classifier is mathematically
formulated as in Eq. (7):

P ¼ a1; u1ð Þ; . . . ; aN ; uNð Þf g HN � f0; 1; . . . ;T � 1g: (7)

In this research, the variational quantum classifier which is a supervised quantum
machine learning algorithm is trained to reduce the cost function through the optimization
of the quantum gates as shown in Eq. (8),

M xð Þ ¼
XN
k¼1

hkmðuk; hðak;xÞÞ: (8)

In the above equation, hðak;xÞ denotes the model trained to identify the label of the
input ak and the corresponding output is represented by uk.

Variational quantum classifier
Several advantages are associated with using quantum models for CKD classification
compared to classical machine learning (ML) models. Complex, high-dimensional medical
data, such as CKD biomarkers, can be better represented because of quantum states’
exponentially huge feature spaces. While quantummodels use quantum entanglement and
superposition to map features to an augmented space where patterns are more
straightforward to distinguish, classical ML models use linear or polynomial kernels.
Compared to ML models, variational quantum classifiers (VQCs) optimise fewer
parameters, lessening the computational load. While quantum circuits use only a few
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tuneable parameters with tremendous generalisation potential, classical deep-learning
models require millions of parameters.

A VQC is one important QML technique for differentiating physical events of interest
from background events. For classification issues in the chaotic intermediate-scale
quantum computing device, it is a popular supervised QML approach. The exploratory
results on quantum devices can be obtained using this method, which eliminates the
requirement of further strategies for rectification of errors. Based on quantum circuits that
are challenging to replicate conventionally, this quantum technique maps conventional
input data to an increasingly large quantum spectrum of features. In this classifier,
conventional data is embedded into quantum computing through various feature mapping
and encoding approaches, beginning with the state preparation. Ultimately, the
measurement result is fed back into a circuit to refine the parameters that can be trained in
the variational circuit. There are two stages associated with the VQC algorithm such as
training and testing.

State preparation

This step is essential when applying quantummachine learning algorithms to process data.
The traditional machine learning model that performs two-class classification on a dataset
is represented as shown in Eq. (9):

C ¼ fða1; u1Þ; . . . ðam; umÞ; . . . ðaN ; uNÞg: (9)

In the above equation, am denotes the features of the sample m and um denotes the
corresponding output prediction for the target class labels represented as
L ¼ fcl1; cl2; . . . clng. For two-class classification problem, um e fcl1; cl2g. To investigate
the data in the context of quantum machine learning algorithms, it is necessary to convert
the conventional data into quantum format ðjwmiÞ as represented in Eq. (10),

Qm ¼ fðjw1i; u1Þ; . . . ; ðjwmi; umÞ; . . . ; ðjwNi; uNÞg: (10)

Hybrid data encoding

High-dimensional quantum data can be embedded into conventional data using various
methods. In this proposed research, a hybrid encoding technique is used, combining
amplitude and qubit encoding techniques. When the quantum circuit width is taken into
account, the amplitude encoding is favourable, and when the quantum circuit depth is
taken into account, the qubit encoding is beneficial. The extremes of quantum circuit
complexity for loading conventional data into a quantum system are represented by these
two encoding approaches. A hybrid encoding technique is included in the suggested
system to reduce the quantum circuit complexity between these two extremes. The hybrid
encoding simultaneously applies amplitude encoding to several separate qubit units.

Assume h to be the number of qubit units in each block D that is the encoded form of
conventional data created using amplitude encoding. The resultant quantum system will
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constitute conventional data in the order of D2h. This encoded data is represented as
shown in Eq. (11) as

Vh að Þ : aeRN ! jhðaÞi ¼ �D
s¼1

1
jjajjs

X2h
t¼1

astjsit
 !

: (11)

As every segment may have a distinct normalization constant, amplitudes may not
accurately reflect the data unless the parameters of the normalization constant are similar.
Hence, the qubit encoding scheme is introduced in this stage to tackle this issue. The
modified quantum representation is as shown in Eq. (12):

jh að Þi ¼ �D
r¼1

X2h
s¼1

Yh�1

t¼0

cos1�stðaf tð Þ;rÞsinstðaf tð Þ;rÞjsit
 !

: (12)

In the above equation, s 2 f0; 1gm is the two-coded representation of s and st denotes
the t + 1th unit of the data bit. xs;t denotes the sth unit of the data bit. xs;t denotes the sth data
unit assigned to tth block of qubits. Compared to qubit encoding, hybrid encoding
techniques employ fewer qubits and a shorter quantum circuit depth than amplitude
encoding.

Feature mapping

A quantum feature map encodes conventional data in the realm of the quantum field using
a quantum network built from the traditional machine learning kernel technique. The data
are projected into a higher-dimensional Hilbert space to identify a distinct hyperplane for
the classification of data that is not linear. The data is transformed using unitary gates as
represented in Eqs. (13) and (14):

vh að Þ ¼ VhðaÞHD�kVhðaÞHD�k (13)

VhðaÞ ¼ exp k
X
F� k½ �

hf að Þ
Y
k2F

Dk

0
@

1
A: (14)

In Eq. (13), HD corresponds to the Hadamard gate, the unitary gate is denoted using
VhðaÞ in the context of the Pauli feature method, and Dk represents the constructed feature

space. The number of qubits required depends on the quantity of the data, and unitary
gates are used to describe the data by varying the angle to specific levels.

Variational circuit

This method’s fundamental principle is to optimize the parameter values by following the
directions of a value function. The quantum phase in the variational quantum classifier
comprises state preparation, measurement, and the parameterized input a of the the
circuit, which depends on the total quantity of parameters such as Ry; Rz and CNOT gate.
The classical phase comprises the training method, the objective function, and the circuit’s

Parthasarathi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2789 13/31

http://dx.doi.org/10.7717/peerj-cs.2789
https://peerj.com/computer-science/


output. The VQC is estimated via optimization approaches, such as restricted optimization
by linear estimates. The problem solved by this circuit is represented as shown in Eq. (15):

jwða : ’Þi ¼ Vð’ÞjdðaÞi: (15)

Measurement

The aim of training the model is to find the appropriate values for parameters that will
optimise a specific loss function. Similar to how a traditional neural network is optimised, a
quantum model can also be optimised. The model is executed in a forward direction, and
the loss function is found in both cases. Slope-based optimisation techniques can be
employed to modify the parameters trained as a loss function. By using this technique, the
difference between the truth and predicted outcomes can be calculated and represented by
a loss function value as given in Eq. (16):

hYijdi � d Yj jdh i ¼ jlj2 � jrj2: (16)

In the above equation, Y ¼ 1 0
0 �1

� �
and Yh i 2 ½�1; 1� for the actual value of output

that is measurable.

Optimization

When the measurements are prepared, the quantum variational circuit’s parameters are
changed through an optimisation procedure. These parameters are trained using a
conventional loop until the actual value of the cost function falls. Using a nþ 1 principle
(where n is the number of features), the Nesterov Momentum Optimiser generates
successive proportional estimates of the cost function and obstacles, improving these
estimates at every step in a trusted region.

Classifier evaluation

The working conditions of the quantum-based circuit are represented in equations
between Eqs. (17) and (20). These metrics are computed based on the true positive, false
positive, false negative, and true negative values.

modelprec ¼ True Positive
True Positiveþ False Positive

(17)

modelacc ¼ True Positiveþ True Negative
True Positiveþ False Positiveþ True Negativeþ False Negative

(18)

modelrec ¼ True Positive
True Positiveþ False Negative

(19)

modelf 1 ¼ 2 � True Positive
2 ðTrue PositiveÞ þ False Positiveþ False Negative

: (20)
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RESULTS AND DISCUSSION
This section discusses the dataset used to evaluate the proposed system’s performance
through experimental assessments and also describes the limitations of current research.

Dataset description
The Chronic Kidney Disease dataset (Rubini, 2015) used in this research is obtained from
the UCIMachine Learning repository. The dataset is composed of a total of 400 records for
25 features. The target variable in the dataset consists of two labels, CKD and not CKD.
The remaining 24 variables can be employed as features to perform the prediction. The
total number of samples for the CKD target category is 250, whereas the total number of
records for the CKD category is 150. A brief description of the variables available in the
dataset is given in Table 2. The distribution analysis of numerical and categorical features
in the CKD dataset is presented in Figs. 2 and 3. The dataset used in this research can be

Table 2 Dataset description.

S. No. Feature variable Feature description Variable type Value range

1 age Age Numerical 0–90

2 bp Blood Pressure Numerical 0–180

3 sg Specific Gravity Numerical 0–1,025

4 al Albumin Numerical 0–5

5 su Sugar Numerical 0–5

6 rbc Red Blood Cells Categorical Normal/Abnormal

7 pc Pus Cell Categorical Normal/Abnormal

8 pcc Pus Cell Clumps Categorical Present/Not Present

9 ba Bacteria Categorical Present/Not Present

10 bgr Blood Glucose Random Numerical 0–490

11 bu Blood Urea Numerical 0–391

12 sc Serum Creatinine Numerical 0–76

13 sod Sodium Numerical 0–163

14 pot Potassium Numerical 0–47

15 hemo Haemoglobin Numerical 0–17.8

16 pcv Packed Cell Volume Numerical 0–54

17 wbcc White Blood Cell Count Numerical 0–26,400

18 rbcc Red Blood Cell Count Numerical 0–8

19 htn Hypertension Categorical Yes/No

20 dm Diabetes Mellitus Categorical Yes/No

21 cad Coronary Artery Disease Categorical Yes/No

22 appet Appetite Categorical Poor/Good

23 pe Pedal Edema Categorical Yes/No

24 ane Anemia Categorical Yes/No

25 Class CKD, not CKD Categorical CKD/not CKD
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Figure 2 Distribution analysis of numerical features in CKD dataset. Full-size DOI: 10.7717/peerj-cs.2789/fig-2
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Figure 3 Distribution analysis of categorical features in CKD dataset. Full-size DOI: 10.7717/peerj-cs.2789/fig-3
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accessed using the link given: https://archive.ics.uci.edu/dataset/336/chronic+kidney
+disease.

Experimental setup
Experiments were carried out using an Intel (R) Core (TM) i7-113H processor, which
processes at 3.30 GHz and comprises 4 Core(s). The system’s Random Access Memory is
16 GB, with a graphics processing unit of 4 GB. The latest version of Python, 3.12.3, is used
to implement the algorithms. TensorFlow and Keras frameworks were used to implement
the baseline classifier algorithms.

Experimental evaluation
The VQC outperforms traditional machine learning and deep learning models for CKD
detection. It shows higher accuracy, precision, recall, specificity, F1-score, and AUC-ROC
compared to methods like support vector machine (SVM), Random Forest, and multilayer
perceptron (MLP). After feature selection, VQC achieves 99.2% accuracy, further
improving its performance. VQC’s dynamic parameter adjustment and reduced overfitting
offer greater efficiency and effectiveness. This makes it a superior model for CKD
detection.

Data augmentation description
Due to the short size of the dataset, data augmentation was done using Sparse
Autoencoders (SAEs) to create synthetic samples while maintaining the original dataset’s
statistical distribution. By doing this, bias against majority classes was avoided and the
class balance was improved. Additionally, it increased feature variety, which prevented the
model from overfitting to a small number of cases and enabled it to learn broadly
applicable patterns. Additionally, it helped reduce sparsity, guaranteeing that the model
had enough training data for every severity level of CKD. Furthermore, cross-validation
methods were used to ensure the model was assessed across several data partitions, which
stopped it from picking up patterns unique to a certain dataset.

To ensure that the artificial samples produced by the SAE do not overburden the
original dataset or add needless redundancy, the degree of augmentation was established
empirically. The degree of imbalance in the dataset was taken into consideration when
adjusting the ratio of augmented samples to original samples. In order to bring the
minority class up to par with the majority class—that is, to match the largest class
proportionately without unduly inflating the dataset—augmentation was done. As
augmentation levels changed, performance changes were tracked using a validation set.

To encourage sparsity and ensure that only the most important features were kept in the
latent space, the SAE model incorporated L1 regularization, which decreased the
possibility of overfitting to small fluctuations. Dropout layers, which randomly deactivate
neurons to enhance generalization, were used within the training procedure to stop the
model from learning patterns from synthetic data. In order to verify that the model was
effectively generalizing to unseen CKD cases rather than merely fitting to the augmented
data, the impact of augmentation was evaluated using a different holdout test set. Rather
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Figure 4 Correlation analysis of features in CKD dataset. Full-size DOI: 10.7717/peerj-cs.2789/fig-4
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than creating an excessive amount of synthetic data at random, the final augmentation
ratio was chosen based on actual performance.

Correlation analysis
The correlation between different variables in the dataset is analyzed and presented in
Fig. 4. Based on this analysis, the features with positive and negative correlations are
identified. Positive correlations imply that there is a tendency for both variables to rise as
one increases as well. These pairs may correspond to comparable foundational occurrences
or be linked variables. When two variables have negative correlations, one variable declines
as the other grows. These correlations imply that these variables have a significant inverse
association. In a predictive model, highly correlated variables—whether positive or
negative—might be superfluous. Removing one of the variables in a strongly correlated
pair should be considered during feature selection to prevent multicollinearity, which can
destabilize models and complicate the determination of coefficients. Conversely, variables
that have little correlation to one another can offer distinct insights and could be more
useful in a predictive model. In order to address the issues related to multicollinearity,
LASSO Shrinkage is employed in this proposed system.

Feature selection description
After the correlation analysis, feature selection is performed using LASSO shrinkage to
identify the most contributing features for making efficient predictions. The features
selected by the LASSO shrinkage technique are presented in Table 3. Thirteen features
such as age, blood pressure, albumin, sugar, bacteria, blood urea, serum creatinine, sodium,
potassium, haemoglobin, packed cell volume, white blood cell count, red blood cell count
are used for the further assessment of the proposed techniques and for comparing the

Table 3 Selected features using LASSO shrinkage.

S. No. Feature variable Feature description Variable type Value range

1 age Age Numerical 0–90

2 bp Blood Pressure Numerical 0–180

3 al Albumin Numerical 0–5

4 su Sugar Numerical 0–5

5 ba Bacteria Categorical Present/Not Present

6 bu Blood Urea Numerical 0–391

7 sc Serum Creatinine Numerical 0–76

8 sod Sodium Numerical 0–163

9 pot Potassium Numerical 0–47

10 hemo Haemoglobin Numerical 0–17.8

11 pcv Packed Cell Volume Numerical 0–54

12 wbcc White Blood Cell Count Numerical 0–26,400

13 rbcc Red Blood Cell Count Numerical 0–8
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results with the conventional methods or existing techniques. By picking one characteristic
from a set of associated features and shrinking the rest to zero, LASSO aids in the
management of multicollinearity. This enhances the comprehension of the model and
lowers the chance of overfitting. LASSO helps guarantee that the model is more resilient
and better generalises to new, unknown information by minimising multicollinearity. A
model with less, more significant variables is easier for physicians to comprehend and
recognise when it comes to CKD prediction, which makes it easier to translate model
forecasts into practical choices. LASSO helps determine the important medical variables
linked to the advancement of chronic kidney disease (CKD) by keeping just the most
significant predictors. Through a penalty on the magnitude of the regression coefficients,
LASSO shrinkage lowers the overall variance of the model and thus helps avoid overfitting.

VQC implementation
Once the features are extracted, it is necessary to translate classical features into quantum
states. RawFeatureVector from the circuit.library in Qiskit is employed for this conversion
process. This creates a quantum Hilbert space from n-dimensional classical data similar to
the feature transformations used in classical machine learning models, such as the
polynomial kernels in SVM. For richer representations, quantum models employ
entanglement and quantum superposition. The higher-dimensional quantum space makes
better separation of CKD from non-CKD data possible. The next step uses the real
amplitudes ansatz to define the parameterized quantum circuit (PQC). The core of VQC is
PQC, which uses quantum-transformed data to identify patterns. Three layers of
entangling gates with full entanglement and three trainable rotation gates (RX, RY, and
RZ) are stacked by RealAmplitudes ansatz.

By facilitating information exchange between qubits, entanglement enhances the
expressivity of the model. The quantum support vector machine (QSVM) simulator is then
used to train the quantum model. To guarantee stable training, the gradient-free
Constrained Optimization By Linear Approximations (COBYLA) optimizer is used in
conjunction with the CrossEntropy loss function.

Performance evaluation
The performance of the proposed model is assessed in three ways: without feature
selection, with feature selection and with existing techniques in the literature. Initially, a
comparison is performed against conventional machine learning and deep learning
techniques, excluding the feature selection process. Techniques such as SVM, Random
Forest, logistic regression, multi-layer perceptron, radial basis function networks, and
quantum SVM are utilised for the performance comparison. Compared to traditional
machine learning models for CKD detection, the VQC exhibits notable advantages. VQC
naturally takes advantage of quantum feature encoding, which enables it to achieve
improved class separability without predefined kernel functions; in contrast, SVM depends
on kernel tricks to transfer data into a higher-dimensional space. Because it can learn
optimal feature representations dynamically instead of depending on fixed
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transformations, VQC has an advantage over classical SVM. Similarly, Random Forest
needs a huge ensemble of decision trees, which increases computational complexity even if
it works well with imbalanced datasets and non-linear connections. On the other hand,
because of its quantum state representation, VQC is more efficient regarding training data
requirements and delivers greater generalisation with fewer training samples.

Because it is a linear model, logistic regression has trouble capturing the intricate
non-linear relationships that define the course of chronic kidney disease. Although
computationally efficient, its predictive potential in datasets with complex connections is
limited by the assumption of feature independence. In contrast to linear models, VQC
works in a quantum-enhanced Hilbert space and is better at capturing intricate
correlations in the data. A deep learning-based method called the MLP is better at
managing non-linearity, but it needs a lot of training data to generalize effectively.
Furthermore, it is prone to overfitting, particularly on small datasets, whereas the
variational approach of VQC effectively optimizes quantum parameters to reduce the
danger of overfitting.

Though radial basis function networks are sensitive to outliers and necessitate
careful basis function tuning, they provide powerful non-linear classification
capabilities. On the other hand, VQC eliminates the requirement for intensive
hyperparameter tuning by automatically learning the best feature mappings through
quantum circuit optimization. Despite using quantum principles, the quantum support
vector machine (QSVM) still uses a quantum kernel, which is still a fixed transformation
even though it is better than classical kernels. However, because VQC is a completely
variational model, it can dynamically modify its parameters to determine the best
classification decision limits.

The outcomes of the experimental evaluation are presented in Table 4, SVM produces
an accuracy of 91.5%, precision of 90.6%, recall of 90.1%, Specificity of 90.8, F1-score of
91.2% and AUC-ROC of 91.3%. Random Forest exhibits 89.3% accuracy, 88.7% precision,
88.3% recall, 88.5% specificity, 88.9% F1-score and 89.1% AUC-ROC. Logistic regression
produces an accuracy, precision, recall, specificity, F1-score and AUC-ROC of 92.7%,
91.2%, 91.8%, 91.5%, 92.3% and 92.5% respectively. MLP when applied for CKD
prediction shows an accuracy of 93.6%, precision of 92.4%, recall of 92.7%, specificity of

Table 4 Performance comparison with ML/DL techniques without feature selection.

Techniques Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC-ROC (%)

Support Vector Machine 91.5 90.6 90.1 91.2 91.3

Random Forest 89.3 88.7 88.3 88.9 89.1

Logistic Regression 92.7 91.2 91.8 92.3 92.5

Multi-layer Perceptron 93.6 92.4 92.7 93.1 93.3

Radial Basis Function Networks 95.9 94.3 94.7 95.2 95.5

Quantum SVM 96.7 95.4 94.9 96.2 96.4

Proposed 98.2 97.2 97.5 97.9 97.6
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92.2%, F1-score of 93.1% and AUC-ROC of 93.3%. An accuracy of 95.9% is obtained for
radial basis function networks with precision, recall, specificity, F1-score and AUC-ROC of
94.3%, 94.7%, 94.5%, 95.2% and 95.5% correspondingly. Quantum machine learning
technique such as QSVM was also considered for comparison with the proposed system
and it was found that the QSVM exhibited an accuracy of 96.7%, precision of 95.4%, recall
of 94.9%, specificity of 95.1%, F1-score of 96.2% and AUC-ROC of 96.4%. However, the
proposed system showed higher values for all evaluation metrics considered such as 98.2%,
97.2%, 97.4%, 96.3%, 97.9% and 97.6% of accuracy, precision, recall, specificity, F1-score
and AUC-ROC, respectively.

Radial basis function networks
Radial basis functions are the activation functions used by RBFNs, specialized neural
networks. They have been used in medical evaluations and are especially good at dynamic
classification tasks. When evaluating the ability to categorize chaotic connections in
medical datasets, RBFNs are a perfect comparator to VQC since they can capture complex
decision boundaries. Quantum SVM: The goal of quantum SVM, an improved version of
the classical SVM, is to increase classification performance by utilizing quantum
computing concepts. It is a good tool for identifying micro patterns in complicated data,
including early signs of chronic kidney disease. Comparing QSVM and VQC, two
quantum-inspired classifiers, enables an assessment of the advantages and disadvantages
of various quantum techniques to the same classification problem.

Assessment metrics (justification)
Accuracy is a metric that provides a brief, significant summary of the model performance.
A high precision indicates that the predictor model is less likely to produce false positives,
which could result in needless medical procedures and patient concerns. Precision is vital
for medical evaluations, particularly for CKD. Recall is essential for the prompt
identification of CKD since patients’ health may suffer greatly if a diagnosis is missed due
to the presence of false negatives. The F1-score provides a more balanced assessment of the
model’s performance by combining precision and recall, particularly in unbalanced
datasets where accuracy might not accurately represent the model’s underlying predictive
potential. Hence, these metrics are chosen for the model’s performance assessment.

Table 5 Performance comparison with ML/DL techniques with feature selection.

Techniques Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC-ROC (%)

Support Vector Machine 92.8 91.2 91.5 92.4 92.6

Random Forest 90.7 89.7 89.3 90.4 90.5

Logistic Regression 93.9 92.3 92.8 93.4 93.7

Multi-layer Perceptron 94.8 93.5 93.8 94.3 94.5

Radial Basis Function Networks 96.3 95.7 95.1 95.9 96.1

Quantum SVM 97.8 96.3 96.9 97.5 97.6

Proposed 99.2 98.3 98.5 98.9 99.1
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Figure 5 Performance comparison with ML/DL methods without feature selection.
Full-size DOI: 10.7717/peerj-cs.2789/fig-5

Figure 6 Proposed model performance. Full-size DOI: 10.7717/peerj-cs.2789/fig-6
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The performance of the proposed model is assessed in three ways: without feature
selection, with feature selection, and with existing techniques in the literature. Initially, a
comparison is performed against conventional machine learning and deep learning
techniques, excluding the feature selection process. Techniques such as SVM, Random
Forest, logistic regression, multi-layer perceptron, radial basis function networks, and
QSVM are utilized for the performance comparison. The obtained results are presented in
Table 5 and Fig. 5. The outcomes of the experimental evaluation are presented provided in
Fig. 6. SVM produces an accuracy of 91.5%, precision of 90.6%, recall of 90.1% and
F1-score of 91.2%. Random Forest exhibits 89.3% accuracy, 88.7% precision, 88.3% recall
and 88.9% F1-score. Logistic regression produces an accuracy, precision, recall and
F1-score of 92.7%, 91.2%, 91.8% and 92.3% respectively. MLP when applied for CKD
prediction shows an accuracy of 93.6%, precision of 92.4%, recall of 92.7% and F1-score of
93.1%. An accuracy of 95.9% is obtained for radial basis function networks with precision,
recall and F1-score of 94.3%, 94.7% and 95.2% correspondingly. Quantum machine
learning technique such as QSVM was also considered for comparison with the proposed
system and it was found that the QSVM exhibited an accuracy of 96.7%, precision of
95.4%, recall of 94.9% and F1-score of 96.2%. However, the proposed system showed
higher values for all evaluation metrics considered such as 98.2%, 97.2%, 97.5% and 97.9%
of accuracy, precision, recall and F1-score, respectively.

Similarly, the performance of the proposed system was compared against these models
after the LASSO shrinkage feature selection technique was applied to the CKD dataset, and
13 significant features were identified. The models’ performance showed improvements
after the selected features were used to make predictions. SVM produced an accuracy of
92.8% with precision, recall and F1-score of 91.2%, 91.5% and 92.4% respectively. Random
Forest method showed an increase in accuracy of 90.7%, precision of 89.7%, recall of 89.3%
and F1-score of 90.4%. Logistic regression method produced an accuracy level of 93.9% in
making predictions with precision, recall and F1-score of 92.3%, 92.8% and 93.4%
respectively. MLP showed an accuracy of 94.8%, precision of 93.5%, recall of 93.8%, and
F1-score of 94.3%. Radial basis function networks exhibited 96.3%, 95.7%, 95.1% and
95.9% of accuracy, precision, recall and F1-score accordingly. The accuracy of QSVM
increased as 97.8% with precision of 96.3%, recall of 96.9% and F1-score of 97.5%. The
proposed model produced an improved accuracy of 99.2%, which is greater than the

Table 6 Performance comparison: existing vs proposed.

References Accuracy (%) Precision (%) Recall (%) F1-score (%)

Ma et al. (2020) 92.5 91.2 90.6 91.7

Peng et al. (2021) 94.8 93.2 92.8 93.7

Parab et al. (2021) 95.7 94.3 93.5 95.2

Kanda, Kanno & Katsukawa (2019) 97.5 96.5 95.8 96.3

Song et al. (2020) 98.4 97.6 97.8 98.2

Proposed 99.2 98.3 98.5 98.9
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accuracy exhibited by the other models considered for comparison. The values of precision
(98.3%), recall (98.5%), and F1-score (98.9%) were also higher for the suggested model.
The model performance of the proposed system is presented in Fig. 6.

Further, the performance of the proposed model was compared with a few existing
models in the literature for CKD predictions, and the outcomes are presented in Table 6
and Fig. 7. Ma et al. (2020) suggested a heterogeneous modified artificial neural network
technique for CKD prediction. This model was 92.5% accurate in making predictions with
91.2%, 90.6%, and 91.7% of precision, recall, and F1-score correspondingly. Peng et al.
(2021) employed a two-stage neural network for predicting kidney diseases and showed an
accuracy level of 94.8%. Another work incorporated a backpropagation neural
network-based machine learning model to classify ‘CKD’ and ‘Not CKD’ classes. This
model produced an accuracy of 95.7% with 94.3% and 93.5% of precision and recall values,
respectively. Bayesian network combined with artificial intelligence techniques were
utilized in Kanda, Kanno & Katsukawa (2019) for CKD detection, and the accuracy level of
the suggested model was found to be 97.5%. In the work proposed in Song et al. (2020), a
temporal-enhanced gradient boosting machine was employed for predicting kidney
diseases, and this model exhibited an accuracy of 98.4%. Table 6 presents the performance
of the proposed model is higher compared to the existing works taken for investigative
comparison for all four assessment metrics.

Limitations of current research
Quantum circuits are susceptible to errors because of noise sources and distortion. These
errors may result in predictions that necessitate intricate error correction, which is still

Figure 7 Performance comparison of existing and proposed methods.
Full-size DOI: 10.7717/peerj-cs.2789/fig-7
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underdeveloped for large-scale quantum calculations. When there are more qubits and
gates in a quantum circuit, it becomes challenging to develop and optimise for VQCs. This
intricacy may restrict the method’s scalability, particularly in the case of complicated
models needed for high-dimensional medical data. There can be a large overhead
associated with mapping classical properties into quantum states regarding both time and
computing efficiency. The financial burden may reduce the potential efficiency offered by
quantum computing for CKD prediction.

CONCLUSION
This study establishes the groundwork for upcoming developments in quantum-assisted
medical AI systems by proving the feasibility of QML for CKD diagnosis. The proposed
system efficiently manages the complexity of CKD datasets by incorporating Kalman filter
and normalisation algorithms for pre-processing, sparse autoencoders for data
augmentation and LASSO shrinkage for feature selection. Using VQCs has produced a
robust solution for early CKD detection, surpassing standard classifiers with a high
classification accuracy of 99.2%. However, while VQCs exhibit encouraging outcomes, the
limitations of present quantum hardware increase the training time. The future subsequent
investigations on this area ought to concentrate on expanding this structure to more
extensive and varied datasets to verify the adaptability and applicability of the model.
Furthermore, investigating incorporating additional quantum algorithms and hybrid
classical-quantum models may considerably improve computational efficiency and
performance. The suggested architecture may develop into a potent early disease detection
tool as quantum computing technology advances, providing revolutionary advantages for
world healthcare.
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