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ABSTRACT

Segmenting brain tumors is a critical task in medical imaging that relies on advanced
deep-learning methods. However, effectively handling complex tumor regions
requires more comprehensive and advanced strategies to overcome challenges such
as computational complexity, the gradient vanishing problem, and variations in size
and visual impact. To overcome these challenges, this research presents a novel and
computationally efficient method termed lightweight Inception U-Net (LIU-Net) for
the accurate brain tumor segmentation task. LIU-Net balances model complexity and
computational load to provide consistent performance and uses Inception blocks to
capture features at different scales, which makes it relatively lightweight. Its capability
to efficiently and precisely segment brain tumors, especially in challenging-to-detect
regions, distinguishes it from existing models. This Inception-style convolutional
block assists the model in capturing multiscale features while preserving spatial
information. Moreover, the proposed model utilizes a combination of Dice loss and
Focal loss to handle the class imbalance issue. The proposed LIU-Net model was
evaluated on the benchmark BraT$ 2021 dataset, where it generates remarkable
outcomes with a Dice score of 0.8121 for the enhancing tumor (ET) region, 0.8856
for the whole tumor (WT) region, and 0.8444 for the tumor core (TC) region on the
test set. To evaluate the robustness of the proposed architecture, LIU-Net was cross-
validated on an external cohort BraTS 2020 dataset. The proposed method obtained a
Dice score of 0.8646 for the ET region, 0.9027 for the WT region, and 0.9092 for the
TC region on the external cohort BraT$ 2020 dataset. These results highlight the
effectiveness of integrating the Inception blocks into the U-Net architecture, making
it a promising candidate for medical image segmentation.
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INTRODUCTION

Brain tumors (BTs) constitute a significant factor in the global mortality rate, and
according to Cure Brain Cancer Foundation data, among all types of malignancies
worldwide, brain tumors cause more fatalities in individuals under the age of 40 than any
other type of cancer (Elmezain et al., 2022; Ali et al., 2022). This statistic underscores the
pressing need for continued research, awareness, and robust support to mitigate the
devastating effects of brain tumors on young generations. BT's consist of a bunch of
irregular cells within the human brain. These abnormal cells have the potential to affect the
nervous system adversely. This effect causes harm to the surrounding healthy brain tissues.
The brain is crucial in facilitating communication and coordination among different body
components (Tarasiewicz, Kawulok & Nalepa, 2021; Akram et al., 2025). Tumors disrupt
the function of the brain and are the most critical conditions afflicting the human system
(Baid et al., 2021). In 2020, it was estimated that 251,329 individuals worldwide tragically
lost their lives because of cancerous tumors in the brain. BT's are broadly classified into two
main categories: primary and secondary brain tumors. Primary BT's consist of cells that
originate within the brain. On the other hand, metastatic BTs, often called secondary BTs,
comprise cells that originate in other parts of the body and migrate to the brain through
the bloodstream (Liu et al., 2023). BTs are further classified based on the nature of
tumorous cells, with distinctions between malignant and non-malignant forms depending
on their severity. One of the most common types of primary brain tumors, called gliomas,
begins its growth within the brain. According to the “World Health Organization (WHO)”
report, this primary tumor is categorized into grades one to four. This grading system is
determined by the tumor’s behavior and microscopic characteristics, with grade one being
the least aggressive and grade four representing the most aggressive type of tumor (Yousef
et al., 2023). Treating gliomas typically involves a combination of therapeutic approaches,
including chemotherapy, radiation therapy, and surgical interventions. However, detecting
and segmenting gliomas poses a significant challenge for radiologists due to the variability
in tumor size and their diverse locations within the brain. The effective treatment of a
tumor heavily relies on factors such as its type, location, and grade. Consequently, tumor
segmentation plays a significant role in the treatment planning process (Zhang et al., 2023).
LIU-Net solves these issues by making computers more efficient and speedier with a
lightweight architecture. With multiscale feature extraction, it picks up on several tumor
characteristics. Specialized loss algorithms fix the class imbalance. This improves brain
tumor segmentation in complex datasets (Zhang et al., 2020b).

Contribution
The main contributions of the study are summarized as follows:

o LIU-Net, a lightweight deep learning-based encoder-decoder architecture, can handle
longer training times and model parameters. This architecture combines the skip
connections of U-Net with the strengths of Inception to facilitate the extraction of 3D
magnetic resonance imaging (MRI) multi-scale features.
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o The LIU-Net balances computational economy and segmentation accuracy, making it
suited for resource-constrained clinical and research environments.

Motivation and innovation

Medical imaging is indispensable in diagnosing and managing tumors, including the
critical task of tumor segmentation and assessing the effectiveness of therapy. Common
medical imaging modalities encompass ultrasounds, computed tomography (CT), MRI
scans, and X-ray image examinations. Among these, MRI is the most widely utilized
modality in brain tumor diagnosis. Its acclaim stems from its exceptional sharpness, tissue
resolution, and versatility in adjusting various parameters to obtain specific anatomical
details (Bukhari & Mohy-ud Din, 2021; Akhund et al., 2024). MRI is an advanced imaging
technique that relies on the principles of nuclear magnetic resonance (Sariturk ¢ Seker,
2022). MRI utilizes powerful magnetic fields, typically ranging from 1.5 Tesla (T) to 3 Tesla
(T), in conjunction with radio frequency waves to generate highly detailed images of
internal body structures and tissues (Pei ¢» Liu, 2021). MRI is a non-invasive imaging
technique employed to gather data about brain cells without posing any harm to the organ
under examination. This method is entirely devoid of high ionization or radiation effects.
MRI is preferred for brain imaging because it offers high-resolution images without the
harmful effects of ionizing radiation (Mehak, Muneer ¢~ Nawab, 2023; Yang et al., 2024). In
contrast, ultrasound, X-rays, and CT scans have their applications in medical imaging.
However, they are not the preferred choice for brain examination due to limitations in
image quality, safety concerns, and the specific needs of brain imaging. MRI encompasses
various types of image modalities or sequences, with T1-weighted (T1w), T1-weighted
contrast-enhanced (T1ce), T2-weighted (T2w), and fluid-attenuated inversion recovery
(FLAIR) being among the most extensively employed modalities for diagnosing brain
tumors. T1w imaging primarily serves to assess healthy tissues. Conversely, T2w imaging
accentuates the bright tumor area, whereas T1ce imaging underscores the bright tumor
boundary. The FLAIR scan is crucial in distinguishing between edema and cerebrospinal
fluid (Gad, Soliman & Darweesh, 2023). The LIU-Net was chosen because it could deal
with important problems in brain tumor segmentation, like class mismatch and
computational complexity. LIU-Net is different from other models because it uses both
Inception-style convolutional blocks and the U-Net framework. This enables it to record
multiscale features quickly while keeping the computational costs low. On-time and
accurate brain tumor segmentation (BTS) using the described four modalities is
instrumental in empowering medical professionals to conduct tumor surgeries with safety
and precision. This ensures that healthy brain regions remain unharmed during the
surgical procedure. Automated segmentation of brain tumors from MRI images has the
potential to significantly accelerate radiologists’ workflow and improve result consistency
(Liu et al., 2023). Nonetheless, automating the segmentation of brain tumors and their sub-
regions presents a formidable challenge, primarily due to the unpredictable nature of
tumorous cells. These cells can manifest in diverse locations within brain tissues, exhibiting
variations in size, appearance, and shape (Baid et al., 2020). One of the notable techniques
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in computer vision is the utilization of convolutional neural networks (CNN), which
demonstrate the ability to capture high-dimensional hierarchical features independently.
Conversely, classical machine learning algorithms depend on manually extracted feature
engineering, distinct from the automated feature learning capabilities inherent in CNN.
Inception-style blocks in the U-Net design allow LIU-Net to swiftly acquire multiscale
characteristics from tumors of various sizes and forms. Because it balances model
complexity and processing load, LIU-Net can accurately divide brain tumors in real-time
even with limited resources. This study presents an innovative deep-learning model for
segmenting brain tumors called LIU-Net that combines a lightweight Inception network
within the U-Net architecture, offering a unique and effective approach to this task
(Khan et al., 2022; Laghari et al., 2024). This combination speeds up training and ensures
robustness in a lightweight framework. The lightweight Inception U-Net is designed to
provide good accuracy while using fewer computer resources. This makes it helpful for
medical imaging, particularly in situations where resources are limited.

Structure of paper

The structure of this research article is as follows: the literature review, delving into the
existing body of knowledge, is discussed in “Literature Review”. Moving forward,
“Materials and Methods” presents the proposed LIU-Net model, which is the central focus
of this research study. Different experiments are conducted in “Results and Analysis”, and
a detailed discussion of the obtained results is provided. Finally, “Conclusion and Future
Directions” serves as the conclusion, wrapping up this article with potential future
directions.

LITERATURE REVIEW

Brain tumors represent a serious medical condition that requires early detection and swift
intervention to enhance the prospects of a favorable outcome (Ranjbarzadeh et al., 2024;
Kousar et al., 2024). Before deep learning techniques, traditional machine learning
methods were employed to acquire insights from brain images, relying on manually crafted
feature engineering. Recently, deep learning has emerged as a notable advancement in
medical imaging. Deep learning models independently capture both local and global
information in medical imaging. This section offers an in-depth literature review of
contemporary approaches rooted in architectural frameworks for brain tumor
segmentation.

U-Net based segmentation

Manual segmentation is a time-consuming and intensive process that heavily relies on the
expertise and experience of radiologists. Experts and medical professionals now demand
automated segmentation from volumetric brain scans. Numerous solutions have been put
forward to address the automated brain tumor segmentation from 3D MRI images. The
“U-Net model” is widely recognized as a prominent deep learning model uniquely
designed for biomedical image segmentation. The U-Net architecture was originally
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introduced by Ronneberger, Fischer ¢ Brox (2015) and gained widespread recognition for
its capacity to produce reliable segmentation outcomes, particularly in scenarios with
limited training data. The U-Net architecture is characterized by its distinctive U-shaped
structure, consisting of a left contracting portion known as the encoder, which is
responsible for feature extraction. On the other hand, it incorporates a right-expanding
segment called the decoder, which utilizes these features to generate an output mapped
back to the original image pixels. U-Net utilizes concatenation to relay important
contextual information and feature maps from the encoder to the decoder, enabling the
classifier to make well-informed predictions. In the domain of brain tumor segmentation,
most existing techniques have employed either 2D or 3D convolutions in the training of
deep CNN models (Zheng et al., 2024; Liu et al., 2024).

Dong et al. (2022) employed a model called a 2D U-Net for segmenting individual slices
within each 3D mpMRI volume. This approach was characterized by its speed in both
phases i.e., training and testing, along with lower computational demands. The evaluation
of this approach was conducted using the BraT$ 2015 dataset. This dataset consists of a
total of 220 cases of high-grade brain tumors and 54 cases of low-grade tumors.
Nevertheless, it’s important to highlight that this approach was notably over-
parameterized. This approach boasts around 35 million parameters. It also did not
efficiently exploit the 3D contextual information present in the dataset. Isensee et al. (2021)
employed an ensemble approach involving 3D U-Nets that were trained on an extensive
dataset. The architecture was trained and assessed using the training datasets from both
“BraT$ 2017 and BraTS 2015”. Their efforts primarily concentrated on implementing
minor refinements to achieve competitive segmentation performance. Wang et al. (2021)
introduced TransUNet as an innovative approach to leverage transformers in the area of
medical image segmentation. The TransUNet architecture bears a resemblance to the well-
established U-Net (Ranjbarzadeh et al., 2024) framework, wherein CNNs (convnets) serve
as feature extractors, while transformers play a pivotal role in encoding global context.
However, a key characteristic shared by TransUNet and its subsequent iterations (Al
Kako & Abdi, 2022) is the treatment of convnets as the primary backbone, upon which
transformers were applied to capture extended contextual relationships. While effective,
this approach presents a potential challenge: it may not fully harness the advantages of
transformers. This research uses a synapse multi-organ segmentation dataset. At its core,
this constraint arises from the recognition that utilizing only a limited number of
transformer layers may prove insufficient in effectively integrating extended contextual
relationships with the convolutional features inherent in the dataset. Convolutional
representations often provide hierarchical concepts and exact spatial information. Thus,
transformers and convnets can be synergised to better segment medical images.

Lightweight models in medical image segmentation

Traditional U-Net, 3D U-Net, and TransUNet are well-established in medical image
segmentation. More recently, lightweight deep learning models that balance accuracy and
computing efficiency have been developed. These models excel in real-time medical
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applications that require quick choices with limited resources. These models include VT-
Unet. It simplifies and is accurate in new ways. Self-attention layers and Fourier position
coding allow VT-Unet to extract local and global information from 3D medical images
with fewer parameters. The ability to quickly process vast amounts of data makes it ideal
for brain tumor segmentation. In its skip connections, Lightweight U-Net uses Vision
Transformer layers to focus on global feature models while training efficiently. This model
is ideal for accurate segmentation jobs like brain tumor detection. BraTS 2021 and other
smaller datasets work nicely with it. These lightweight models outperform 3D U-Net and
TransUNet designs. This is especially true for fewer parameters and faster training.
TransUNet works successfully because it uses transformers and CNNs. But devices like
VT-Unet segment better with less computer power, making them suitable for clinical
settings with restricted computational capacity. This study uses these recent brain tumor
segmentation advances to maximize lightweight constructions” accuracy and practicality
(Cahall et al., 2021).

Many existing techniques in brain tumor segmentation have focused on improving their
performance. While current segmentation models have shown promising results, they
often struggle to fully utilize the potential of 3D volumetric brain tumor scans due to
limitations in computational resources. Numerous studies within the literature review
section have emphasized notable enhancements in segmentation outcomes through
alterations to the model’s architecture. One key issue observed is the problem of over-
parameterization, which leads to complex models and longer training times. This research
introduces a novel, lightweight deep learning model with minimal parameters to address
this challenge. This research aims to increase the accuracy and authenticity of brain tumor
segmentation tasks while mitigating issues related to prolonged training periods and the
use of numerous hyperparameters (Khan et al., 2023). For the solution, this research study
introduces an innovative approach that combines the Inception network with a 3D U-Net
model, strategically addressing concerns about training efficiency and effectiveness in
brain tumor segmentation. This integrated approach is expected to streamline and
improve the segmentation process for brain tumors. Table 1 describes the proposed
methodology, novelty, and results of the literature described below.

Comparison with prior works

Compared to other works that combine U-Net with Inception (e.g., Cahall et al. (2021),
Sariturk & Seker (2022), Yang et al. (2024), Zhang et al. (2020b)), our proposed LIU-Net
sets itself apart from models that blend U-Net with Inception by prioritizing efficiency
without compromising segmentation accuracy. Like previous approaches that enhance
Inception layers with more complex parameters; instead, LIU-Net incorporates efficient
multi-kernel parallel convolutions to lower computational expenses while upholding
segmentation performance. In addition, by combining the Dice and Focal loss techniques,
we learned that this approach has not been extensively explored in previous research,
which leads to higher-level handling of class imbalance. Lastly, the validity of the LIU-Net
is checked on both the BraTS$ 2021 and BraTS 2020 datasets, and it show the potential to
generalize its performance across different datasets.
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Table 1 Comparison of existing brain tumor segmentation methods.

Study Proposed methodology Novelty Results
Dong et al. (2022) 2D U-Net for 3D mpMRI slices  Fast training/testing; lower Effective but over-parameterized (35 million
computational demand parameters); lacks 3D context utilization
Isensee et al. (2021) Ensemble of 3D U-Nets Minor refinements on BraTS datasets Improved accuracy, but computationally intensive
Chen et al. (2023) ~ TransUNet with CNNs and Integrates transformer layers for Effective but limited by a small number of
transformers global context transformer layers; spatial information not fully
exploited
Karimi, Vasylechko ~Convolution-free segmentation  Flattened image input; hierarchical =~ Handles multiscale data but requires pre-training on
& Gholipour model using transformers object concept acquisition large datasets
(2021)
Ma et al. (2023) Hierarchical transformer blocks ~ Encoder-decoder transformers; Significant accuracy improvements, but complex
in U-Net architecture multiscale feature learning and computationally demanding
Jia & Shu (2022) Vision Transformer layers in skip Global feature modeling through Accurate but parameter-heavy; evaluated on BraTS
connections deep connections 2021
Peiris et al. (2022)  Lightweight 3D U-Net with self- Window-based self-attention; Fourier High accuracy with fewer parameters; suitable for
attention position coding real-time use
Proposed method  Lightweight Inception-based U-  Combines Inception-style blocks with Superior segmentation accuracy on BraTS$ 2021
(LIU-Net) Net for brain tumor U-Net for efficient feature dataset; efficient and practical for real-time
segmentation extraction applications

MATERIALS AND METHODS

This article introduces lightweight Inception U-Net (LIU-Net), a new deep learning brain
tumor segmentation model. This model uses the Inception network’s multi-scale trait
capture and the U-Net architecture’s segmentation. We combine these two networks to
attain excellent segmentation accuracy with little computational power. LIU-Net efficiently
separates brain tumors from 3D MRIs. It avoids standard deep learning model issues like
too many parameters and slow training. Statistically, LIU-Net outperforms U-Net in
segmenting the BraTS 2021 dataset using paired t-tests. Within this section, this study
provides comprehensive information concerning the dataset, elucidates the pre-processing
steps executed on it, and delineates the specific details of the implementation process for
the proposed methodology. This section also delves extensively into the particulars of the
proposed LIU-Net model, offering a comprehensive explanation of the employed loss
functions throughout the training process. Additionally, Fig. 1 illustrates the general
workflow of the proposed system model.

Dataset

The LIU-Net model was implemented utilizing the openly accessible BraTS 2021 challenge
dataset. External cohort validation was carried out to validate the effectiveness of the
suggested model, and an assessment was performed using the BraTS 2020 dataset. The
datasets employed in this research were obtained from the Medical Image Computing and
Computer-Assisted Intervention (MICCAI) Multimodal Brain Tumor Segmentation
Challenge (BraTS). These datasets were meticulously curated by healthcare professionals
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Figure 1 General flow of proposed architecture. Full-size K&] DOT: 10.7717/peerj-cs.2787/fig-1

affiliated with the University of Pennsylvania and UPenn’s Center for Biomedical Image
Computing and Analysis (CBICA) (Baid et al., 2021).

The BraTS 2021 training dataset comprises 3D MRI brain scans collected from 1,250
patients. Each image within the dataset has dimensions of 240 x 240 pixels, and a complete
3D scan consists of 155 slices. The patient dataset encompasses four unique MRI
modalities: FLAIR, T1, T2, and Tlce. Figure 2 depicts example subjects drawn from the
BraT$ 2021 dataset. Significantly, these modalities primarily diverge with respect to the
brain’s water content, particularly cerebrospinal fluid, along with variances in tissue
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Figure 2 Sample MRI images from BraTS$ 2021 dataset.

Full-size K&l DOT: 10.7717/peerj-cs.2787/fig-2

Table 2 Dataset split of BraTS 2021.

Dataset Training set Validation set Testing set
BraTS§ 2021 70% 10% 20%
Total patients = 1,250 875 125 250

intensities. The segmentation mask is meticulously crafted through manual annotation by
a group of neuroradiologists, ranging from one to four experts (Raza et al., 2023). This
dataset encompasses four primary classes: background (labeled as 0), necrosis and non-
enhancing tumor (labeled as 1), edema (labeled as 2), and ET (initially labeled as 4).
However, for the implementation, label 4 was transformed into label 3. Before the training
of the proposed model, the dataset was class balance split into training, validation, and
testing subsets. Specifically, 70% of the data is allocated to the training set, 10% to the
validation set, and the remaining 20% to the testing set, as outlined in Table 2.

The BraT$S 2020 dataset consists of 3D MRI brain scans acquired from a cohort of 369
individuals diagnosed with glioma. Among these cases, 76 individuals were identified as
having low-grade glioma (LGG), while the remaining scans were sourced from high-grade
glioma (HGG) patients. Every MRI scan in this dataset has a consistent dimension of 240
x 240 pixels and 155 slices. Each patient’s dataset comprises four distinct MRI modalities:
T1, Tlce, T2, and FLAIR. This comprehensive multimodal approach provides a detailed
perspective on the glioma cases in this dataset for external cohort validation. The sample
images from the BraTS 2020 dataset are shown in Fig. 3.

Pre-processing

The competition organizers have completed various preprocessing steps on both the BraTS$
2021 and BraTS 2020 datasets prior to their public release to ensure their integrity and
originality. The images have undergone prior processing, including co-registration, skull-
stripping, alignment into a standardized space, and achieving isotropic tenacity (Zhang
et al., 2020a). MRI intensity varies due to scanner magnetic fields. To improve
segmentation results, data must be pre-processed before model training (Shaikh, 2018).
This study preprocessed MRI images by normalizing their pixel values to improve
comparability and analysis. Normalization is a common data preprocessing method in
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T1 T E FLAIR Segmentation
Mask

Figure 3 Sample MRI images from the BraTS 2020 dataset.
Full-size K&l DOTI: 10.7717/peerj-cs.2787/fig-3

medical image analysis that standardizes pixel values across modalities. The normalization
process used the scaler.fit_transform method, which independently transforms each MRI
modality’s pixel values. This normalization step is crucial as it reduces the impact of
variations in pixel intensity between different scans and enhances the robustness and
convergence of subsequent image processing and machine learning algorithms. It also
contributes to improved interpretability and generalization of the results. The zero mean
and unit variance normalization, also called Gaussian distribution, is applied to all images,
and it can be computed by Eq. (1).

X — Xmin

Xnom = 5———— 1
? Xmax - Xmin ( )

where X represents the original data, Xyorm represents the normalized data, X, represents
the minimum value in the original data and X,,x represents the maximum value in the
original data.

A resizing operation has been conducted on all MRI images, transitioning them from
their initial 240 x 240 x 155 dimensions to a more manageable size of 128 x 128 x 128
because of the limited computational power. To fully harness the valuable information
embedded within the four modalities i.e., T1, Tlce, T2, and FLAIR, they have been
integrated through stacking, allowing us to capitalize on the strengths of each modality.
Throughout the training phase, input instances measuring 128 x 128 x 128 x 4 (with “4”
denoting the four modalities) have been employed to train the model (Shaikh ¢ Khoja,
2014). This strategy guarantees that the model is exposed to the entirety of the available
data spectrum during the training process. Even though the method makes the images
smaller, it does not hurt the diagnostic process. The model still gets useful information
from all four modes (T1, T1ce, T2, and FLAIR) even though they are stacked into a single
input channel. This integration enables the model use traits from all four images that work
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well together while still keeping the resolution high enough for effective segmentation.
Resizing also makes sure that the model can easily process multiple 3D images, which
speeds up training without losing important diagnostic details. There are several methods
built into the model’s design, such as Inception blocks and loss functions, that help keep
the segmentation accuracy high even after the model is resized. In this way, resizing makes
computations faster without lowering the quality of the diagnostic results.

Proposed LIU-Net architecture

The basic U-Net model can be made better by adding LIU-Net blocks that look like
Inception and have parallel convolutional pathways with variable kernel sizes. This design
lets the network detect little details and huge spatial patterns. This is notably useful for
brain tumor fragmentation. Unlike earlier methods that use deeper networks to improve
performance, our approach increases representational capacity without raising parameters.
This maximizes training efficiency and reduces overfitting. The U-Net architecture is
renowned and widely adopted within the field of biomedical research, serving as a
prominent and extensively employed framework for semantic image segmentation (Khan
et al., 2021; Shaikh et al., 2022). The U-Net architecture has received acclaim for its
effective utilization of local and global feature extraction techniques across various scales.
Furthermore, using skip connections, the U-Net design seamlessly integrates a mechanism
through which feature maps from encoder levels are transmitted to their corresponding
decoder levels. When generating the segmentation mask, this design empowers the
segmentation classifier to adeptly consider fine-grained details associated with edges and
boundaries and higher-level contextual information about tumorous characteristics and
shapes. But alongside, certain limitations exist that can complicate the training process.
Primarily, as one delves deeper into the network architecture, challenges related to
prolonged training times and managing an extensive set of hyperparameters become
increasingly prominent. This study, taking the motivation from the U-Net model,
introduces LIU-Net architecture for brain tumor segmentation as a solution to address the
challenges. The complete architecture of the proposed LIU-Net architecture is represented
in Fig. 4. Traditional U-Net architectures excel at segmentation tasks, but they struggle
with long learning times and a large number of parameters. Also, their fixed convolutional
kernel sizes might make it harder to catch multi-scale features well. Inception-style blocks
in the U-Net framework allow for simultaneous feature acquisition at multiple scales.
Parallel convolutional layers with kernel sizes from 1 x 1 x 1 to 3 x 3 x 3 to 5 x 5 x 5 should
be used. This multi-scale technique helps the network identify small, medium, and big
structures, which is crucial for medical image segmentation.

The foundation of this proposed model relies on the U-Net architecture, featuring an
encoder-decoder structure with five-level depth. The encoder reduces the resolution of the
input MRI images to extract high-level features, whereas the decoder increases the
resolution of the feature maps to produce the segmentation mask. The proposed LIU-Net
with Inception-style blocks extends this architecture by incorporating additional features
for improved feature representation. The key innovation in the LIU-Net model is using
Inception-style blocks within each network level. These blocks consist of three parallel
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Figure 4 Proposed LIU-Net architecture.
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convolutional pathways with different kernel sizes. The Inception block used in this study
is shown in Fig. 5. Inception-style blocks combine features from different receptive fields to
acquire more spatial data than U-Net layers. That makes feature maps stronger at

distinguishing things. The parallel Inception blocks of the LIU-Net distribute computing

burdens more evenly. This speeds training and reduces over-parameterization compared

to deeper networks. LIU-Net is ideal for real-world medical imaging workloads with
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Figure 5 Expanded Inception blocks. Full-size K&l DOI: 10.7717/peerj-cs.2787/fig-5

limited computer capacity since it reduces computation costs and maximizes feature
extraction.

e Tower 1: 1 X 1 x 1 convolutions to capture fine details.
e Tower 2: 3 X 3 x 3 convolutions for capturing medium-sized structures.

e Tower 3: 5 x 5 x 5 convolutions for capturing larger structures.

Combining pathway feature maps helps the network capture more spatial information
and learn more discriminative features. This improves the model’s ability to handle
medical image object sizes and shapes. The proposed LIU-Net has five levels with
Inception-style blocks and maxpooling3D downsampling layers. A hierarchical structure
makes the network record features at multiple scales, enhancing segmentation accuracy.
The network receives a 128 x 128 x 128 x 4 3D volumetric image. Every level of feature
maps uses the Inception-style block to improve representation. Max-pooling layers
emphasise important information by reducing spatial dimensions. The decoder recovers
spatial features with up-sampling layers. Skip links between encoder and decoder layers
allow fine-grained spatial information to be transmitted during up-sampling. These
linkages preserve contextual information for accurate segmentation. This work’s design
uses Inception-style blocks to elegantly solve training time and parameter complexity
issues. This study improved model representation without deeper networks. Interestingly,
this architectural choice preserves nuanced aspects while training efficiently. On graphic
processing units (GPUs) and tensor processing units (TPUs), Inception-style blocks’
parallel convolutional pathways spread computational weight, speeding training. Reducing
parameters compared to classic deeper networks reduces over-parameterization concerns.
This architectural change enhances segmentation accuracy and keeps the model suitable
for medical image analysis. The LIU-Net balances top-tier results with computational
restrictions in deep learning for medical imaging. In pseudo-code, the proposed
architecture’s implementation code is described in Algorithm 1:
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Algorithm 1 LIU-Net Pseudo-code.

1:

W W W W W NN NN NN = e e e e e e e e
I I - T U P N T R~ R R N T S T N =

Step 0: Read BraT$S 2021 training dataset
Step 1: Split data into training set (70%), validation set (20%), and testing set (10%)
Input: Training dataset (Xirain, Yirain)
Input: Validation dataset (Xya1, Yval)
Input: Testing dataset (Xiest, Yiest)
Input: Model parameters 0
start
Step 2: Preprocessing (Z-score normalization)
Preprocess: Apply Z-score normalization to all datasets (Xirain, Xval; Xtest)
Step 3: Train the LIU-Net model
for epoch = 1 to Nepoeh  do

for batch = 1 to Nixin,,,,.. do

Step 3.1: Forward pass and calculate loss (Dice Loss)
Calculate Loss (Dice Loss) for current batch

end for
end for
Step 4: Save the trained LIU-Net model parameters
Save: LIU-Net model parameters
Step 5: Evaluate on the test set
Evaluate: Test the model on the test set (Xiest, Yiest)
Calculate: Dice score on the test set
Step 6: Segment the test set
for each sample X; in Xi.sx do

Ypred, = LIU-Net(X;)

end for
Step 7: Generate segmentation mask of the test set
Generate: Segmentation masks for the test set
Step 8: Test and generate the segmentation mask of the BraTS 2021 validation set
Evaluate: Test the model on the BraTS$ 2021 validation set
Generate: Segmentation masks for the BraTS 2021 validation set
Step 9: Cross-dataset validation on the BraTS$ 2020 training dataset
Read: BraT$ 2020 training dataset
Evaluate: Test the model on the BraTS$ 2020 training dataset

end

Loss function
Numerous factors impact the performance of deep learning models, and selecting an

appropriate loss function is a pivotal aspect that works hand in hand with the model’s
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architecture. The process of brain tumor segmentation poses a considerable challenge. Like
the class imbalance issue presents a notable concern, the choice of an appropriate loss
function holds great importance in tackling this issue and improving the overall
performance and precision of the model in accurately delineating all tumor regions
(Raza et al., 2023; Shaikh et al., 2022). This research utilizes the dice loss coefficient
function during the training, which can be computed by Eq. (2).

Dice Loss = 22 8) Z; (b g’z (2)
2pitlg

where p; represents the predicted probability (or intensity) of a pixel being in the foreground
called the predicted mask, and g; represents the actual ground truth probability (or
intensity) of a pixel being in the foreground (in the ground truth mask). The summation
operation is performed over all pixels in the image. In medical image segmentation, class
imbalance is a significant challenge, particularly in brain tumor segmentation, where the
tumor (foreground) occupies a much smaller region compared to the background. Standard
loss functions like binary cross-entropy (BCE) often result in poor segmentation
performance due to the dominance of background pixels. To address this issue, focal loss is

employed, which modifies BCE to focus more on hard-to-classify pixels.

Focal loss formulation
Focal loss (FL) is defined as:

FL(p:) = —a(1 — p)" log(p:) (3)
where:

e p; is the predicted probability of the true class.
e o is the class balance parameter (typically 0.25).

e 7 is the focusing parameter, controlling the down-weighting of easy examples
(commonly y = 2.0).

For binary classification (e.g., tumor vs. background), the focal loss can be expanded as:
FL(y,p) = —oy(1 = p)"log(p) — (1 — &) (1 — y)p' log(1 — p) 4)
where:

e y € {0, 1} is the ground truth label.
e p is the predicted probability of class 1.

For multi-class classification, the loss generalizes as:

FL(p:) = —ou(1 — p)" log(p:) (5)

where o, is a class-wise weighting factor.
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Combining focal loss with dice loss
Since segmentation tasks often use the Dice score for evaluation, we can combine Focal
Loss with Dice loss for improved performance:

Total Loss = A; x Focal Loss + 4, x Dice Loss (6)

where 4; and 4, are weighting factors.

Focal loss effectively handles class imbalance in medical image segmentation,
particularly for brain tumor segmentation where tumor regions are small. By combining
Focal loss with Dice loss, we can achieve better segmentation performance and robustness.

RESULTS AND ANALYSIS

This section provides a thorough overview of the experimental setup and evaluation
measures used to gauge the efficacy of the proposed LIU-Net model. It offers a comparative
analysis with existing methods. Subsequently, it discusses the validation of the external
cohort and computational complexity.

Experimental setup

Python was employed to implement the proposed LIU-Net model. Training, validation,
and testing were conducted using “Google Colab Pro” with a TESLA T4 GPU. In this
context, the TensorFlow and Keras libraries were utilized, along with the Adam optimizer
set to a learning rate of 0.0001. This configuration was combined with ReLU activation and
batch normalization for this purpose. The model was trained on 100 epochs with a batch
size of 2. The research conducted experiments utilizing the BraTS 2021 benchmark dataset.
In this study, 70% of the dataset was allocated for training purposes, while 10% was
reserved for validation and another 20% for testing. This approach was undertaken to
ensure the integrity and reliability of the experimental results. Multiple experiments were
conducted using the proposed technique to ascertain the most effective combination of
hyperparameters. This investigation determined the most effective configuration for
achieving the desired outcomes.

In the hyperparameter tuning process, the experiments utilized larger filters to capture
extensive local information. Subsequently, a gradual reduction in filter width was
implemented to narrow down the generated feature space and obtain more representative
information. This approach was adopted to achieve a lightweight model. Furthermore, the
optimization of the learning rate was performed through empirical tuning in various
experiments to identify the most suitable learning rate value. The process began with a
larger learning rate and iteratively reduced the learning rate value. This strategic
adjustment facilitated a quicker convergence towards the global minima, enhancing the
efficiency of the training process. The details about the hyper-parameters set during the
proposed model training are given in Table 3. Hyperparameters were optimized for
accuracy, stability, and computational efficiency through several trials. These selections
ensure the LIU-Net architecture can process 3D MRI images and segment brain tumors
well. This study chose the Adam optimizer because it can modify learning rates and
employ computers quickly. It combines two famous optimizers’ finest features. Adam is
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Table 3 Hyperparameters of the LIU-Net model.

Hyperparameter Hyperparameter value

Input size 128 x 128 x 128 x 4

Batch size 2

Learning rate 0.0001

Activation function (Hidden Layers) ReLU

Activation function (Output Layers) Softmax

Optimizer Adam

Loss function Dice coefficient and focal loss
Epochs 100

Output size 128 x 128 x 128 x 4

good at numerous tasks; thus, many deep-learning jobs utilize it by default. This study
selected Adam over SGD due to its faster convergence and superior handling of sparse
gradients. This study chose a batch size of two to update the model’s variables more
regularly, which can improve generalization. Larger batch sizes can speed up training, but
they can hinder generalization. A smaller batch size helps to balance model training time
and new data performance. This study selects 100 epochs to provide the model with
sufficient training cycles to understand complex data trends. Experiments demonstrated
that this quantity allowed the model to converge without over-fitting. This study selected
rectified linear unit (ReLU) for the hidden layers since it fixes the disappearing gradient
problem and speeds model convergence. The output layer used softmax to derive
probability distributions over the classes, which is useful for jobs that need to split objects
into multiple classes. The study chose Dice coefficient loss because it directly improves
predicted segmentation-ground truth overlap. The Dice coefficient was used to evaluate
the BraT$S 2021 dataset to reduce class imbalance. In medical image segmentation, tumor
regions are often smaller than healthy tissue (the majority class). Standard measurements
such as accuracy may not be accurate in this situation. However, the Dice coefficient
accounts for erroneous positives and negatives, giving a more accurate picture of how well
the model functioned with the minority class.

Evaluation measure

The assessment of the proposed methodology relies on Dice coefficient scores and
accuracy metrics. The Dice coefficient score is the primary evaluation measure in brain
tumor segmentation. It measures the extent of agreement between the predicted
segmentation mask and the actual ground truth, considering both incorrect omissions and
false inclusions. The Dice score ranges from 0 to 1, where higher values signify better
segmentation results. In clinical scenarios, the proposed model’s efficiency is measured by
segmenting the regions of the tumor into three distinct sub-regions: the tumor core (TC),
consisting of all tumor regions excluding edema; the whole tumor (WT), which
encompasses all three cancerous regions; and the enhancing tumor (ET), which is visible in
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the T1ce modality. In addition to the Dice coefficient score, accuracy metrics are employed
to gauge the model’s performance in accurately classifying and segmenting brain tumor
sub-regions. The Dice score formula used in this research can be calculated with Eq. (7).

21X UY]|

1 7
X] + Y] @

Dice Score =

Results of the proposed model

The LIU-Net model was trained using the BraTS 2021 training dataset. The model
underwent training on 70% of the dataset, validation on 10%, and was tested on the
remaining 20% of the unseen data. The trained model was used to perform brain tumor
segmentation on the test images. The described approach generates a three-dimensional
(3D) representation that illustrates the segmentation mask covering the tumor areas
known as WT, TC, and ET. For visualization, Fig. 6 displays the results of an MRI image
observed in the axial plane, showcasing randomly selected slices. The visualization results
declare the close alignment of the generated results with the ground truth for TC, WT, and
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Table 4 Results of the proposed architecture on the BraTS 2021 dataset.

BraTS$ 2021 WT TC ET

Train set 0.9498 0.9543 0.9033
Validation set 0.9027 0.9092 0.8646
Test set 0.8856 0.8444 0.8121
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Figure 7 Performance analysis of Dice coefficient. Full-size K&l DOT: 10.7717/peerj-cs.2787/fig-7

ET. This study displays LIU-Net’s segmentation output on small and irregularly shaped
tumors to demonstrate its performance in difficult conditions. These images show how
LIU-Net can separate tumors accurately even when classes are imbalanced. Figure 6
illustrates the outcomes of an MRI image when observed in the axial plane with randomly
selected slices. The yellow region represents the ET, the blue region corresponds to the
non-enhancing TC, and the green region highlights the edema or peritumoral Region. The
last colored block, labeled as the WT, is the union of these three subregions:

1. the non-enhancing TC (blue),

2. the ET (yellow), and
3. the edema (green).

Table 4 furnishes comprehensive details regarding the Dice coefficient values and
accuracy metrics for ET, WT, and TC across the train set, validation set, and test set, as
applied to the BraTS 2021 dataset.
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Figure 7 presents the training and validation metrics (WT, TC, and ET) plotted against
the number of epochs for the proposed model. This visual representation illustrates the
improvement in validation metrics over time in conjunction with the training metrics.

Figure 8 illustrates the training and validation loss per epoch. It is evident from the
results that the training loss and validation loss steadily decrease over time.

This study represents progress in improving the efficiency of the U-Net model for the
crucial task of brain tumor segmentation. While the existing U-Net model has historically
demonstrated commendable performance, this study recognized the need to address
certain challenges that could potentially hinder its utility, namely the issues related to over-
parametrization and protracted training times. To tackle these challenges head-on, this
research introduced a modified U-Net model with Inception blocks. This innovative
approach, named LIU-Net, aims to optimize and streamline the segmentation process for
brain tumors. By incorporating Inception blocks into the U-Net architecture, this study
has strategically improved the model’s capacity to capture intricate multiscale features and
patterns within medical imaging data. The decision to integrate Inception blocks into the
modified U-Net model stems from their proven efficacy in feature extraction and
representation learning. This improvement is especially advantageous in medical imaging
segmentation, given the subtle and intricate nature of tumor features requiring nuanced
comprehension. The pursuit of this novel model was motivated by the desire to maintain
the performance and effectiveness and elevate the quality of results achieved in brain
tumor segmentation. By mitigating over-parametrization and reducing training time, the
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Table 5 Testing results on the BraTS 2021 augmented dataset using Dice loss.

BraTS 2021 WT TC ET

Train set 0.9389 0.9323 0.8933
Validation set 0.9134 0.9156 0.8876
Test set 0.8945 0.8500 0.8098

proposed modified LIU-Net promises to contribute to more efficient and accurate medical
image analysis, ultimately benefiting patients and healthcare professionals.

Results of the proposed model with data augmentation

The study further ran three tests to evaluate the model on data augmentation. Dice, Focal,
and a mix of both were employed in these investigations. In the BraTS 2021 dataset,
segmentation accuracy improved in all tumor areas: WT, TC, and ET.

1. Experiment with Dice loss

Initially, the research trained the LIU-Net model using Dice Loss as the main loss
function and data improvement approaches. Using data enrichment improved Dice scores
in training, validation, and test sets compared to the previous experiment. Table 5
furnishes comprehensive details regarding the Dice coefficient values and accuracy metrics
for ET, WT, and TC across the train set, validation set, and test set, as applied to the BraTS$
2021 dataset.

Data augmentation also provided enhanced model generalisation by reducing
overfitting on the training set and boosting validation and test accuracy.

2. Experiment with Focal loss

Focal loss addresses uneven class distribution in classification tasks, notably with highly
imbalanced data. This improves cross-entropy loss. It prioritises challenging cases above
the correctly tagged examples. Mathematical description of focal loss is described
in Eq. (4).

In the second experiment, the study used Focal loss to address the class imbalance in
tumor segmentation. This approach assigns higher weights to misclassified pixels, ensuring
better detection of small tumor regions. Table 6 furnishes comprehensive details regarding
the Dice coefficient values and accuracy metrics for ET, WT, and TC across the train set,
validation set, and test set, as applied to the BraTS 2021 dataset.

Focal Loss was better at identifying small, hard-to-find tumors than Dice loss. It
performed slightly worse for larger tumor areas since it focused on problematic pixels.

3. Experiment with Combined Dice and Focal Loss

In the third experiment, the study combined Dice loss and Focal loss to leverage the
strengths of both functions—Dice loss’s ability to optimize segmentation boundaries and
Focal loss’s ability to handle class imbalance. Table 7 furnishes comprehensive details

Shahid et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2787 21/34


http://dx.doi.org/10.7717/peerj-cs.2787
https://peerj.com/computer-science/

PeerJ Computer Science

Table 6 Testing results on the BraT$S 2021 augmented dataset using focal loss.

BraTS$ 2021 WT TC ET

Train set 0.9466 0.9455 0.9088
Validation set 0.9000 0.9200 0.8766
Test set 0.9087 0.8788 0.8233

Table 7 Testing results on the BraTS 2021 augmented dataset using combined (Dice and Focal) loss.

BraTS$ 2021 WT TC ET

Train set 0.9099 0.9455 0.9233
Validation set 0.9677 0.9444 0.9067
Test set 0.9344 0.9555 0.9333

regarding the Dice coefficient values and accuracy metrics for ET, WT, and TC across the
train set, validation set, and test set, as applied to the BraTS 2021 dataset.

The results show that this combined approach achieved the highest segmentation
accuracy among all experiments. The model effectively handled class imbalances while
maintaining precise tumor boundary delineation, making it the most robust and reliable
configuration for brain tumor segmentation.

Comparison with existing models

The LIU-Net model has been subjected to a comprehensive comparative analysis against
existing models designed to segment brain tumors. In contrast to established segmentation
techniques, the presented method demonstrates an improved capacity for accurately
segmenting tumor regions that closely correspond to the ground truth, as substantiated by
the research results. Table 8 presents a comparative analysis between the proposed LIU-
Net model and existing models. The dataset column describes the dataset used in the
comparative studies. Dataset 2020 and Dataset 2021 are the BraTS datasets used in the
concerned studies.

The rationale behind selecting this architecture was to create a lightweight model that
would efficiently utilize computational resources and ensure solving longer training time
problems for comprehensive learning. Second, this research aimed to mitigate the issues
associated with model over-parameterization, which can lead to increased computational
demands and reduced generalization capability. The application of the LIU-Net produced
promising outcomes, showcasing the effectiveness of the proposed method in achieving
precise brain tumor segmentation. This decision not only highlights the dedication to
enhancing computational efficiency but also underscores the commitment to generating
significant outcomes in the realm of medical image analysis. This study examines WT, TC,
and ET. The study compares the LIU-Net with several existing models. The comparison
clearly shows the difference and effectiveness of the proposed model results from the
existing ones. Axial Transformer (2021) had a WT score of 0.9321, while Redundancy
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Table 8 Comparative analysis.

References Dataset Model WT TC ET
Elmezain et al. (2022) BraTS 2021 LDCRF 0.8700 0.8500 0.8300
Peiris et al. (2022) BraTS 2021 Adversarial 0.9076 0.8500 0.8138
Wang ¢ Dai (2023) BraTS$ 2021 Swin UNETR 0.9260 0.8850 0.8580
Liu et al. (2022) BraT$ 2021 SGEResU-Net 0.9164 0.8685 0.8331
Raza et al. (2023) BraTs$ 2020 dResU-Net 0.8660 0.8357 0.8004
Jiang et al. (2022) BraTs$S 2020 SwinBTS 0.8906 0.8030 0.7736
Siddiquee & Myronenko (2021) BraTs$ 2021 Redundancy 0.9265 0.8868 0.8600
Wang et al. (2021) BraTS 2020 TransBTS 0.8900 0.8136 0.7850
Abd-Ellah et al. (2024) BraTS 2017 TPCUAR-Net 0.8700 0.8300 0.7600
Ren et al. (2024) BraTS 2023 Transfer learning 0.6764 0.7214 0.7159
Liu & Kiryu (2024) BraTS 2021 Axial Transformer 0.9321 0.9191 0.9006
Zhou et al. (2024) BraT$ 2019 MambaBTS 0.8645 0.7350 0.8175
Luo et al. (2021) BraTS 2018 and 2017 HDC-Net 0.897 0.847 0.809
Liu & Kiryu (2024) BraTS$ 2018 3D Medical Axial Transformer 0.9305 0.8791 0.8281
Chi et al. (2024) UCSF-PDGM, BraTS$ 2021 and 2019 N-shaped lightweight 0.9038 0.8749 0.8578
Proposed BraTS$ 2021 LIU-Net 0.9027 0.9092 0.8646

(2021) and Swin UNETR (2021) were close behind at 0.926. LIU-Net (2021) earned a WT
score of 0.9027, placing it among the best models. Again, Axial Transformer (2021) had the
highest TC score of 0.9191. In this category, LIU-Net (2021) scored well with 0.9092 TC. It
accurately identified the TC as the second-best model for this metric. The highest score was
0.9006 for the Axial Transformer (2021), followed by Redundancy and Swin UNETR. LIU-
Net (2021) has a 0.8646 ET score, ranking it among the best models. LIU-Net (2021)
outperforms all except the axial transformer in TC measurements. In conclusion, LIU-
Net’s brain tumor separation results are strong and stable, making it a valuable field
addition with fewer computational resources.

External cohort validation using BraTS 2020 dataset
According to the insights presented in the studies (Raza ef al., 2023), evaluating a model’s
performance on an unfamiliar dataset offers an unbiased assessment of its capabilities.
While a model may demonstrate impressive performance on the training data, if it exhibits
subpar results on an independent external dataset, it indicates overfitting to the training
data. Overfit models have limited practical applicability in real-time scenarios. To validate
the proposed LIU-Net model’s robustness, it underwent external cohort validation using
the BraTS$ 2020 dataset. The Dice coefficients obtained through external cohort validation
for the proposed architecture yielded values of 0.8996, 0.8360, and 0.7925 for the WT, TC,
and ET regions, respectively. A detailed breakdown of the external dataset experiment
results is presented in Table 9.

The visualization provided breaks down LIU-Net’s multiscale feature extraction. It
shows how convolutional routes link Inception-style blocks. These pathways detect small,
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Table 9 External cohort validation results.

Method Dataset WT TC ET
External cohort validation BraT$S 2020 0.8360 0.8996 0.7925
Test data BraTS 2021 0.8444 0.8856 0.8121

medium, and large image features needed to identify cancers of various sizes. LIU-Net
reliably handles tumor growth and shape variations by combining these properties. In
medical imagery, where tumors can look, feel, and be quite different sizes, focusing on
many scales is helpful. These results, along with Dice scores and IoU values, demonstrate
that the approach may be utilized in clinical settings to segment difficult situations clearly
and reliably. Figure 9 visually represents the MRI sequence results from the external cohort
experiment, as observed in the axial plane. It showcases randomly selected slices from the
BraT$S 2020 dataset. The visual representation confirms that the obtained results closely
align with the ground truth values for TC, ET, and WT.

As evident from the outcomes of external cohort validation, the proposed model
demonstrates strong generalization capabilities when applied to previously unseen data.
This substantiates the model’s resilience and efficacy.

Validation was performed using 2021 test results and a 2020 external cohort. This study
examines WT, TC, and ET. On the 2020 dataset, LIU-Net achieved a WT score of 0.8360
for external cohort validation. The WT score increased to 0.8444 on the 2021 test data,
proving it works on all datasets. External cohort validation showed a high TC score of
0.8996, indicating that the model can isolate the TC. Despite a lower 2021 TC score of
0.8856, it performed well. ET = 0.7925 for outside group confirmation. The ET score rose
to 0.8121 for the 2021 test data, indicating that the model can locate the ET region across
datasets. The external cohort evaluation shows that the LIU-Net model reliably separates
brain tumors across datasets. Because whole WT, TC, and ET performance measures are
still good, the model functions well with new data. Scores above 0.83 indicate reliable and
predictable performance in the WT dataset. The model’s strong TC scores in both
validations suggest it can identify the TC. Overall, external cohort validation findings
confirm the LIU-Net model’s reliability and stability. It can be beneficial for clinical brain
tumor segmentation. The model was also utilized to generate predictions on the BraTS$
2020 validation dataset, which lacks ground truth annotations. Figure 10 depicts the
predictive results generated for the BraTS 2020 validation dataset, which lacked publicly
available ground truth data. It can be confirmed from predicted results that the proposed
LIU-Net model outperforms the validation dataset where ground truth masks are
unavailable.

Computational complexity
The proposed LIU-Net model has a total of 3.124 M parameters with a model size of 11.92
MB and approximately 58.66 Gega floating point operations per second (GFlops), which
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Table 10 Summary of the computational resources.

Model Dataset Parameters (M) FLOPs (G) Training time Testing time
U-Net BraTS 2021 19.06 1670 58 h 6s

LIU-Net BraTsS 2021 3.124 58.66 20 h 3s
dResU-Net Raza et al. (2023) BraTS 2020 30.47 374.04 - -

makes the proposed model a lightweight model. The presented model is adaptable for
application in a wide range of real-world clinical scenarios where computational efficiency
is a priority. This efficient architecture allows for resource-conscious utilization in diverse
contexts. The time required for executing the proposed model amounted to 15 min per
epoch, and the training process encompassed 100 epochs, resulting in an overall training
duration of approximately 20 h. The real-time assessment duration for the proposed model
was remarkably swift, taking only 3 s for a single test subject, thus demonstrating its
practical viability in clinical settings. Moreover, it is worth noting that the potential exists
for further enhancing the model’s performance by utilizing more robust computational
resources. The summary of the computational resources of the proposed LIU-Net model
and baseline U-Net model are provided in Table 10.

U-Net has 19.06 M parameters, and LIU-Net has 3.124. Fewer factors make LIU-Net
lightweight and fast to compute. Multiply-Add Flops (MFlops) illustrate how difficult
models are to compute. The U-Net has 1670 MFlops, while the LIU-Net has 58.66. This
huge decline in MFlops demonstrates the computational power efficiency of LIU-Net.
LIU-Net training lasts 20 h, whereas U-Net lasts 58. Low training time illustrates that LIU-
Net uses duration and computer resources well, enabling faster development loops and
iterations. LIU-Net tests samples in 3 s, whereas U-Net takes six. LIU-Net’s faster
reasoning time helps real-time applications draw speedy conclusions. The recommended
LIU-Net model outperforms the U-Net model in computational complexity. With fewer
parameters and computational power, LIU-Net learns and concludes faster. LIU-Net is
ideal for clinical settings with few computers but high processing speeds. The TESLA T4
GPU, Intel Xeon CPU, and 32 GB of RAM provided enough computing capability to
complete these tests swiftly.

Ablation study

The LIU-Net achieved superior Dice scores compared to the baseline method for each
specific brain tumor sub-region. The model obtained comparable results because of the
incorporation of Inception blocks in the U-Net architecture. LIU-Net incorporates
Inception-style blocks, featuring multiple convolutional blocks with varying kernel sizes (1
x1x1,3%x3x3,and5 x 5 x 5) to capture multi-scale hierarchical features effectively.
The proposed model’s design comprises an encoding path consisting of down-sampling
layers and a decoding path equipped with up-sampling layers, enabling the model to
acquire hierarchical representations of the input data. Each down-sampling block employs
the Inception blocks, promoting extracting informative features at multiple scales.
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Table 11 Results of the ablation study on validation.

Model WT TC ET
Baseline: 3D U-Net 0.8531 0.8203 0.7581
Proposed: LIU-Net 0.9027 0.9092 0.8646

Table 12 Results of paired sample t-test performed on BraTS 2021 dataset.

Brain tumor sub-region T-statistic P-value
ET 5.45970 0.03195
TC 9.38040 0.01117
WT 7.08460 0.01935

Moreover, skip connections are established between the encoding and decoding path to
facilitate the flow of detailed information during the up-sampling process.

Ablation experiments were carried out to assess the performance of the proposed LIU-
Net model. The experiments highlight that Inception-style design and lightweight
architecture are advantageous for certain medical imaging scenarios, particularly when
dealing with complex anatomical structures. Furthermore, the proposed LIU-Net model
exhibits superior computational efficiency compared to the baseline model. Training a
single epoch of the LIU-Net takes approximately 15-16 min, unlike the baseline model,
which requires 34-36 min to complete a single epoch. This significant reduction in
training time underscores LIU-Net’s practicality and effectiveness, making it an even more
appealing choice for time-sensitive medical image segmentation tasks. Table 11 presents
the impact of both methodologies on the Dice scores for the three sub-regions: ET, WT,
and TC.

Statistical analysis

This study further conducted paired sample t-tests to prove the statistical

significance of the proposed model and to analyze the segmentation outcomes achieved by
the LIU-Net model compared to the baseline U-Net model. The paired sample t-test was
utilized for statistical analysis because it compares the means of similar groups or
situations. This study compared the segmentation results of the suggested LIU-Net model
and the traditional U-Net model. The analysis use the paired sample t-test to see if there
are statistically significant differences in Dice scores between the ET, WT, and TC
regions. For the same dataset, LIU-Net findings are directly compared to U-Net

results. Since the recommended model and baseline model employ the same images, the
paired sample t-test is useful. This enables the study to direct comparison of the two
models’ performance without considering dataset differences. This strategy considers the
confusion that arises from the use of distinct data sources by both models. Statistics were
based on 100 MRI scans. ET, WT, and TC segmentation results were collected using
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LIU-Net and baseline U-Net models. The results, including the t-statistic and
corresponding p-values, are summarized in Table 12. This table reveals that the p-values
for the ET, WT, and TC regions were below the significance threshold of 0.05. Hence,
based on our findings, we can confidently conclude that, at the 0.05 significance level, the
segmentation Dice scores obtained with the proposed LIU-Net significantly surpassed
those obtained with the baseline model. These outcomes underscore the efficacy of the
proposed methodology, particularly in the context of real-time applications.

CONCLUSION AND FUTURE DIRECTIONS

This work proposed an innovative LIU-Net architecture for BTS using multimodal 3D
MRI images. Our investigation confronts the intricate complexities associated with model
over-parameterization and prolonged training time, as observed in existing models. The
conducted experiments provide strong evidence, highlighting the effectiveness of
integrating Inception-style blocks into the U-Net architecture. This integration amplifies
the model’s efficiency across training duration and hyperparameter optimization,
culminating in an enhanced tumor segmentation performance. The comprehensive
evaluation on the BraTS 2021 dataset validates the potential of the LIU-Net model. The
proposed model achieved a remarkable Dice scores of 0.8121 for the ET region, 0.8856 for
the WT region, and 0.8444 for the TC region. These findings affirm the model’s efficiency
in delineating tumor boundaries and capturing the nuanced intricacies within tumor sub-
regions. Moreover, external cohort validation was performed to establish the versatility
and robustness of our proposed LIU-Net architecture, utilizing the BraTS 2020 dataset.
Encompassing datasets from many medical centers for validation holds the promise of
evaluating the methodology’s universal applicability and effectiveness across divergent
imaging protocols and patient cohorts. In the future, a promising avenue lies in the
exploration of optimization techniques that facilitate real-time or near-real-time model
inference. Such capabilities could be invaluable in clinical settings, expediting prompt
decision-making processes.
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