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ABSTRACT
The semantic segmentation task of remote sensing images often faces various
challenges such as complex backgrounds, high inter-class similarity, and significant
differences in intra-class visual attributes. Therefore, segmentation models need to
capture both rich local information and long-distance contextual information to
overcome these challenges. Although convolutional neural networks (CNNs) have
strong capabilities in extracting local information, they are limited in establishing
long-range dependencies due to the inherent limitations of convolution. While
Transformer can extract long-range contextual information through multi-head self
attention mechanism, which has significant advantages in capturing global feature
dependencies. To achieve high-precision semantic segmentation of remote sensing
images, this article proposes a novel remote sensing image semantic segmentation
network, named the Dual Global Context Fusion Network (DGCFNet), which is
based on an encoder-decoder structure and integrates the advantages of CNN in
capturing local information and Transformer in establishing remote contextual
information. Specifically, to further enhance the ability of Transformer in modeling
global context, a dual-branch global extraction module is proposed, in which the
global compensation branch can not only supplement global information but also
preserve local information. In addition, to increase the attention to salient regions, a
cross-level information interaction module is adopted to enhance the correlation
between features at different levels. Finally, to optimize the continuity and
consistency of segmentation results, a feature interaction guided module is used to
adaptively fuse information from intra layer and inter layer. Extensive experiments
on the Vaihingen, Potsdam, and BLU datasets have shown that the proposed
DGCFNet method can achieve better segmentation performance, with mIoU
reaching 82.20%, 83.84% and 68.87%, respectively.
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INTRODUCTION
With the development of aerospace technology and sensor technology, researchers can
easily obtain high-resolution remote sensing images with rich spatial details and potential
semantic content (Jiang, Jiang & Jiang, 2020; Hoeser & Kuenzer, 2020), including various
geographic spatial objects such as buildings, cars, roads, bare soil, etc. Remote sensing
image semantic segmentation is the pixel-level classification task of the entire image, which
marks the category of each pixel in the image. It can provide technical support for
applications of urban planning (Yan et al., 2019; Bi et al., 2020; Huang et al., 2021),
agricultural production (Liu et al., 2019; Sheikh et al., 2020), disaster monitoring
(Schumann et al., 2018), land change (Samie et al., 2020), road extraction (Lian et al.,
2020), etc. However, due to the inherent characteristics of high-resolution remote sensing
images, remote sensing target segmentation tasks mainly face three challenges:
(1) Complex background: multiple terrain features are mixed together in the remote
sensing image, forming a complex background that makes accurate target segmentation
extremely difficult; (2) high inter-class similarity: objects of different categories may have
similar appearance features in remote sensing images, which significantly increases the
difficulty of distinguishing different categories; (3) large intra-class variance: there are
significant differences in buildings at different locations, targets of the same category may
exhibit significant internal differences in high-resolution remote sensing images, making
the recognition of them more complex. Traditional semantic segmentation methods such
as support vector machines (Guo, Jia & Paull, 2018), random forests (Pal, 2005), and
conditional random fields (Krähenbühl & Koltun, 2011) have achieved good results in
recent years, but their generalization is poor and they can no longer meet the current
demand for high-precision segmentation.

With the rapid development of deep learning technology, convolutional neural
networks (CNNs) have been widely used as an important feature extraction method in
various computer vision tasks, especially in image semantic segmentation. Long,
Shelhamer & Darrell (2015) replaced traditional fully connected layers with convolutional
layers and proposed a fully convolutional network (FCN) that achieved pixel level
segmentation for the first time. Inspired by this, Ronneberger, Fischer & Brox (2015)
proposed a network based on encoder and decoder structures, called UNet. The encoder is
used to extract features, while the decoder combines high-level semantic and low-level
spatial information to restore the resolution of the image, and the missing feature
information due to downsampling is compensated through skip connections to further
improve segmentation accuracy. However, pixel-level fine-grained classification tasks in
semantic segmentation require rich high-level semantic information, and UNet just simply
concatenates low-level features with high-level features, making it difficult to obtain
satisfactory segmentation results. Although subsequent researchers have attempted to
modify the structure through various techniques, such as the expansion of receptive fields
(Zhao et al., 2017; Chen et al., 2018a, 2017, 2018b), extraction of more contextual
information (Zhou et al., 2019; He et al., 2019; Yu et al., 2020; Yuan, Chen &Wang, 2020),
and attention mechanisms (Hu, Shen & Sun, 2018; Zhao et al., 2021), these CNN-based
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methods still cannot directly capture long-distance contextual relationships, resulting in
room for improvement in segmentation accuracy.

Inspired by the tremendous success of Transformer (Vaswani et al., 2017) in natural
language processing (NLP), researchers have applied it to computer vision tasks such as
semantic segmentation. Dosovitskiy (2020) proposed the Vision Transformer (ViT) model,
which divides an image into multiple small image blocks and linearly embeds them into a
standard Transformer to achieve image classification. Zheng et al. (2021) proposed
Segmentation Transformer (SETR) using ViT as the backbone network, demonstrating for
the first time the feasibility of Transformer in semantic segmentation. However, the
computational complexity of the multi-head attention mechanism in Transformer is
proportional to the square of the input sequence length, which limits its application in
high-resolution images. To address this issue, Liu et al. (2021) proposed a Swin
Transformer based on shift windows, which adopts self-attention mechanisms within local
windows. Wang et al. (2021b) proposed a pyramid visual Transformer, which replaces
traditional multi-head attention (MHA) with spatial-reduction attention (SRA) to reduce
the number of key-value pairs, thus reducing computational complexity. Although
Transformer-based methods utilize multiple kinds of self-attention mechanisms to model
long-distance dependencies, there are certain limitations in capturing local features and
maintaining scale invariance (Xu et al., 2021). On the contrary, CNN has favorable locality
and scale invariance by using convolutional kernels to calculate the interrelationships
between adjacent pixels. Therefore, we can conclude that CNN and Transformer focus on
different aspects in semantic segmentation respectively. On the one hand, CNN can better
extract local detail information, but its limited receptive field limits its ability to model
long-range contextual dependencies. On the other hand, Transformer is effective at
establishing global dependencies, but cannot extract local specificity well.

From the above analysis, combining CNN and Transformer can make up for their
shortcomings and enhance the advantages of both. To this end, Chen et al. (2021) proposed
TransUNet, which uses the CNN structure of UNet for feature extraction, and then utilizes
the self-attention mechanism of Transformer to globally model the features, achieving
excellent performance in medical image segmentation. CNN and Transformer are
integrated into a single architecture, called Defect Transformer (Wang et al., 2023), DefT
to encode local positions through the locally position-aware block and model multi-scale
global contextual relationships by the lightweight multi-pooling self-attention block,
achieving high-precision defect segmentation results. He et al. (2022) proposed a dual
encoder parallel structure ST-UNet based on CNN and Swin Transformer, in which the
relationship aggregation module can fuse the global and local features obtained by the
main encoder and auxiliary encoder. Ding et al. (2021) proposed WiCoNet to extract local
features through two branches of convolutional neural networks, and then fuse the two
branches of features using Transformer. LEFormer (Chen et al., 2024) introduced a hybrid
architecture that integrated CNN and Transformer components for precise lake extraction
from remote sensing images. It employed a cross-encoder fusion module to merge the local
spatial details captured by the CNN encoder with the global features derived from the
Transformer encoder, thereby enhancing the precision of mask prediction. It can be seen
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that the above segmentation models only use Transformer in the encoder, and there is little
research on the role of Transformer in the decoder. However, UNetFormer (Wang et al.,
2022b) proposed a hybrid architecture of CNN and Transformer in series, which adopted
ResNet18 as the encoder, and designed a global-local transformer block (GLTB) to build
the decoder, and finally achieved accurate segmentation results for remote sensing images.
CMTFNet (Wu et al., 2023) presented a novel semantic segmentation network with a CNN
encoder and a multi-scale Transformer decoder architecture. It constructed a Transformer
decoder based on the multiscale multihead self-attention (M2SA) module, which
efficiently extracted and fused local and multi-scale global context information from
remote sensing images.

UnetFormer and CMTFNet achieved remarkable results, attributed to their unique and
efficient network architectures. Consequently, we opted to adopt a network architecture
that employs a CNN as the encoder and a Transformer as the decoder. Although
UnetFormer utilized Transformers to acquire global information, it did not fully capitalize
on the feature information between different layers. Therefore, we have repeatedly used
various methods to obtain global context information in order to further enhance the
model’s performance.

Based on the above analysis, a Dual Global Context Fusion Network (DGCFNet) with
CNN as the encoder and Transformer as the decoder is proposed for high-precision
semantic segmentation of remote sensing images. In the encoding phase, the ResNet-18
model is used to extract multi-scale features. In the decoding part, to improve the
recognition ability of object boundaries and details, a dual-branch global extraction
module (DGEM) composed of global attention branch and global compensation branch is
proposed to fuse local information and contextual information. Meanwhile, a cross-level
information interaction module (CIIM) based on Transformer is proposed to enhance the
contextual correlation between different levels. Finally, to enhance the representation
ability of image semantic content, the feature interaction guided module (FIGM) is
proposed, which adaptively fuses the intra-layer global context relationship with the inter-
layer context relationship.

The main contributions of this work are as follows:
(1) A novel network specifically designed for semantic segmentation tasks in remote

sensing images is proposed. This network integrates CNN and Transformer, which can
better model long-range dependencies while preserving spatial features.

(2) A dual-branch global extraction module is proposed, which consists of a global
attention branch based on multi-head attention mechanism and a global compensation
branch containing multiple average pooling layers to extract rich global contextual
information and enhance local information.

(3) A cross-level information interaction module based on Transformer is proposed to
fuse two information from different levels, thus enhancing recognition ability at different
scales.

(4) A feature interaction guided module is proposed, which can effectively integrate
inter-layer contextual information and intra-layer contextual information to further refine
segmentation results.
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RELATED WORK
CNN-based semantic segmentation methods
FCN (Long, Shelhamer & Darrell, 2015) is a CNN structure that solves semantic
segmentation problems in an end-to-end manner. It uses transposed convolutional layers
instead of fully connected layers in traditional image classification networks, and can
gradually reduce the resolution of feature maps through stacked convolutional layers to
obtain more semantic information. Afterwards, FCN-based methods dominated in the
field of semantic segmentation of remote sensing images. However, due to the simplicity of
its decoder, it is prone to misclassify image pixels, resulting in low segmentation accuracy.
To address this issue, UNet (Ronneberger, Fischer & Brox, 2015) proposed an encoder-
decoder network that utilizes skip connections to preserve the spatial information of the
input image, allowing UNet to utilize semantic information at different levels while
maintaining high-resolution features. Therefore, nowadays, the encoder-decoder structure
has become the mainstream network for remote sensing images semantic segmentation.
Nevertheless, due to the limitations of convolutional kernels, the limited receptive field can
only extract local semantic features and lack the ability to global modeling of the entire
image. To solve this problem, PSPNet (Zhao et al., 2017) constructed a feature pyramid
through multiple parallel convolutional and pooling layers, which can receive receptive
fields of different sizes to capture multi-scale contextual information. DeeplabV3 (Chen
et al., 2018a) introduced an atrous spatial pyramid pooling module that captures multi-
scale contextual information through multiple dilated convolutions with different dilation
rates. In the field of remote sensing images, A2-FPN (Li et al., 2022) proposed an attention
aggregation module that adaptively selects features at different scales through attention
mechanisms, and combines feature pyramid networks to achieve effective learning and
utilization of multi-scale features. MAResU-Net (Li et al., 2021a) proposed a linear
attention mechanism and incorporated it into the skip connections of the encoder decoder
structure to make the network automatically focus on important regions of the image,
thereby improving segmentation accuracy. LANet (Ding, Tang & Bruzzone, 2020)
proposed a local attention mechanism that introduces a local perception module to
perceive the target scale changes, meanwhile, utilizes multi-scale feature fusion and fine-
grained semantic segmentation techniques to improve segmentation accuracy and
robustness. Li et al. (2021b) introduced multiple attention mechanisms to simultaneously
focus on information from different aspects and scales of an image. Although the above
methods have achieved significant segmentation results, they mainly obtain global
information by aggregating local features extracted by convolutional kernels, rather than
directly modeling global relationships. To address the issue of image feature loss, Wang
(2023) introduced a new segmentation network, G-Lite-DeepLabV3. By combining group
convolution with an attention mechanism, their model effectively handles complex
semantic features and enhances the network’s response to important features. In order to
distinguish between benign and malignant tissues in medical images, Damkliang et al.
(2023) proposed an integrated method that combines a UNet-based architecture with
attention gate units and residual convolutional units for prostate cancer (PCa) tissue
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analysis, achieving excellent results. Dong et al. (2024) proposed the Adaptive Adjacent
Context Negotiation Network (A2CN-Net) to address issues related to large-scale changes
and small-sized targets. This network utilizes a composite fast Fourier convolution module
to enhance global context information and adaptively fuses multi-level features. Qu et al.
(2024) proposed a deep multi-branch residual Unet with fused inverse weighting gated
control. By introducing a deep multi-branch residual module that utilized convolution,
detailed image features were extracted at deeper levels, the inverse weighting gated control
module enhanced the diversity of upsampling information through counterclockwise
horizontal transmission attention. Finally, at the highest level of the U-shaped encoder, a
pyramid attention mechanism with different receptive fields was used to address the loss of
pixel-level information leading to boundaries. Unlike these networks, our proposed model
not only uses convolutional neural networks but also incorporates Transformers to further
capture the global context information.

Transformer-based semantic segmentation methods
Transformer (Vaswani et al., 2017) was initially applied in the field of NLP. To apply it to
image semantic segmentation, the image processing task is transformed into the sequence
task of 1D image blocks. In this way, contextual information can be obtained through the
powerful sequence-to-sequence modeling ability of Transformer structure. Most
Transformer-based semantic segmentation networks still follow the encoder-decoder
structure and can be roughly divided into two categories. The first category is pure
Transformer methods. For example, SETR (Dosovitskiy, 2020) utilized the self-attention
mechanism in Transformer to capture the dependency relationships between pixels in an
image, thereby significantly improving the performance of semantic segmentation.
However, the length of the input sequence is linearly related to the image resolution, which
can lead to low efficiency in processing high-resolution images. Swin Transformer (Liu
et al., 2021) proposed a window self-attention mechanism that divides an image into a
series of small image blocks and only calculates the self-attention of the image region
within the window. The Transformer structure has also demonstrated strong performance
in remote sensing images. CGVT (Deng et al., 2023) used the crisscross attention
mechanism to extract features with different scales at different levels. By combining the
crisscross attention mechanism with the ViT model, it can improve the understanding of
details and global structures, thus enhancing the accuracy of semantic segmentation.
DCSwin (Wang et al., 2022a) adopted Swin Transformer as the encoder to extract
contextual information and proposed a novel densely connected feature aggregation
module and two attention blocks to connect four hierarchical Transformer features,
thereby obtaining rich multi-scale information and context relationships. Another type is a
hybrid network that combines the advantages of CNN and Transformer. For example, ST-
UNet (He et al., 2022) constructed a dual encoder structure in parallel with Swin
Transformer and CNN, and hierarchically integrated the global dependencies of Swin
Transformer into the features of CNN through a relational aggregation module. Ding et al.
(2021) proposed a wide context network that uses an adaptive perceptual context feature
fusion mechanism to dynamically select and fuse features of different scales. BANet
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(Wang et al., 2021a) proposed a bilateral perception network that includes dependency
paths and texture paths. The former extracted global contextual relationships through
Transformer, while the latter extracted texture features through CNN. AerialFormer
(Hanyu et al., 2024) employed a Transformer as the encoder and utilized multi-dilated
convolutional neural networks (MD-CNNs) for the decoder. By considering both local and
global context information, it achieved powerful representation and enabled high-
resolution segmentation. Distinguished from these networks, our proposed model builds
upon the use of Transformer and further investigates the integration of information across
different layers by exploiting their inter-layer relationships, thereby enhancing the model’s
segmentation performance.

METHODOLOGY
Overall structure
As shown in Fig. 1, the proposed DGCFNet network consists of an encoder and a decoder.
The encoder uses ResNet18 as the backbone network to extract multi-scale semantic
features. It consists of four stages of Resblocks, and each stage comprises two 3 × 3
convolution layers. Except for the first stage that uses a max pooling layer, the other three
stages change the resolution of the feature map through a 3 × 3 convolution with a stride of
2. Therefore, given an image with size of H × W four different sizes of feature maps are
generated: H/4 × W/4, H/8 × W/8, H/16 × W/16, H/32 × W/32. The decoder includes a
multi-scale Transformer block that obtains multi-scale contextual information, two
redistribution weight blocks that efficiently fuse the obtained intra-layer and inter-layer
information, and a Seghead that achieves pixel-level classification predictions. Specifically,
in the decoder, a 1 × 1 convolution is first used to unify the channel dimensions of the four
output feature maps of the encoder to 64, and then the corresponding feature images of the
decoder are fused through skip connections. In this way, the fused features include local
semantic features generated by the encoder and global semantic features generated by the
decoder, which is beneficial for high-precision semantic segmentation of remote sensing
images. At the same time, the feature map obtained from the last ResBlock is input into the
multi-scale Transformer block, which undergoes a 3 × 3 convolution and a DGEMmodule
to extract multiscale contextual information. In addition, inter-layer information and
intra-layer information are fused through two redistribution weight modules, which is
composed of a DGE module, a CII module, and a FIG module in sequence. The details of
the proposed DGEM, CIIM and FIGM are following.

Dual-branch global extraction module
For complex remote sensing images, both local and global contextual information are
crucial for semantic segmentation. Therefore, a dual-branch global extraction module is
proposed to extract detailed local information and rich global information. which includes
a global attention branch (GAB) and a global compensation branch (GCB). As shown in
Fig. 2, the global attention branch uses a multi-head self-attention (MSA) with windows to
capture contextual information, while the global compensation branch aggregates
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contextual information and local information extracted from multiple average pooling
layers with different sizes.

Inspired by Wang et al. (2022b), the global attention branch first utilizes 1 × 1
convolution to expand the channel dimension of the input feature map by three times.
Then, the cross window context interaction module (CWCI) is used to divide the windows
into four parts: upper left, upper right, lower left, and lower right. The horizontal average
pooling layer is used to establish the horizontal relationship between the windows, and the
vertical average pooling layer is used to establish the vertical relationship between the
windows. Based on this cross window pixel dependency, the relationship between any two
windows can be established and then the global contextual relationships of image can be
obtained. Specifically, given an input feature X 2 RC�H�W , where C represents the channel
dimension, H and W represents the height and width of the feature map, the output of
global attention branch Xcwci can be represented as:

X1 ¼ Conv1�1 Xð Þ (1)

Xcwci ¼ X1 þ CWCI MSA LN X1ð Þð Þð Þ (2)

where LN means layer normalization.
Meanwhile, to extract detailed local information, the global compensation branch

consists of multiple average pooling layers with different sizes in parallel. Specifically, three
average pooling layers AvgPoolð5;2Þ, AvgPoolð9;4Þ, AvgPoolð17;8Þ and one global average
pooling layer are first used to extract multi-scale contextual information, where
AvgPoolði;jÞ represents an average pooling with size of i × i and stride of j. Then,

upsampling operations are adopted to restore the four outputs to their original input size.
The information from each sub-branch are also fuse with the original input information
through summation operation. At the same time, in each branch, a 1 × 1 convolution is
used to reduce computational complexity, and a 3 × 3 convolution is used to further
feature learning. After information fusion, a 1 × 1 convolution is used to restore the
original channel dimension, and residual connection is employed to preserve the input

Figure 1 Overall network architecture of the proposed DGCFNet.
Full-size DOI: 10.7717/peerj-cs.2786/fig-1
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feature information. Finally, the representation capability can be further increased
through a multilayer perceptron (MLP). In summary, the output of DGEM Xout can be
expressed as:

X2;7 ¼ Conv1�1 Xð Þ (3)

X3;4;5;6 ¼ Conv3�3 X2 � Upsample Conv1�1 Avgpool i;jð Þ Xð Þ� �� �� �
(4)

Xout1 ¼ Conv1�1 Concat X2;X3;X4;X5;X6ð Þð Þ � X7 � Xcwci (5)

Xout ¼ Xout1 þMLP LN Xout1ð Þð Þ (6)

where X2�7 represents the output of different sub-branches in the global compensation
branch, and � represents the element-wise addition operation. Upsample denotes
upsampling operation.

Figure 2 Illustration of DGEM. Full-size DOI: 10.7717/peerj-cs.2786/fig-2
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Cross-level information interaction module
In semantic segmentation, the feature maps at different stages contain feature information
at different levels. Typically, only a few simple and similar modules are used within each
stage to process features to obtain the local interaction However, considering local
enhancement only is not enough. It is necessary to learn cross layer contextual interactions
on adjacent layer features, and thus CIIM module is proposed to explore the impact of
correlations between features at different levels on semantic segmentation.

In semantic segmentation, we conclude that the element-wise multiplication of two
feature maps contains common information, which can highlight prominent features
more. While the element-wise addition of the two feature maps allows information to be
complementary without missing unique information, which is beneficial for refining
objects. Based on this observation, the proposed CIIM module is shown in Fig. 3 and
consists of two self-attention operations. Given inputs f1 and f2, they are resized to

f1; f2 2 Rc�h�w
firstly by the bilinear interpolation. Then, the element-wise multiplication

and addition of these two feature maps are represented as fm ¼ f1 � f2 and fs ¼ f1 � f2,
respectively, where� represents the element-wise multiplication operation. In addition, to
reduce computational costs, the channel dimensions of them are halved through 1 × 1
convolution, resulting in two new features fQ 2 R c=2ð Þ�h�w and fK 2 R c=2ð Þ�h�w.
Consequently, the self-attention weight can be expressed as:

C ¼ Softmax fQ ⊛ fKð Þ (7)

where Softmax (�) is the softmax activation function, and ⊛ is matrix multiplication. In
this way, the interdependence relationship between the coexistence information of fm and
the comprehensive information of fs can be established.

Next, the generated self-attention weight matrix are multiplied with fV1 and fV2 to
obtain two new feature maps f �1 2 Rc�h�w and f �2 2 Rc�h�w, where fV1 ¼ conv1�1 ⊛ f1
and fV2 ¼ conv1�1 ⊛ f2 are both linear mappings of input f1, f2, Afterward, f �1 and f1 are
added through residual connections, and the same is done for f �2 and f2 Finally, the fused
feature f12 2 Rc�h�w is obtained through convolution and element-wise summation.
Specifically, the calculation process of f12 is:

f �1 2 fV1 ⊛ C (8)

f �1 2 fV2 ⊛ C (9)

f12 ¼ Conv1�1 Conv3�3 f �1 � f1
� �� Conv3�3 f �2 � f2

� �� �
(10)

The output of CIIM module f12 inherits the properties of two adjacent input feature
maps f1 and f2, which can further supplement the local enhanced features and is beneficial
for simultaneously characterizing and recognizing different objects.

Feature interaction guided module
In the previous section, the dual branch global extraction module uses self-attention
mechanism to capture the correlation between different pixels, which can capture
long-distance relationships and global contextual relationships in the image. The cross
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layer information interaction module uses cross self-attention to establish correlations
between different levels, which can better understand the relationship between different
scales and semantic features, and improve the processing ability of details and local
information. To further promote the fusion of output information from the above two
modules and improve feature representation capabilities, the FIGM shown in Fig. 4 is
proposed.

Given that the two inputs of FIGM module are f12 (output of the CIIM module) and f2
(output of the DGEMmodule), and the feature vectors of their corresponding pixels are v1

!
and v2

! respectively. The output of FIGM f3
!

can be expressed as:

r ¼ Sigmoidððw1ð~v1ÞÞ � ððw2ð~v2ÞÞÞ (11)

f3
!¼ rv1

!þ 1� rð Þv2! (12)

where Sigmoid (�) represents the Sigmoid activation function, “�” is a placeholder, used to
indicate that the input to the Sigmoid function can be any real number. w1 and w2

represent the weights generated by 1 × 1 convolutions.

Figure 3 Illustration of CIIM. Full-size DOI: 10.7717/peerj-cs.2786/fig-3

Figure 4 Illustration of FIGM. Full-size DOI: 10.7717/peerj-cs.2786/fig-4
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DATASET AND EXPERIMENTAL SETTING
Datasets
Vaihingen dataset (ISPRS, 2019b): The vaihingen dataset is a regional dataset collected in
Germany urban scenes. It consists of 33 high-resolution remote sensing images captured
by drones, with an average size of 2,494 × 2,064 pixels. Each image in this dataset has a
corresponding ground truth label, which includes six categories: The white, blue, cyan,
green, gold, and red in the figure represent impressive surface, building, low vegetation,
tree, car, clutter respectively. In this article, 16 images are selected for training, and the
remaining images are used for testing. Each image is segmented into small blocks of 1,024
× 1,024 pixels to meet the experimental requirements. Similar to Li et al. (2022), Ding,
Tang & Bruzzone (2020), the Vaihingen dataset only has a small number of clutter/
background, so the results of clutter/background are not presented.

Potsdam dataset (ISPRS, 2019a): The Potsdam dataset is an aerial image dataset
collected in the Potsdam urban scene in Germany, widely used in computer vision and
remote sensing image processing. It contains 38 high-resolution remote sensing images,
each with a size of 6,000 × 6,000 pixels. Similar to the Vaihingen dataset, it also contains six
identical categories and doesn’t need to show the results of clutter/background.
Meanwhile, each image is labeled with pixel-wise ground-truth annotation. We randomly
select 22 images for training, two for validation, and 14 for testing. To meet the
experimental requirements, the original image is cropped into small image blocks of 1,024
× 1,024 pixels.

BLU dataset (Ding et al., 2021): The BLU dataset is captured in Beijing by 21st Century
Aerospace Technology Corporation using the Beijing-2 satellite. It contains 4 RGB optical
remote sensing images, each with a size of 15,680 × 15,680 pixels. Each original image is
overlapped and divided into 64 small images of 2,048 × 2,048 pixels. They also have the
corresponding ground-truth labels and include six categories: background/barren, built-
up, vegetation, water, Farmland, and road. We randomly select 196 images for training, 28
for validation, and 32 for testing.

Implementation details
Training settings: All experiments in this article are implemented using the PyTorch
framework on NVIDIA Tesla A800 GPU. We adopt AdamW optimizer to optimize model
parameters, set the initial learning rate to 6e−4, and adjust the learning rate using cosine
strategy. For the Vaihingen and Potsdam datasets, the images are further randomly
cropped into small blocks of 512 × 512, meanwhile, data augmentation is performed using
random scaling and flipping techniques, with a batch size set to 16. For the BLU dataset,
the images are randomly cropped into small blocks of 256 × 256, and data augmentation is
also performed using random flipping and random cropping operations, with a batch size
set to 32.

Loss function: To alleviate the problem of class imbalance caused by large differences in
the number of targets in remote sensing images, the loss function used in this article is a
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combination of cross entropy loss Lce and dice loss Ldice (Deng et al., 2023). The specific
formula is as follows.

L ¼ Lce þ Ldice (13)

Lce ¼ �
Xn

i¼1

ti log pið Þ (14)

Ldice ¼ 1�
Xn

i¼1

2tipi
ti þ pi

(15)

where ti represents the ground truth, and pi is the maximum probability of softmax for
class i.

Evaluation metrics: To fairly compare the performance of various models, several
commonly used metrics (Marmanis et al., 2018; Mou, Hua & Zhu, 2019) are adopted,
including overall accuracy (OA), mean intersection over union (mIoU), and mean
F1-score (mF1). Their calculation formulas are as follows:

Precision ¼ TP= TPþ FPð Þ (16)

Recall ¼ TP= TPþ FNð Þ (17)

F1 ¼ 2� Precision� Recall
Precisionþ Recall

(18)

IoU ¼ TP
TPþ FPþ FN

(19)

OA ¼ TPþ TN
TPþ TNþ FPþ FN

(20)

where TP, FP, TN, and FN represent true positive, false positive, true negative, and false
negative, respectively. OA represents the ratio of correctly predicted pixels to the total
number of pixels. IoU is defined as the intersection and union ratio of predicted and
ground-truth maps, and the average IoU of all categories is mIoU. The F1 score is the
harmonic mean of Precision and Recall for each category.

EXPERIMENTAL RESULTS AND ANALYSIS
Ablation study
To evaluate the effectiveness of each module in the proposed network, ablation studies are
conducted on the Potsdam dataset in this section. The baseline model adopts U-Net
network with ResNet18 as the encoder, and the decoder only uses convolution and
upsampling interpolation operations.

(1) Effect of DGEM module: As shown in Table 1, after introducing the Transformer
based DGEM module in the decoding section, the values of mean F1, OA, and mIoU
increase by 0.33%, 0.57%, and 0.43%, respectively. Especially in the Building category, the
F1 value increase by 1.00%, which proves the effectiveness of DGEM. Moreover, to further
explore the necessity of global attention branch and global compensation branch in
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DGEM, the segmentation performance is further evaluated when the global attention
branch GAB and global compensation branch GCB are used separately. As reported in
Table 2, removing only the global compensation branch decrease the value of mIoU by
0.32%, while removing the global attention branch decrease by 0.30%. However, when
both GAB and GCB are added simultaneously, the F1 values for Imp.surf. and Car decrease
slightly compared to when only GAB is added. This is because GCB tends to favor more
long-range context information, while GAB can obtain more detailed information.
Consequently, the detailed information for Imp.surf. and Car is somewhat interfered with
by GCB. The above results confirm that both branches are crucial.

(2) Effect of CIIM module: The addition of the CIIM model enables the model to
simultaneously utilize contextual information from the current and adjacent layers. From
Table 1, it can be seen that the CIIM model can improve F1 values for most categories.
Meanwhile, mean F1 and mIoU values also show some improvement, reaching 90.79% and
83.36%, respectively. However, the results of Imp.surf. and Building have indeed declined,
because we simultaneously incorporate the DGEM and CIIM modules with equal weights,
this results in better outcomes in DGEM or CIIM needing to be equally weighted with the
opponent, which notably causes information interference and limits the model’s
performance. To further investigate the effectiveness of CIIM in different locations, the
second and third DGEM are selected for ablation studies. As shown in Table 3, when the
CIIM after the third DGEM is removed, mIoU value decreases by 0.16%. When removing
the other one, mIoU value decreases by 0.21%. However, when both f12 and f23 are added
simultaneously, the F1 scores for Tree and Car decrease slightly, indicating that
information from different features can interfere with each other, leading to a decline in
performance for certain categories. Nevertheless, when both f12 and f23 are added
simultaneously, the F1 scores for Tree and Car decrease slightly, indicating that
information from different features can interfere with each other, leading to a decline in
performance for certain categories. The above results indicate the necessity of using two
CIIM modules simultaneously.

(3) Effect of FIGMmodule: From Table 1, it can be observed that after adding the FIGM
module, our DGCFNet model achieve the best results in all categories. Especially for the
Building category, the final model improve by 1.16% compared to the baseline. Conversely,
not using the FIGM module may result in a 0.35% reduction in mIoU, as these weights
may be incorrectly assigned through pixel-wise addition. This indicates that the addition of

Table 1 Ablation study of each component of the DGCFNet (%).

Architecture Imp.surf. Building Lowveg. Tree Car Mean F1 OA mIoU

Baseline 92.06 94.19 85.51 86.39 94.04 90.44 89.03 82.76

Baseline+DGEM 92.69 95.19 85.84 86.36 93.76 90.77 89.46 83.33

Baseline+DGEM+CIIM 92.55 95.14 85.94 86.46 93.88 90.79 89.45 83.36

Baseline+DGEM+CIIM+FIGM 92.90 95.35 86.33 86.67 94.14 91.08 89.80 83.84

Note:
Values highlighted in bold are the top performance. The middle area of the table corresponds to the F1 values for all categories.
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feature maps may lead to information confusion, making it difficult to correctly learn
specific semantic regions and boundaries.

The Baseline model will cause large areas of Imperfect Surfaces to be incorrectly
segmented into Buildings. The addition of DGEM module significantly reduces erroneous
segmentation, but inaccurate boundary segmentation is caused by only using multi-scale
contextual information within the current layer. Then, by introducing inter-layer
contextual information through the CIIM module, the boundary segmentation results are
further improved. However, the fusion of contextual information from the current and
adjacent layers through simple element-wise addition may lose spatial information,
making it difficult for the model to accurately locate the boundaries of objects during
prediction. By incorporating the FIGM module, the output boundaries of the proposed
DGCFNet model become smoother and there is a significant reduction in erroneous
segmentation.

Comparison with other methods
This section will compare the proposed DGCFNet with some existing methods, including
FCN (Long, Shelhamer & Darrell, 2015), LANet (Ding, Tang & Bruzzone, 2020), A2-FPN
(Li et al., 2022), MANet (Li et al., 2021b), MAResUNet (Li et al., 2021a), BANet (Wang
et al., 2021a) and DCSwin (Wang et al., 2022a). Except for the BANet and DCSwin are
methods based on Transformer structure, the others are all based on CNN. As with the
experiments involving A2-FPN, BANet, MANet, we crop the original images and perform
data augmentation by rotating, resizing, horizontally flipping, vertically flipping, and
adding random noise.

(1) Results on Vaihingen dataset: The quantitative results of the comparative methods
are shown in Table 4. We can see that the proposed method can achieve the highest values
of meanF1, OA, mIoU, and the second highest F1 value. Compared with BANet, the
meanF1 value of our method increases by 1.42%, OA increases by 0.70%, and mIoU

Table 3 Results of ablation studies on the Potsdam dataset for the CIIM module.

Method Imp.surf. Building Lowveg. Tree Car Mean F1 OA mIoU

CIIM (f12) 92.65 95.23 86.16 86.69 94.15 90.98 89.64 83.67

CIIM (f23) 92.60 95.21 86.11 86.72 94.06 90.94 89.59 83.61

CIIM (f12)+CIIM (f23) 92.90 95.35 86.33 86.67 94.14 91.08 89.80 83.84

Note:
Values highlighted in bold are the top performance.

Table 2 Results of ablation studies on the Potsdam dataset for the DGEM module.

Method Imp.surf. Building Lowveg. Tree Car Mean F1 OA mIoU

GAB 93.02 94.93 85.38 86.33 94.25 90.78 89.48 83.37

GCB 92.56 95.02 86.14 86.47 93.98 90.83 89.50 83.42

GAB+GCB 92.90 95.35 86.33 86.67 94.14 91.08 89.80 83.84

Note:
Values highlighted in bold are the top performance.
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increases by 2.20%. Meanwhile, the proposed method outperforms BANet in all categories,
especially in the small target category Car, achieving an F1-score of 84.50%, which is 4.32%
higher than BANet. The above results consistently prove that the proposed method not
only has stronger global contextual modeling ability, but also has significant improvement
in the segmentation of small targets.

Compared with other models, the proposed method effectively reduces segmentation
errors, and has better segmentation performance at different scales. For example, in the
large target category of Building, our method can more accurately segment the complete
boundary of objects. The above results show that using a hybrid model of CNN and
Transformer is feasible and can produce even better results.

(2) Results on Potsdam dataset: The quantitative comparison results of different
methods on the Potsdam dataset are shown in Table 5. It can be seen that the method
proposed in this article achieves the highest mean F1, OA, and mIoU, and only slightly
lower F1 values than the MAResU-Net method in the small target category of Car.
Compared with BANet, the proposed method improves the value of mean F1 by 2.24%,
OA by 2.49%, and mIoU by 3.72%. Especially in the large target category of Building, the
F1 value is 3.50% higher than BANet, indicating that using a CNN and Transformer hybrid

Table 4 Quantitative Comparison with state-of-the-art models on the Vaihingen dataset (%).

Method Imp.surf. Building Lowveg. Tree Car Mean F1 OA mIoU

FCN 95.77 93.74 82.94 88.61 66.37 85.49 91.70 76.03

BANet 96.21 93.49 83.53 89.43 80.18 88.57 92.20 80.00

LANet 96.44 94.51 84.26 89.60 82.22 89.41 92.69 81.30

DCSwin 95.93 92.72 83.37 88.94 77.64 87.72 91.76 78.73

A2-FPN 96.56 94.70 84.15 89.68 83.11 89.64 92.78 81.66

MANet 96.14 93.77 82.95 89.01 82.87 88.95 92.09 80.53

MAResUNet 96.41 94.21 84.15 89.59 83.72 89.62 92.59 81.58

DGCFNet 96.74 94.75 84.39 89.58 84.50 89.99 92.90 82.20

Note:
Values highlighted in bold are the top performance.

Table 5 Quantitative comparison with state-of-the-art models on the Potsdam dataset (%).

Method Imp.surf. Building Lowveg. Tree Car Mean F1 OA mIoU

FCN 91.87 93.90 84.41 85.09 91.04 89.26 88.16 80.82

BANet 90.93 91.85 84.45 84.13 92.83 88.84 87.31 80.12

LANet 92.67 94.69 85.85 86.49 93.97 90.74 89.45 83.26

DCSwin 91.57 93.60 83.76 82.47 93.33 88.95 87.68 80.43

A2-FPN 92.73 94.97 85.86 86.59 94.06 90.84 89.54 83.45

MANet 91.77 93.64 85.00 85.39 94.10 89.98 88.42 82.02

MAResUNet 92.45 94.82 85.84 86.38 94.49 90.80 89.45 83.38

DGCFNet 92.90 95.35 86.33 86.67 94.14 91.08 89.80 83.84

Note:
Values highlighted in bold are the top performance.
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model for spatial feature extraction in large-scale remote sensing images has a significant
advantage in semantic understanding ability.

The edges of the “clutter/background” and “Building” classes have similar colors and are
adjacent to the Imperfect Surface class. Therefore, the edges of the Building class are easily
misclassified as the “clutter/background” class. The proposed method can help the model
better cope with noise and interference in images by fusing feature maps at different levels,
and obtain a rich global contextual relationship, enabling the model to recognize semantic
information and suppress the influence of noise. Similarly, the small target category of
Imperfect Surface is located near the Low Vegetation and Building, which can easily cause
segmentation errors. Our model can identify the above regions well.

(3) Results on BLU dataset: The quantitative results of different methods on the BLU
dataset are shown in Table 6. The results indicate that our method achieves the highest
meanF1 and mIoU values. Moreover, in the Water category, the proposed method can
achieve the highest F1 score, reaching 83.08%. Compared with BANet, the meanF1 of
DGCFNet method increases by 3.18%, OA increases by 1.06%, and mIoU increases by
4.00%. Especially on the large targets such as Water, our method outperforms BANet by
6.03%, indicating that it can more comprehensively utilize the contextual information of
images. However, other categories did not achieve the best results, except for the Water
category. Due to its large area and relatively distinct characteristics, the Water category
achieved good results that are significantly better than those of other categories. While the
results for the other categories are slightly lower, this does not affect the final average
result.

Since the Water class and the adjacent Farmland class share similar colors, other
methods may mistakenly segment Water as Farmland due to insufficient discriminative
information. Additionally, other methods are prone to significant omissions due to the
limitations of their receptive fields. However, compared to other methods, our model,
which introduces a hybrid structure of CNN and Transformer, achieves more complete
and smoother boundary segmentation.

Table 6 Quantitative comparison with state-of-the-art models on the BLU dataset.

Method Background Built-up Vegetation Water Agricultural Road Mean F1 OA mIoU

FCN 64.60 80.85 88.22 78.35 86.29 57.81 76.02 83.44 62.57

BANet 69.00 85.58 89.81 77.05 85.49 60.05 77.83 85.06 64.87

LANet 71.83 87.28 90.36 79.01 86.47 69.02 80.66 86.31 68.34

DCSwin 68.79 84.02 89.10 78.61 83.68 66.52 78.42 84.18 65.25

A2-FPN 72.66 86.26 90.25 79.09 86.61 67.53 80.40 86.17 67.98

MANet 70.83 84.95 89.29 75.61 82.83 66.88 78.40 84.38 65.17

MAResUNet 71.12 85.99 90.28 76.60 87.16 67.54 79.78 86.11 67.20

DGCFNet 71.25 86.68 90.32 83.08 86.39 68.35 81.01 86.12 68.87

Note:
All scores are expressed as percentages (%). Values highlighted in bold are the top performance.
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In the evaluation of network models, parameters and memory are crucial for assessing
the network. We compared our DGCFNet with other segmentation networks on the
Potsdam dataset, as depicted in Table 7.

Limitation
Although the proposed DGCFNet has better understood the relationship between different
scales and semantic features by utilizing intra-layer and inter-layer information, there are
still potential aspects that need to be considered.

Firstly, the total number of parameters in DGCFNet is 23.9M, which is smaller than that
of medium-sized networks like DCSwin (45.6M) and MANet (35.9M), but larger than that
of small-sized networks such as FCN (11.3M) and BANet (12.7M). Although DGCFNet
has fewer parameters compared to DCSwin andMANet, it achieves a better IoU. However,
while it achieves a higher mIoU than FCN and BANet, it consumes more computational
resources. This indicates that our network structure does well in balancing accuracy and
efficiency, but there is still room for reducing the model size in the decoder by employing
model pruning techniques.

Secondly, although we have improved the segmentation capability for targets of
different sizes by incorporating a global compensation branch in the Double-branch
Global Extraction Module, there is still significant room for improvement in segmenting
targets within complex backgrounds. Therefore, our future work will focus on model
lightweighting and enhancing the capability to segment small targets.

CONCLUSION
This article proposes a remote sensing image semantic segmentation network
DGCFNet based on a serial structure of CNN and Transformer. The DGCFNet
network extracts local features through CNN and embeds DGEM into the Transformer to
obtain global contextual relationships. Meanwhile, different levels of contextual
information are fused through CIIM. In addition, the FIGM is proposed to adaptively fuse
the intra-layer contextual information in DGEM with the inter-layer contextual
information in CIIM. Extensive experiments conducted on three high-resolution remote
sensing datasets (Vaihingen, Potsdam and BLU) demonstrate the reliability and
effectiveness of the proposed method in remote sensing image semantic segmentation
tasks.

Although the proposed method, DGCFNet, can accurately segment multiple targets in
remote sensing images, our focus on improving long-range contextual relationships has

Table 7 Quantitative comparison results on the Potsdam dataset with state-of-the-art networks.

Method FCN BANet LANet DCSwin MANet DGCFNet

Parameters (M) 11.3 12.7 23.8 45.6 35.9 23.9

Memory (MB) 172.0 194.6 363.8 694.6 574.9 280.7

mIoU (%) 80.8 80.1 83.3 80.4 82.0 83.8

Note:
The parameters and memory are measured using a 512 × 512 input on a single NVIDIA Tesla A800 GPU.
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significantly enhanced the segmentation of larger objects. However, this emphasis has
inadvertently led to the neglect of segmenting small targets in complex backgrounds,
primarily manifesting as an inability to fully fit the targets and resulting in boundary
segmentation errors. In the future, we will represent the similarity of objects within the
same category by calculating a mutual relationship matrix between intermediate feature
blocks and image patches. This relationship will be utilized for the segmentation of small
targets.
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Data Availability
The following information was supplied regarding data availability:

The code is available at GitHub and Zenodo:
- https://github.com/liaoyuan0604/DGCFNet.
- Liao,Yuan. (2025). DGCFNet [Data set]. Zenodo. https://doi.org/10.5281/zenodo.

14614699.
The code is written in Python and can be opened using the official PyCharm software:

https://www.jetbrains.com/pycharm.
The Vaihingen dataset and the Potsdam dataset are aerial image datasets produced by

the German Aerospace Center-DLR available at: https://www.isprs.org/education/
benchmarks/UrbanSemLab/Default.aspx.

The BLU dataset, an aerial image dataset produced by the Beijing-2 satellite provided by
the 21st Century Aerospace Technology Company Ltd, is available at: https://rslab.disi.
unitn.it/dataset/BLU.
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