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ABSTRACT
Colorectal polyps are potential precursor lesions of colorectal cancer. Accurate
classification of colorectal polyps during endoscopy is crucial for early diagnosis and
effective treatment. Automatic and accurate classification of colorectal polyps based
on convolutional neural networks (CNNs) during endoscopy is vital for assisting
endoscopists in diagnosis and treatment. However, this task remains challenging due
to difficulties in the data acquisition and annotation processes, the poor
interpretability of the data output, and the lack of widespread acceptance of the CNN
models by clinicians. This study proposes an innovative approach that utilizes gaze
attention information from endoscopists as an auxiliary supervisory signal to train a
CNN-based model for the classification of colorectal polyps. Gaze information from
the reading of endoscopic images was first recorded through an eye-tracker. Then,
the gaze information was processed and applied to supervise the CNN model’s
attention via an attention consistency module. Comprehensive experiments were
conducted on a dataset that contained three types of colorectal polyps. The results
showed that EfficientNet_b1 with supervised gaze information achieved an overall
test accuracy of 86.96%, a precision of 87.92%, a recall of 88.41%, an F1 score of
88.16%, the area under the receiver operating characteristic (ROC) curve (AUC) is
0.9022. All evaluation metrics surpassed those of EfficientNet_b1 without gaze
information supervision. The class activation maps generated by the proposed
network also indicate that the endoscopist’s gaze-attention information, as auxiliary
prior knowledge, increases the accuracy of colorectal polyp classification, offering a
new solution to the field of medical image analysis.
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INTRODUCTION
According to worldwide cancer statistics, colorectal cancer (CRC) ranks as the second
leading cause of cancer-related deaths and the third most prevalent cancer type. Annually,
this disease accounts for over 1.85 million new cancer cases (9.8% of total cancer
diagnoses) and results in approximately 850,000 cancer deaths (9.2% of total cancer-
related deaths), highlighting CRC as a notable public health hazard and a major challenge
for global medical systems (Sung et al., 2021; Siegel et al., 2023).
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In clinical practice, the screening process for CRC mainly involves detecting colorectal
polyps through endoscopic examination and then performing biopsies on these polyps to
determine the nature of the lesion (Wang & Dong, 2020). However, the effectiveness of
CRC screening is influenced by several factors, including the endoscopist’s operating skills,
the patient’s preoperative preparation, and the visibility of colorectal polyps. These factors
can significantly affect the quality of screening results and lead to a high rate of
underdiagnosis and misdiagnosis of colorectal polyps. The missed diagnosis rates of early
CRC range from 2% to 26% (Zhao et al., 2019; Leufkens et al., 2012). Therefore, more
precise detection and more accurate classification of CRC could be greatly beneficial to
clinical practice.

In recent years, convolutional neural networks (CNNs) have been widely adopted in the
field of endoscopy due to their ability to automatically extract features from endoscopic
images (Yan, Wong & Qin, 2021). The robust learning capability of CNNs not only
enhances the accuracy of colorectal polyp classification but also greatly reduces the
workload of endoscopists. Additionally, the objectivity and high efficiency of the CNN-
based systems can reduce the rate of misdiagnosis and underdiagnosis of colorectal polyps
(Pamudurthy, Lodhia & Konda, 2019). With the advancement of CNN models, the rate of
lesion misdiagnosis and underdiagnosis in colonoscopy has been effectively reduced,
offering insights for future automated endoscopic diagnosis and treatment.

Screening colonoscopies are essential for the prevention of CRC. With the development
of CNNs, real-time computer-aided detection for CRC is now available in clinical practices
(Saito et al., 2020). These CNN-based systems have improved the detection rate of
colorectal polyps, including differentiating between precancerous growths and
noncancerous hyperplastic polyps. Endoscopists can spend substantial time searching for
small polyps, which are often hyperplastic. Since malignant transformation of these polyps
is rare, pathologic evaluation may be unnecessary, and removal of these polyps increases
healthcare costs. Some patients with early CRC that was diagnosed after surgical resection
may be treated with minimally invasive endoscopic therapy if their histopathologic
findings are known before surgery. Therefore, accurate histologic diagnosis before
endoscopic resection can potentially prevent unnecessary endoscopic treatment and
significantly reduce the financial burden (Chen et al., 2018).

The Narrow Band Imaging International Colorectal Endoscopic (NICE) classification is
a simplified system for the diagnosis of colorectal polyp histology that is widely used in
centers without magnifying endoscopic capabilities. The NICE classification system
divides colorectal polyps into three types (Hewett et al., 2012). Type 1 includes hyperplastic
and inflammatory polyps, which are usually benign and are unlikely to develop into
cancer. Type 2 consists of adenomatous polyps, intramucosal carcinoma, and superficial
submucosal invasive carcinoma, which have a high potential risk of becoming cancerous.
Type 3 is deep submucosal invasive carcinoma, which is the highest risk type as it indicates
that the tumor has penetrated into the submucosal layer or deeper tissues. Although NICE
classification has made some progress in accurately identifying polyp types, the
consistency of this accuracy can vary depending on the case, especially when observations
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are conducted by non-experts (Ladabaum et al., 2013). The CNN-based colorectal polyp
pathology prediction can help overcome this challenge.

Although CNN-based models have made significant progress in detecting
gastrointestinal diseases, training deep CNNmodels remains challenging due to difficulties
in collecting medical data, such as privacy concerns, the need for expert annotations, data
imbalance, and the scarcity of high-quality labeled datasets. Additionally, engaging in
meticulous annotation tasks is time-consuming and labor-intensive, amplifying the
workload for clinical experts. Previous studies often focused on improving the accuracy of
CNN models, but these models often lack interpretability and may not be accepted by
clinical professionals in the medical field (Zhang & Zhu, 2018). Recently, researchers have
started integrating doctors’ eye gaze information into diagnostic analyses to address these
limitations of CNN-based methods (Bisogni et al., 2024; Ibragimov & Mello-Thoms, 2024).

Although eye gaze has been widely used in many research fields, its integration into
CNN-based systems is still in its infancy. The use of eye gaze information in automatic
auxiliary diagnosis has great value and potential. By using eye-tracking technology, it is
possible to create a new medical image annotation method that is comparable to
traditional manual annotation (Bhattacharya, Jain & Prasanna, 2022). Eye gaze data
depicts the search pattern of doctors when looking for tumors or suspicious lesions in
scans, revealing the locations where doctors tend to linger during diagnostic screening.
These areas are important because prolonged gaze often indicates regions that may contain
abnormalities or potential lesions, thus providing valuable additional information for
diagnosis. This additional high-level information can guide CNN models to learn disease
features in an interpretable way. Therefore, embedding eye gaze information into
diagnostic analysis has become a trending topic in recent years (Ibragimov &Mello-Thoms,
2024; Neves et al., 2024).

This study proposes an innovative attention network based on gaze, which utilizes the
gaze information of endoscopists to improve the accuracy and interpretability of colorectal
polyp classification while reducing the amount of training image data. Gaze information is
captured via an eye-tracker, which can be integrated into the endoscopists’ image
interpretation process without interference. The gaze information acquired during
endoscopic image reading is considered a priori medical knowledge that is used as an
auxiliary supervisory signal to improve the training of the CNNs. This approach not only
improves the performance of the model for identifying rare diseases but also reduces the
cost of the annotation process.

The main contributions of this study are summarized as follows: (1) The construction
and publication of a gaze dataset for colorectal polyps that includes images of colorectal
polyps and the corresponding gaze maps; (2) the design of a gaze-based attention network
for the classification of colorectal polyps that can enhance accuracy and robustness by
using eye gaze information as a supervised source; (3) the comprehensive analysis and
comparison of different CNN backbones incorporating gaze attention information in
order to verify the effectiveness of the gaze attention mechanism in classifying colorectal
polyps.
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The rest of this article is organized as follows: ‘Related Work’ briefly reviews the
literature related to this study, including deep learning based colorectal polyp classification
methods and the application of visual attention in medical image analysis; ‘Methods’
provides a detailed description of the deep learning network based on gaze attention
proposed in this article, including the design of gaze data collection, the attention
consistency module, and the classification network; ‘Experiments’ introduces the
construction of the dataset, experimental setup, and evaluation indicators; ‘Results’
presents the experimental results and verifies the effectiveness of the method through
comparative analysis; the ‘Conclusion’ summarizes the main contributions and research
limitations of this article and explores future research directions.

RELATED WORK
This section examines recent research advances regarding the classification of colorectal
polyps and presents a detailed review of the relevant research focusing on gaze attention
for medical image analysis.

Classification of colorectal polyps based on CNNs
The classification of early colorectal polyps mainly relies on manual identification by
endoscopists. This method is very time-consuming and cumbersome for physicians, and it
also creates difficulties in ensuring the accuracy of classification due to the subjectivity of
manual identification. The need for endoscopists to carefully observe and judge a large
quantity of images can easily cause fatigue and affect the accuracy of diagnosis. In
traditional research methods, researchers often use feature extraction technology to collect
information such as shape, texture, and color from polyp images. These features can
provide information for identifying and classifying different types of polyps. However, the
feature extraction process is complex and requires researchers to have considerable
professional knowledge and experience. Additionally, the extracted features must be
further processed and screened to ensure their effectiveness for performing the
classification task (Patel et al., 2020). With the improved performance of deep neural
networks, CNNs are increasingly used in the classification of colorectal polyps. Compared
with traditional manual feature extraction methods, CNNs can more efficiently extract
abstract and high-level features, thereby improving the accuracy of classification. A CNN-
based system can automatically process and analyze a high volume of endoscopic images,
significantly reducing the doctor’s review time. In addition, CNN-based methods reduce
the risk of misdiagnosis and underdiagnosis, providing patients with more timely and
accurate treatment options (Sánchez-Peralta et al., 2020).

Various advanced CNNs have emerged to aid in the classification of colorectal polyps.
Liu et al. (2023) proposed Polyp DeNet, which combines dilated convolution and efficient
channel attention modules based on ResNet-50 and uses parameter sharing and data
augmentation methods to improve model performance. This model has achieved a high
level of accuracy in colorectal polyp classification, fully demonstrating the benefit of
artificial intelligence-assisted diagnosis. Sharma et al. (2023) proposed a unique
lightweight CNN with a discrete wavelet pooling strategy for colon polyp classification.
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This model uses wavelet pooling instead of ordinary pooling layers to achieve a better
balance between receptive field size and computational efficiency. Rahman, Wadud &
Hasan (2021) used an integrated model combining Xception, ResNet-101, and VGG-19
networks to achieve higher accuracy in classifying hyperplastic, serrated, and adenomatous
polyps, as well as non-polyps. Tanwar et al. (2022) proposed a single-shot multiframe
detector (SSD) architecture with image preprocessing and added dropout in the fully
connected layers to prevent overfitting and improve the generalization ability of the model.
This assisted in effectively detecting and classifying colorectal polyps in colonoscopy
images. Hossain et al. (2023) proposed an autonomous CRC screening method to detect
polyps and assess their potential threat. In that study, DoubleU-Net was used for polyp
segmentation, and Vision Transformer (ViT) was used for classification according to polyp
risk. The proposed method classified polyps in the Endotech Challenge and Kvarsi-SEG
datasets as either hyperplasic or adenomatous with a test accuracy of 99%.

Although deep learning models play an important role in colorectal polyp classification,
and CNN-based diagnostic models have shown excellent performance, they still have some
limitations. CNNs are data-driven algorithms that require a large amount of labeled data.
The annotation process of datasets is very cumbersome, labor-intensive, and time-
consuming, posing a challenge to doctors. Additionally, these models have poor
interpretability, and doctors require more information to guide their decision-making
process. In a medical setting, these models must maintain high accuracy and provide clear
explanations of the predicted results.

Eye-tracking-based medical image analysis
Eye-tracking technology provides a potential solution to the problems of cumbersome
annotation and insufficient interpretability of CNNs. By tracking the eye movements of
doctors while they view endoscopic images, this technology can provide valuable data for
developing more interpretable and transparent classification models. These data help
reveal key features and areas in colorectal polyp images, thereby improving the
interpretability of the model. Therefore, combining eye-tracking technology with CNNs
may be a promising way to improve colorectal polyp classification.

In recent years, eye-tracking technology has been widely applied in the medical field as
auxiliary prior knowledge to assist in training more efficient CNN models. Stember et al.
(2019) proposed a dynamic annotation method based on eye-tracking for lesions and
organs in multimodal medical images including computed tomography (CT) and
magnetic resonance imaging (MRI) and applied eye-tracking information to automatic
image annotation. Karargyris et al. (2021) proposed a multi-head model based on U-Net
that incorporates radiologists’ gaze maps for chest X-rays. The clinical-expert gaze maps
generated by eye-tracking equipment can be used as an alternative to weakly supervised
labels to guide the training of deep learning models. This method was used to
simultaneously predict the expert’s attention patterns and their classification results to
distinguish between congestive heart failure, pneumonia, and healthy tissue. Wang et al.
(2022) proposed a gaze-guided attention model based on X-ray images to classify
osteoarthritis into four categories with good interpretability and classification
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performance. Another study (Wang et al., 2024) proposed a gaze-guided graph neural
network (GNN). As a real-time, realistic, end-to-end disease classification algorithm, GNN
integrates raw eye gaze data and can achieve high-accuracy classification without
preprocessing. Ma et al. (2023) proposed a novel and effective saliency-guided visual
transformer (SGT) model that utilizes eye movement data to correct ViT shortcut learning.
This model can effectively learn and use human prior knowledge, perform well in multiple
datasets, and improve the interpretability of the ViT model. Wang, Zhang & Ge (2023)
proposed a method that combines the gaze information of radiologists with image labeling
requirements. A dual-path encoder is used to integrate gaze information, and a cross-
attention transformer module is used to embed the gaze patterns of doctors reading images
into the network model. Through multi-feature skip connections, spatial information is

Table 1 Articles related to gaze attention.

Ref. Year Imaging Study design Study aim DL
model

Dataset Outcomes

Stember
et al.
(2019)

2019 MRI Retrospective Addressing the issue of lack of annotated
data through eye tracking technology

__ 356
images

Eye tracking can provide an efficient way
to generate annotated data for training
deep learning segmentation models,
without the need for specialized manual
annotation

Karargyris
et al.
(2021)

2021 CXR Retrospective Research on how to use eye gaze data to
explain the prediction results of the
model

U-Net 1,083
images

Provides an inexpensive and efficient way
to approximate annotated images of
regions of interest by using the
radiologist’s eye gaze

Wang et al.
(2022)

2022 X-ray Retrospective Demonstrate the eye movement of
radiologists reading medical images can
be a new form of supervision to train the
DNN-based computer-aided diagnosis
system

ResNet 2,000
images

Integrate radiologist eye data into CAD
systems to enhance their per-
formance.

Wang et al.
(2024)

2024 X-ray Retrospective The gaze information collected by eye-
tracking devices is converted into visual
attention maps, which is a time-
consuming preprocessing step that
ihnders the daily work of radiologists

__ 1,083
images

Introducing eye gaze data can
significantly improve the classification
performance and anomaly localization
ability of the model, with an
experimental accuracy of 83.18%

Ma et al.
(2023)

2023 Color
image

Retrospective Improving automated diagnosis by using
gaze heatmaps as network output

ViT 8,367
images

And proposed a new saliency guided
visual transformer that suppresses and
corrects rapid learning by injecting
artificial prior knowledge.

Wang,
Zhang &
Ge, 2023

2023 CT Retrospective Using eye movement information from
doctors as additional supervision to
improve the accuracy of abdominal
organ segmentation

__ 4,230
images

Using gaze attention as an auxiliary
supervision mechanism for network
training, the segmentation accuracy
reached 81.87% (Dice similarity
coefficient) and 11.96% (Hausdorff
distance)

Jiang et al.
(2024)

2024 Fundus
image

Retrospective Early diabetes retinopathy brings
challenges to clinical diagnosis, leading
to limited research in this field

SAM 394
images

Adding eye movement information from
doctors can improve the annotation
efficiency of clinical doctors and
enhance segmentation performance
through fine-tuning using annotations

Note:
DL, Deep learning; MRI, Magnetic resonance imaging; CXR, Chest X-Ray; CT, Computed tomography; ViT, Vision transformer; SAM, Segment anything model.
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combined in the downsampling process to offset the internal details of the segmentation,
achieving the high-precision segmentation requirements. Jiang et al. (2024) proposed an
eye-tracking-based early diabetic retinopathy (DR) detection model using
ophthalmologists’ gaze maps. The weighted gaze map is integrated as a supervision mask
to guide the learning of the DNN model’s attention. A novel difficulty-aware and class-
adaptive gaze-map attention learning strategy was proposed to enhance the interpretability
of the model. The attention-guided approach regularized by the Class Activation Map
(CAM; Zhou et al., 2016) shows improvements in the accuracy and interpretability of early
DR detection models. The key information of these studies is summarized in Table 1.

These studies highlight the potential of eye-tracking technology in the field of medical
imaging diagnosis. Eye-tracking technology not only acts as auxiliary prior knowledge to
aid in training deep learning models but also enhances the interpretability and
comprehensibility of these models. By integrating eye-tracking data, researchers gain
deeper insights into the attention and decision-making processes of medical experts,
thereby refining the training strategies and performance of deep learning models.
Moreover, eye-tracking technology can serve as an alternative weakly supervised label,
guiding the training of deep learning models and thereby enhancing their accuracy and
credibility in medical imaging diagnosis.

METHODS
This study was approved by the Institutional Review Board of Xiangyang Central Hospital
(IRB approval number: 2024-145). Since this was a retrospective study, the Institutional
Review Board waived the written informed consent requirement.

This study introduces a gaze-based attention network for classifying colorectal polyps
based on the fixation images of clinical doctors during the diagnostic process. First,
diagnostic gaze information (i.e., medical prior knowledge) from clinical doctors was
obtained and processed. Then, the classification network for colorectal polyps was
constructed using the processed gaze maps.

Eye-tracking data collection process
Standardized data collection procedures were used for the collection of high-quality eye-
tracking data. The main body of the eye-tracking device used in this study included a 1,920
× 1,080 27-inch high-definition liquid crystal display (LCD) and a Tobii Eye Tracker 5 eye-
tracking device. The eye-tracking device connected to an external computer via a data
cable and was used to record binocular gaze data.

This study implemented a customized data collection software in Python (Wang et al.,
2022) that quickly constructed the experimental environment through simple parameter
settings. Eye-tracking data was collected from endoscopists at a frequency of 90 Hz.
Endoscopists sat on a fixed chair and kept their eyes perpendicular to the screen before
providing eye movement data that simulated clinical working conditions. Following the
user manual of the Tobii Eye Tracker 5 eye-tracking device, the distance between
the endoscopists’ eyes and the screen was adjusted within the range of 50 to 80 cm. The
eye-tracking device calibration was personalized for each doctor to account for different

Guo et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2780 7/23

http://dx.doi.org/10.7717/peerj-cs.2780
https://peerj.com/computer-science/


reading habits, which helped adapt to the vision of different individuals and reduce eye-
tracking errors. Each clinician performed a nine-point calibration procedure during first
use of the eye-tracking device.

During the diagnosis of colorectal polyps, each image was displayed in the center of the
LCD screen, and the endoscopist entered their diagnosis using the numeric keys on the
keyboard. For example, pressing the number “1” indicated that the polyp type was
diagnosed as Type 1, and “Enter” indicated that the diagnosis was completed, prompting
the next image. During this process, the eye-tracking device continuously recorded the
participant’s eye movement information including the saccade point, fixation point,
fixation duration, and eye scanning path, all of which was stored in the computer.

Gaze attention heatmap generation
During the eye-tracking data collection process, a series of gaze points on each diagnostic
image was recorded in real-time. However, despite personalized calibration, slight
deviations in the endoscopists’ gaze points could still occur due to the inherent system
error of the equipment. To reduce these deviations, a Gaussian function G (x, y) (shown as
Eq. (1)) was applied to transform each gaze point into the gaze area.

G x; yð Þ ¼ 1ffiffiffiffiffi
2p

p
r
e
� ðx�xcÞ2þðy�ycÞ2½ �

2r2 : (1)

In this equation, (xc, yc) represented the central gaze point, and the pixel level distance of
variance σ was used as the effective field of view range. In this study, a higher σ represented
a broader range of focus for the endoscopists’ attention, potentially encompassing areas
unrelated to the diagnosis. However, a lower σ could impede the ability of the clinician to
concentrate on a specific lesion area, resulting in attention being divided among several
locations inside a single lesion and raising computational requirements. It is appropriate to
use a value of σ that modestly compensates for human visual error. The following
proportion equation was developed:

pðr1Þ2
H �W ¼ pr2

Hp �Wp
: (2)

HP = 1,080,Wp = 1,920 represented the display resolution, andH = 48 andW = 64 were
the screen physical values corresponding to HP and Wp, respectively. According to
geometric operations, σ1 = πRθ/360�, in which θ represents perspective error. The pixel
variance σ on the display was estimated as:

r ¼ h
360�

pR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hp �Wp

H �W

r
: (3)

In this equation, R is the approximate distance area of 50 to 80 cm between the eyeball
and the fixation point on the screen. Inspired by Jiang et al. (2024), θ was set to 1� to offset
most of the errors. As specified in the user manual for the Tobii Eye Tracker 5, the
maximum angular deviation for a gaze point was approximately �0:5�. Corresponding to
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the interval ½�0:5�; 0:5�� Finally, the determined σ value fell between 17.1 (R = 50 cm) and
27.2 (R = 80 cm). As a result, σ was pre-set to 30 to better mitigate the errors.

The GaussianBlur function in the OpenCV library was used to perform Gaussian blur
processing to reduce the noise and details in the image. A Gaussian kernel of size 199 was
applied to the input image and the variance was set to 30. This process can effectively
smooth the image by weighted-averaging each pixel and its surrounding neighborhood
pixels, making it Smoother and effectively reducing the raw data of the eye-tracker in the
image, including information that is irrelevant to the task.

After this process, the endoscopists’ gaze attention maps were generated, and these
maps were then superimposed onto the original endoscopic images to generate the gaze
attention heatmaps (Fig. 1), which could be applied to supervise the network attention
heatmaps via an attention consistency loss.

Gaze-based attention network
The proposed gaze-based attention network aimed to align network attention with
external supervision of the visual attention of endoscopists. This study used
EfficientNet_b1, which achieved the best performance in the following experiments
Compared with other general models, as the backbone to construct the gaze-based
attention network. The architecture of EfficientNet_b1 is shown in Fig. 2. In
EfficientNet_b1, the mobile inverted bottleneck convolution (MBConv) block served as a

Figure 1 Illustration of different types of colorectal polyps and corresponding gaze attention heatmaps. (A) Diagram of a hyperplastic or
inflammatory polyp; (B) gaze attention heatmaps of a hyperplastic or inflammatory polyp; (C) diagram of an adenomatous polyp, intramucosal
carcinoma, and superficial submucosal invasive carcinoma; (D) gaze attention heatmaps of an adenomatous polyp, intramucosal carcinoma, and
superficial submucosal invasive carcinoma; (E) diagram of a deep submucosal invasive carcinoma; (F) gaze attention heatmaps of a deep submucosal
invasive carcinoma. Full-size DOI: 10.7717/peerj-cs.2780/fig-1
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special residual module; it adopted lightweight depth-wise separable convolution and
squeeze and extraction (SE) modules to improve the efficiency and performance of the
network. The core components of MBConv blocks are divided into two stages: deep
convolution and pointwise convolution (Tan & Le, 2019). In the deep convolution stage,
the MBConv block independently processes the features of each channel rather than all
channels simultaneously, which helps to extract more refined feature information. The
output feature map is convolved with a 1 × 1 convolution kernel in the pointwise
convolution stage to adjust the number of channels to meet the desired value. Additionally,
the SE module in the MBConv block dynamically adjusts the importance between
channels, enhancing feature representation. These advantages ensure that the proposed
gaze-based attention network has strong feature extraction capabilities.

The proposed gaze-based attention network, as shown in Fig. 3, contained a
classification module and an attention consistency module. In the classification module,
the input image was first processed through the EfficientNet_b1 backbone to obtain a 16 ×
16 × 1,280 feature map. Then, global average pooling (GAP) and flatten applications were
applied to obtain a 1 × 1 × 1,280 feature vector. Finally, a fully connected layer of three

Figure 2 Architecture of EfficientNet_b1 backbone. Full-size DOI: 10.7717/peerj-cs.2780/fig-2
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nodes (representing the three categories of polyps) was used to obtain the final
classification result.

In the attention consistency module, weights from the fully connected layer were taken
to generate the model feature map. After applying the ReLU function, only the set of
weights of the predicted class, which had a 1 × 1,280 shape, was used to perform channel-
wise multiplication with the 16 × 16 × 1,280 feature map, and the maps along channels
were summed to get a single 16 × 16 map. This map was scaled to the same shape as the
gaze attention map and was activated through the sigmoid function to acquire the network
attention heatmap. To achieve multi-task learning, this study designed a joint loss function
that included classification loss and regression loss to optimize the performance of the
model on both classification and regression tasks. In classification tasks, cross-entropy loss

Figure 3 Architecture of gaze-based attention network for colorectal polyp classification. Full-size DOI: 10.7717/peerj-cs.2780/fig-3
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(CE) was used to optimize the classification ability of the model to more closely match the
true labels.

CE was used to measure the difference between the predicted category (x) and the true
category (label) of the model. The CE loss can be formulated as:

CE Loss ¼ �
Xn
i¼1

yi logðpiÞ: (4)

In this equation, n represents the number of classifications, yi represents the true label of
the i-th class, and pi represents the predicted label of the i-th class by the model.

In the regression task, the model used gaze attention heatmaps and network attention
heatmaps to calculate the mean squared error (MSE) loss function. Mean square error
measures the accuracy of model prediction by calculating the square difference between
the predicted and actual values of each sample and then averaging the differences among
all samples.

Using MSE as the regression loss function to measure the difference between two
attention maps, the MSE loss can be formulated as:

MSE Loss ¼ 1
N

XN
i¼1

XM
j¼1

ðAmodelði; jÞ � Ahumanði; jÞÞ2: (5)

In this equation, N and M are the height and width of the image, respectively, while
Amodel(i,j) and Ahuman(i,j) are the values of the network attention heatmap and the
endoscopists’ eye gaze attention heatmap, respectively, at position (i,j). This loss function
represents the difference at each pixel position between the attention heatmap generated
by the model and the endoscopists’ eye gaze attention heatmap and calculates the loss by
summing up the differences at all positions.

The total loss combines the classification task (CE_Loss) and the gaze prediction task
(MSE_Loss). By using weighted combination, this value can provide insight into the
quality of the classification and show that the predicted heat map of the network is close to
the true value. The total loss can be formulated as:

LOSS ¼ CE LossþMSE Loss: (6)

EXPERIMENTS
Dataset construction
The colorectal polyp gaze dataset was constructed using Narrow Band Imaging (NBI)
images of colorectal polyps and the corresponding gaze attention images (i.e., gaze
attention maps and gaze attention heatmaps). All data collection and annotation processes
were carried out by following the tenets of the Declaration of Helsinki.

A retrospective search was conducted of the NBI colonoscopy observation data at
Xiangyang Central Hospital from January 1, 2023 to March 10, 2024. The criterion for
inclusion was that patients with colorectal polyps must also have had corresponding
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pathology reports (the “gold standard” for diagnosis). According to this criterion, 585 NBI
images with colorectal polyps were collected from the records of 87 patients. A senior
endoscopist classified the 585 NBI images into three categories based on the NICE
classification method. During this classification process, the endoscopist’s eye movement
information was recorded and used to generate the gaze attention images. A patient-level
data splitting was then performed to develop and validate the proposed methods. The
selected patients and their corresponding images were randomly split into three sets, of
which 60% was used for training, 20% was used for validation, and the remaining 20% was
used for testing. The training and validation sets included the original image and the gaze
attention images generated from eye movement. In the test set, only the original NBI
images were included to test the actual performance of the trained models. The detailed
information on the dataset is shown in Table 2.

Experimental setup
A CNN is a complex model with many parameters and requires a large amount of data to
obtain more applicable results. With the limited amount of annotated training data, image
augmentation was adopted to increase the diversity of training data and improve the
generalization ability of deep learning models. Before training, the images were
preprocessed and enhanced by randomly applying various rotational transformations,
randomly flipping left and right, up and down.

To ensure efficient training and performance optimization of the model in the colorectal
polyp classification tasks, this study designed the key parameters of the experiment to meet
the special requirements of medical image classification tasks. The backbone of the
classification model was pre-trained using ImageNet and then fine-tuned on the
experiment’s dataset.

The optimizer used for this study was Adam (Adaptive Moment Estimation), which is
an adaptive optimization algorithm that combines the advantages of momentum (a
method to speed up training) and RMSProp. Adam can dynamically adjust the learning
rate of each parameter, quickly approaching the optimal solution with a larger step size in
the early stages of training and finely optimizing the parameters with smaller steps in the
later stages of training. This feature is particularly suitable for medical image classification
tasks with high-dimensional feature spaces and limited data samples. In addition, the
Adam optimizer is less sensitive to hyperparameter settings and can provide a more stable

Table 2 Colorectal polyps gaze dataset.

NICE classification Training set (~60%) Validation set (~20%) Test-set (~20%)

No. of
Lesions

No. of
images

No. of
Lesions

No. of
images

No. of
Lesions

No. of
images

Type 1 34 94 30 30 28 28

Type 2 61 251 12 78 58 82

Type 3 3 13 2 3 2 5

Notes:
Type 1: proliferative or inflammatory polyps; Type 2: adenomatous polyps, intramucosal or superficial submucosal
infiltrating carcinoma; Type 3: deep submucosal infiltrating carcinoma.
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convergence performance during model training. In order to further improve optimization
efficiency, this study set the initial learning rate to 0.001, which is based on commonly used
empirical values in medical classification tasks, and the optimizer’s best performance was
verified through multiple experiments (Zou et al., 2021).

The learning rate scheduling strategy adopted cosine annealing warm restarts, which
can dynamically adjust the learning rate at different stages of training to balance the
requirements of fast convergence and meticulous optimization. Specifically, this study used
the CosineAnnealingWarmRestarts scheduler in PyTorch (Loshchilov & Hutter, 2016),
with an initial annealing period set to 10 epochs (T0 = 10) and subsequent periods
increasing exponentially (Tmult = 2). In each cycle, the learning rate gradually decreases
from high to low according to the cosine function, thereby promoting the model to quickly
jump out of local optima, preventing premature entry into local minima, and improving
the robustness of the model. At the end of the cycle, a restart mechanism is used to restore
the higher learning rate and explore new solution spaces.

For data processing, the training batch size was set to 8 and the validation batch size was
set to 16 in order to balance GPU memory and training efficiency. The training batch size
was as large as possible to improve computational efficiency. Due to the limitations of
device memory, this selected training batch size could avoid memory overflow and provide
more frequent gradient updates to accelerate optimization. During the verification phase,
there is no requirement to calculate gradients, therefore larger batch sizes could be used to
improve verification efficiency. Data augmentation (random flipping and rotation) was
simultaneously used to increase sample diversity and reduce the risk of overfitting. This
study set the maximum training epoch to 150 and dynamically adjusted the model
preservation strategy based on the performance of the validation set. After each round of
training, the classification accuracy of the model on the validation set was evaluated. If the
validation accuracy of the current model was better than the historical best value, the
weight parameters of the model were saved to ensure the optimal performance of the final
model on the validation set. All experiments were run on a 12 GB NVIDIA RTX 4070Ti
GPU, which has high-performance computing capabilities and can efficiently support the
training needs of high-resolution medical images.

Evaluation metrics
Quantitative evaluation was conducted by comparing the model’s best test accuracy (Acc),
precision (Pre), recall (Rec), F1-score (F1 Score), Matthews correlation coefficient (MCC),
and Cohen’s kappa (Kappa). The definitions of these evaluation metrics are as follows:

Acc ¼ TP þ TN
TP þ FP þ TN þ FN

(7)

Pre ¼ TP
TP þ FP

(8)

Rec ¼ TP
TP þ FN

(9)

F1 Score ¼ 2� Precision� Recall
Precisionþ Recall

(10)
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MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp (11)

Kappa ¼ p0 � pe
1� pe

(12)

TP, FP, TN, and FN represent true positive, false positive, true negative, and false
negative, respectively. P0 represents the observed consistency (i.e., the probability of a
correct prediction). Pe represents random consistency (i.e., assuming the probability of
consistency when the model makes random predictions). As this is a multi-class
classification task, the “one-vs-rest” method was used to calculate the performance
parameters of each class, treating the target class as a positive class and the remaining
classes as negative classes.

RESULTS
This study conducted experiments using a lightweight EfficientNet_b0 model to validate
the effectiveness of the proposed loss function (a combination of CE and MSE). The
classification performance of models trained with our proposed loss function was
compared to those trained with solely CE or MSE. The comparison results, shown in
Table 3, demonstrate that the model achieved optimal performance across all evaluation
metrics when using the proposed loss function.

Six different popular CNN architectures (ResNet-18, ResNet-50, ResNeXt-101,
EfficientNet_B0, EfficientNet_B1, and EfficientNet_B2) were used as the backbone for
feature extraction to validate the proposed method. Each of these backbones has a wide
range of applications in the medical image analysis field. The results of enabling and
disabling gaze attention in classification backbone training were compared across the six
backbones. For example, EfficientNet_b0 referred to the model with EfficientNet_b0 as the
backbone, while EfficientNet_b0+Gaze indicated that additional gaze attention maps were
added to each image. According to the EfficientNet_b0 experiment, the training time of the
proposed method was 21.6 min, and the inference time for a single image was 34.8
milliseconds. The training and inference of this model requires at least 7 GB of GPU
memory to be efficiently completed, and the model can meet the needs of practical
applications. The computational cost of the model is relatively small, making it suitable for
deployment on hardware with limited resources.

As seen in Table 4, most evaluation metrics showed a continuous improvement trend
with the additional supervision of gaze attention, which verified the hypothesis that
introducing gaze information could improve classification performance. Among all
models, EfficientNet_b1+Gaze achieved the best performance and the Acc, Rec, F1-score,
MCC, and Kappa values were 0.8696, 0.8841, 0.8816, 0.6999, and 0.6998 respectively.
Although EfficientNet_b0+Gaze had the highest Pre score of 0.8815, the difference was
minimal with EfficientNet_b1+Gaze scoring 0.8792. Based on other evaluation indicators,
EfficientNet_b1+Gaze demonstrated the best overall performance in classifying colorectal
polyps. Figure 4 presents the confusion matrices for EfficientNet_b1: (Fig. 4A) without
gaze attention and (Fig. 4B) with gaze attention. The confusion matrices can clearly show

Guo et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2780 15/23

http://dx.doi.org/10.7717/peerj-cs.2780
https://peerj.com/computer-science/


how the models are confused when they make predictions. The columns of the matrices
represent the true labels, and the rows denote the predicted labels. The figure shows that
the model can easily distinguish Type 3 polyps from other categories regardless of if the eye
movement information was added. However, the differences in the characteristics of Type
1 and Type 2 polyps are minor, and it is easy to misclassify between them without adding
eye movement information. After adding eye movement information, the error rate of
classification was reduced, achieving a higher accuracy rate. The above results
demonstrated the crucial role of gaze attention in classification performance enhancement.
The significance of adding gaze attention was also verified using the average area under the
receiver operating characteristic (ROC) curve (AUC). The AUC value ranges from 0.5 to 1,
with a value closer to 1 indicating an excellent classifier. Figure 5A illustrates the ROC
curves for EfficientNet_b1, while Fig. 5B presents the ROC curves for EfficientNet_b1
combined with Gaze. The ROC curve for EfficientNet_b1+Gaze exhibited a steeper
upward trend, with an AUC value of 0.9022, highlighting its superior performance. This
indicated that the improved model can control the misjudgment rate at a lower level while
maintaining a high recall rate.

Figure 6 shows the effect of enabling or disabling gaze attention. When gaze attention
was enabled, the model focused more on regions of interest when analyzing an image,

Table 3 Comparison of different loss functions.

Acc Pre Rec F1 MCC Kappa

MSE 0.6521 0.2404 0.3049 0.2688 0.0116 0.009

CE 0.8609 0.8745 0.8644 0.8691 0.6711 0.6705

MSE+CE 0.8696 0.8815 0.8763 0.8788 0.6941 0.6940

Note:
Remark: Boldface number means the best for each metric or score. EfficientNet_b0 as the base model.

Table 4 Ablation study of different CNNs as a backbone with and without gaze attention.

Methods Acc Pre Rec F1 MCC Kappa

EfficientNet_b0 0.8087 0.7731 0.8322 0.7998 0.5704 0.5695

EfficientNet_b0+Gaze 0.8696 0.8815 0.8763 0.8788 0.6941 0.6940

EfficientNet_b1 0.8607 0.8233 0.88 0.8491 0.6845 0.684

EfficientNet_b1+Gaze 0.8696 0.8792 0.8841 0.8816 0.6999 0.6998

EfficientNet_b2 0.8261 0.8403 0.8481 0.8439 0.6039 0.6034

EfficientNet_b2+Gaze 0.8609 0.8745 0.8644 0.8691 0.6711 0.6705

ResNet18 0.8521 0.8149 0.876 0.8425 0.6684 0.6673

ResNet18+Gaze 0.8347 0.8487 0.8444 0.8465 0.6126 0.6125

ResNet50 0.8 0.8159 0.7967 0.8043 0.5153 0.5121

ResNet50+Gaze 0.8087 0.8246 0.8087 0.8153 0.5153 0.5122

ResNeXt-101-32x8d 0.7913 0.8068 0.7848 0.7929 0.4902 0.4858

ResNeXt-101-32x8d +Gaze 0.8522 0.8757 0.8368 0.8512 0.64 0.6321

Note:
Remark: Boldface number means the best for each metric or score. Acc indicates accuracy, Pre indicates precision, Rec
indicates recall, F1 indicates F1-score, MCC indicates Matthews Correlation Coefficient, Kappa indicates Cohen’s Kappa.
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which were usually determined automatically by the model and were often key features
relevant to the task. In the second column, the effect was shown using CAM, a technique
commonly used to visualize regions of interest for deep learning models. Although CAM
can help to identify the regions of concern of the model, it does not guarantee that these
regions will be the same as those determined by a human doctor. Instead, as seen in the
third column, the gaze-attention mechanism was added, which enabled the model to learn
and focus on important task-related regions more autonomously. This mechanism
mimicked human visual attention and allowed the model to focus more on important

Figure 4 Confusion matrices of EfficientNet_b1. (A) Confusion matrix without gaze attention enabled; (B) confusion matrix with gaze attention
enabled. Full-size DOI: 10.7717/peerj-cs.2780/fig-4

Figure 5 ROC curves of EfficientNet_b1 and EfficientNet_b1+Gaze. Full-size DOI: 10.7717/peerj-cs.2780/fig-5
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Figure 6 Demonstration of the effects of enabling or disabling gaze attention. The first category
shows pictures of the test; the second column shows the effect of using CAM; and the third column shows
the effect of adding gaze attention. Full-size DOI: 10.7717/peerj-cs.2780/fig-6
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features. As a result, with gaze attention enabled, the model focused more accurately
on the lesion site in the image, which helped to improve the accuracy and performance of
the classification task. The advantage of this approach is that it enabled the model to
choose the region of attention more intelligently, rather than simply relying on
general activation mapping. In this way, the model was able to better understand the
context and key features in the image and thus perform classification and
recognition tasks more accurately. Analyzing the experimental results showed that,
compared to the original model, the improved model had stronger robustness in handling
complex sample situations and improved performance in identifying boundary conditions.
This indicated that the study’s improved algorithm was more effective in capturing key
features in the image, thereby improving the generalization ability and accuracy of the
classifier.

CONCLUSIONS
This study introduced a gaze-based attention network for colorectal polyp classification. A
colorectal polyp gaze dataset was constructed that included three types of colorectal polyps
and the corresponding gaze images. Then, a CNN model that incorporated endoscopists’
gaze information was designed to assist in the classification of colorectal polyps. The gaze
information served as a compensation signal to be combined with the original image to
train the network. This approach ensured that the model accurately located the colorectal
polyps without manual marking by the endoscopists. After completing the training
process, the model could directly classify images without relying on eye-tracker data. This
method not only effectively improved the performance of the model, but also reduced the
dependence on large-scale image data, providing a more efficient and sustainable solution
to limitations in current colorectal polyp classification methodologies.

This study has several limitations. Firstly, while gaze information can help
improve the accuracy of classification networks and avoid additional annotations, it
heavily relies on eye-tracking devices. In practical applications, clinical experts must follow
established protocols for image collection. Additionally, gaze patterns are subjective and
may vary significantly among different experts, as each expert has their own distinct
image reading habits. Although experimental results showed that the proposed
strategy was effective in terms of performance and improved diagnostic capabilities, the
optimal utilization of gaze remains an unresolved issue. Secondly, the constructed gaze
dataset was relatively small, and its impact on colorectal polyp classification ability could
be further explored by supplementing it with additional training datasets. Finally, to
comprehensively validate the effectiveness of the proposed gaze classification system, the
use of data sets from other medical modalities could be considered. Future studies plan to
use eye-tracking in more challenging modes. In addition to eye gaze information,
additional behavioral data could be collected from doctors including pupil size, reaction
time, and mouse cursor movements, in order to build a more comprehensive analysis
framework.

Guo et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2780 19/23

http://dx.doi.org/10.7717/peerj-cs.2780
https://peerj.com/computer-science/


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Science and Technology Development Fund of Macau
SAR (No. 0026/2022/A), the Guangdong Basic and Applied Basic Research Fund,
Shenzhen Joint Fund (Guangdong-Shenzhen Joint Fund), Guangdong-Hong
Kong-Macau Research Team Project (No. 2021B1515130003), the Key Research and
Development Plan of Hubei Province (No. 2022BCE034), the Natural Science
Foundation of Hubei Province (No. 2024AFB1054), Joint Funds of the Natural
Science Foundation of Hubei Province (No. 2022CFD080). The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Science and Technology Development Fund of Macau SAR: 0026/2022/A.
Guangdong Basic and Applied Basic Research Fund, Shenzhen.
Guangdong-Hong Kong-Macau Research Team: 2021B1515130003.
Key Research and Development Plan of Hubei Province: 2022BCE034.
Natural Science Foundation of Hubei Province: 2024AFB1054 and 2022CFD080.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Zhenghao Guo conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.

. Yanyan Hu conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the article, and approved the final draft.

. Peixuan Ge conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. In Neng Chan performed the experiments, analyzed the data, authored or reviewed
drafts of the article, and approved the final draft.

. Tao Yan conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

. Pak Kin Wong conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

. Shaoyong Xu analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

Guo et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2780 20/23

http://dx.doi.org/10.7717/peerj-cs.2780
https://peerj.com/computer-science/


. Zheng Li performed the experiments, analyzed the data, authored or reviewed drafts of
the article, and approved the final draft.

. Shan Gao analyzed the data, authored or reviewed drafts of the article, and approved the
final draft.

Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

This study was approved by the Institutional Review Board of Xiangyang Central
Hospital (IRB approval number: 2024-145).

Data Availability
The following information was supplied regarding data availability:

The data is available at Zenodo: T. (2024). Colorectal-polyps-gaze-dataset [Data set].
Zenodo. https://doi.org/10.5281/zenodo.13824600.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2780#supplemental-information.

REFERENCES
Bhattacharya M, Jain S, Prasanna P. 2022. GazeRadar: a gaze and radiomics-guided disease

localization framework. In: Conference on Medical Image Computing and Computer Assisted
Intervention, 686–696.

Bisogni C, Nappi M, Tortora G, Del Bimbo A. 2024. Gaze analysis: a survey on its applications.
Image and Vision Computing 144(2024):104961 DOI 10.1016/j.imavis.2024.104961.

Chen PJ, Lin MC, Lai MJ, Lin JC, Tseng VS. 2018. Accurate classification of diminutive colorectal
polyps using computer-aided analysis. Gastroenterology 154(3):568–575
DOI 10.1053/j.gastro.2017.10.010.

Hewett DG, Kaltenbach T, Sano Y, Tanaka S, Saunders BP, Rex DK. 2012.Validation of a simple
classification system for endoscopic diagnosis of small colorectal polyps using narrow-band
imaging. Gastroenterology 143(3):599–607.e1 DOI 10.1053/j.gastro.2012.05.006.

Hossain MS, Rahman MM, Uddin MF, Hasan M, Hossain MA, Samad MA. 2023. Deeppoly:
deep learning based polyps segmentation and classification for autonomous colonoscopy
examination. IEEE Access 11:95889–95902 DOI 10.1109/ACCESS.2023.3310541.

Ibragimov B, Mello-Thoms C. 2024. The use of machine learning in eye tracking studies in
medical imaging: a review. IEEE Journal of Biomedical and Health Informatics 28(6):3597–3612
DOI 10.1109/JBHI.2024.3371893.

Jiang H, Gao M, Liu Z, Tang C, Zhang X, Jiang S, Liu J. 2024. GlanceSeg: real-time
microaneurysm lesion segmentation with gaze-map-guided foundation model for early
detection of diabetic retinopathy. IEEE Journal of Biomedical and Health Informatics Epub
ahead of print 18 March 2024 DOI 10.1109/JBHI.2024.3377592.

Karargyris A, Kashyap S, Lourentzou I, Wu JT, Sharma A, Tong M. 2021. Creation and
validation of a chest X-ray dataset with eye-tracking and report dictation for AI development.
Science Data 8(1):92 DOI 10.1038/s41597-021-00863-5.

Guo et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2780 21/23

https://doi.org/10.5281/zenodo.13824600
http://dx.doi.org/10.7717/peerj-cs.2780#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2780#supplemental-information
http://dx.doi.org/10.1016/j.imavis.2024.104961
http://dx.doi.org/10.1053/j.gastro.2017.10.010
http://dx.doi.org/10.1053/j.gastro.2012.05.006
http://dx.doi.org/10.1109/ACCESS.2023.3310541
http://dx.doi.org/10.1109/JBHI.2024.3371893
http://dx.doi.org/10.1109/JBHI.2024.3377592
http://dx.doi.org/10.1038/s41597-021-00863-5
http://dx.doi.org/10.7717/peerj-cs.2780
https://peerj.com/computer-science/


Ladabaum U, Fioritto A, Mitani A, Desai M, Kim JP, Rex DK. 2013. Real-time optical biopsy of
colon polyps with narrow band imaging in community practice does not yet meet key thresholds
for clinical decisions. Gastroenterology 144(1):81–91 DOI 10.1053/j.gastro.2012.09.054.

Leufkens AM, Van Oijen MGH, Vleggaar FP, Siersema PD. 2012. Factors influencing the miss
rate of polyps in a back-to-back colonoscopy study. Endoscopy 44(5):470–475
DOI 10.1055/s-0031-1291666.

Liu S, Liu X, Chang S, Sun Y, Li K, Hou Y, Xue L. 2023. Multi-classification of polyps in
colonoscopy images based on an improved deep convolutional neural network. CMC-
Computers, Materials & Continua 75(3):5837 DOI 10.32604/cmc.2023.034720.

Loshchilov I, Hutter F. 2016. SGDR: stochastic gradient descent with warm restarts. ArXiv
DOI 10.48550/arXiv.1608.03983.

Ma C, Zhao L, Chen Y, Guo L, Zhang T, Hu X, Liu T. 2023. Rectify vit shortcut learning by visual
saliency. IEEE Transactions on Neural Networks and Learning Systems 35(12):18013–18025
DOI 10.1109/TNNLS.2023.3310531.

Neves J, Hsieh C, Nobre IB, Ouyang C, Maciel A, Moreira C. 2024. Shedding light on ai in
radiology: a systematic review and taxonomy of eye gaze-driven interpretability in deep learning.
European Journal of Radiology 172:111341 DOI 10.1016/j.ejrad.2024.111341.

Pamudurthy V, Lodhia N, Konda VJ. 2019. Advances in endoscopy for colorectal polyp detection
and classification. Baylor University Medical Center Proceedings 33(1):28–35
DOI 10.1080/08998280.2019.1686327.

Patel K, Li K, Tao K, Wang Q, Bansal A, Rastogi A, Wang G. 2020. A comparative study on
polyp classification using convolutional neural networks. PLOS ONE 15(7):e0236452
DOI 10.1371/journal.pone.0236452.

Rahman MM, Wadud MAH, Hasan MM. 2021. Computerized classification of gastrointestinal
polyps using stacking ensemble of convolutional neural network. Informatics in Medicine
Unlocked 24:100603 DOI 10.1016/j.imu.2021.100603.

Saito H, Tanimoto T, Ozawa T, Ishihara S, Fujishiro M, Shichijo S, Tada T. 2020. Automatic
anatomical classification of colonoscopic images using deep convolutional neural networks.
Gastroenterology Report 9(3):226–233 DOI 10.1093/gastro/goaa078.

Sánchez-Peralta LF, Bote-Curiel L, Picon A, Pagador JB. 2020. Deep learning to find colorectal
polyps in colonoscopy: a systematic literature review. Artificial Intelligence in Medicine
108:101923 DOI 10.1016/j.artmed.2020.101923.

Sharma P, Das D, Gautam A, Balabantaray BK. 2023. LPNet: a lightweight CNN with discrete
wavelet pooling strategies for colon polyps classification. International Journal of Imaging
Systems and Technology 33(2):495–510 DOI 10.1002/ima.22825.

Siegel RL, Miller KD, Wagle NS, Jemal A. 2023. Cancer statistics, 2023. A Cancer Journal for
Clinicians 73(1):17–48 DOI 10.3322/caac.21763.

Stember JN, Celik H, Krupinski E, Chang PD, Mutasa S, Wood BJ, Bagci U. 2019. Eye tracking
for deep learning segmentation using convolutional neural networks. Journal of Digital Imaging
32(4):597–604 DOI 10.1007/s10278-019-00220-4.

Sung H, Ferlay J, Siegel RL, Laversanne M, Jemal A, Bray F. 2021. Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. A
Cancer Journal for Clinicians 71(3):209–249 DOI 10.3322/caac.21660.

Tan M, Le Q. 2019. Efficientnet: rethinking model scaling for convolutional neural networks.
ArXiv DOI 10.48550/arXiv.1905.11946.

Guo et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2780 22/23

http://dx.doi.org/10.1053/j.gastro.2012.09.054
http://dx.doi.org/10.1055/s-0031-1291666
http://dx.doi.org/10.32604/cmc.2023.034720
http://dx.doi.org/10.48550/arXiv.1608.03983
http://dx.doi.org/10.1109/TNNLS.2023.3310531
http://dx.doi.org/10.1016/j.ejrad.2024.111341
http://dx.doi.org/10.1080/08998280.2019.1686327
http://dx.doi.org/10.1371/journal.pone.0236452
http://dx.doi.org/10.1016/j.imu.2021.100603
http://dx.doi.org/10.1093/gastro/goaa078
http://dx.doi.org/10.1016/j.artmed.2020.101923
http://dx.doi.org/10.1002/ima.22825
http://dx.doi.org/10.3322/caac.21763
http://dx.doi.org/10.1007/s10278-019-00220-4
http://dx.doi.org/10.3322/caac.21660
http://dx.doi.org/10.48550/arXiv.1905.11946
http://dx.doi.org/10.7717/peerj-cs.2780
https://peerj.com/computer-science/


Tanwar S, Vijayalakshmi S, Sabharwal M, Kaur M, Lee HN. 2022. Detection and classification of
colorectal polyp using deep learning. Biomed Research International 2022(1):2805607
DOI 10.1155/2022/2805607.

Wang KW, Dong M. 2020. Potential applications of artificial intelligence in colorectal polyps and
cancer: recent advances and prospects. World Journal of Gastroenterology 26(34):5090–5100
DOI 10.3748/wjg.v26.i34.5090.

Wang S, Ouyang X, Liu T, Wang Q, Shen D. 2022. Follow my eye: using gaze to supervise
computer-aided diagnosis. IEEE Transactions on Medical Imaging 41(7):1688–1698
DOI 10.1109/TMI.2022.3146973.

Wang B, Pan H, Aboah A, Zhang Z, Keles E, Torigian D, Bagc U. 2024.GazeGNN: a gaze-guided
graph neural network for chest X-Ray classification. In: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision DOI 10.1109/WACV57701.2024.00219.

Wang C, Zhang D, Ge R. 2023. Eye-guided dual-path network for multi-organ segmentation of
abdomen. In: International Conference on Medical Image Computing and Computer-Assisted
Intervention. Cham: Springer, 23–32.

Yan T, Wong PK, Qin YY. 2021. Deep learning for diagnosis of precancerous lesions in upper
gastrointestinal endoscopy: a review. World Journal of Gastroenterology 27(20):2531–2544
DOI 10.3748/wjg.v27.i20.2531.

Zhang Q, Zhu S. 2018. Visual interpretability for deep learning: a survey. Frontiers of Information
Technology & Electronic Engineering 19(1):27–39 DOI 10.1631/FITEE.1700808.

Zhao S, Wang S, Pan P, Xia T, Chang X, Yang X, Guo L, Qian W. 2019.Magnitude, risk factors,
and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and
meta-analysis. Gastroenterology 156(6):1661–1674.e11 DOI 10.1053/j.gastro.2019.01.260.

Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. 2016. Learning deep features for
discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. Piscataway: IEEE, 2921–2929.

Zou D, Cao Y, Li Y, Gu Q. 2021. Understanding the generalization of adam in learning neural
networks with proper regularization. ArXiv DOI 10.48550/arXiv.2108.11371.

Guo et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2780 23/23

http://dx.doi.org/10.1155/2022/2805607
http://dx.doi.org/10.3748/wjg.v26.i34.5090
http://dx.doi.org/10.1109/TMI.2022.3146973
http://dx.doi.org/10.1109/WACV57701.2024.00219
http://dx.doi.org/10.3748/wjg.v27.i20.2531
http://dx.doi.org/10.1631/FITEE.1700808
http://dx.doi.org/10.1053/j.gastro.2019.01.260
http://dx.doi.org/10.48550/arXiv.2108.11371
http://dx.doi.org/10.7717/peerj-cs.2780
https://peerj.com/computer-science/

	Enhancing colorectal polyp classification using gaze-based attention networks
	Introduction
	Related work
	Methods
	Experiments
	Results
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


