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ABSTRACT
With the advancement of digital streaming technology, multi-modal
recommendation systems have gained significant attention. Current graph-based
multi-modal recommendation approaches typically model user interests using either
user interaction signals or multi-modal item information derived from
heterogeneous graphs. Although methods based on graph convolutional networks
(GCNs) have achieved notable success, they still face two key limitations: (1) the
narrow interpretation of interaction information, leading to incomplete modeling of
user behavior, and (2) a lack of fine-grained collaboration between user behavior and
multi-modal information. To address these issues, we propose a novel method by
decomposing interaction information into two distinct signal pathways, referred to as
a dual-path selection architecture, named Dual-path Selective Graph Recommender
(DSGRec). DSGRec is designed to deliver more accurate and personalized
recommendations by facilitating the positive collaboration of interactive data and
multi-modal information. To further enhance the represetation of these signals, we
introduce two key components: (1) behavior-aware multimodal signal augmentation,
which extract rich multimodal semantic information; and (b) hypergraph-guided
cooperative signal enhancement, which captures hybrid global information. Our
model learns dual-path selection signals via a primary module and introduces two
auxiliary modules to adjust these signals. We introduce independent contrastive
learning tasks for the auxiliary signals, enabling DSGRec to explore the mechanisms
behind feature embeddings from different perspectives. This approach ensures that
each auxiliary module aligns with the user-item interaction view independently,
calibrating its contribution based on historical interactions. Extensive experiments
conducted on three benchmark datasets demonstrate the superiority of DSGRec over
several state-of-the-art recommendation baselines, highlighting the effectiveness of
our method.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Databases, Neural Networks
Keywords Multimedia recommendation, Graph learning, Hypergraph analysis, Contrastive
learning

INTRODUCTION
The exponential growth of multimedia data on network media platforms has underscored
the importance of multi-modal recommender systems (MRS) in filtering and delivering
relevant information from vast datasets, garnering significant attention from both
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academia and industry. Unlike traditional recommendation systems that rely solely on
user-item interaction data, MRS leverage multi-modal content information (e.g., visual,
textual, and auditory attributes) to provide more accurate and personalized
recommendation. Recent advancements in graph convolutional networks (GCNs)
(He et al., 2020) have further enhanced the performance of MRS by enabling the modeling
of high-order relationships between user and item nodes (Wei et al., 2020). These
developments have not only improved recommendation accuracy but also opened new
avenues for exploring complex dependencies within multi-modal data.

In the field of MRS, three primary paradigms have emerged for representing users and
items: collaborative filtering (CF)-based embedding, which captures user-item interaction
patterns; multi-modal feature (MF)-based embedding, which utilizes content information
such as images, text, and audio; and the hybrid of the CF-based and MF based features.
Early approaches, such as matrix factorization (Chen, Fang & Saad, 2009), project user and
item IDs into a shared latent space but often fail to capture high-order relationships.
Subsequent studies, including LightGCN (He et al., 2020), graph convolutional matrix
completion (GC-MC) (Berg, Kipf & Welling, 2017), and Neural graph collaborative
filtering (NGCF) (Wang et al., 2019), have advanced CF by organizing user-item
interactions as graphs and aggregating multi-hop neighbor information to enrich
representations. On the other hand, methods like multi-modal graph convolution network
(MMGCN) (Wei et al., 2019) and GRCN (Wei et al., 2020) integrate multi-modal features
into graph structures to enhance user preference modeling. Recent works, such as MICRO
(Zhang et al., 2022a) and BM3 (Zhou et al., 2023b), further bridge the gap between CF and
MF by leveraging multi-modal content to enhance user-item interactions.

Despite these advancements, we argue that existing graph-based methods still fail to
fully capture the complexity of user-item interactions or address the limitations of fine
granularity fusion with two signals in different context. Specifically, there are two key
limitations in the exploration of user behavior:

1. Single-path modeling of interactive information limits the learning of complex
interactions. As shown Fig. 1 (left), each user interaction is influenced by both
demand and the preference. CF signals matching user demand through discover items
that similar users have interacted with, while MF information captures associations
between items through the alignment and fusion of different modality contents. For
example, in Fig. 1 (right), the second user is recommended a dark blue pleated midi skirt
based on collaborative signals but ultimately chooses a dark blue striped knee-length
skirt with the same style due to preference signals. This indicates that modeling user-
item interaction as a single-path fails to comprehensively capture user behavior.

2. The collaboration of demand signals and preference signals lakes adaptability across
different contexts. Existing methods can be broadly categorized into two approaches,
as shown in Fig. 2, each with inherent limitations. The first approach (Fig. 2, left)
separately learns CF-based ID embeddings and MF-based semantic embeddings,
subsequently fusing them for recommendation. However, this method often suffers
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from significant representation discrepancies between the two embedding spaces,
leading to suboptimal fusion results. The second approach (Fig. 1, middle) jointly learns
CF and MF signals within a unified framework (usually using graphs), enabling
simultaneous optimization. While this method mitigates representation discrepancies,
it risks conflicting optimization directions between CF and MF signals, potentially
undermining overall performance. Both approaches struggle to adapt to diverse real-
world scenarios, where user preferences may be driven by either collaborative signals,
content similarity, or a combination of both. Current methods fails to consider these
signals at a fine-grained level, thereby falling short in comprehensively modeling user
preferences.

To address these limitations, we propose a novel Dual-path Selective Graph
Recommender (DSGRec), which consists of four components including heterogeneous
networks information collaboration (HNIC), behavior-aware modality signal

Figure 1 Specification of diverse user-item interaction information at the granularity of demands and modal interests. V-pre and T-pre
represent the user’s interest in different modalities of the item. Full-size DOI: 10.7717/peerj-cs.2779/fig-1

Figure 2 An illustration of the cooperative relationship between two signals.
Full-size DOI: 10.7717/peerj-cs.2779/fig-2
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augmentation (BMSA), hypergraph-guided cooperative signal enhancement (HCSE) and
adaptive fusion and prediction module.

To tackle the first limitation, HNIC divides interaction signals into two distinct types:
collaborative signals (C-signals), dominated by similar users and obtained through
collaborative filtering (CF), and preference signals (P-signals) guided by user interests and
derived from MF. Specifically, the HNIC module performs independent message
propagation on the user-item interaction graph and the multi-modal feature graph,
enabling the separate capture of C-signals and P-signals. Additionally, the behavior-aware
modality signal augmentation module adaptively fuses user preferences extracted from
behavioral features in different environments with item modal features, thereby enriching
P-signals. To further enhance the representation, the Hypergraph-guided cooperative
signal enhancement module constructs global hyper-edges, supplementing information
that traditional CF methods fail to capture due to hop distance limitations. This module
learns the hybrid representation of C-signals and P-signals by incorporating global higher-
order relationships. Finally, to address the second limitation, we introduce an adaptive
fusion mechanism that dynamically adjusts the weights of P-signals, C-signals and the
hybrid global feature of two signals based on their contributions in different scenarios as
shown in Fig. 2 (right). By decoupling the learning processes while maintaining their
interactions, our approach effectively captures the complexity of user-item interactions
and overcomes the shortcomings of existing single-path or dual-path methods. The
contribution of this work are summarized as follows:

1. We propose a novel division of interaction signals into two distinct types: Collaborative
signals (C-signals), derived from CF, and P-signals derived from MF, enabling a more
granular understanding of user-item interactions.

2. We design a fine-granularity learning framework that independently models CF-based
embeddings, MF-based embeddings, and their fused representations, followed by an
adaptive fusion of the three.

3. We conduct extensive experiments on three real-world datasets to validate the
effectiveness of DSGRec. The evaluation results demonstrate that DSGRec has
attained comparable performance with state-of-the-art methods.

The remainder of this article is organized as follows. “Related Work” reviews related
work in graph-based recommendation and multi-modal recommendation. Then,
“Problem Definition and Notations”, “Methodology” and “Complexity Analysis”
introduce the problem definition and proposed methodology. “Experiments” presents and
analyzes the experimental results on three standard datasets. Finally, “Conclusion”
concludes the work and discusses future research directions.

RELATED WORK
Multi-modal recommendation
With the growing prevalence of multimedia contents in the modern web era, many
recommendation systems have evolved from single-modal approaches to multi-modal
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methods that integrate various data types and features. VBPR (He & McAuley, 2016)
considers the visual appearance of the items by extracting visual features from pre-trained
network. Recently, many works introduce GNNs into multimodal recommendation.
Besides multi-modal item representations, MMGCN (Wei et al., 2019) enhances user
representations from modalitiy specific user-item interactions. MICRO (Zhang et al.,
2022a) injects a multi-modal representation of item-item into items and captures the
relationships between different items with graph convolution. Attention-guided multi-step
fusion network (TMFUN) (Zhou et al., 2023c) and Self-supervised graph disentangled
network (SGDN) (Ren et al., 2023) are both trained on the interaction data between users
and items to get the deep relationship between users and items. Self-supervised interest
transfer network (SITN) (Sun et al., 2023) and MBSSL (Xu et al., 2023) operate the nodes
to obtain a better recommendation effect. SITN (Sun et al., 2023) aggregates nodes with
semantic invariance in different semantic Spaces. Bias constrained contrastive learning
(BCCL) (Yang et al., 2023) utilizes data augmentation with constrained biases to enhance
sample quality. However, existing recommendation methods fail to consider attractiveness
and demand as the bidirectional characteristics of user-item interactions, leading to limited
recommendation efficacy within specific item categories. DSGRec adopts two different
methods to capture attraction and demand signals on user-item interaction graphs,
allowing for more sophisticated modeling of complex user behaviors. MGNM (Mo et al.,
2024) effectively filters out noise from the modality features, ensuring the refined
information is more closely aligned with user preferences. Counterfactual knowledge
distillation (CKD) (Zhang et al., 2024) enhances the information utilization rate of each
modality under single-modality guidance, effectively capturing complementary
information between different modalities.

Graph-based recommendation
In the field of recommender system, graph convolutional neural networks are favored by
mainstream methods because of their excellent performance in high-order connectivity
modeling. LightGCN (He et al., 2020) is a foundation stone for applying graph
convolutional neural networks to multi-modal recommendation systems. Exploring user
preferences frommultiple modalities information of items (Zhou et al., 2023a; Zhang et al.,
2021) has been a hot topic for MRS. For example, LATTICE (Zhang et al., 2021) enhances
node representations in the graph by learning from multi-modal information. DRAGON
(Zhou et al., 2023a) learns dual representations of users and items by constructing
homogeneous and heterogeneous graphs. Multi-modal graph contrastive learning
(MMGCL) (Yi et al., 2022) ensures the effective contribution of each modality through
different data augmentation. FREEDOM (Zhou & Shen, 2023) freezes the large model and
only trains the end of the model and graph denoising, achieving good results. Other
methods such as DRAGON (Xia et al., 2023) learns dual representations of users and items
by constructing both homogeneous and heterogeneous graphs. GraphCAR (Xu et al.,
2018) uses graph convolutional network (GCN) to capture higher-order connectivity and
enhance preference features, they have used GCN-based CF methods to explore higher-
order relationships between users and items. Dynamic graph evolution learning (DGEL)
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(Tang et al., 2023) uses the joint training of interaction matching task and prediction task
to ensure the rapidness and timeliness of the recommendation system for the interaction
between users and items. Multimodal graph meta contrastive learning (MGMC) (Zhao &
Wang, 2021) assigns meta-learning to contrastive learning to provide generalization
capabilities for graph contrastive learning. In constructing nodes, current methods use a
single pathway to learn a signal representing the method; however, due to the influence of
noise, the more accurate the signal learned in a single pathway, the more severe the
phenomenon of overfitting in the experiment will be. DSGRec uses two pathways and four
different methods to build nodes to improve the performance and enhance the
robustness of the recommender system. Disentangled Graph Variational Auto-Encoder
(DGVAE) (Zhou & Miao, 2024) leverages GCNs to encode and disentangle ratings and
multimodal information, enabling it to learn latent representations of items from their
neighboring items.

Hypergraph learning for recommendation
The utilization of hyperedges connecting multiple nodes allows for the construction of
hypergraphs, which can serve as a supplementary tool in CF for extracting unexplored
user-item relationship information (Gao et al., 2020). The hypergraph neural networks
(HGNN) (Feng et al., 2019) framework incorporates hyperedge convolution to manage
data correlations during the representation learning process. A hardware-friendly
recommendation algorithm based on hyperdimensional computing (HyperRec) (Wang
et al., 2020) achieves more granular recommendation effects by stacking hypergraph
convolution networks, residual gating layers, and fusion layers, Dual channel hypergraph
collaborative filtering (DHCF) (Ji et al., 2020) learns user and item representations
separately so that these two types of data can be interconnected while maintaining their
specific attributes. Hypergraph Click-Through Rate prediction framework (HyperCTR)
(He et al., 2021) leverages information interaction between users and micro-videos by
considering different modalities, Multi-channel Hypergraph Convolutional Network
(MHCN) (Yu et al., 2021) incorporates self-supervised learning to reduce aggregation loss
through hierarchical mutual information maximization, dual channel hypergraph
convolutional network (DHCN) (Xia et al., 2021) introduces a dual-channel hypergraph
convolutional network and incorporates self-supervised tasks into network training. This
approach enhances hypergraph modeling and improves the performance of
recommendation tasks, Co-guided Heterogeneous Hypergraph Network (CoHHN)
(Zhang et al., 2022b) employs a dual-channel aggregation mechanism within a
heterogeneous hypergraph network to integrate diverse information from heterogeneous
nodes and multiple relations. In the last couple of years, several research efforts have
integrated hypergraphs with self-supervised learning techniques by employing self-
supervised learning as a regularization method for hypergraph learning (Xia, Huang &
Zhang, 2022). However, approaches like hypergraph contrastive collaborative filtering
(HCCF) (Xia et al., 2022) and local and global graph learning for multimodal
recommendation (lgmrec) (Guo et al., 2024) focus on self-supervised learning on
hypergraph information. However, self-supervised learning without filtering information
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similarly leads to the enhancement of noise, which undermines the ability of the model to
capture item characteristics and user preferences. In contrast, our approach not only
leverages hypergraphs as supplementary signals but also incorporates multi-modal
features of items and user preferences, thereby enhancing the precision of
recommendations.

PROBLEM DEFINITION AND NOTATIONS
In this section, we introduce the notations used in our work and formally define the task
within the overall framework. Let U ¼ fug denotes the set of users, and I ¼ fig represents
the set of items. The input ID embeddings of user u and item i are denoted as

Eid 2 Rd�ðjIjþjU jÞ, where d is the dimension of embedding vectors. For each item i, we
represent its modality feature as Em

i 2 Rdm�jIj, where dm is the dimension of the feature,
m 2 M is the index of the modality, andM is the set of modalities. In this article, following
previous work, we define M ¼ fv; tg, where v and t represent the visual and textual
modalities, respectively. Additionally, the user’s historical behavior data is denoted as

P 2 RjU j�jIj, where each entry Pu;i ¼ 1 if user u has interacted with the item i; otherwise,

Ru;i ¼ 0. Naturally, the historical interaction data P can be viewed as a sparse behavior

graph G ¼ fV;Eg, where V ¼ fU [ Ig represents the set of nodes, and
E ¼ fðu; iÞju 2 U; i 2 I;Ru;i ¼ 1g denotes the set of edges. The goal of multi-modal

recommendation is to accurately predict the likelihood of interaction between a user and
an item by ranking all items for the user based on the predicted scores r̂u;i:

r̂u;i ¼ DSGRecðEHNIC;Ef ;EhÞ; (1)

where DSGRecð�Þ is our model that predicts the likelihood of user u interacting with item i.
Here, EHNIC represents the embeddings obtained from Heterogeneous Network
Information Collaboration (HNIC), which employs graph neural network to capture C-
signals and P-signals on the user-item interaction graph with ID embedding and modality
features, respectively. The Ef represents the embedding from Behavior-aware Modal Signal
Augmentation, and the Eh represents the embeddings learned by Hypergraph-guided
Cooperative Signal Enhancement module.

METHODOLOGY
In this section, we present the detailed framework of our proposed method, DSGRec. As
illustrated in Fig. 3, the framework consists of four main components: (1) heterogeneous
networks based information collaboration (HNIC); (2) behavior-aware multi-modal signal
augmentation (BMSE); (3) hypergraph-guided cooperative signal enhancement (HCSE);
and (4) adaptive fusion and prediction.

Heterogeneous networks-based information collaboration
The HNIC module serves as the foundational component, aiming to learn representations
of user demand for items and the multi-modal preferences. These two parts are learned
separately through the propagation of ID embeddings and multi-modal information on
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the User � Item interaction graph, corresponding to behavior-oriented demand
embedding and interest-guided preference embedding.

Behavior-oriented demand embedding
We design a behavior-oriented demand embedding module to learn users’ latent needs. To
minimize the influence of different modality features on C-signals, we utilize the high-
order interactions captured by message propagation on the User � Item embedding graph
that only contains ID information. First, we construct a symmetric adjacency matrix A
from the User � Item interaction matrix:

A ¼ 0 P
P> 0

� �
; (2)

where P is the user-item interaction matrix. We then employ LightGCN (He et al., 2020) to
propagate the ID embeddings of users and items in the interaction graph, enabling the
learning of high-order collaborative signals. The graph convolution at each layer can be
formulated as:

EidðlÞ ¼ Eidðl�1ÞD�1
2AD�1

2; (3)

where EidðlÞ is the embedding matrix at the l-th layer after graph convolution, and Eidð0Þ is
the initial ID embeddings, and D is the diagonal degree matrix. To ensure fairness and

Figure 3 The framework of the proposed DSGRec, which consists of four main modules. Full-size DOI: 10.7717/peerj-cs.2779/fig-3
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eliminate the difference in the number of interactions, we apply symmetric normalization
1ffiffiffiffi

Nu
p ffiffiffiffi

Ni
p to the embedding, where Nu is the number of items interacted with by user u, and

Ni is the number of users who interacted with item i. The representation at the l-th layer
encodes information from l-order neighbors. After aggregating the information of high-
order neighbors. After aggregating high-order neighbor information, we obtain the final
embedding EBD:

EBD ¼ 1
Lþ 1

XL
i¼0

EidðlÞ: (4)

Interest-guided preference embedding

To identify which modality of an item attracts users, we propagate different item
modalities on the graph to explore the most appealing information for users. Specifically,
we first project the modality features of different dimensions, obtained from pre-trained
models, into a unified embedding space Rd .

eEm
i ¼ Em

i �Wm; (5)

where fEm
i is the mapped multi-modal feature of items in RjIj�d of i. Wm is a learnable

transformation matrix. Then, we aggregate the multi-modal information of the neighbor
set on the U − I graph to represent user u’s preference for each modality:

~emu ¼ 1
jNuj

X
i2Nu

~emi ; (6)

where ~emu is user u’s preference feature for the m-th modality, and Nu represents the
neighbor set of user u 2 U on the user-item interaction graph G. This operation ensures
that user’s needs and items appeal are modeled independently. The message propagation at
the l-th graph convolution layer is formulated as:

EmðlÞ ¼ Emðl�1ÞD�1
2AD�1

2; (7)

where Emð0Þ ¼ ½eu1 ; . . . ; eujU j ; eij ; . . . ; eijIj � 2 RðjU jþjIjÞ�d is the multi-modal feature matrix of
items and users. Finally, we take the last layer’s output as the final high-order modality
embedding:

E
m
IP ¼ EmðLÞ; (8)

where L is the number of layers.

Dual-path embeddings fusion
After learning the demand embedding and preference embedding separately, we merge the
two embeddings to obtain a fusion feature EHNIC :

EHNIC ¼ EBD þ
X
m2M

NORMðEm
IPÞ: (9)

Liu and Qu (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2779 9/24

http://dx.doi.org/10.7717/peerj-cs.2779
https://peerj.com/computer-science/


where NORM is a normalization function to alleviate the value scale difference among ID
embeddin and preference embeddings.

Behavior-aware multi-modal signal augmentation
Aiming to make the learned multi-modal feature complement with each other, we
design a behavior-aware multi-modal signal augmentation module. Specifically, we first
transform the original modality embeddings into shared feature space through a
linear transform:

E
::
m
i ¼ W1E

m
i þ b1; (10)

where matrix W1 2 Rd�dm and the bias vector b1 2 Rd in the transition here is trainable,
unlike Wm. Then, a behavior-guided purifier is utilized to select the preference-relevant
modality features E

::
m
i from the item’s representation Eid

i , which is proven to be effective in
previous work (MGCN; Yu et al., 2023). The behavior-guided purifier f mgate is defined as
follow:

E
::
m
i ¼ f mgateðEid

i ;E
:
m
i Þ ¼ Eid

i � rðW2ðE
:
m
i þ b2ÞÞ; (11)

where matrixW2 2 Rd�dm and b2 are learnable parameters,� represents the element-wise
product, and r is the sigmoid function.

To obtain an accurate item modality vector and avoid contamination from user
preferences, we only propagate modality features in the I − I graph. First, we conduct KNN
sparsification (Chen, Fang & Saad, 2009) on the I − I graph. KNN sparsification can
effectively reduce training costs and remove unnecessary noise as much as possible. The
similarity between item a and b on modality m is denoted as sma;b:

sma;b ¼
ðema ÞTemb

jjema jj jjemb jj
; (12)

where ema and emb represent the feature of item a and b in modality m. To ensure that the
edges retained in the graph are truly effective, we retain the edges with the top k highest
similarity in each row and remove the other edges. All the similarity values construct a
affinity matrix Sm in Eq. (13), where the element in the row a and column b of it is
computed with Eq. (12).

S
:
m ¼ sma;b; sma;b 2 top� Kðsa;c; c 2 IÞ;

0; otherwise:

�
(13)

We also normalize the item-item affinity matrix to prevent gradient explosion, which
has been proven effective in prior work (Chen, Fang & Saad, 2009). The normalizeditem-
item affinity matrix is defined as:

S
::
m ¼ Dm1

2S
:
mDm�1

2: (14)
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Here, Dm is the diagonal matrix of S
:
m. Then, we propagate all item modal features E

::
m
i

through the corresponding Item� Item affinity matrix S
:
m by the LightGCN (He et al.,

2020):

Em
i ¼ S

::
m E

::
m
i : (15)

It can enrich features by capturing the common characteristics of similar items.
However, in the I − I view, as the propagation path increases, the semantic similarity of the
node modality features significantly decreases. Stacking multiple graph convolution layers
not only leads to the over-smoothing problem of nodes but also easily captures noise
features. Finally, we obtain the second user modality E

m
u under the I − I graph, user u’s

modality feature �emu is expressed as:

�emu ¼
X
i2Nu

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijNijjNuj
p �emi ; (16)

where �emi is the vector of E
m
i . By concatenating E

m
u with E

m
i , we obtain the behavior-related

modal aggregation auxiliary feature E
m 2 Rd�ðjUjþjIjÞ for each modality. To model the

multi-modal preference signals with a fine-grained fusion mechanism, we design a
behavior-aware fusion Pm for each modalitym. This module learns and adjusts parameters
to determine the weight of each item’s attraction to users based on the behavior
information matrix. It is defined as:

Pm ¼ rðW3EBD þ b3Þ; (17)

where W3 2 Rd�dm and b3 2 Rd are learnable parameters, and r is the sigmoid function.
Pm describe the importance of each modality for different users. For flexible fusion weight
allocation based on user modality preferences, we decompose the modal features into
common features and unique features. First, we assume that the common features, derived
from interaction information, are highly similar to the modal features of the user’s target
needs. Then, we capture these common features (Vaswani et al., 2017; Wang, Wu &
Hoashi, 2019) using an attention mechanism, resulting in the modal weight matrix a:

am ¼ softmaxðq>1 tanhðW4E
m þ b4ÞÞ; (18)

where q1 2 Rd is the attention vector,W4 2 Rd�dm and b4 2 Rd are the weight matrix and
bias vector, respectively. These parameters are shared across all modalities. The shared
modal features Es are obtained by summing the weighted modality features:

Es ¼
X
m2M

amEm: (19)

The unique modal features eEm are then derived by subtracting the shared features Es:

eEm ¼ Em � Es: (20)
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Finally, we adaptively fuse the modal-specific features eEm with the shared features Es to
obtain the behavior-related modal aggregation auxiliary embeddings Ef :

Ef ¼ Es þ 1
jMj

X
m2M

eEm � Pm: (21)

To ensure that the auxiliary information Ef is learned effectively under sparse data
conditions and to better explore the relationship between CF signals and MF signals, we
design a self-supervised auxiliary task to optimize Ef with the loss Lf :

Lf ¼
X
i2I

� log
expðei;f � ei;id=s1ÞP

m2I expðem;f � em;id=s1Þ þ
X
u2U

� log
expðeu;f � eu;id=s1ÞP
n2U expðen;f � en;id=s1Þ : (22)

Here, Lf can learn meaningful feature representations by maximizing the similarity of
positive sample pairs while minimizing the similarity of negative sample pairs, and s1 is a
temperature hyper-parameter, eu;f and ei;f denote the features of u and i in Ef , eu;id and ei;id
denote the features of u and i in EBD.

Hypergraph-guided cooperative signal enhancement
The over-smoothing effect in deeper graph-based CF architectures can lead to
indistinguishable user representations and a degradation in recommendation quality.
Inspired by the ability of hyper-graphs to capture complex high-order relationships
globally, we introduce hyper-graph to capture high-order global hybrid representations of
CF signal and MF signal missed that are missed in local learning due to data sparsity.

To make the model to learn the hypergraph structure adaptively, we define learnable
vectors Vm

k 2 Rd to represent a set of hyper-edges, where k 2 K and K is the number of
hyper-edges, m 2 M and M represents the set of modalities. As illustrated in Fig. 4, the
process include hyperedge learning, matrix calculation and hyper-graph embedding
learning.

First, we learn the hyperedges of item nodes from the original modality embeddings in
the low-dimensional embedding space:

Hm
i ¼ eEm

i � Vm>; (23)

whereHm
i 2 Rd�jKj represents the item hyperedge dependency matrices. eEm

i is the original
item modality feature matrix computed with Eq. (5), and Vm = ½Vm

1 ; ::;V
m
K � 2 RK�dm is the

hyperedge vector matrix. Based on Hm
i and user behavior, the hyperedge Hu for users can

be obtained as follows:

Hm
u ¼ Au �Hm

i
>; (24)

where Hm
u represents user-hyperedge dependency matrices, and Au 2 RjUj�jIj is the user-

related adjacency matrix extracted from adjacency matrix A. This ensures that the
hyperedges connect nodes with similar modalality features, allowing the hyperedge
embedding to globally correct the embedding vector previously obtained by CF through
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user behavior information. To ensure fairness in each node’s contribution to the
hypergraph and avoid the same node being captured by multiple hyperedges, we apply
Gumbel-Softmax reparameterization (Jang, Gu & Poole, 2017) for each node:

~hmi;� ¼ SOFTMAX
log d� logð1� dÞ þ hmi;�

s

� �
; (25)

where ~hmi;� 2 RK is the i-th row vector of Hm
i . d 2 RK is a noise vector, where each value

dk � Uniformð0; 1Þ, and s is the temperature hyperparameter. The SOFTMAX represents
the softmax function, which ensures differentiable smapling. Subsequently, we obtain the
enhanced item-attribute hypergraph dependency matrix bHm

i . By performing a similar
operation on Hm

u , we derive the enhanced user-attribute relationship matrix eHm
u . Similar

with traditional CF approaches, we use hyperedges as bridges for the message-passing
mechanism. Due to the characteristics of hyperedges, modality information is no longer
limited by hop distance during transmission. The information of the entire graph can be
propagated to each user u and item i using the following formulas:

Emðlþ1Þ
i ¼ SHi � EmðlÞ

i ;Emðlþ1Þ
u ¼ SHu � EmðlÞ

u : (26)

where EmðlÞ
i and EmðlÞ

u represents the hypergraph embedding matrices of items and users
under modalitym at the l-th layer, respectively. We use EBD as the initial embedding when
l = 0. SHi and SHu are matrices describing the global relationship between nodes with
learned hyperedges, computed as follows based on prior work (Guo et al., 2024):

SHi ¼ DropðeHm
i Þ � DropðeHm>

i Þ; SHu ¼ DropðeHm
u Þ � DropðeHm>

i Þ (27)

where DropðÞ represents the dropout function.
In hypergraph transmission, by using the hypergraph dependency perceived through

user behavior as input, we achieve global CF and MF information propagation,
supplementing or denoising the information missed in the local information transmission

Figure 4 Construction of hypergraphs for global information extraction. Full-size DOI: 10.7717/peerj-cs.2779/fig-4
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of previous work. Subsequently, the embeddings of users and items are stacked to obtain
the hybrid feature embedding matrix Eh:

Eh ¼
X
m2M

ConcatðEmðlÞ
u ;EmðlÞ

i Þ; (28)

where EmðlÞ
u 2 RjUj�d and EmðlÞ

i 2 RjIj�d are the embedding matrices representing the
global hybrid features of user u and item i under modality m at the l-th layer, respectively.
ConcatðÞ represents the concatenate operation.

To explore the collaborative relationship between demand signals and modality
embedding signals, we optimize each signal independently before fusion. For the HCSE
module, due to data scarcity and the complexity of comparing cross-modal information,
we utilize contrastive learning to optimize Eh in a self-supervised manner (Gutmann &
Hyvärinen, 2010). Specifically, we treat embeddings of the same user/item under the
different modalities as postive pairs and embeddings of different users/items under
different modalities as negative pairs:

Lh ¼
X
u2U

� log
expðevðlÞu � etðlÞu =s2ÞP

u02U expðevðlÞu � etðlÞu0 =s2Þ
þ
X
i2I

� log
expðevðlÞi � etðlÞi =s2ÞP
i02I expðevðlÞi � etðlÞi0 =s2Þ

; (29)

where s2 is the temperature factor for this loss function, and u0 and i0 are randomly
sampled negative samples for user u and item i, respectively.

Adaptive fusion and prediction
We obtain the final embedding e of users and items by aggregating the collaborative
embedding EHNIC from the heterogeneous network, the augmented multi-modal features
Ef , and the global hybrid features Eh from the hyper-graph network:

e ¼ EHNIC þ a � NORMðEhÞ þ b � NORMðEf Þ; (30)

where NORMðÞ is a normalization function to alleviate the value scale difference among
embeddings, and a and b are weighting factors. Following He et al. (2020), we adopt the
inner product to calculate the prediction score between user u and item i.

bru;i ¼ eTu ei: (31)

After obtaining the bru;i, we use Bayesian personalized ranking (BPR) loss (Rendle et al.,
2012) to optimize the parameters of DSGRec:

LBPR ¼ � 1
jDj

X
ðu;iþ;i�Þ2D

lnrðbru;iþ �bru;i�Þ; (32)

where ðu; iþ; i�Þ is a set of triples for training. Here, u is the user embedding vector, iþ is an
item that user u has interacted with, and i� is a randomly sampled negative item from the
dataset. Finally, we integrate the loss functions of each component as follows:

L ¼ LBPR þ kf Lf þþkhLh þ kEjjfjj2; (33)
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where kf , kh, and kE are hyperparameters for weighting the loss terms. f represents the
model parameters, which are regularized using L2 regularization to prevent overfitting.

COMPLEXITY ANALYSIS
According to the architecture of DSGRec, we elaborate on each component to analyze the
time cost. For the heterogeneous networks information collaboration module, the
behavior-oriented demand embedding has computational complexity OðL � jEj � dÞ,
where L is number of layers for graph convolution, and E represents the number of
interactions recorded in the user-item interaction graph, d is the embedding size, which we
set to 64. The interest-guided preference embedding module embedding complexity is
OðjMj � jEj � dmÞ, where M represents the number of modalities, dm is the dimension of
the feature. The overall time complexity of the heterogeneous networks information
collaboration module is OððL � d þ jMj � dmÞ � jEjÞ.

For the behavior-aware modal signal augmentation, the computation cost primarily
comes from the KNN algorithm with OðjIj2 � dmÞ, and the cost of the contrastive learning
Oðb � ðjU j � d þ jIj � dmÞ. Here, b is the batch size, |U| and |I| represent the number of
user nodes and item nodes, respectively.

For the hypergraph-guided cooperative signal enhancement, the time complexity of
hypergraph dependency construction isOðjMj � K � jIj � ðjUj þ dmÞÞ, where K represents
the number of hyperedges. The message passing schema has a time complexity of
OðjMj � ðjIj �H þ jU jÞ � K � ESÞ, where H represents the number of hypergraph layers
andES is the embedding size. The cost for contrastive learning is Oðb � ðjU j þ jIjÞ � ESÞ,
which is same as behavior-aware modal signal augmentation module.

EXPERIMENTS
In this section, we conduct extensive experiments on three datasets to evaluate the
effectiveness of DSGRec and address the following research questions through the
experimental results:

. RQ1: Can DSGRec outperform state-of-the-art baseline models of different types in
terms of recommendation performance?

. RQ2: What is the contribution of each components to the overall method?

. RQ3: How do different hyperparameter settings influence the performance of DSGRec?

Experimental setup
Dataset
To validate our model, we conduct comprehensive experiments on three widely used
Amazon datasets (McAuley et al., 2015): (a) Baby, (b) Sports and Outdoors, and (c)
Clothing Shoes, which we refer to as Baby, Sports, and Clothing in brevity (https://
nijianmo.github.io/amazon/index.html). These datasets contain both textual and visual
modality information, making them suitable for evaluating multi-modal models.
Following previous work (Guo et al., 2024), we utilize 4,096-dimensional visual features
and 384-dimensional text features provided by the dataset. Table 1 summarizes the
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statistics of these datasets, including the number of users, items, interactions, and the
degree of sparsity.

Experimental settings

We randomly split the user-item interaction data into training, validation and testing in a
ratio of 8:1:1. We adopt two widely used metrics: Recall (R@n) and Normalized
Discounted Cumulative Gain (NDCG@n) (He et al., 2015).

We set the default batch size, learning rate, and embedding size to 2,048, 0:001, and 64,
respectively. The optimal hyperparameters are determined through grid search on the
validation set. Specifically, we tune the number of graph propagation layers in f1; 2; 3; 4g,
the number of hyperedges K in f1; 2; 4; 8; 16; 32; 64; 128; 256g, the factors a and b in
f�1;�0:9; . . . ; 1:0g, and the dropout rate p in f0:1; 0:2; . . . ; 1:0g. The loss weighting k1,
k2, and k3 are searched in f1e� 6; 1e� 5; . . . ; 0:1g. For the contrastive learning auxiliary
tasks, we set the temperature coefficient s1 = 0:2, s2 = 0:2. We employ an early stopping
mechanism during the training process based on R@20 on the validation set.

The optimization process employees the stochastic gradient descent (SGD) algorithm.
In implementation, the Adam optimizer is used to adjust the learning rate.

Baselines
To evaluate the effectiveness of DSGRec, we compare it with two types of representative
baseline models, including:

(1) CF-based models focusing on interaction signals: BPR (Rendle et al., 2012),
LightGCN (He et al., 2020), HCCF (Xia et al., 2022), and LGMRec (Guo et al., 2024);

(2) Multi-modal based models using multi-modal signals as side information: VBPR
(He & McAuley, 2016), MMGCN (Wei et al., 2019), MICRO (Zhang et al., 2022a), BM3
(Zhou et al., 2023b), FREEDOM (Xia et al., 2022), MGCN (Yu et al., 2023).

Overall performance comparison (RQ1)
Table 2 presents the performance of all methods on three datasets. Specifically, our method
outperforms baseline models and shows strong competitiveness against the latest models
on two datasets, which improved by 2:84%, and 2:17% in terms of Recall@20 for the baby
and sports, respectively. In addition, the performance on the Clothing dataset is superior to
most baseline method. Further analysis of the two types of models reveals: (1) Comparison
with CF-type models: Our model performs better on the Sports and Clothing datasets,
which we attribute to its emphasis on modality information. Some CF models overestimate

Table 1 Statistics of the three experimental datasets.

Dataset User Item Behavior Sparsity

Baby 19,445 7,050 160,792 99.883%

Sports 35,598 18,357 296,337 99.955%

Clothing 39,387 23,033 278,677 99.969%
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the role of collaborative signals in capturing user interests, leading to suboptimal
performance in interest-dominated environments. (2) Comparison with multi-modal
models: Our model’s performance on the demand-guided baby dataset indicates that some
models overly rely on modal information learning while neglecting demand information
exploration. DSGRec adaptively integrates high-order modality information with demand
signals, ensuring robust performance.

Ablation study (RQ2)
To investigate the complexity of user behavior and explore the specific contributions of
different modules, we conduct an ablation study by comparing DSGRec with four variants:

. w/o BDE: Disable the behavior-oriented demand embedding module but retain its
participate in auxiliary tasks.

Table 2 The overall performance of DSGRec and different types of recommendation models on
three datasets. We use bold to mark the best results and underline to mark the second best.

Datasets Baby Sports Clothing

Metrics R@20 N@20 R@20 N@20 R@20 N@20

BPR(UAI ’09) 0.0607 0.0261 0.0690 0.0314 0.0315 0.0144

LightGCN(SIGIR ’20) 0.0732 0.0320 0.0829 0.0379 0.0514 0.0227

HCCF(SIGIR ’22) 0.0756 0.0332 0.0857 0.0394 0.0533 0.0235

LGMRec(AAAI ’24) 0.0986 0.0436 0.1068 0.0480 0.0828 0.0371

DGVAE(IEEE ’24) 0.1009 0.0436 0.1123 0.0506 0.0917 0.0412

VBPR(AAAI ’16) 0.0663 0.0284 0.0854 0.0378 0.0412 0.0191

MMGCN(MM’19) 0.0749 0.0315 0.0825 0.0382 0.0564 0.0253

MICRO(IEEE ’23) 0.0905 0.0406 0.1026 0.0463 0.0743 0.0332

BM3(WWW’23) 0.0857 0.0378 0.0979 0.0437 0.0669 0.0295

MGCN(MM ’23) 0.0964 0.0427 0.1106 0.0496 0.0945 0.0428

CDK(ACM’24) 0.0866 0.0389 0.1004 0.0463 0.0770 0.0363

DSGRec 0.1014 0.0438 0.1130 0.0500 0.0891 0.0406

Table 3 Ablation analysis of DSGRec variants with performance benchmarking. Best results are
highlighted in bold across all variants.

Datasets Baby Sports Clothing

Metrics R@20 N@20 R@20 N@20 R@20 N@20

w/o BDE 0.0943 0.0414 0.0337 0.0860 0.0847 0.0376

w/o IPE 0.0789 0.0377 0.0493 0.0210 0.0702 0.0314

w/o BMSA 0.0989 0.0436 0.1119 0.0491 0.0871 0.0399

w/o HCSE 0.0987 0.0433 0.1123 0.0497 0.0808 0.0364

DSGRec 0.1014 0.0438 0.1130 0.0500 0.0891 0.0406
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. w/o IPE: Remove the interest-guided preference embedding module, and set

EHNIC ¼ EBD.

. w/o BMSA: Remove the behavior-aware modal signal augmentation module.

. w/o HCSE: Remove the hypergraph-guided cooperative signal enhancement module.

Table 4 Parameter settings.

Dataset Baby Sports Clothing

kf 0.000001 0 0.000001

kh 0.0001 0.001 0.0001

kE 0.001 0.001 0.001

a 0.6 0.2 −0.9

b −0.3 −0.3 0.8

Hyperedges 4 4 64

s 0.5 0.2 0.2

s1 0.2 0.2 0.2

s2 0.5 0.2 0.2

Eid layer 2 4 2

E
m
IPlayer 2 3 3

Hypergraph layer 1 4 2

Figure 5 The Recall@20 and NDCG@20 results of different a and b weight and vision weight. Full-size DOI: 10.7717/peerj-cs.2779/fig-5
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Table 3 reports Recall@20 and NDCG@20 of these variants on the three datasets,
leading to the following findings:

(1) Among these four models, the variants w/o BDE and w/o IPE exhibit the worst
performance, demonstrating that user behavior cannot be comprehensively modeled by
methods using a single signal. DSGRec’s decomposition of behavioral signals into demand
and perefernce components enables independent learning and effective collaboration.

(2) The modules w/o BMSA and w/o HCSE indeed play a role in optimization. The
performance gap varies across datasets, indicating that interest and demand signals are not
conflicting and can sometimes be optimized by a single module. This highlights the
limitations of single-path modeling and the benefits of multi-module collaboration.

Hyperparameter discussion (RQ3)
In this section, we discuss the hyperparameters settings for the three datasets in our
experiments. Table 4 details the optimal parameter settings. Additionally, Fig. 5 presents
the Recall@20 and NDCG@20 for different a and b in detail.

As the Table 4 demonstrates, the weight a of Behavior-aware Modal Signal
Augmentation is positive for the Baby and Sports datasets but negative for the Clothing
datasets. Conversely, the weight b of Hypergraph-guided Cooperative Signal Enhancement
is opposite to a. This pattern, illustrated in Fig. 5, aligns with our hypothetical model: the
interpretation of interactive behavior should be context-dependent.

In the demand-driven Baby dataset, modal information may interfere with the
recommendation accuracy. On the contrary, due to the GCN limitations, the demand

Initial View Demand View Preference View DSGRec View

Figure 6 The 2D distributions of the learned demand and preference pathways in DSGRec.Using t-SNE visualization, we can intuitively see that
DSGRec effectively retains the independent semantics of the dual representations and can adaptively fuse information across pathways.

Full-size DOI: 10.7717/peerj-cs.2779/fig-6

Liu and Qu (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2779 19/24

http://dx.doi.org/10.7717/peerj-cs.2779/fig-6
http://dx.doi.org/10.7717/peerj-cs.2779
https://peerj.com/computer-science/


signal requires hypergraph enhancement to achieve optimal performance. In the Clothing
dataset, the optimal a value is �0:9, indicating that the demand signal struggles to capture
user preferences effectively. The preference signal demonstrates a significant advantage,
explaining why DSGRec underperforms compared to multi-modal methods on this
dataset.

Visualization
We utilize a visualization module to create 2D graphs showing the representation of nodes
from initial view, demand view, preference view and DSGRec view. We randomly sample
5,000 items from the dataset and map their embedding vectors into a 2-dimensional space
using t-SNE (Van der Maaten & Hinton, 2008). In Fig. 6, the first row visualizes initial
embedding vectors, and the second row shows results after training. Each column
corresponds to different method variants, as in the ablation study. Node colors represent
different clusters. From the figure, we observe that the initial view embeddings displays a
random distribution of users and items, while other views result in more distinguishable
distributions.

CONCLUSION
In this article, we propose DSGRec, a novel dual-path recommendation framework
designed to model user-item interactions more effectively. DSGRec decomposes explicit
interaction signals into two types of implicit interaction information: demand signals and
preference signals. Subsequently, an adaptive fusion mechanism is then employed to
facilitate fine-grained collaboration between these signals, significantly improving the
model’s robustness and recommendation performance. Extensive experiments on three
real-world datasets demonstrate the dual-path representation could effectively sutiable to
different interaction context.

Despite its advantages, DSGRec’s dual-channel architecture introduces more
hyperparameters and result in longer training times. In future work, we will focus on
designing more effective and efficient fusion architecture for integrating collaborative
filtering signals and multi-modal signals.
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