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ABSTRACT

Feature models (FMs) play a crucial role in software product lines (SPLs) by
representing variability and enabling the generation of diverse product
configurations. However, the vast number of possible configurations often makes it
challenging to identify the most suitable variant, especially when multiple criteria
must be considered. Multi-criteria decision-making (MCDM) methods, such as
analytic hierarchy process (AHP), technique for order of preference by similarity to
ideal solution (TOPSIS), and VIseKriterijumska Optimizacija I Kompromisno
Resenje (“multicriteria optimization and compromise solution”) (VIKOR), are
effective for ranking configurations based on user-defined preferences. However, the
application of disparate MCDM techniques to the same feature model with identical
criteria can yield conflicting rankings, thereby complicating the decision-making
process. To address this issue, we propose a novel framework that systematically
integrates multiple MCDM methods to prioritise product configurations and
provides informed decision support to reconcile ranking discrepancies. The
framework automates the prioritisation process and offers a structured approach to
explain differences between rankings, enhancing transparency and user confidence in
the final selection. The framework’s effectiveness has been validated through
real-world case studies, demonstrating its ability to streamline configuration
prioritisation and support consistent, preference-driven decision-making in complex
SPL environments.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation, Software Engineering

Keywords Feature models, Software product line, Informed decision-making support,
Prioritisation

INTRODUCTION

In today’s software industry, variability models are used to compactly represent all product
variants of a software product line (SPL) in terms of features (Benavides, Segura ¢ Cortés,
2010). An SPL integrates similar software products with features in common, but not all of
them. Feature models (FM) are a type of variability model that allows compacting of the
variability representation of a family of products (Metzger ¢ Pohl, 2014). The use of FMs is
widespread and several studies and tools support their management and analysis (Horcas,
Pinto & Fuentes, 2023; Varela-Vaca et al., 2019). One of the main functionalities of these
tools is their capacity for automatic reasoning and the generation of a set of partial or
complete configurations from a specified model.
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A product variant can be represented by a product configuration, which includes the
selection of features for an FM. The vast number of possible product configurations poses a
significant challenge: how to efficiently identify and prioritise the configurations that best
meet user requirements (Ferndndez-Amords et al., 2024). While FMs provide a compact
representation of these configurations, the sheer volume of potential options can
overwhelm decision-makers. This complexity highlights the need for systematic methods
that can assist in ranking configurations based on multiple criteria, ensuring that the most
suitable product variants are selected. For example, a car manufacturer’s product line
(Astesana, Cosserat & Fargier, 2010) can potentially include an exponential number of
configurations, influenced by features such as colour, engine type, Bluetooth capability,
and navigation technology. However, it should be noted that not all configurations are
supported, for example, the inclusion of the navigation system but not that of Bluetooth. In
addition, it may be unfair to present all possible configurations and analysing them would
be pointless, time consuming and costly. It would be better to present a subset of
configurations that meet the user’s needs, for example those that prioritise fuel economy
over boot space. Consequently, the prioritisation of a subset of configurations based on
user-defined criteria becomes imperative to facilitate streamlined decision-making
processes.

Designing a specific product within a product line involves optimising the selection of
features to identify the ‘best’ product. Product configuration prioritisation offers
significant benefits, such as efficiency in decision-making by streamlining the selection
process, optimisation of resources by focusing on high-potential options, and reduction of
uncertainty by avoiding less promising configurations. It also enables strategic alignment
with organisational goals, continuous improvement by identifying areas for improvement,
and effective risk management by proactively addressing configurations with significant
risks. Clear rankings also facilitate communication and collaboration, contributing to
quality improvement in various areas such as software development, engineering, research,
and design.

Determining the best set of features becomes a multi-objective optimisation problem
(Henard et al., 2015). Multi-criteria decision-making (MCDM) (Ishizaka & Nemery, 2013)
is a mature field that has been applied in several contexts and can be applied in this context
of product configuration. In Saber, Bendechache ¢ Ventresque (2021), the multi-objective
problem was analysed by incorporating MDCM into SPL. However, different ordered lists
can be obtained for the same feature model and criteria, depending on the MCDM applied.
This variation gives rise to a critical challenge: the process of resolving discrepancies in the
rankings produced by different MCDM methods and determining which configuration
best suits the user’s preferences. There is currently no systematic framework that integrates
multiple MCDM methods to prioritise configurations derived from feature models.

The need to merge the results obtained by MCDMs is a problem that does not only exist
in the context of SPL (Egan, 2024). For example, in companies and organisations, it is often
difficult to bring together the prioritisation criteria of all stakeholders in decision-making
meetings, which can lead to low productivity or even failure to produce the best products.
The main research questions to be addressed are What is the best decision if various
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MCDM methods obtain different rankings, and how do the specific features of the FM play a
role in the decision?

To address these challenges, this article proposes a novel framework that systematically
integrates multiple MCDM methods—analytic hierarchy process (AHP) (Saaty, 1990),
technique for order of preference by similarity to ideal solution (TOPSIS) (Hwang ¢ Yoon,
1981), and multicriteria optimization and compromise solution (VIKOR) (Opricovic &
Tzeng, 2007)—for the prioritisation of configurations derived from feature models. The
framework not only automates the prioritisation process but also provides a methodical
approach to resolving discrepancies between the rankings generated by different MCDM
techniques. By offering informed decision support, the framework enhances transparency,
improves trust in the selection process, and facilitates reproducibility.

The integration of multiple MCDM methods into FM prioritisation addresses a critical
gap in the field of SPLs. By systematically reconciling discrepancies between different
ranking methods, this approach enhances decision-making transparency and reliability.
Beyond SPLs, the proposed framework has the potential to be applied in various domains
where complex configurations and multi-criteria decisions are required, such as cloud
service selection, IoT system configuration, and embedded systems design. From a
pragmatic standpoint, the automation of the prioritisation process has the potential to
reduce the time and effort required from experts, streamline product development
workflows, and ensure that configurations are aligned with user-defined priorities. This, in
turn, leads to more efficient resource allocation, better product quality, and increased
confidence in decision-making processes across diverse software and engineering
environments.

The general idea of this article is represented in Fig. 1, and the main contributions are:

* A novel framework that automates the prioritisation of configurations obtained from
feature models by integrating multiple MCDM methods.

* A systematic approach for analysing and resolving ranking discrepancies, providing
informed decision support to guide users in selecting the most appropriate
configuration.

 An evaluation of the framework through real-world case studies, with a view to
demonstrating its applicability, robustness, and scalability in handling complex feature
models.

This article is divided into the following sections. “Foundations” introduces the concept
of Feature Model and presents some decision-making techniques. “Proposed methodology
for applying MCDM methods” introduces the proposed methodology for the application
of MCDM methods and presents the different phases of the process. “Detailed Application
of AHP, TOPSIS, and VIKOR” provides a detailed explanation of the configuration and
application phases for AHP, TOPSIS, and VIKOR. “Informed Decisions: In-Depth
Examination of Ranking Discrepancies” details the phase focused on supporting informed
decision-making when discrepancies are observed between the rankings obtained by the
different techniques. The whole process is applied to a real example and is outlined in
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“Results”. “Discussion” discusses the implications, strengths, and limitations of the
proposed approach, including its scalability, reliance on expert input, and potential
enhancements through automated techniques or alternative decision-making frameworks.
“Related Work” analyses related works in the literature. Finally, “Conclusions and Future
Work” concludes the article and presents ideas for future work.

FOUNDATIONS

This section briefly introduces FMs and their use to represent SPLs. Likewise, some
MCDM methods are briefly presented.

Feature models
SPLs (Clements, 2001; Becker et al., 2001) represent a set of products that share common
features, with the objective of facilitating the creation of products based on user
requirements. They can be described using models, where one of the main notations for
expressing these models is the Feature Model (FM) notation (Schobbens et al., 2007), which
describes the set of properties in an SPL in terms of features and the relationships between
them. A FM represents the features of a product and the configuration options for each of
them in tree form. An example of how FMs are usually represented is shown in Fig. 2.
Features are related through dependencies; these can be mandatory, optional, group
cardinality, inclusion, or exclusion. Each of these is explained below:

e Mandatory. When this relationship is established between two features (child and
parent respectively) of a model, the child feature must be selected when the parent
feature is selected in a configuration. In the example, it is used to relate the features
Mobile Phone and Calls.

 Optional. This relationship is established between parent and child features and
indicates that the occurrence of the parent feature in a configuration does not imply that
the child feature must also occur. In the example feature model, it is used to relate the
Mobile Phone and GPS features.

e Or-relationship. When this relationship is established between a parent feature and its
set of child features, when the parent feature is selected in a configuration, one or more of
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its children must be selected. In the example feature model, it is used to relate feature
Media and its configuration options Camera and MP3.

o Alternative. When this relationship is established between a parent feature and its set of
child features, when the parent feature is selected in a configuration, one and only one of
its children must be selected. In the example feature model, it is used to relate feature
Screen and its configuration options Basic, Colour and High Resolution.

» Requires. If a feature X requires another feature Y, then when X is selected in a
configuration, Y must also be selected. In the example feature model, it is used to restrict
teatures Camera and High Resolution.

e Excludes. If a feature X excludes another feature Y, then when X is selected in a
configuration, Y cannot be selected. In the example feature model, it is used to restrict
features GPS and Basic.

A concrete product variant of the feature model is derived through a configuration
process: binding the variation points and instantiating the different features of the model.
For the feature mode above, some of the possible configurations of a mobile phone could
be {Calls, Screen, Basic, GPS}, {Calls, Screen, Colour, Media, Camera}, and so on. As
mentioned previously, these configurations could be sorted according to certain criteria.

Multi-criteria decision-making methods

The configurations derived from a feature model could be ranked according to certain
criteria that capture the characteristics (factors, properties, or attributes) of a decision
problem from multiple aspects. In these problems, alternatives are considered to be
available choices. These alternatives can be processed by multi-criteria models for selection
or ranking purposes. An attribute is a characteristic of an alternative that can lead us to
think about the ‘pros’ and ‘cons’ of the different alternatives.
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MCDM methods can be classified in several ways. First, based on the initial information
used, these methods can focus on a set of specific attributes—referred to as multi-attribute
decision-making (MADM)—or address multiple objectives that may conflict—known as
multi-objective decision-making (MODM). Secondly, they can be categorised according to
the type of initial information considered, which can be deterministic, stochastic, or
uncertain. Finally, MCDM methods can be classified according to the number of decision
groups involved, distinguishing between single and multiple groups.

Depending on the strategy used to rank the alternatives, there are different methods:
distance-based methods (e.g., TOPSIS and VIKOR); pairwise comparison methods (e.g.,
AHP and ANP); scoring methods (e.g., SAW, Weighted Sum Model (WSM), Weighted
Product Model (WPM), etc.); and outranking methods (e.g.,, PROMETHEE, ELECTRE).

In the context of complex decisions, the MCDM methods used for our proposal are
AHP, TOPSIS, and VIKOR. Although other MCDM methods could be included in our
framework, these methods have been chosen because of their wide acceptance and use in
the academic and business communities, and because of their effectiveness in dealing with
discrete problems involving multiple criteria and alternatives. Their popularity stems from
their ability to address complex decision issues, their versatility, and their strong
theoretical foundations resulting from decades of research and successful applications. The
following subsections introduce these MCDM methods.

AHP

AHP (Saaty, 1990) (an acronym for “Analytic Hierarchy Process”) is a structured
technique for organising and analysing complex decisions developed by Thomas L. Saaty
in the 1970s. The basis of the AHP is the quantification of the weights of the decision
criteria when more than one influences the decision-making process. Its purpose is not to
identify the right decision but to help rank the alternatives from the best to the worst for a
given objective, providing a framework for structuring a decision problem, representing
and quantifying its elements, relating the elements to the objectives pursued and evaluating
the different solution alternatives.

According to Saaty (1990), the AHP method involves three main steps: (1) Decomposition:
arrange criteria and alternatives in a hierarchical structure; (2) comparative judgment:
perform pairwise comparisons to evaluate elements based on their influence; (3) synthesis:
calculate weights and priorities from comparison matrices.

In AHP, pairwise comparison matrices are fundamental for evaluating preferences and
relative importance relationships between criteria and alternatives. These matrices allow
for systematic and consistent comparisons between criteria, subcriteria, and alternatives.

AHP can still be applied when not all criteria are involved in each alternative by
adapting the methodology. In these cases, comparisons are made between specific values of
the criteria, rather than comparing alternatives directly. This approach, known as
“Pairwise Comparison of Attributes” or “Pairwise Comparison of Criteria” (Harker, 1987),
allows relative priorities to be obtained for each value, which are then used to calculate the
final prioritisation of alternatives as a weighted sum of their component values.
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For configurations obtained by an FM, AHP offers the advantage of systematically
evaluating multiple criteria and their interrelationships, facilitating the decomposition of
complex decision problems into more manageable parts.

As part of the methodology, the comparison matrix is iteratively multiplied by itself
until no significant difference is observed, ensuring convergence to a stable and robust
solution. Furthermore, the consistency index is used to assess the reliability of the
comparisons, and in our case, we will only consider the indices below 10%, to ensure
consistent and valid results.

Classical AHP is based on the clear judgements of decision-makers, but is not able to
reflect vague human thoughts or the uncertainty of information. This could be solved by a
fuzzy AHP. In addition, AHP does not take into account the interrelationships and
feedback between criteria.

TOPSIS

TOPSIS (an acronym for “Technique for Order of Preference by Similarity to Ideal
Solution”) is a method originally developed by Hwang ¢» Yoon (1981), and later developed
by Yoon (1987) and Hwang, Lai ¢ Liu (1993). Over the last decade, TOPSIS has been used
to make decisions in areas such as supply chain management, the environment, energy,
health or economics, to classify or select different alternatives or to optimise processes
(Palczewski & Satabun, 2019; do Carmo Silva, Gomes & da Costa Junior, 2019; Shih ¢
Olson, 2022).

It is based on the concept that, given a set of alternatives and two ideal solutions—a
positive (PIS) and a negative (NIS)—the best alternative is the one closest to the positive
ideal solution and farthest from the negative ideal solution.

In this method, the decision matrix is first normalised according to profit and cost
criteria, and then weighted according to the importance of each criterion. From this, the
PIS and the NIS are calculated, representing the best and worst possible values for each
criterion. The alternatives are then evaluated by calculating their distance from the PIS and
NIS, and finally a score is assigned to each alternative based on these distances, providing a
ranking of the options.

VIKOR

Like TOPSIS, VIKOR is based on distance metrics. VIKOR (acronym for
“VIseKriterijumska Optimizacija I Kompromisno Resenje”) is a methodology, originally
developed by Opricovic (1998) as part of his doctoral thesis in the late 1970s to solve
decision problems with conflicting and non-comparable criteria.

Since the mid-2000s, VIKOR has become a multi-criteria decision-making
methodology that has attracted the interest of many researchers around the world.
According to the study by Mardani et al. (2016), VIKOR has been used in fields such as
operations research, management science, sustainability, and renewable energy.

VIKOR has the advantage of providing a ranking based on proximity to the best and
worst case solutions, as well as the geometric mean, allowing different scenarios to be
considered when selecting optimal configurations. Its advantage lies in its application to
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situations where a balance between optimisation and robustness is sought, offering a
compromise solution that minimises the potential loss in case of unfavourable variations in
the criteria.

In this method, given a set of alternatives, criteria and a value v € [0, 1] to be used in
calculating the Q index, the process begins by identifying the best and worst case solutions
based on the optimal and least optimal values for each criterion. The S and R indices are
then calculated, where S represents how well an alternative meets the criteria and R
measures how much it falls short according to the worst case scenario. The Q index is
calculated by combining the S and R indices with the value v, giving a single value for each
alternative. Finally, the alternatives are ranked according to their Q Index, with lower
values indicating higher priority. The resulting ranking represents a compromise solution
that balances group utility with minimising individual regret.

Opricovic & Tzeng (2007) presents a comparative analysis of VIKOR with other
methods, such as TOPSIS and outranking methods, by discussing their characteristics and
their application results.

PROPOSED METHODOLOGY FOR APPLYING MCDM
METHODS

To formalise the configuration prioritisation process, we define a prioritisation problem
and an informed decision-making problem. The former is the task of obtaining the
configuration rankings by applying MCDM methods, while the latter is the task of
interpreting the discrepancies in the rankings to help the expert make a comprehensible
decision. For the application of MCDM methods in the context of FM, we propose the
methodology described in Fig. 3. This process consists of the following four phases:

(1) Phase 1: Inputs and model generation. From the feature model, (1) the expert
determines the features to be considered as criteria and instances in the prioritisation
process, and (2) all valid configurations are obtained (using an external tool). All these
elements are inputs to our prioritisation process.

(2) Phase 2: Preference setting. Based on the features identified as criteria in the previous
phase, the expert introduces the pairwise information that will determine the most
relevant features.

(3) Phase 3: Application of MCDM methods. In this phase, MCDM methods are applied,
in our case study these are AHP, TOPSIS and VIKOR.

(4) Phase 4: Resolving discrepancies in the rankings. This phase is responsible for
helping the user to interpret the possible differences between the ranks obtained.

To make the proposal clearer and more formal, the following subsections explain each
phase in detail as applied to a particular FM.

Phase 1. Inputs and model generation

As mentioned above, the parameters needed to start the process are the FM, a selection of
features to be used as criteria in the prioritisation process, and the set of valid
configurations according to the FM.
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FM

To facilitate the explanation of the proposal, we use an illustrative example related to the
field of cybersecurity, taken from the contribution in Varela-Vaca et al. (2019). It is based
on the security feature model of an Apache Tomcat server, which represents the attributes
required to configure an HTTP connector with SSL support, as shown in Fig. 4. The model
consists of 27 features, 10 mandatory relations, three optional relations, one or-alternative
relations, three alternative relations, one require and one exclude constraints.

Features involved in the prioritisation

In the context of MCDM, the expert plays a crucial role in mapping the feature model to
the specific configurations and criteria. Although a configuration may contain many
features, not all of them need to be involved in the prioritisation process, only those
identified by the expert. Thus, the mapping process starts with the expert’s selection of the
features to be considered as prioritisation criteria. This step discriminates the features that
influence whether a configuration is considered better or worse concerning the defined
prioritisation objective. Similarly, it must be determined which features (leaves of the
model) are possible values that each criterion can take, i.e., its instances.

o Let C be the subset of internal FM nodes (features) considered as criteria for evaluating
and comparing alternatives.

CCF (1)
For the Apache example, the criteria identified by the expert are ClientAuth, KeyStore,
Trust, and Protocol features.

o Let I be the subset of FM leaf nodes (features) that the expert considers to be instances of

C, i.e., the values that the criteria can take.

ICF (2)
For the Apache example, the enabled instances of each criterion are:

- ClientAuth: true, want, or false.
- KeyStore: JKS, PKCS12, or PKCS11.
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— Trust: JKS, PKCS12, or PKCS11.

— Protocol: v1, v1.1, v1.2, and/or v1.3.

Valid configurations

Several configurations can be obtained, but not all of them are valid. That is, some
configurations do not satisfy the constraints and relationships imposed by the model.
Therefore, only valid configurations need to be considered. A valid configuration is a
selection of features that satisfy all constraints and conditions in the FM.

o Let VC be all valid configurations for the given FM. Each configuration vc € VC is
characterised by the selection of a set of features f, where f C F.

For the Apache example and using CyberSPL (Varela-Vaca et al., 2019), the possible
configurations of the feature model are 576. Among all of them, a subset of 10
configurations of VC is shown in Table 1'. These 10 are used as illustrative examples, but

! Table 1 has been obtained through a others could be chosen. However, as will be shown later in the application of
practical implementation, in the AMA-
DEUS framework (Varela-Vaca et al.,
2020). AMADEUS is a framework solu- significantly affect the performance of the prioritisation process.
tion that enables and supports the auto-
matic analysis of security vulnerabilities .
in system configurations based on feature Phase 2. Preference setti ng
models. AMADEUS can automatically
analyse the organisation’s infrastructure
and identify vulnerabilities by querying instances (I), comparisons between them, called preferences, are determined at this stage.
vulnerability repositories.

decision-making techniques, the number of configurations to be prioritised does not

Once the expert has decided which features are to be considered as criteria (C) and

Both ways of expressing preferences—through pairwise comparison matrices or numerical
scales—involve a comparison between possible instances of each criterion to indicate
which features are preferred over others in a configuration. To do this, the expert must
establish the preferences to prioritise the valid configurations.

o Let P be the preferences about C and I.

These preferences P are assumed to be the same for all n different MCDM methods,
thereby ensuring the comparability of the outcomes. However, it should be noted that each
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Table 1 Selected configurations for Apache.

Config. No. Apache product configuration

1

10

Apache-Algorithm-Ciphers-ClientAuth-true-Port-KeyStore-K_Type-K_JKS-K_Pass-K_File-Trust-T_File-T_Pass-T_Type—

T_PKCS11-Protocol-TLSv1_1

Apache-Algorithm-ClientAuth-true-Port-KeyStore-K_Type-K_PKCS11-K_Pass-K_File-Trust-T_File-T_Pass-T_Type-

T_PKCS12-Protocol-TLSv1_3

Apache-Ciphers-ClientAuth-true-Port-KeyStore-K_Type-K_PKCS12-K_Pass-K_File-Trust-T_File-T_Pass-T_Type-T_JKS-

Protocol-TLSv1_2

Apache-Algorithm-Ciphers—ClientAuth-want-Port-KeyStore-K_Type-K_PKCS11-K_Pass-K_File-Trust-T_File-T_Pass-T_Type-

T_PKCS12-Protocol-TLSvl_2

Apache-Algorithm-ClientAuth-want-Port-KeyStore-K_Type-K_PKCS12-K_Pass—K_File-Trust-T_File-T_Pass-T_Type-T_JKS-

Protocol-TLSv1_1

Apache-Ciphers-ClientAuth-want-Port-KeyStore-K_Type-K_PKCS12-K_Pass—K_File-Trust-T_File-T_Pass-T_Type-

T_PKCS11-Protocol-TLSvl_2-TLSvl_3

Apache-Algorithm-Ciphers—ClientAuth-false-Port-KeyStore-K_Type-K_JKS-K_Pass—K_File-Protocol-TLSv1_2

Apache-Algorithm-ClientAuth-false-Port-KeyStore-K_Type-K_PKCS12-K_Pass-K_File-Protocol-TLSv1_3
Apache-Ciphers-ClientAuth-false-Port-KeyStore-K_Type-K_PKCS11-K_Pass-K_File-Protocol-TLSv1_1

Apache-Algorithm-Ciphers—ClientAuth-want-Port-KeyStore-K_Type-K_PKCS12-K_Pass-K_File-Protocol-TLSv1_3

MCDM method requires preferences to be expressed in a particular manner. For example,

AHP requires them in the form of pairwise comparison matrices of criteria and instances,
while TOPSIS and VIKOR require them in the form of numerical scales. This necessitates
the allocation of distinct weights to each method, based on the preferences provided by the
expert. This is explained in more detail for the Apache example below in “AHP application
methodology, TOPSIS application methodology and VIKOR application methodology”.
Notably, the FM may allow features to have multiple values via the OR operator,
introducing additional complexity. To illustrate this, consider the Protocol feature in the
Apache example, which can take on any of the following combinations: v1.0, v1.1, v1.2

and/or v1.3. In order to ascertain preferences, it is necessary to consider all possible
combinations of instances. This results in 16 possibilities to weight in the Protocol for the
Apache example, which can be tedious, so a solution is proposed. Experts can specify
preferences for each instance independently and categorise how OR relationships should
be considered, called OR-feature type, with four options: (1) average weight, (2) weight of
the best-rated instance, (3) weight of the worst-rated instance, or (4) sum of the weights of
the instances. This approach simplifies the evaluation process and facilitates decision-

making.

Phase 3. Application of MCDM methods

Once all the necessary elements involved in a prioritisation method (FM, C, I, VC, P) have
been defined, the MCDM methods are applied, which are described in detail in “Detailed

Application of AHP, TOPSIS, and VIKOR”.

After solving the prioritisation problem, the outcome is n rankings of the configurations

in VC, one per each different MCDM method applied R = {R;, R,, .

..,R,}. The
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configurations in these rankings are ordered according to their importance based on the
preferences assigned to the criteria and instances.

In the case of the Apache example, the three MCDM methods obtain rankings of the 10
selected configurations, as illustrated in Table 2. The numbers in the AHP, TOPSIS, and
VIKOR columns correspond to the numbers of Apache configurations in Table 1.

As can be seen, the three MCDM methods have produced rankings that are not equal to
each other. Specifically, the configurations in positions #4, #5 and #6 of the rankings are
not in the same order. Therefore, the solutions provided are not consistent between them.
In the event that the user is required to select between these options, it is necessary to
provide assistance in determining the optimal choice in our case and the rationale behind
it, thereby enabling the user to make an informed decision.

Phase 4. Resolving discrepancies in rankings

When the configuration rankings obtained by the MCDM methods are not consistent, it is
useful to analyse the differences between them to help the user interpret the discrepancies
and thus facilitate the choice of configurations to apply. To explain why these choices are
different, some considerations are required (e.g., Table 2 for the Apache example).

o (FM, VC, C, I, P), as determined for the previous prioritisation problem.

e The set of rankings R = {Ry, R,, ..., R, }, where each R; is an ordered list of m valid
configurations {vcy;, ..., Vo).

Phase 4 focuses on interpreting the discrepancies observed in the rankings generated by
the MCDM methods. By analysing the structure and variability of the feature model (e.g.,
OR relationships, alternatives and required features) in conjunction with the rankings, this
phase aims to provide the user with practical insights to facilitate understanding of the
trade-offs and enable informed decision-making. The methodology ensures that users can
address complex prioritisation scenarios with clarity and confidence (see “Informed
Decisions: In-Depth Examination of Ranking Discrepancies”).

DETAILED APPLICATION OF AHP, TOPSIS, AND VIKOR

In this section, we provide a detailed analysis of the methods used in Phases 2 and 3 to
prioritise the valid configurations. Phase 2 focuses on setting preferences through pairwise
comparison matrices, while Phase 3 details the application of each method to compute the
final rankings. Each method is examined in its own subsection, where we outline the
process, inputs, and resulting rankings.

AHP application methodology

Building on the work carried out in Phase 1, where the problem was structured into a set of
criteria, instances, and alternatives (i.e., valid configurations VC), Phase 2 begins by
incorporating the preferences of the decision-maker. For the AHP method, these
preferences are captured through pairwise comparison matrices, which are used to
evaluate the relative importance of each criterion and its alternatives. In the matrices, a
value greater than 1 indicates that the criterion or alternative in a given row is more
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Table 2 Rankings of Apache configurations for each MCDM method.

Ranking Apache Config. No.
AHP TOPSIS VIKOR

#1 2 2 2
#2 3 3 3
#3 4 4 4
#4 1 5 6
#5 5 1 1
#6 6 6 5
#7 10 10 10
#8 8 8 8
#9 7 7 7
#10 9 9 8

important than the one in a given column. Conversely, values less than 1 indicate a lower
level of importance. This process is illustrated in the Table 3, which contains the pairwise
comparison matrices for the Apache Tomcat server and the previously selected criteria.

Despite the presence of OR relationships in certain features, the expert only compares
individual values of the features. For example, the expert determines that the feature
Protocol, in the form of an OR relation, can be treated as an “average” feature type. This
means that the weights for a configuration with multiple values for this feature are
calculated as the average of the weights of the individual values. In this example,
configuration number six includes different protocol versions v1.2 & v1.3 (see Table 1),
and Table 4 is automatically generated to replace Table 3d, so as to include this new value
v1.2 & v1.3, whose weights for comparison are calculated as the average of the weights of
v1.2 and v1.3.

Once preferences have been established, Phase 3 uses the AHP method to calculate
priorities and generate the final ranking. Priorities are determined through the following
steps:

 Obtaining priorities of criteria instances: The AHP method is used to solve the
eigenvalue and eigenvector problems for each pairwise comparison matrix, providing the
relative priorities of each criterion.

o Weight assignment: The weights for the instances of each criterion are derived from the
calculated priorities. For example, the weights assigned to the criteria and their instances
in the Apache Tomcat server example are shown in Table 5.

» Final prioritization of alternatives: The final priorities of the configurations are
computed by calculating the weighted sum of the component instances for each
configuration. The resulting priorities for the Apache Tomcat configurations are shown
in Table 6, and the final ranking is presented in Table 7.
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Table 3 Pairwise comparison matrices.

(a) Criteria pairwise comparison matrix

ClientAuth KeyStore Trust Protocol
ClientAuth - 4 1 2
KeyStore 1/4 - 1/3 172
Trust 1 - 2
Protocol 1/2 1/2 -
(b) ClientAuth instances
True Want False
True - 2 4
Want 1/2 - 2
False 1/4 1/2 -
(c) KeyStore and trust instances
JKS PKCS12 PKCS11
JKS - 1/2 2
PKCS12 2 - 4
PKCS11 1/2 1/4 -
(d) Protocol instances
vl vl.l vl.2 vl.3
vl - 1/2 1/4 1/6
vl.l 2 - 1/2 1/4
vl.2 4 - 1/2
v1.3 6 4 2 -
Table 4 Protocol pairwise comparison matrix with multiple values.
vl vl.l vl.2 vl.3 vl.2 & v1.3
vl - 1/2 1/4 1/6 1/5
vl.l 2 - 1/2 1/4 1/3
v1.2 4 - 1/2 3/4
vl.3 6 2 - 3/2
vl.2 & v1.3 5 3/2 3/4 -

It is important to note that AHP assumes no interdependence between criteria, meaning

that each feature is evaluated independently of others, which is crucial to the accuracy of

the final results.

TOPSIS application methodology

The TOPSIS application for prioritising configurations in feature models consists of the

steps described in “TOPSIS”.

For the Apache Tomcat server example, Phase 2 starts with the collection of the expert’s
preferences, which are expressed as qualitative criteria. These criteria are then transformed
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Table 5 Assignment of weights to criteria and instances.

(a) Criteria

ClientAuth 37.01%
KeyStore 9.99%
Trust 34.51%
Protocol 18.50%
(b) ClientAuth instances
True 21.15%
Want 10.57%
False 5.29%
(c) KeyStore instances
JKS 2.85%
PKCS12 5.71%
PKCS11 1.43%
(d) Trust instances
JKS 9.86%
PKCS12 19.72%
PKCS11 4.93%
(e) Protocol instances
vl 0.88%
vl.l 1.76%
vl 3.52%
v13 7.05%
vl2 & vl1.3 5.29%
Table 6 Calculation of the priority of each Apache feature model alternative.
Alternatives Features Priority
Apache Config. No. 1 True (21.15%) | JKS (2.85%) | PKCS11 (4.93%) | 1.1 (1.76%) 30.69%
Apache Config. No. 2 True (21.15%) | PKCS11 (1.43%) | PKCS12 (19.72%) | 1.3 (7.05%) 49.35%
Apache Config. No. 3 True (21.15%) | PKCS12 (5.71%) | JKS (9.86%) | 1.2 (3.52%) 40.24%
Apache Config. No. 4 Want (10.57%) | PKCS11 (1.43%) | PKCS12 (19.72%) | 1.2 (3.52%) 35.24%
Apache Config. No. 5 Want (10.57%) | PKCS12 (5.71%) | JKS (9.86%) | 1.1 (1.76%) 27.90%
Apache Config. No. 6 Want (10.57%) | PKCS12 (5.71%) | PKCS11 (4.93%) | v1.2 & 1.3 (5.29%) 27.50%
Apache Config. No. 7 False (5.29%) | JKS (2.85%) | - | 1.2 (3.52%) 11.66%
Apache Config. No. 8 False (5.29%) | PKCS12 (5.71%) | - | 1.3 (7.05%) 18.05%
Apache Config. No. 9 False (5.29%) | PKCS11 (1.43%) | - | 1.1 (1.76%) 8.48%
Apache Config. No. 10 Want (10.57%) | PKCS12 (5.71%) | - | 1.3 (7.05%) 23.33%
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Table 7 Ranking of the alternatives for apache feature model obtained with AHP.

Alternatives Priority Ranking
Apache Config. No. 1 30.69% #4
Apache Config. No. 2 49.35% #1
Apache Config. No. 3 40.24% #2
Apache Config. No. 4 35.24% #3
Apache Config. No. 5 27.90% #5
Apache Config. No. 6 27.50% #6
Apache Config. No. 7 11.66% #9
Apache Config. No. 8 18.05% #8
Apache Config. No. 9 8.48% #10
Apache Config. No. 10 23.33% #7

into quantitative criteria so that TOPSIS can use them to subsequently calculate the
distances of the alternatives to the positive and negative ideal solution (PIS and NIS,
respectively).

In this transformation, the numerical scales are derived directly from the expert’s
ranking of the instances. The expert explicitly establishes an order of preference for the
instances of each criterion, and these rankings are then mapped onto ordinal scales where
the least preferred option is assigned the lowest value (e.g., 1) and the most preferred
option the highest. This approach ensures that the numerical values correspond faithfully
with the expert’s qualitative judgment, with no additional weighting or transformation
beyond the direct ranking.

This transformation is shown in Table 8. If any of the selected alternatives does not have
a value assigned for one or more of the identified criteria, a value of 0 is set.

Since the expert’s preference rankings are given for individual Protocol versions, and the
OR-feature type was set to “average,” the value for v1.2 & v1.3 was automatically computed
as the arithmetic mean of the values assigned to v1.2 and v1.3, with Table 8c resulting in
Table 8d. This ensures consistency in cases where multiple instances are valid within a
configuration. Afterward, in Phase 3, the weights of the criteria need to be determined,
assigning the weights as shown in Table 9.

Based on this information, both the PIS and the NIS and their distances to each
alternative are calculated, and these distances are used to obtain the ranking in Table 10. R
represents the relative closeness or similarity index of an alternative to the ideal solution.
The closer R is to 1, the closer the evaluated alternative is to the positive ideal solution
(PIS). The closer R is to 0, the closer the alternative is to the negative ideal solution (NIS).

VIKOR application methodology

The VIKOR application for prioritising configurations in feature models is performed as
described in “VIKOR?”. In Phase 2, the process begins with the introduction of expert
preferences, expressed as qualitative criteria. For the Apache Tomcat server example, the
numerical scales assigned in the TOPSIS application methodology are reused. The best and
worst values for each criterion are also determined at this stage.

Borrego et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2778 16/42


http://dx.doi.org/10.7717/peerj-cs.2778
https://peerj.com/computer-science/

PeerJ Computer Science

Table 8 Numeric scales assigned to criteria.
(a) ClientAuth instances
False
Want
True
(b) KeyStore and Trust instances
PKCS11
JKS
PKCS12
(c) Protocol version instances
vl
vl.l
vl.2
vl.3
(d) Protocol numeric scale with multiple instances
vl
vl.l
vl.2
vl.3
vl.2 & v1.3

= W N

—

WA W N

Table 9 Assignment of weights to the criteria.

ClientAuth 35%
KeyStore 15%
Trust 30%
Protocol 20%
Table 10 Ranking of apache feature model alternatives obtained with TOPSIS.

Alternatives R Ranking
Apache Config. No. 1 0.5303 #5
Apache Config. No. 2 0.7972 #1
Apache Config. No. 3 0.7452 #2
Apache Config. No. 4 0.6684 #3
Apache Config. No. 5 0.5791 #4
Apache Config. No. 6 0.4596 #6
Apache Config. No. 7 0.1546 #9
Apache Config. No. 8 0.2712 #8
Apache Config. No. 9 0.0000 #10
Apache Config. No. 10 0.3629 #7
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In Phase 3, the VIKOR method calculates the utility and regret measures for each
alternative and produces the ranking of the configurations. The weighting of the criteria is
the same as those established in the TOPSIS application methodology. Applying the
method to the example of the Apache Tomcat server gives the ranking of the alternatives
shown in Table 11 is obtained. Q is a key value used to rank alternatives and determine the
compromise solution, i.e., a lower value indicates a better alternative.

Implementation and package for replicability

This section provides a comprehensive overview of the implementation and practical
details of the decision support module within the AMADEUS framework (Varela-Vaca
et al., 2020). This includes the rationale behind its development, validation aspects, and key
implementation details to facilitate replication and application by other researchers and
practitioners.

Rationale for the framework

The AMADEUS framework provides experts with tools to identify and evaluate multiple
system configurations. However, it lacks an automated prioritisation system to determine
the optimal order in which configurations should be addressed. Without a structured
decision-making approach, prioritisation is often based on basic criteria, overlooking key
factors such as impact, risk, complexity, or cost. These factors are essential for optimising
resources and ensuring that critical configurations receive priority.

To address this gap, we have developed a decision support module within AMADEUS,
enabling automated and systematic configuration prioritisation using multi-criteria
decision-making (MCDM) methods. This enhancement extends the framework’s
capabilities, providing a structured approach to ranking configurations based on multiple
user-defined criteria.

The integration of MCDM methods offers several advantages:

(1) Comprehensive evaluation. MCDM allows multiple factors to be analysed
simultaneously, a crucial aspect in security and IT management where decisions must
balance impact, risk, and mitigation costs.

(2) Optimised resource allocation. Experts can prioritise the configurations that pose the
greatest risk or provide the highest benefit, ensuring an efficient use of time and effort.

(3) Scalability and adaptability. The framework remains effective even as the number of
configurations grows, supporting structured assessments that adapt to evolving IT
infrastructures.

By incorporating MCDM, AMADEUS enhances decision-making for product
variability management, allowing experts to adjust prioritisation criteria as needed. This
improvement not only enables more efficient configuration management but also ensures
a proactive, adaptive response to organisational requirements.
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Table 11 Ranking of Apache feature model alternatives obtained with VIKOR.

Alternatives Q Ranking
Apache Config. No. 1 0.3841 #5
Apache Config. No. 2 0.0200 #1
Apache Config. No. 3 0.0529 #2
Apache Config. No. 4 0.3212 #3
Apache Config. No. 5 0.3841 #6
Apache Config. No. 6 0.3311 #4
Apache Config. No. 7 0.8147 #9
Apache Config. No. 8 0.6294 #8
Apache Config. No. 9 1,000 #10
Apache Config. No. 10 0.4241 #7

Discussion on the validity and limitations of the framework

The validity of this framework lies in its ability to enhance configuration prioritisation
through the integration of MCDM methods and a structured decision-support process.
The decision support module, incorporated into AMADEUS, takes advantage of
well-established MCDM techniques—AHP, TOPSIS, and VIKOR—which have been
extensively validated in various decision-making domains. Their inclusion ensures a
systematic and reliable prioritisation approach.

To assess its practical applicability, the framework has been tested using real-world
feature models, such as the SSL/TLS configuration model (cf. Results). These case studies
confirm that the module effectively processes user-defined criteria and preferences,
producing coherent and interpretable rankings. Furthermore, AMADEUS ensures
consistency and completeness by resolving ranking discrepancies, allowing for the
prioritisation of configurations under identical conditions and evaluation criteria. Its
adaptability ensures that all relevant factors can be considered, reducing the risk of
overlooking key decision elements.

Despite its advantages, the framework has some inherent limitations. The effectiveness
of MCDM methods depends on the correct definition of criteria and weighting, which
introduces a degree of subjectivity. Since different experts may assign different importance
levels to criteria, results can vary across implementations. Improperly defined priorities
could lead to suboptimal configurations that do not align with organisational needs.

Additionally, the initial setup—defining MCDM criteria and customising feature
models—requires a certain level of expertise. Organisations lacking knowledgeable
personnel may struggle to properly configure the tool, potentially limiting adoption and
effectiveness.

In large-scale environments, managing a high number of configurations can pose
challenges in computational efficiency. However, while the number of valid configurations
grows exponentially as features increase, the computational cost of our approach is
primarily influenced by the number of selected criteria and their instances, rather than the
total number of configurations. Since the core processing relies on pairwise comparisons,
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the complexity is driven by expert-defined preferences rather than FM size. Nevertheless,
in cases involving extremely large FMs, modularisation techniques can be employed to
divide the FM into smaller, more manageable sub-models, improving efficiency and
maintainability.

Discussion on implementation

The decision support module has been implemented as part of the AMADEUS framework
available at https://doi.org/10.5281/zenodo.14870223. The implementation includes clear
installation instructions, usage guidelines and a list of prerequisites detailed in the
README . md file, ensuring that users can set up the module with minimal effort. In addition,
a comprehensive usage example is provided in the DECISION_TREES . md file, which guides
users through the process of applying MCDM methods to a feature model and obtaining
configuration rankings. This documentation, together with the automated processes
embedded in the module, ensures that the application of AHP, TOPSIS and VIKOR is
straightforward and accessible. The module supports a range of input formats and
provides clear output that highlights the prioritisation of configurations based on
user-defined criteria and preferences.

Additionally, two detailed markdown files have been included in the repository to guide
users through the application of the MCDM methods on the Apache Tomcat server and
the TLS/SSL examples (cf. Results). This files contain step-by-step instructions, input data,
and matrices to facilitate replicability. The files are available at https://doi.org/10.5281/
zenodo.14870223.

Originally, AMADEUS includes validation mechanisms to ensure that each generated
FM is consistent and represents only valid configurations. This includes testing valid
products and invalidating spurious configurations. Now, AMADEUS includes the decision
support module, which provides reasoning operations to identify priority configurations
according to the defined criteria. To minimise computation time in systems with dynamic
configurations, incremental reasoning has been introduced to update only those parts of
the FM affected by recent changes, avoiding the need to rebuild the entire model.

INFORMED DECISIONS: IN-DEPTH EXAMINATION OF
RANKING DISCREPANCIES

When there are discrepancies between the rankings generated by different MCDM
techniques, it becomes essential to provide the user with a systematic approach to selecting
the most appropriate configuration. In this phase, our goal is to support informed
decision-making by analysing configurations that occupy similar or identical positions in
the rankings, identifying key differences and similarities between them, and presenting this
information in a manner that assists the user in making a choice.

It is important to acknowledge that the attainment of disparate rankings may be
attributable to the weighting assigned to the criteria in the various techniques (obtained in
AHP from the comparisons and established for TOPSIS and VIKOR), which may differ
and result in analogous yet non-identical solutions. For the Apache example, the weights
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obtained by AHP for ClientAuth, Trust, Protocol and KeyStore are 37.01%, 34.51%, 18.50%
and 9.99% respectively. For VIKOR and TOPSIS the established weights are 35%, 30%,
20%, and 15%. Despite the utilisation of identical weights by VIKOR and TOPSIS, the
attainment of disparate rankings remains a possibility, as articulated in the work by
Shekhovtsov & Salabun (2020).

The process of analysing discrepancies is divided into three key steps:

1. Identifying configurations with ranking discrepancies

The initial step is to identify configurations that are similarly ranked by different
MCDM methods, yet differ in specific criteria or instances. For example, Table 12 shows
configurations ranked by AHP, TOPSIS, and VIKOR. In this example, the configurations
ranked #4, #5, and #6 show notable discrepancies, making them candidates for deeper
analysis.

2. Analysing criteria and instances

We then focus on the specific criteria that influence the discrepancies in these rankings.
By examining the feature model and analysing the instances of criteria within each
configuration, patterns or trade-offs can be identified. For example, while Apache Config.
No. 1 may prioritise certain features (e.g., ClientAuth), Apache Config. No. 5 and 6 may
prioritise others (e.g., Trust or Protocol). The disparities in feature prioritisation and their
repercussions on the aggregate ranking are emphasised to assist the user in evaluating their
options based on their particular preferences.

However, as shown in Fig. 5, the visual representation of features in configurations does
not invariably facilitate straightforward decision-making, as mandatory features and
specific feature constraints (e.g., XOR relations) can impede interpretation.

3. Generating an informed decision-making support table.

To provide a more systematic and comprehensible approach, we propose to represent
the criteria and instances in a structured decision support table. This table organises the
configurations based on the values assigned to each criterion and the deviations from
optimal values (according to the user-defined preferences) as presented in Table 13. These
deviations are calculated as percentages based on the numerical scales predefined by the
expert for each criterion (within the preferences P in the global process). For example, the
expert may assign a numerical value of 2 to true, 1 to want, and 0 to false for the criterion
ClientAuth. These values reflect the expert’s priorities, and the percentage deviation
indicates how far each configuration is from the optimal value (the one with the highest
assigned number).

Each configuration is assigned a score based on a percentage scale and the overall
deviation is calculated as the average of the individual deviations across all criteria. This
overall metric provides a clear representation of how close or far each configuration is from
meeting the expert’s objectives. A more detailed discussion of the robustness and
justification of the overall deviation metric is provided in “Robustness and Justification of
the Overall Deviation Metric”.
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Table 12 Ranking of Apache feature model.

Ranking Apache Config. No.
AHP TOPSIS VIKOR

#1 2 2 2
#2 3 3 3
#3 4 4 4
#4 1 5 6
#5 5 1 1
#6 6 6 5
#7 10 10 10
#8 8 8 8
#9 7 7 7
#10 9 9 8
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Figure 5 Apache feature model coloured with configurations.
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Table 13 Informed decision-making support table showing percentage deviations for each configuration.

Apache Config. No. ClientAuth KeyStore Trust Protocol Overall deviation
1 True (0%) JKS (50%) PKCS11 (100%) 1.1 (66%) 54%

5 Want (50%) PKCS12 (0%) JKS (50%) 1.1 (66%) 41.5%

6 Want (50%) PKCS12 (0%) PKCS11 (100%) 1.2 & 1.3 (16%) 41.5%

As demonstrated in the table, Apache Config. No. 1 optimises ClientAuth, yet assigns a
lower priority to Trust and Protocol. In contrast, Apache Config. No. 5 and 6 offer a

balanced trade-off. The percentage deviation for each criterion reflects the configuration’s
deviation from the expert’s preferred option. For example, in the case of Protocol, Apache
Config. No. 1 deviates by 66% (using version 1.1), whilst Apache Config. No. 6 deviates by
a much smaller percentage of 16% (with versions 1.2 & 1.3).
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In terms of Overall deviation, Apache Config. No. 1 has 54%, indicating a greater
misalignment with the expert’s priorities compared to Apache Config. No. 5 and 6, which
have lower overall deviations of 41.5%. However, the specific criteria deviations reveal
additional trade-offs. Specifically, Apache Config. No. 1 excels in ClientAuth but performs
poorly in Trust and Protocol. In contrast, Apache Config. No. 5 and 6 exhibit more
balanced deviations across the criteria.

By presenting the information in this manner, the expert is able to effortlessly compare
configurations and balance the trade-offs according to the specific criteria that are most
significant in the given context.

In summary, this section provides a systematic approach to addressing discrepancies in
rankings generated by different MCDM methods. The process is broken down into three
steps, ensuring that the expert has a clear and actionable understanding of the trade-offs
involved. The incorporation of percentage deviations and the overall deviation metric
provides a quantitative framework for the comparison of configurations, thereby
highlighting their alignment with the expert’s preferences. This structured approach
facilitates a more informed and confident decision-making process, even in scenarios
involving conflicting rankings.

Robustness and justification of the overall deviation metric

The overall deviation metric is a robust tool for quantifying how closely each configuration
aligns with the expert’s preferences. While the individual deviations offer insight into
specific criteria, the overall deviation aggregates this information to provide a
comprehensive view of each configuration’s suitability.

Formal Justification:

(1) Interpretability: By expressing deviations as percentages, the overall deviation is
rendered comprehensible and intuitively graspable in terms of how far a configuration
deviates from optimal preferences. This accessibility extends beyond technical experts
to decision-makers who may not possess extensive mathematical proficiency.

(2) Criterion weight integration: The metric inherently incorporates the relative
importance of each criterion. The relative importance of each criterion is determined
by the expert, with higher-priority criteria contributing more significantly to the overall
deviation. This ensures that configurations misaligned on crucial criteria are penalised
appropriately.

(3) Consistency across methods: Since the preferences are consistent across AHP, TOPSIS,
and VIKOR, the overall deviation provides a unified framework to compare results
from these different methods. This enables a coherent evaluation of discrepancies and
facilitates the identification of the most suitable configurations.

(4) Adaptability to feature models: Feature models often include both qualitative and
quantitative attributes. The overall deviation is capable of handling both types of
attributes by translating qualitative preferences into numerical scales and combining
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them in a way that respects the model’s structure (e.g., handling OR relationships
through weighted averages or other aggregation functions).

Comparison with alternative metrics: While alternative distance-based metrics, such as
Euclidean distance or Manhattan distance, could be considered, they may not offer the
same level of interpretability or alignment with expert-defined preferences. These
traditional distance metrics treat all deviations equally, without considering the relative
importance of criteria. In contrast, the overall deviation is tailored to the decision-making
context by emphasizing expert-driven priorities.

Empirical validation: The robustness of the overall deviation is demonstrated through the
Apache Tomcat server and SSL/TLS examples in “Informed Decisions: In-Depth
Examination of Ranking Discrepancies” and “Results”. In both cases, the configurations
with lower overall deviations correspond to those ranked higher by multiple MCDM
methods, validating the metric’s effectiveness in highlighting the most aligned
configurations. Furthermore, the metric’s ability to clearly differentiate configurations with
subtle differences supports its practical utility in complex decision-making scenarios.

RESULTS

To demonstrate the application and evaluation of the decision-making techniques
presented in this work, we have applied them to a more complex example. Specifically, the
SSL/TLS feature model is used, which is related to the field of cybersecurity and is based on
the contribution of Varela-Vaca et al. (2019). This model represents the attributes required
to configure certificates, keystores, ciphers, and key sizes for different versions of the
SSL/TLS protocol, as shown in Fig. 6. The model consists of 48 features, including eight
mandatory relations, two or-alternative relations, eight alternative relations, and four
require and eight exclude constraints.

The evaluation process follows the four phases described in the proposal: (1) inputs and
model generation, (2) preferences setting, (3) application of MCDM methods, and
(4) resolution of rankings discrepancies. The application of these phases to the SSL/TLS
feature model is detailed below.

Phase 1. Inputs and model generation
For the SSL/TLS Feature Model example, the input parameters are as follows:

o Feature model: as shown in Fig. 6.

« Criteria and instances: of the 48 features in the model, nine are identified as criteria, each
with associated instances representing possible values:

- Algorithm for Key Generation (KeyExChange): RSA, DHE, or ECDHE.

- Authentication method to use (AuthenticationMechanisms): ECDSA or RSA_Auth.

- Encryption algorithm (Cipher): AES_128 CBC, AES_256_CBC, AES_128_GCM,
AES_256_GCM, AES_128_CCM, AES_128 CCM_8, Camellia_128_CBC,
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Camellia_256_CBC, Camellia_128 GCM, Camellia_256_GCM, or
CHACHA20_POLY1305.

— Algorithm for message encryption and integrity provision (Mac): SHA256, SHA384,
or SHAS512.

— SSL/TLS protocol version (Protocol): 1.2 or 1.3.

- Type of digital signature support instead of certificates (DigitalSignature): SRP or
PSK.

- Type of supported certificate (Certificate): X.509 or OpenPGP.
- Key configuration (KeyConfig): 2048, 3072, 4096, 6149, or 8192.

— Function for generating elliptic curve keys (Curve): secp256, secp384r1, x448, x22519,
or secp521rl.

« Valid configurations: Using CyberSPL (Varela-Vaca et al., 2019), 1,482 configurations

were generated, from which only 10 configurations were selected as alternatives to be
evaluated, shown in Table 14.

Phase 2. Preferences setting

In this phase, preferences were defined for each criterion and its corresponding instances.
These preferences were determined by pairwise comparisons (AHP), and by assigning
weights to each criterion and instances in the application of TOPSIS and VIKOR.

o AHP: The pairwise comparison matrices are shown in Table 15. Weights are assigned to

criteria and instances based on these pairwise comparison matrices, with the following
weights for each criterion:

- KeyExChange (26.53%)
- Authentication Mechanism (10.97%)
— Cipher (14.82%)
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Table 14 Selected configurations to prioritise.

Config. SSL/TLS product configuration

No.

1 SSL_TLS-Cipher-KeyExChange-RSA-AuthenticationMechanisms-RSA_Auth-Cipher-AES_128_CBC-MAC-SHA384-
SessionResumption-Protocol-TLSv1_2-AuthenticationMethods—Certificate-X_509

2 SSL_TLS-Cipher-KeyExChange-DHE-AuthenticationMechanisms-RSA_Auth-Cipher-Camellia_256_GCM-MAC-SHA512-
SessionResumption-Protocol-TLSv1_2-AuthenticationMethods-DigitalSignature-PSK

3 SSL_TLS-Cipher-KeyExChange-ECDHE-AuthenticationMechanisms—-ECDSA-Cipher-AES_128_GCM-MAC-SHA256-
SessionResumption-Protocol-TLSv1_3-AuthenticationMethods—Curve-secp256

4 SSL_TLS-Cipher-KeyExChange-RSA-AuthenticationMechanisms-RSA_Auth-Cipher-Camellia_256_CBC-MAC-SHA512-
SessionResumption-Protocol-TLSv1_2-AuthenticationMethods—Certificate-OpenPGP

5 SSL_TLS-Cipher-KeyExChange-DHE-AuthenticationMechanisms-RSA_Auth-Cipher-AES_128_CCM-MAC-SHA384-
SessionResumption-Protocol-TLSv1_3-AuthenticationMethods-KeyConfig-KC_6149

6 SSL_TLS-Cipher-KeyExChange-ECDHE-AuthenticationMechanisms—ECDSA-Cipher-AES_128_CCM_8-MAC-SHA512-
SessionResumption-Protocol-TLSv1_3-AuthenticationMethods—Curve-secp384r1

7 SSL_TLS-Cipher-KeyExChange-RSA-AuthenticationMechanisms-RSA_Auth-Cipher-Camellia_128_CBC-MAC-SHA512-
SessionResumption-Protocol-TLSv1_2-AuthenticationMethods—Certificate-X_509

8 SSL_TLS-Cipher-KeyExChange-DHE-AuthenticationMechanisms-RSA_Auth-Cipher-AES_256_GCM-MAC-SHA256-
SessionResumption-Protocol-TLSv1_3-AuthenticationMethods-KeyConfig-KC_3072

9 SSL_TLS-Cipher-KeyExChange-ECDHE-AuthenticationMechanisms-ECDSA-Cipher-Camellia_128_GCM-MAC-SHA384-
SessionResumption-Protocol-TLSv1_2-AuthenticationMethods—Curve-secp521r1

10 SSL_TLS-Cipher-KeyExChange-RSA-AuthenticationMechanisms-RSA_Auth-Cipher-CHACHA20_POLY1305-MAC-SHA256-

SessionResumption-Protocol-TLSv1_3-AuthenticationMethods—Certificate—-OpenPGP

- Mac (6.95%)

— Other criteria (Protocol, DigitalSignature, Certificate, KeyConfig, Curve) equally
weighted at 8.15% each.

» TOPSIS and VIKOR: the qualitative criteria are transformed into quantitative criteria by
assigning numerical scales, as shown in Table 16. Weights of the criteria are set as
follows:

- KeyExChange (20%)

- Authentication Mechanism (10%)

— Cipher (15%)

- Mac (5%)

— Other criteria were equally weighted at 10% each.

It is important to note that the number of selected alternatives (i.e., valid configurations)
does not significantly affect the computational cost in the initial processing stages. The
complexity of the proposed approach primarily depends on the number of criteria and
their possible values, rather than the number of alternatives. Specifically, the pairwise
comparison process for criteria and instances in AHP involves filling a comparison matrix
of size n x n, leading to a complexity of O(n*). However, the full weight computation in
AHP, including eigenvalue estimation, is more computationally demanding and is further
discussed in “Computational complexity and discrepancy resolution efficiency”. In

Borrego et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2778 26/42


http://dx.doi.org/10.7717/peerj-cs.2778
https://peerj.com/computer-science/

PeerJ Computer Science

I 4 ¢ i4 S 9 L 8 6 01 IT SO£TATOd 0ZTVHOVHO
[ 1 (4 € 14 S 9 L 8 6 01 DD 95T BIPwe)
€/1 74! I 4 € i4 S 9 L 8 6 DD 8CI eI[Pue)
iZA1 ¢/1 (4 I 4 € ¥ S 9 L 8 DD 95T elPuwe)
S/1 ¥/1 ¢/ U1 I 4 € i S 9 L DD 871 elPwe)
9/1 S/t ¥/1 €/ T I 4 € i4 S 9 8 INDD 871 SAV
LT 9/1 S/ ¥/1 €/ [4h! I [4 € i S DO 8C1 SdV
8/1 LI 9/1 S/1 ¥/l €/ 1 I 4 € ¥ DD 95T SV
6/1 8/1 LI 9/1 G/l ¥/1 €/ 71 I 4 € DD 8T SAV
01/1 6/1 8/1 LI 9/1 S/1 ¥/ €/1 1 I 4 24D 95T SAV
I1/1 01/1 6/1 8/1 LI 9/1 S/1 ¥/1 €/ [4h! I 04D 8¢l sS4V

SOSIXTOd WOD ™ D9~ 290 290 8 DD WOD ™ WO~ WO~ 29D 290

O0CVHOVHD 9ST ®IPWe) §z[ efpPwe) 967 elpwe) 8T epwe) 871 SV 8¢l SHV 95T SHV 8TI SHV 95T SHV 8TI SAV

sauejsur 1pyd) (p)

[4A! pny vsy
1 vsadod

yny vsd

vSasd

SIOUBISUT WISTURYIINUOLIEINUIYINY ()

! 14 4 dHAOd

P/ ! [4A! dHd

1 [4 ! VSd

dHdDH JHd vsd

saoueysur aJueyDHxFL (q)

I I I I I I A 1 €/ aam)

1 I I I I I o I €/1 SyuoD4ey]

I 1 I 1 I I i I €/1 JeoYNID

I I I I I I 44! I €/1 amyeudisrensiq

I I I I I I o 1 €/ [0203014

I I I 1 I I ¢/ 4 S/ BN

z 4 z 4 z € I u U Toydr)

I 1 I I I z z I €/1  SWSIUBYIINUOLRIRUIYINY

€ € € € € S z € I a3ueyDxgAaY]
aam)  SguoDLd)  9jedoynad)  aameudis [Siq  [000301d deN JYdr)  swsiueyppowr uonedsnuayiny  dSueyDXgAd)]

eLIdIL)) (B)

‘saorrjewr uostredurod asimareg Sy 2[qer,

27/42

Borrego et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2778


http://dx.doi.org/10.7717/peerj-cs.2778
https://peerj.com/computer-science/

PeerJ Computer Science

!
8/1
9
[4A!
¥/

<t © N —~ o©

91
43!

4
9/1
¥/

1
T/l

¥ 1a175d09s
P/ 616X
[4A! 8TPx
4 11pg¢doas
I 96zdoas

1arzsdoas

61STTX

31428

11pgcdoas

9gzddas

sasueysur aan) (f)

I
[4

doduado
605X

dHduado

saduR)ISUI IYNII)) (1)

!
[2a:
€/l
¥/l
S/T

4
I
1
€/
¥/

1
T/l
€/1

4
€
C
!

T/

S T618 32IS 4]
i 6719 az1s L]
€ 960¥ 2z1s £33
4 TLOE 2718 4]
T 8F0T 921 A

T618 71 A3Y]

6719 3zIs L)

960% az1s A3

TLOE 718 A3

810T 21 Aoy

sauejsur SyuoDLa) (Y)

1 JSsd

(4! d4s
ASd

saoueysur samyeudigrensiq (5)

1 1A

T/t [

€A

saduL)ISUI [000101d (J)

I [4 CISVHS

(4! I ¥8CVHS

¥/1 (4! 9SCTVHS

CISVHS Y8EVHS 9SCVHS

sadueisut DV (3)

I 28/42

Borrego et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2778


http://dx.doi.org/10.7717/peerj-cs.2778
https://peerj.com/computer-science/

PeerJ Computer Science

Table 16 Numeric scales assigned to criteria.

(a) KeyExChange criterion
DHE

RSA

ECDHE

(b) AuthenticationMechanism criterion

RSA_Auth

ECDSA

(c) Mac criterion
SHA256

SHA384

SHAS512

(d) Protocol criterion
1.2

1.3

(e) DigitalSignature criterion
SRP

PSK

(f) Certificate criterion
OpenPGP

X.509

(g) Cipher criterion
AES_128_CBC
AES_128_GCM
AES_128_CCM
Camellia_128_CBC
Camellia_128_GCM
AES_128_CCM_8
AES_256_CBC
Camellia_256_CBC
AES_256_GCM
Camellia_256_GCM
CHACHA20_POLY1305
(h) KeyConfig criterion
2048

3072

4096

6149

8192

O o0 NI N U R W N =

—_— =
—_— O

1

2
3
4
5

(Continued)
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Table 16 (continued)

(I) Curve criterion

x22519 1
x448 2
secp256 3
secp384rl 4
secp521rl 5

contrast, TOPSIS and VIKOR require numerical scales instead of pairwise comparisons,
and their complexity is approximately O(mn), where m is the number of configurations
and 7 is the number of criteria. Since n is typically much smaller than m, our method
remains feasible even for large feature models. This ensures a consistent and efficient
application of AHP, TOPSIS, and VIKOR, focusing on the hierarchical relationships
between attributes and maintaining robustness across different problem sizes.

Phase 3. Application of the MCDM methods

In this phase, the three MCDM methods—AHP, TOPSIS, and VIKOR—were applied,
resulting in three different rankings of the 10 configurations. The AHP method calculates
the priority of each alternative based on the weights and instances of the criteria, producing
the ranking shown in Table 17. TOPSIS was applied using the given weights, producing the
ranking shown in Table 18. The VIKOR method has been applied, giving the rank shown
in Table 19.

Phase 4. Resolving discrepancies in rankings

For the SSL/TLS example, the method calculates the deviation for configurations that
appear in different positions in the rankings. The informed decision-making support table
summarises how far each configuration deviates from the optimal values set by the
respective methods, intending to provide more information to the user when deciding
between configurations.

In the case presented in Table 20, the first configuration selected is the same for all three
techniques SSL/TLS Config. No. 6. However, the following positions in the three rankings
do not correspond to SSL/TLS Config. No. 3, 9 and 10 appear in a different order.
Following the method explained in “Informed Decisions: In-Depth Examination of
Ranking Discrepancies”, we extract the main differences between these configurations by
analysing their respective criteria values and calculating the overall deviation from ideal
values. For this phase, we consider the exclusive OR relationship between the criteria
‘DigitalSignature’, ‘Certificate’, ‘KeyConfig’, and ‘Curve’. This means that only one of them
can be instantiated and that they should be treated as one single criterion when calculating
the overall deviation.

Table 21 summarises the results, where each row corresponds to a configuration and
each column represents a criterion, with the last column showing the overall deviation.
The percentages shown next to each instance represent the deviation of that instance from
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Table 17 Ranking of the SSL/TLS feature model alternatives AHP.

Alternatives Priority Ranking
SSL/TLS Config. No. 1 21.55% 8
SSL/TLS Config. No. 2 22.26% 6
SSL/TLS Config. No. 3 30.95% 2
SSL/TLS Config. No. 4 21.79% 7
SSL/TLS Config. No. 5 17.32% 9
SSL/TLS Config. No. 6 35.00% 1
SSL/TLS Config. No. 7 23.81% 5
SSL/TLS Config. No. 8 16.86% 10
SSL/TLS Config. No. 9 30.36% 3
SSL/TLS Config. No. 10 24.45% 4
Table 18 Ranking of SSL/TLS feature model alternatives TOPSIS.
Alternatives R Ranking
SSL/TLS Config. No. 1 0.3344 9
SSL/TLS Config. No. 2 0.4128 5
SSL/TLS Config. No. 3 0.4272 4
SSL/TLS Config. No. 4 0.3643 7
SSL/TLS Config. No. 5 0.3175 10
SSL/TLS Config. No. 6 0.4996 1
SSL/TLS Config. No. 7 0.3733 6
SSL/TLS Config. No. 8 0.3574 8
SSL/TLS Config. No. 9 0.4796 2
SSL/TLS Config. No. 10 0.4540 3
Table 19 Ranking of SSL/TLS feature model alternatives VIKOR.
Alternatives Q Ranking
SSL/TLS Config. No. 1 0.9500 10
SSL/TLS Config. No. 2 0.8579 7
SSL/TLS Config. No. 3 0.3429 3
SSL/TLS Config. No. 4 0.7460 6
SSL/TLS Config. No. 5 0.9289 9
SSL/TLS Config. No. 6 0.0000 1
SSL/TLS Config. No. 7 0.7392 5
SSL/TLS Config. No. 8 0.8934 8
SSL/TLS Config. No. 9 0.2842 2
SSL/TLS Config. No. 10 0.4855 4
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Table 20 Ranking of SSL/TLS alternatives.
SSL/TLS configurations

AHP TOPSIS VIKOR
6 6 6
3 9 9
9 10 3

10 3 10
7 2 7
2 7 4
4 4 2
1 8 8
5 1 5
8 5 1

Table 21 Informed decision-making support table for SSL/TLS Config. No. 3, 9, and 10.

SSL/TLS KeyExChange Cipher AuthMech Protocol DigitalSign/Cert/ Mac Overall

Config. No. KeyConf/Curve Deviation

3 ECDHE (0%) AES 128 GCM (90%) EDCSA (0%) TLSv1.3 secp256 (50%) SHA256 44.17%
(0%) (100%)

9 ECDHE (0%) Camellia 128 GCM (60%) ECDSA (0%) TLSv1.2 secp521rl (0%) SHA384 35.00%
(100%) (50%)

10 RSA (50%) CHACHA20_POLY1305 RSA Auth TLSv1.3 OpenPGP (100%) SHA256 58.33%

(0%) (100%) (0%) (100%)

the optimal value for its criterion, while the overall deviation reflects how far the entire
configuration is from the ideal configuration based on the expert-defined preferences.

As shown in Table 21, SSL/TLS Config. No. 9 has the lowest overall deviation, which is
consistent with its higher ranking in some of the techniques used. SSL/TLS Config. No. 3
follows with a moderate deviation and SSL/TLS Config. No. 10 has the highest variance
due to its lower performance in certain key criteria.

Computational complexity and discrepancy resolution efficiency

This section provides an analysis of the computational complexity of the proposed
framework and discusses the efficiency of resolving discrepancies when different MCDM
methods produce divergent rankings.

Computational complexity of MCDM methods. The computational complexity of the
framework varies across its phases. In Phase 2 (Preferences Setting), the main cost comes
from the number of criteria and their possible values, as pairwise comparisons and
numerical scales are defined independently of the number of configurations. However, in
Phase 3 (Application of MCDM methods), the number of configurations affects execution
time in TOPSIS and VIKOR, as both methods evaluate all alternatives against the defined
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Table 22 Computational complexity of MCDM methods.

Scenario Criteria (n) Configurations (m) Expected execution time trend

Small Low (<10) Few (<50) Fast: execution in milliseconds for all methods

Medium Moderate (10-20) Moderate (50-200) Manageable: AHP grows noticeably, but all remain feasible

Large High (20-30) High (200-500) Performance impact: AHP requires optimization, TOPSIS/VIKOR remain scalable
Very large Very high (>30) Very high (>500) Challenging: AHP may become impractical, alternative strategies needed

criteria. This is reflected in Table 22, which summarizes the expected growth trends in
execution time based on the theoretical complexity of AHP, TOPSIS, and VIKOR.

The full execution of AHP involves both pairwise comparisons (O(n?)) and eigenvalue
computation to derive priorities (O(#°)). The latter step is the most computationally
expensive, making the overall complexity of AHP approximately O(n°). In contrast,
TOPSIS and VIKOR require computing distances to ideal solutions, resulting in a
complexity of O(mn), which scales linearly with the number of configurations. The main
computational effort in TOPSIS and VIKOR lies in calculating the weighted normalised
decision matrix and determining the positive and negative ideal solutions.

Efficiency of discrepancy resolution in Phase 4. The computational effort in Phase 4 is
primarily dictated by the construction of the overall deviation table (e.g., Table 21). This
process involves the calculation of percentage deviations for each configuration in relation
to the ideal values defined by the expert. Given that this process entails elementary
arithmetic operations over a predefined set of criteria and configurations, its complexity is
linear with respect to n and m (i.e., O(nm)), ensuring computational efficiency.

Additionally, the approach ensures that the resolution process remains scalable by using
structured numeric preference scales (as detailed in “TOPSIS application methodology”).
This approach facilitates the rapid identification of the most significant differences
between configurations, thereby obviating the need for exhaustive manual comparison by
the expert.

In summary, our framework maintains computational feasibility across all phases,
ensuring that even with large feature models, the prioritisation and discrepancy resolution
steps remain practical for real-world applications.

DISCUSSION

To the best of our knowledge, this is the first approach that applies multiple MCDM
techniques to prioritize configurations derived from feature models. The existing tools
focus on either feature selection or configuration analysis, but do not offer systematic
prioritisation or reconciliation of discrepancies between different decision-making
methods. This positions the present framework as a novel contribution to the field of
feature model-based decision support.

Beyond its novelty, the framework has practical implications for industries and domains
that rely on complex system configurations. By enabling systematic prioritisation, the
approach ensures that configurations meet user-defined criteria, ultimately improving
product quality and development efficiency. This has direct implications in areas such as
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cloud computing, IoT systems, embedded software design and more, where feature-rich
products require careful selection of optimal configurations.

The results obtained from the application of the proposed MCDM-based configuration
prioritisation methodology highlight several important findings and considerations. The
methodology is effective in generating comprehensive rankings using AHP, TOPSIS and
VIKOR, each of which brought unique perspectives to the prioritisation process.

The MCDM methods employed in this study offer distinct advantages, depending on
the decision-making context. AHP is particularly beneficial when hierarchical structuring
of criteria and pairwise comparisons are required, making it well-suited for cases where
experts can systematically evaluate preferences. However, AHP may be less practical when
the number of criteria or alternatives is very large, due to the increasing complexity of the
pairwise comparisons. In contrast, TOPSIS is advantageous in scenarios where a clear
distinction between the best and worst alternatives is essential, as it directly evaluates each
alternative’s closeness to the ideal solution. However, its reliance on normalisation
techniques means that its results can be influenced by the range of values assigned to
criteria. In contrast, VIKOR is particularly useful when trade-offs between multiple criteria
need to be explicitly considered, as it introduces a compromise ranking based on regret and
satisfaction measures, making it suitable for scenarios where a balance between the best
and worst cases is required. Given these differences, our approach benefits from combining
these methods.

An important implication of this study is that applying different MCDM methods to the
same problem can yield different results due to differences in how each technique weights
and processes the criteria. This highlights the need for informed decision support tools,
such as those proposed in Phase 4, to help experts understand and resolve these
differences.

A key strength of this approach is its adaptability to different decision scenarios,
including complex systems with intricate feature models. By systematically structuring
criteria and alternatives, experts are provided with a clear path to prioritise configurations
according to defined preferences. The integration of automated tools within the
AMADEUS framework further enhances this process by simplifying implementation and
ensuring reproducibility.

Despite these strengths, there are limitations. The reliance on expert input to define the
criteria weights and interpret the results introduces a subjective element that can affect the
consistency of the rankings. Similarly, although the methodology is scalable, the main
complexity lies in the amount of input required from the expert. As more features are
selected as criteria or instances, the expert must make more pairwise comparisons to
establish preferences. However, once these preferences are established, applying the results
to different configurations has minimal computational impact. To mitigate these
limitations, future work could explore partial weighting strategies, where the expert
provides only a subset of preferences and the system extrapolates the remaining ones.
Additionally, incorporating automated preference learning techniques, such as leveraging
historical data or machine learning models, could reduce the dependency on manual input
and enhance the objectivity and scalability of the framework.
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Another practical implication is the reduction in time and resources spent on the
configuration process. By automating prioritisation and providing clear, accountable
results, the framework helps organisations streamline product development cycles and
improve collaboration between stakeholders. This promotes better alignment with
strategic goals and facilitates the delivery of high quality, customised products.

A comparative analysis of our approach with other prioritisation methods in the
literature shows that the proposed integration of decision support mechanisms is
distinctive in its ability to resolve discrepancies and facilitate informed decision-making.
This feature is particularly relevant in scenarios where configuration options are closely
ranked in priority and require detailed investigation to determine the optimal choice.

In addition to SPLs, the framework can be adapted to other decision-making
environments where complex configurations are essential. This includes adaptive systems,
personalised software environments, and even hardware-software co-design scenarios,
underscoring the versatility of the approach.

This discussion highlights the potential and applicability of the proposed methodology
in a range of domains where configuration prioritisation is a key consideration. It provides
a structured yet flexible approach that can be adapted to different expert needs and
decision contexts.

RELATED WORK

Configuration prioritisation is an open problem in the SPL community. However, the
concept of prioritisation has already been discussed in the field of feature modelling,
although, to the best of our knowledge, not for the same purposes as our work. Related
work has been distributed according to the following topics:

1. Optimisation and prioritisation of the configurations of the feature models.
Incorporating user preferences into feature selection in SPL is not a new problem. Saber,
Bendechache ¢ Ventresque (2021) presents a solution based on a genetic algorithm to
find the optimal configuration according to a multi-objective function. However, the
definition of the criteria for sorting the configurations is not supported.
Contributions such as Bertsimas ¢ Misi¢ (2019) facilitate the selection of product
configuration to maximise profit based on preferences, which is known as the product
line design (PLD) problem.

The approach in Guo et al. (2019) proposes a hybrid multi-objective optimisation
algorithm using the indicator-based evolutionary algorithm (IBEA) with satisfiability
modulo theories (SMT) to solve.

Furthermore, Nguyen et al. (2019) provide a prioritisation technique for configurable
systems by ranking the configurations according to their total number of potential bugs.
The contribution of Sdnchez ¢ Segura (2017) presents SmarTest, a test prioritisation
tool to speed up the detection of bugs in the Drupal web content management
framework. It allows the execution of tests based on the real data of the Drupal product
undergoing evaluation and the selection of the tests to be executed in the established
order.
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In the approach of Sdnchez, Segura ¢» Ruiz-Cortés (2014), the applicability of test case
prioritisation techniques to the evaluation of Software Product Lines (SPL) is explored.
The article proposes five different prioritisation criteria based on common feature
model metrics and compares their effectiveness in increasing the early fault detection
rate, which measures how quickly faults are detected.

Recent studies in multi-objective optimisation for SPLs, such as Jamil et al. (2023),
Marghny et al. (2022), Abbas, Siddiqui & Lee (2016), highlight the increasing use of
sophisticated heuristics and hybrid techniques to improve configuration selection.
However, these works primarily focus on optimising performance rather than
incorporating structured multi-criteria decision-making approaches as proposed in our
work.

. Application of multi-criteria decision-making to software product line. MCDM is

not new in the context of SPLs, the approach in Thurimella ¢ Ramaswamy (2012)
proposed a hybrid quantitative and qualitative method based on Issue-based Variability
Management (IVM). However, the proposal does not sort every possible configuration
obtained, it is focussed on assigning prioritisation in each variation point, but not
sorting all the products obtained.

Beyond the SPL domain, decision-making frameworks have been widely applied across
numerous fields, reflecting their adaptability and continuous evolution. Recent studies
highlight their use in diverse areas such as renewable energy systems (Mukelabai,
Barbour ¢ Blanchard, 2024), transportation planning (Kriswardhana et al., 2025),
recommender systems (Anwar et al., 2025), and Al-based managerial decision support
(Marocco, Barbieri & Talamo, 2024). These works illustrate how decision-making
approaches, including MCDM techniques, help structure complex decisions, balance
multiple criteria, and enhance strategic planning. Despite this broad applicability, no
prior research has systematically integrated multiple MCDM methods to resolve
ranking discrepancies in feature model configurations, making our contribution distinct
within the SPL context.

Previous works have explored the use of decision-making frameworks in SPLs (Cao
et al., 2024; Farshidi et al., 2018; Zaidan et al., 2015), but they do not integrate multiple
MCDM methods to resolve discrepancies among rankings.

. Comparative analysis of the different rankings obtained through MCDM. In the

contribution by Shekhovtsov & Satabun (2020), the ranking similarity obtained by
VIKOR and TOPSIS is analysed using three ranking similarity coefficients. The
comparison results of the conducted simulations are represented as boxplots.

Yadav, Goraya ¢ Singh (2021) evaluates AHP, PROMETHEE II, TOPSIS, and VIKOR
in cloud environments for service selection. The comparative analysis includes
differences and similarities in rankings, application-specific analysis, sensitivity analysis,
and ranking overhead.

Although PROMETHEE and ELECTRE are well-known MCDM techniques (Azhar,
Radzi & Ahmad, 2021; Behzadian et al., 2010), they have not been included in our study
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as they were not among the selected methods for this work. Nevertheless, future studies
may explore their integration into feature model prioritisation.

4. Integration of fuzzy logic in MCDM methods. Fuzzy-based MCDM approaches have
been gaining relevance in recent years to handle uncertainty in decision-making
scenarios. In particular, extensions like hesitant fuzzy sets, bipolar fuzzy sets, and linear
Diophantine fuzzy sets (Aslam et al., 2024; Mahmood et al., 2022; Panpho & Yiarayong,
2023 Kahraman, Cebeci & Ruan, 2004) have been applied to complex prioritisation
problems. While our approach does not incorporate these methods, future extensions
could explore their applicability in handling ambiguous or conflicting expert
preferences.

Related to the solutions that support the automatic reasoning of configurations, there are
several tools, such as Flama (https://flamapy.github.io/), FeatureIDE (https://www.
teatureide.de/), SPL-Conqueror (https://www.se.cs.uni-saarland.de/projects/splconqueror/),
SPLOT (http://splot-research.org/) and FAMILIAR (https://familiar-project.github.io/).
Unfortunately, none of them provide the possibility to define a prioritisation criterion to
obtain the possible configurations based on it, let alone to decide between different ranking
lists of configurations.

CONCLUSIONS AND FUTURE WORK

This study has introduced a methodology for the prioritisation of configurations obtained
from feature models (FMs) using MCDM techniques, specifically AHP, TOPSIS, and
VIKOR. The increasing complexity of modern SPLs, where feature models can generate
thousands of valid configurations, necessitates the selection of the most suitable
configuration based on user preferences, which is a critical challenge.

The principal contribution of this work lies in the implementation of MCDM
methodologies for configuration prioritisation, in addition to the introduction of a
systematic approach for the management of discrepancies between rankings generated by
disparate techniques. The proposed framework offers a structured decision-support
mechanism that allows experts to analyse trade-offs between configurations and make
informed selections. While MCDM methods have been individually applied in other
decision-making contexts, the present study demonstrates the benefits of integrating
multiple techniques to enhance decision reliability in feature-based configuration
problems.

Furthermore, we have implemented this approach in an available framework, allowing
practitioners to apply our methodology in real-world application domains. The
methodology has been validated with two complex feature models published in the
literature, demonstrating its practical feasibility and robustness. The results show that
different MCDM methods, despite being based on the same expert-defined preferences,
can lead to different rankings, reinforcing the importance of an informed decision-making
phase to reconcile discrepancies.

Despite the achievements of this work, several directions could be explored in future
research. For example: (1) expanding the methodology through the incorporation of
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additional MCDM techniques or hybrid approaches, to enhance ranking consistency and
accuracy; (2) developing enhanced visualisation techniques to facilitate more effective
communication of discrepancies between rankings, thereby enabling users to gain a more
profound understanding of the prioritisation results; (3) testing the framework in broader
application domains, such as IoT systems or cloud-based environments, to assess its
scalability and adaptability to different contexts; (4) exploring advanced automation
strategies, such as machine learning-based preference learning, to reduce the manual effort
required in expert-driven weighting processes; (5) the incorporation of more advanced
mathematical frameworks for handling uncertainty in decision-making, such as hesitant
bipolar complex fuzzy sets (Aslam et al., 2024; Mahmood et al., 2022). These approaches
have the potential to facilitate a more detailed representation of expert preferences,
particularly in cases where decision-makers express reluctance or divergent priorities. The
integration of such models with MCDM methods has the potential to yield further
insights and enhance the robustness of prioritisation in complex feature models; and
(6) conducting empirical evaluations with large-scale feature models and real-world
datasets to assess the efficiency and usability of the framework in practical industrial
scenarios. This would involve benchmarking the framework against other prioritisation
tools and decision-making approaches to provide a quantitative assessment of its
advantages and limitations.

By addressing these challenges, future work can further enhance the applicability and
impact of the proposed methodology, ensuring that prioritisation in feature-based
configuration remains both rigorous and user-friendly.
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