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ABSTRACT
To address the challenges of high missed detection rates, complex backgrounds,
unclear defect features, and uneven difficulty levels in target detection during the
industrial process of photovoltaic panel defect detection, this article proposes an
infrared detection method based on computer vision, with enhancements built upon
the YOLOv8 model. First, a multi-channel squeeze-and-excitation network is
introduced to improve feature extraction capabilities and is integrated into the neck
network. Second, GhostConv and BoTNet are incorporated into the backbone
network to reduce model parameters while enhancing defect detection performance.
Finally, the Focaler-Complete Intersection over Union (Focaler-CIoU) loss function
is employed to tackle the issue of imbalanced difficulty in target detection tasks. The
method is evaluated on the PV-Multi-Defect-main dataset and further validated
through a generalization test on the PVEL-AD dataset. Results demonstrate that,
compared with the baseline YOLOv8 model, the proposed approach achieves
significant improvements in precision (3.6%), recall (10.4%), mAP50 (4.8%), and
mAP50-95 (4.5%) while maintaining nearly the same parameter count. On the
PVEL-AD dataset, the method effectively addresses the challenge of feature
extraction failure for dislocation-type defects, achieving substantial gains in precision
(7.8%), recall (17.1%), mAP50 (19.5%), and mAP50-95 (13.2%). Furthermore,
comparisons with several state-of-the-art detection algorithms reveal that the
proposed method consistently delivers improved detection performance, validating
its effectiveness as a robust solution for photovoltaic panel defect detection.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Neural
Networks
Keywords Photovoltaic panel, Infrared image, Defect detection, Deep learning, YOLOv8

INTRODUCTION
Surface defect detection of photovoltaic (PV) panels is of significant practical importance
for improving power generation efficiency and reducing safety risks. Traditional detection
methods such as penetration testing (Osa et al., 2015), X-ray inspection (Pan et al., 2021),
and acoustic testing (Choudhury & Nandi, 2023) have limitations in terms of practicality.
For instance, these methods often suffer from high equipment costs, low detection
accuracy, and limited defect type coverage. Penetrant testing visualizes defects on
photovoltaic panels by applying penetrant liquid to the surface and using a developer to
make the defects visible. However, this method can only detect surface or near-surface
cracks, involves cumbersome procedures, and leaves residual penetrant liquid that can
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damage both the photovoltaic panel and the environment. X-ray testing identifies internal
defects by utilizing the differences in X-ray absorption between various materials. X-rays
can reveal internal structural defects such as voids, inclusions, and cracks. However, the
high cost of X-ray inspection equipment limits its application in the operation and
maintenance of photovoltaic power stations. Additionally, X-ray images may contain noise
due to uneven radiation penetration, requiring robust denoising and feature extraction
capabilities during image processing. In ultrasonic testing (Zhu et al., 2017), the analysis of
acoustic signals is challenging and does not directly provide the exact location and size of
defects, limiting its flexibility and applicability.

In an era of rapid advancements in artificial intelligence and the booming growth of the
renewable energy industry, detecting defects in PV panels accurately and effectively using
infrared imaging based on the principle of electroluminescence holds immense practical
value. This approach has the potential to replace manual inspection and other existing
industrial detection methods, making it a promising candidate to become the primary
method for PV panel defect detection (Qu, Jiang & Zhang, 2020). In recent years, the trend
of leveraging computer vision technology to achieve this goal has become increasingly
evident, marking a critical direction for artificial intelligence applications in the power
industry. Researchers have proposed a variety of targeted algorithms for PV panel defect
detection (Wang et al., 2022; Di Tommaso et al., 2022; Li, Wang & Zhang, 2023; Lee, Yan &
Yang, 2023; Cao et al., 2023; Zhao et al., 2023).

However, the diversity of defect types poses significant challenges. For example,
although infrared-based detection methods (Bu et al., 2023) are cost-effective and fast, they
are not capable of effectively detecting a wide range of defect types. Existing detection
algorithms often lack generalizability in accurately identifying all types of defects, as many
researchers focus on specific types of defects, thereby limiting their practical application.
This limitation arises because infrared signals originate from the thermal radiation of the
PV panel surface. For certain defects—especially those that are small or have low local
resistance—the temperature difference between the defect and its surrounding area is
minimal, making them difficult to detect using infrared cameras. Consequently, infrared
detection methods are primarily effective for defect types with significant temperature
differences, such as hotspots.

In the field of PV panel defect detection, although the original YOLOv8 network offers
numerous advantages, it still has certain limitations. First, PV panels are typically installed
in outdoor environments with complex and dynamic backgrounds. If there are features or
textures in the background that resemble defects such as cracks, broken grids, or scratches,
YOLOv8 may be susceptible to interference, leading to reduced detection accuracy.
Second, as a general-purpose object detection network, YOLOv8 lacks optimization for
electroluminescence (EL) defect images of PV panels, which limits its detection
performance. For example, scratches, being small-object defects, and defects like
black_core, which have indistinct boundaries, are challenging to detect accurately. The low
precision of the model fails to meet the requirements of industrial inspection. Third,
increasing model size (e.g., using larger variants such as YOLOv8-m or YOLOv8-l) to
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improve detection accuracy results in higher model complexity, making real-time on-site
industrial inspections impractical. Therefore, the model should aim to maximize detection
accuracy while maintaining a lightweight design to meet the demands of industrial-level
defect detection.

To address these limitations (Hussain & Khanam, 2024), this study proposes a PV panel
defect detection method based on YOLOv8 and computer-based infrared vision. We
modify the YOLOv8 algorithm to optimize its performance and enhance its applicability in
industrial inspection scenarios. Our improved model is designed to increase the accuracy
and robustness of defect detection in PV panels. Specifically, the major contributions of
this research are as follows:

1) A novel multi-channel squeeze-and-excitation (MCSE) attention mechanism: We
propose a new MCSE attention mechanism to overcome a fundamental limitation of
traditional convolution operations, which typically perform convolutions within
individual channels and then sum the results. This process often leads to suboptimal
mixing of spatial and channel features. The MCSE mechanism enables the model to
directly learn channel-specific features, significantly enhancing its ability to extract and
identify defect-related characteristics. In object detection, this attention mechanism
allows the model to focus more on critical regions of the image while ignoring
background noise.

2) Architectural improvements to YOLOv8: To improve the efficiency of defect detection
in PV panels, we made several enhancements to the YOLOv8 architecture. Specifically,
we introduced GhostConv to replace a portion of the original convolution layers,
reducing computational complexity while maintaining feature representation.
Additionally, we integrated BoTNet to strengthen the backbone network’s feature
extraction capabilities. Furthermore, we replaced the standard CIoU loss function with a
novel Focaler-CIoU loss, designed to optimize model performance while preserving
computational efficiency.

3) A Defect detection model for PV panel electroluminescence images: We developed a
defect detection model tailored to EL images of PV panels, addressing the poor
detection performance of the original YOLOv8 network in industrial applications. Our
model achieves improved detection accuracy while maintaining nearly the same
parameter size, thereby enhancing its industrial applicability.

This study demonstrates that the proposed modifications effectively improve YOLOv8’s
performance and usability in detecting defects in PV panels, paving the way for more
accurate and efficient industrial inspection solutions.

RELATED WORK
Object detection
In the field of computer vision-based photovoltaic panel defect detection, algorithms can
be broadly divided into two main categories: single-stage and two-stage models.
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Two-stage models operate through a sequential process. First, they generate multiple
region proposals from the input image. Next, features are extracted from each proposed
region and transformed into uniform-sized feature maps using region of interest (RoI)
pooling. In the final stage, these models perform classification and bounding box
regression, enabling precise predictions of object labels and their corresponding bounding
boxes. Notable examples of two-stage algorithms include fast region-based convolutional
neural network (Fast R-CNN) (Girshick, 2015) and mask region-based convolutional
neural network (Mask R-CNN) (He et al., 2017).

In contrast, single-stage models eliminate the region proposal step entirely. Instead, they
integrate feature extraction, classification, and bounding box localization within a fully
convolutional network architecture. This streamlined design significantly accelerates
processing times compared to two-stage models, making single-stage approaches
particularly well-suited for real-time applications. Prominent examples of single-stage
algorithms include single-shot detector (SSD) (Liu et al., 2016) and the You Only Look
Once (YOLO) series (Redmon et al., 2016; Redmon & Farhadi, 2018; Li et al., 2022).

The growing preference for single-stage models in recent years reflects their superior
speed and practicality. As industries increasingly demand real-time defect detection, these
efficient architectures have gained significant traction. Their ability to perform rapid and
accurate analyses is critical for ensuring the performance and longevity of photovoltaic
installations, where timely identification of defects is essential to maintaining operational
efficiency.

YOLOv8 algorithm overview
YOLOv8 is a state-of-the-art single-stage, anchor-free object detection algorithm,
consisting of three key components: the backbone network, the neck network, and the
head network.

The backbone network is responsible for extracting image features and providing the
foundational feature representations required for target detection tasks. In YOLOv8, the
backbone network has been significantly enhanced compared to its predecessors. It
replaces all C2 modules with CSPLayer_Conv modules, introduces more skip connections,
and incorporates additional split operations to improve information flow and transmission
across the network.

The neck network, positioned between the backbone and head networks, plays a critical
role in processing and fusing the features extracted by the backbone. This component is
designed to enhance detection accuracy by combining feature maps at multiple scales,
enabling the detection of objects of varying sizes. Typically, the neck network integrates
structures such as the Feature Pyramid Network (FPN) and Path Aggregation Network
(PAN) to achieve this multi-scale feature fusion.

The head network is tasked with generating the final detection results. YOLOv8 adopts a
decoupled head structure, which separates the classification and regression branches,
allowing them to operate more independently for improved performance. Additionally, it
employs the Complete Intersection over Union (CIoU) metric to evaluate the differences

Wang and Cheng (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2776 4/30

http://dx.doi.org/10.7717/peerj-cs.2776
https://peerj.com/computer-science/


in the center point, width, and height of predicted bounding boxes, ensuring a more
accurate representation of the target object’s shape and precise localization.

In summary, YOLOv8 represents a significant advancement in single-stage object
detection, with its innovative design and architectural improvements yielding superior
accuracy, robustness, and efficiency in detecting objects of various sizes and shapes.

IMPROVED YOLOV8 ALGORITHM
In the operation and maintenance of photovoltaic power plants, infrared sensing devices
are commonly used to capture images of photovoltaic panels for defect localization.
However, this approach is often hindered by challenges such as complex backgrounds,
noise interference, and material variations. Traditional target recognition networks
struggle to extract sufficient key information, resulting in poor defect feature recognition,
suboptimal detection accuracy, weak model generalization, and higher rates of false
positives and missed detections.

This article presents a series of structural enhancements to the YOLOv8 architecture,
with the improved network architecture illustrated in Fig. 1. The proposed modifications
encompass several key innovations: First, we introduce GhostConv as a replacement for
the conventional convolution layer in the initial stage of YOLOv8’s backbone network,
effectively reducing model parameters while enhancing detection precision. Second, we
integrate the BoTNet architecture into the Spatial Pyramid Pooling-Fast (SPPF) module,
enabling more effective capture of feature correlations and importance weights, thereby
improving overall model performance. Third, we propose and implement a novel
multi-channel squeeze-excitation network (MCSENet) within the neck network,
significantly enhancing feature extraction capabilities and improving representational
capacity. Finally, we replace the original Complete Intersection over Union (CIoU) loss
function with Focaler-CIoU, addressing the challenges associated with varying detection
difficulties across different samples while accelerating model convergence and improving
detection performance.

Multi-channel squeeze-excitation network
The multi-channel squeeze-excitation network (MCSENet) enhances channel
representations by employing a multi-channel squeeze-excitation mechanism, thereby
improving its expressive power (Hu, Shen & Sun, 2018). However, with only a single
squeeze-excitation feature extraction branch, its feature extraction capability remains
limited and requires further enhancement (Targ, Almeida & Lyman, 2016).

The squeeze module compresses the input feature map via a fully connected layer,
reducing its dimensionality before performing channel-wise multiplication operations.
The excitation module applies a gating mechanism with a sigmoid activation function.
This process consists of two fully connected layers: a dimension reduction layer followed
by a rectified linear unit (ReLU) activation function, and a dimension restoration
(increase) layer. This modular design not only limits model complexity but also facilitates
generalization. The final output is produced by performing channel-wise multiplication
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between the input feature map and the computed channel weights. The detailed structure
of the MCSE module is illustrated in Fig. 2.

In Fig. 2, Ftrð Þ represents a conventional convolution operation. Fsqueezeð Þ denotes the
squeeze operation, while Fexcitationð Þ signifies the excitation operation. Fscale() is applied to
rescale the output to align with the original shape. The calculation formula for the
squeeze-excitation operation is expressed in Eq. (1).

Zc ¼ Fsqueeze Uð Þ ¼
XH
i¼1

XW
j¼1

U i; jð Þ (1)

where U represents the feature map after conventional convolution, H and W denote the
height and width of the feature map, respectively, and z is the channel statistics obtained

Figure 1 Improved YOLOv8 network structure. Full-size DOI: 10.7717/peerj-cs.2776/fig-1
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through global average pooling. The calculation formula for the excitation operation is
shown in Eq. (2).

s ¼ Fexcitation z; ’ð Þ ¼ a ’2b W’1zð Þð Þ: (2)

a represents sigmoid activation function, b represents ReLU function, ’1; ’2 2 R
C2

r , the
weight matrix representing two fully connected layers is used to parameterize the gating
mechanism to limit model complexity and facilitate generalization ability by forming a
dimension reduction layer and a dimension increase layer. The calculation of the feature
map uc is shown in Eq. (3).

uc ¼ vc�X ¼
XC0

s¼1

vsc�Xs: (3)

Let vc denote the learned set of filter kernels, where vc is the parameter of the cth filter
used to map the input X to the feature map U, X;U 2 RH1�W1�C1 . sc represents the channel
weight, which is used to channel weight the feature map uc. X0 is the corresponding
channel product between feature map uc and channel weight sc, as shown in Eq. (4).

X0 ¼ Fscale uc; scð Þ ¼ scuc ¼ sc
XC0

s¼1

vsc�Xs (4)

where the inner brackets after fc indicate the output dimension of the two fully connected
layers in the squeeze-excitation module.

In MCSENet, the feature extraction capability can be enhanced by increasing the
number of feature extraction branches. When the output of the squeeze-excitation fully
connected layer is concatenated along the channel dimension, an excessive number of
channels in the squeeze-excitation fully connected layer can diminish the influence of the
original fully connected layer on the concatenated result. This means that when the feature
map after the squeeze-excitation operation is merged with the original feature map, the
features of the original feature map are diluted, and the features extracted by
squeeze-excitation are overly emphasized. This phenomenon is analogous to the network
degrading to a version without a residual structure, thereby affecting the network’s
detection accuracy.

Figure 2 MCSE module structure. Full-size DOI: 10.7717/peerj-cs.2776/fig-2
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To validate the focus of MCSENet on defect features, five images were selected from the
PV-Multi-Defect-main dataset to visualize the feature extraction performance of the
YOLOv8 baseline model and the model incorporating MCSENet, as illustrated in Fig. 3.
The heat maps show that after the introduction of MCSENet, the network’s attention to
the defect location becomes more precise, and the interference from background factors is
reduced, positively impacting the defect target localization during photovoltaic panel
defect detection.

GhostConv
In the convolution process, it is crucial to consider the redundancy of feature maps within
the model structure. The robust feature extraction capability of convolutional neural
networks (CNNs) is positively correlated with these similar feature maps, often referred to
as Ghost feature maps (Lau, Po & Rehman, 2024). Rather than deliberately avoiding the
generation of such Ghost feature maps, GhostConv aims to leverage simple linear
operations to produce an increased number of these features in order to enhance the
model’s feature extraction ability.

The GhostConv convolution module (Han et al., 2020) addresses the issue of
redundancy in feature maps by proposing a Ghost module structure that generates a
substantial quantity of feature maps with minimal computational cost. This module
creates mappings for intrinsic features through conventional convolution and
subsequently amplifies both the number of features and channels via depth-wise
convolution (DC) (Chollet, 2017), effectively replacing pointwise convolution while
utilizing depthwise convolutions for spatial information processing. Consequently, Ghost
convolution not only improves detection performance but also reduces computational
requirements.

Figure 3 MCSENet heat map was introduced for comparison.
Full-size DOI: 10.7717/peerj-cs.2776/fig-3
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A convolution operation generates an output feature map by multiplying the input data
with a convolution filter and adding a bias term. This operation involves a large number of
floating-point operations, and usually needs to deal with a large number of parameters and
computational complexity, especially when the output feature map of the convolution
layer contains a lot of redundant information. The computational complexity can be
calculated by n � h0 � w0 � c � k2, where n is the number of feature maps, h0 and w0 are the
height and width of the output data, c is the number of input channels, and k is the size of
the convolution kernel. This computational complexity is typically very high, since
typically both n and c are large. The operation of an arbitrary convolution layer to generate
n feature maps can be expressed as Eq. (5).

Y ¼ X�f þ b: (5)

X represents the input data, * for the convolution operation, b is the amount of bias,
f represents a convolution filter in a convolution layer, Y is the input feature map.
Equation (6) describes the process of generating the intrinsic feature map in the Ghost
module.

Y 0 ¼ X�f 0: (6)

m intrinsic feature maps, Y 0 2 Rh0�w0�f 0 is generated by regular convolutions. Where

f 0 2 Rc�k�k�m is filter, m � n. These intrinsic feature maps can be viewed as smaller
feature maps produced by a conventional convolution filter. Next, to further obtain the
desired n feature maps, for each intrinsic feature in Y 0, a series of low-computation linear
operations are performed to generate s “ghost” features. The linear operation with a low
calculation amount can be expressed as Eq. (7):

yij ¼ �i;j y
0
ið Þ; 8i ¼ 1; . . . ;m; j ¼ 1; . . . ; (7)

where y0i is the i-th intrinsic feature map of Y 0, �i;j represents the jth linear operation that
generates the j-th ghosting feature map yij. The regular convolution operation and the
Ghost convolution operation are shown in Fig. 4.

Suppose that the number of generated channels after convoluting input with the kernel
of c0 groups k� k in the original convolution operation is c0 and the size of the output
dimension is h0 � w0. In the ghost model, cmid groups of k� k kernels are convolved with
the input to generate the eigenmap of cmid � h0 � w0. After that, the eigenmap is linearly
transformed by Φ to generate the ghost map, and the eigenmap and the ghost feature map
are taken as the output.

Bottleneck transformer network
Bottleneck Transformer Network (BoTNet) (Srinivas et al., 2021) is a Transformer-based
backbone network architecture designed to address the challenge of long-distance
dependency modeling. By incorporating the multi-head self-attention (MHSA)
mechanism, BoTNet effectively captures feature correlations and their importance, thereby
enhancing model performance. This design allows BoTNet to outperform traditional
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architectures when replacing the ResNet backbone, while simultaneously reducing the
number of model parameters and improving both efficiency and accuracy. Unlike the
traditional Transformer architecture (Vaswani et al., 2017), BoTNet simplifies model
hierarchy by replacing spatial convolutions in the last three bottleneck blocks with the
MHSA mechanism. MHSA offers distinct advantages over conventional sequence
modeling methods, including its ability to handle long-range dependencies and support
parallel computation, making it highly efficient for vision tasks.

The structure of the BoTNet module and the workflow of the MHSA layer are illustrated
in Fig. 5. q, k, r denote the query code, key code, and position code, respectively. The input
size of MHSA is H �W � d, respectively represent the height and width of the input
feature matrix and the dimension of a single token, and the number of tokens is H �W.
The first is to initialize two learnable parameter vectors Rh and Rw, represent the position
codes at different positions of height and width. Respectively, and added by the broadcast
mechanism, The encoding of position i; jð Þ is the sum of two d-dimensional vectors Rhi and
Rwj, and simplified the numbers of encoding from H �W � d to H þWð Þ � d. The

position code is multiplied with the query matrix, and then multiplied with the query and
key matrices. The result is summed up, and finally normalized by softmax to obtain the
final attention.

Focaler-CIoU
Focaler-CIoU (Zhang & Zhang, 2024) is based on CIoU (Zheng et al., 2020) and uses
the linear margin mapping method to reconstruct the Intersection over Union (IoU)
loss, which helps to improve the marginal regression. The loss function used in
YOLOv8 model is CIoU loss function. By adding a new shape loss term in Distance
Intersection over Union (DioU), CIoU further considers the shape similarity between

Figure 4 Comparison of normal convolution operation (top) and ghost convolution operation
(bottom). Full-size DOI: 10.7717/peerj-cs.2776/fig-4
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anchor frames to reduce the difference of aspect ratio between anchor frames. It is defined
as follows:

CIoU ¼ IoU � q2 b; bgtð Þ
c2

� av (8)

IoU ¼ B \ Bgtj j
B [ Bgtj j (9)

a ¼ v
1� IoUð Þ þ v

(10)

v ¼ 4
p2

arctan
wgt

hgt
� arctan

w
h

� �2

(11)

LossCIoU ¼ 1� CIoU ¼ 1� IoU þ q2 b; bgtð Þ
c2

þ av (12)

In the formula, IoU is the intersection and union ratio, B and Bgt represent the predicted
and ground true (GT) boxes, respectively, b and bgt represents the center points of two
rectangular boxes, q represents the Euclidean distance between two rectangular boxes, c
represents the diagonal distance of the enclosed area of the two rectangular boxes, v used to
measure the consistency of the relative proportions of two rectangular boxes, a is the
weight coefficient, wgt , hgt is the width and height of the GT boxes. w, h is the width and
height of the anchor frame.

The advantage of CIoU is that it takes the shape into account and introduces a
correction factor v, which makes it easier for the model to capture the exact shape of the
target. Due to the introduction of diagonal distance, the CIOU loss function helps to
improve the accuracy of the target detection model in localization. However, for the
problem of sample imbalance, CIoU can cause huge IoU change loss for samples that are
difficult to distinguish, such as small targets, which can easily cause adverse effects on the
regression effect of the bounding box, and the judgment effect is also poor for targets with a
large ratio of length to width. In the defect detection of photovoltaic panels, it is difficult to

Figure 5 BoTNet module structure (left), MHSA layers used in BoTNet blocks (right).
Full-size DOI: 10.7717/peerj-cs.2776/fig-5
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detect small defects such as broken grids and scratches, so YOLOv8, which uses CIoU as
the loss function of bounding box, has poor accuracy and generalization in the detection of
the above small targets.

In order to improve the calculation method of loss function to improve the accuracy of
localization, the Focaler-CIoU loss function is proposed. The Focaler-IoU is applied to
CIoU, which can improve the detection effect by focusing on different regression samples
in different detection tasks. IoU loss is reconstructed by the method of fetching mapping,
and the calculation method of Focaler IoU loss is as shown in Eq. (13).

IoUfocaler ¼
0; IoU < d

IoU � d
u� d

; d � IoU � u

1; IoU > d:

8>>><
>>>:

(13)

IoUfocaler is Focaler-IoU after reconstruction, IoU is original IoU Value, d; u½ � 2 0; 1½ �.
By regulation d and u are value of is such that IoUfocaler focus on different regression
samples. The loss is defined as shown in Eq. (14):

LFocaler�IoU ¼ 1� IoUfocaler: (14)

Applying Focaler-IoU to the existing IOU-based bounding box regression loss function,
the definition of LFocaler�CIoU is given in Eq. (15).

LFocaler�CIoU ¼ LCIoU þ IoU � IoUFocaler ¼ 1þ q2 b; bgtð Þ
c2

þ av � IoUFocaler: (15)

IMPLEMENTATION DETAILS AND EVALUATION METRICS
In order to evaluate the scientific validity and effectiveness of the proposed method, a
comprehensive set of experimental procedures was meticulously arranged and designed.
Firstly, we introduce the dataset utilized in the experiment, along with details regarding the
experimental environment and parameters. Subsequently, experiments were conducted to
assess how varying the number of channels in the proposedMCSENet affects defect feature
extraction.

Secondly, we discuss the impact of different layers of GhostConv convolution on defect
feature detection performance by testing various configurations involving both layer
counts and numbers of GhostConv convolutions. Thirdly, we compare the influence of
IoU loss functions on model accuracy to validate the efficacy of Focaler-CIoU in
enhancing model precision. This is followed by a horizontal comparison with other
improvement methods to establish that our enhanced approach offers significant
advancements.

Finally, ablation studies were performed on our proposed method and compared
against other models to ensure that each step taken in this enhancement process
contributes positively towards improving detection accuracy within our model.
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Dataset introduction
This article utilizes two datasets: the PV-Multi-Defect-main dataset (Li, Wang & Zhang,
2023). The PV-Multi-Defect-main dataset contains 1,106 images of photovoltaic panel
defects, categorized into five types: 2,079 hot spots, 1,367 scratches, 256 open circuits, 181
black areas, and 98 broken areas. The image size is 600 pix * 600 pix. Scratches and hot

spots are relatively small and difficult to detect. Open circuits and black areas have large

defect areas and are easy to detect.

The PVEL-AD dataset (Su, Zhou & Chen, 2022), the world’s largest dataset for
photovoltaic panel defect anomaly detection, was jointly released by Hebei University of
Technology and Beijing University of Aerospace and Technology (PVEL-AD dataset:
https://github.com/binyisu/PVEL-AD). It comprises 4,997 images of photovoltaic panel
defects, each with a resolution of 1,024 pix * 1,024 pix, and includes 11 defect types: 1,260
cracks, 2,958 fingers, 1,028 black cores, 981 thick lines, 135 star cracks, 128 corners, 112

fragments, 798 horizontal dislocations, 137 vertical dislocations, 32 printing errors, and

492 short circuits. There are all kinds of defects in the PVEL-AD dataset, among which the

defects of the fingers type belong to the category of small targets and are the most difficult

Figure 6 Sample PVEL-AD (top), PV-Multi-Defect-main (bottom) defect type picture.
Full-size DOI: 10.7717/peerj-cs.2776/fig-6
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to detect. Sample images of defect types from both the PV-Multi-Defect-main and

PVEL-AD datasets are shown in Fig. 6.
The PV-Multi-Defect-main dataset and PVEL-AD dataset cover the main types of

defects that can be captured through electroluminescence imaging of photovoltaic panels,
including defects caused during the production, installation, and operation of the panels.

In this study, the data augmentation techniques employed include spatial geometric
transformations, such as rotation, flipping, and affine transformations. Specifically,
rotation was applied to randomly rotate images within a predefined angle range to improve
the model’s robustness to different object orientations. Flipping was used to mirror the
images horizontally or vertically, helping the model generalize better by exposing it to
variations in object positioning. Affine transformations were applied to modify the
geometric properties of the images, such as scaling, shearing, and translation, allowing the
model to learn spatial invariance and improve its performance on diverse image
perspectives. These augmentation techniques collectively help enhance the model’s ability
to generalize to unseen data, reduce overfitting, and improve overall detection accuracy.
The PV-Multi-Defect-main dataset was expanded to 4,454 images. We compared the
detection performance of a model trained on the enhanced dataset with a model trained on
the original dataset. In the PVEL-AD dataset, fragment and corner defect types are
underrepresented, resulting in significant class imbalances that can adversely affect model
performance. Therefore, only fragmentation and lack of sleep are enhanced.

In this study, the dataset was divided into training, testing, and validation sets in a ratio
of 7.5:1:1.5. This division was primarily chosen to ensure that the validation set plays a
crucial role in adjusting the model’s hyperparameters and preventing overfitting. The
validation set is especially critical when the dataset size is relatively small, requiring an
increased proportion.

For images containing multiple defects, either of the same type or different types, such
cases are present in both datasets used in this study. All defects in the images were
annotated during the data labeling process. This approach aligns with current
methodologies for handling multi-defect datasets.

Environment and training parameters
The experimental environment and training parameters is shown in Table 1.

The training parameters in Table 1 are typically the default settings for YOLOv8.
Comparative experiments have verified that these parameters are the most suitable for this
experiment. For instance, stochastic gradient descent (SGD) uses the data of only one
sample to compute the gradient, resulting in faster convergence. Additionally, by
introducing random noise during the training process, SGD can prevent the model from
overfitting the training data, thereby improving its performance on new data.

YOLOv8 automatically stops training to prevent overfitting and resource wastage when
no improvement is observed after 50 iterations, indicating that the model has reached
convergence. Consequently, the actual number of iterations is often less than the number
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set in the hyperparameters to ensure complete convergence of the loss and mAP during
training. For the PV-Multi-Defect-main dataset, convergence is typically achieved after
about 300 iterations without data enhancement. However, with data enhancement, the
model converges more slowly, generally requiring about 1,200 iterations. For the
PVEL-AD dataset, which features high resolution and a large number of images,
convergence is usually reached after 600 iterations.

In analyzing the experimental results, the COCO evaluation metrics are used to assess
model performance. These include mean average precision (mAP), precision (P), recall
(R), giga floating-point operations per second (GFLOPs), the number of parameters, and
frames per second (FPS) . Observe the accuracy of the model on the training and validation
sets. If the accuracy of the training set is much higher than that of the validation set, it
indicates that overfitting has occurred.

The convolution, attention mechanisms, and IoU code used in these experiments are
documented in the referenced articles. When using these mechanisms to reproduce the
experiments, adhere to the following principles: (1) Ensure that the software, hardware,
and hyperparameters used in the experiment are identical. (2) Modify the original
YOLOv8n model as needed. (3) If the developer of the convolution or attention
mechanism has recommended a YAML file structure, modify it accordingly; otherwise,
replace all applicable convolution or attention mechanisms in the YAML file. (4) Use the
same dataset and its division.

Table 1 Experimental environment and training parameter setting.

Environment Parameter

Operating system Ubuntu 18.04.6 LTS (64 bit)

CPU Intel Xeon(R) Gold 6240 CPU @ 2.60 GHz * 4

GPU NVIDIA Tesla T4 16 GB

Memory 8G*2

Python 3.8.18

CUDA 10.1

Pytorch 1.9.0

Numpy 1.24.3

Batch size 8

Initial learning rate 0.01

Minimum learning rate 0.0001

Momentum 0.937

Weight decay 0.0005

Optimizer SGD

Imgsz 600 or 1,024

Close mosaic 10

Amp False
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EXPERIMENTAL RESULTS AND DISCUSSION
Effect comparison of MCSENet channel number on defect feature
detection
MCSENet features a greater number of squeeze-excitation channels compared to
traditional SENet, thereby enhancing its feature extraction capabilities. To ascertain the
optimal quantity of squeeze-excitation channels, experiments were undertaken using the
unenhanced PV-Multi-Defect-main dataset, with YOLOv8n serving as the foundational
detection network. The performance metrics for detecting defects in photovoltaic panels
encompassed mAP50(%), mAP50-95(%), precision, recall, and the parameter count. The
experimental findings are summarized in Table 2.

An analysis of the results presented in Table 2 reveals that augmenting the number of
branches in the squeeze-excitation (SE) channels bolsters the model’s feature extraction
prowess, adopting a structure akin to that of a residual network. However, incorporating
an excessive number of SE channels can result in the dilution of the original feature map
when fused with the map post-squeeze-excitation. This imbalance leads the model to
overly prioritize features extracted via squeeze-excitation, mirroring the degradation
observed in models devoid of a residual structure, thereby detracting from detection
accuracy. While the proliferation of SE channel branches can indeed enhance the model’s
feature extraction capabilities due to its structural resemblance to a residual network, an
overly abundant inclusion of compression-excitation channels can lead to the dilution of
the original feature map during the merging process post-SE operation in scaling. This
heightened emphasis on SE-extracted features may prompt the network to degrade into
one with fewer residual blocks, ultimately undermining the network’s detection accuracy.
Consequently, an excessive number of SE channels can diminish the model’s detection
performance.

Consequently, an excessive number of squeeze-excitation channels can reduce the
model’s detection performance. The optimal detection performance is achieved with 3 or 4
channels. The same conclusion was reached when using the PVEL-AD dataset.

Comparison of detection effect of layer number of Ghost convolution
on defect feature
In the PV-Multi-Defect-Main dataset, scratches and cracks on PV panels appear
stripe-like. During the feature extraction process in the YOLOv8 backbone network,

Table 2 Comparison of detection effect of number of squeeze-excitation channels.

Numbers of channels mAP50 mAP50-95 Precision Recall Parameter

1 0.818 0.505 0.790 0.758 3,015,023

2 0.832 0.513 0.774 0.805 3,018,223

3 0.845 0.532 0.793 0.819 3,021,423

4 0.843 0.525 0.794 0.801 3,024,623

5 0.804 0.495 0.782 0.791 3,027,823
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shallow layers typically extract detailed features. However, traditional convolutional
layers are less effective at extracting defect features and have high computational
overhead. To address this, GhostConv is employed in the shallow layers of YOLOv8
instead of traditional convolutions. This substitution enhances the detection accuracy for
scratch and crack types while reducing computational costs. The output of these shallow
layers is then utilized by deeper network layers, further improving overall detection
accuracy.

To evaluate the impact of GhostConv on model accuracy and efficiency, experiments
were conducted comparing the effects of replacing Conv with GhostConv at different
network layers. The results of these comparisons are displayed in Table 3.

The feature extraction ability of convolution is positively correlated with the Ghost
feature map. GhostConv generates the Ghost feature map using linear operations with low
computational complexity, achieving both lower computational complexity and improved
results. By incorporating GhostConv into the shallow layers of the backbone network, the
generated Ghost feature map can be passed to deeper layers, enhancing the overall feature
extraction capability of the network. In the deeper layers of the backbone network, its
detection performance may decrease, and it is not as good as in the shallow layers. Thus,
the shallower the layer, the better the feature extraction effect. The same conclusion was
reached when using the PVEL-AD dataset. Due to the distortion caused by
low-computation linear operations, when Ghost feature maps are further passed through
additional low-computation linear operations in the GhostConv convolution, this
distortion effect is amplified, negatively impacting the feature extraction capability.
Therefore, an excessive number of GhostConv layers can reduce the feature extraction
ability of the backbone network. Additionally, GhostConv layers located in deeper layers of
the network may further exacerbate the distortion during the upsampling process in the
neck network, affecting the features of large objects and ultimately leading to a decrease in
detection accuracy.

Table 3 Comparison of effects of GhostConv in different layers of the backbone network.

GhostConv is on mAP50 mAP50-95 Precision Recall Parameter

1st floor 0.849 0.541 0.807 0.752 3,004,719

3rd floor 0.807 0.498 0.794 0.708 2,998,207

5th floor 0.793 0.484 0.734 0.692 2,971,359

7th floor 0.781 0.493 0.683 0.751 2,862,367

1st, 3rd floors 0.842 0.532 0.812 0.819 3,001,487

1st, 5th floors 0.836 0.518 0.802 0.738 2,974,639

1st, 7th floors 0.833 0.528 0.744 0.817 2,860,463

1st, 3rd, 5th floors 0.831 0.530 0.810 0.781 2,961,039

1st, 5th, 7th floors 0.826 0.521 0.802 0.751 2,825,199

1st, 3rd, 7th floors 0.792 0.483 0.712 0.698 2,852,047

1st, 3rd, 5th, 7th floors 0.842 0.545 0.767 0.727 2,821,967
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IoU selection
The loss function plays a crucial role in photovoltaic panel defect target detection. In
YOLOv8, the loss function consists of category classification loss and frame regression loss,
the latter of which includes distribution focal loss (DFL) and IoU loss. By minimizing the
loss function, the model learns to accurately locate targets, predict their existence and
categories, and ultimately improve target detection accuracy. To investigate the impact of
different IoU loss functions on model performance, a comparative test was conducted
using CIoU, EIoU, WIoU, InnerIoU, FocalerIoU, and their combinations on the PV-
Multi-Defect-main dataset. The experimental results are presented in Table 4.

Table 4 shows that changing the IoU loss function affects the model’s detection
performance, with minimal impact on the number of model parameters. Using
Focaler-CIoU as the loss function enhances the model’s prediction accuracy to varying
degrees compared to other IoU loss functions. Thus, Focaler-CIoU is selected as the
model’s bounding box regression loss function to achieve better photovoltaic panel defect
detection.

Comparison of other improved model
To verify the effectiveness of MCSENet and various improvements proposed in this article,
and to ensure the advancement of the improved model, we compared the detection
performance of enhanced modules based on YOLOv8. These comparisons include
improvements in the convolution kernel and attention mechanism. The models compared
include GoldYOLO (Wang et al., 2024), deep & cross network version 2 (DCNv2) (Wang
et al., 2021), deep & cross network version 3 (DCNv3), weighted bi-directional feature
pyramid network (BiFPN) (Tan, Pang & Le, 2020), Omni-dimensional Dynamic
Convolution (ODConv) (Li, Zhou & Yao, 2022), Expectation-maximization attention
(EMA) (Li et al., 2019), and Large separable kernel attention (LSKA) (Lau, Po & Rehman,
2024), among others. The PV-Multi-Defect-main dataset, without enhancement processing,
was used for these experiments, with an image resolution of 600 × 600 pixels.
Hyperparameters and training parameters were consistent with those outlined in the section

Table 4 Test results of different IoU loss functions.

Loss function mAP50 mAP50-95 Precision Recall

EIoU 0.847 0.532 0.823 0.824

CIoU 0.813 0.506 0.777 0.712

WIoU 0.827 0.515 0.809 0.785

SIoU 0.813 0.509 0.846 0.736

InnerIoU 0.790 0.482 0.734 0.727

FocalerIoU 0.836 0.507 0.793 0.800

Focaler-SIoU 0.840 0.543 0.813 0.786

Focaler-EIoU 0.835 0.529 0.798 0.771

Focaler-WIoU 0.730 0.328 0.528 0.737

Focaler-CIoU 0.857 0.539 0.795 0.835
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“Experimental Environment and Training Parameters.” The evaluation metrics for
photovoltaic panel defect detection included mAP50(%), mAP50-95(%), precision, and
recall. The results, presented in Table 5, demonstrate the effectiveness of the model
improvements.

Ablation experiment
In order to verify the validity of the defect detection method for photovoltaic panels
proposed in this article and explore the impact of improvements in MCSENet, GhostConv,
BoTNet and Focaler-CIoU on the model detection results, this article conducts tests on
PV-Multi-Defect-main dataset and PVEL-AD dataset. The baseline model used is
YOLOv8, the ablation experiments were carried out on the dataset for each proposed
improved module. The other experimental environments and parameters are completely
the same, only modifying and exploring the impact of modules or components on model
performance.

Ablation experiments on the PV-Multi-Defect-main dataset

Among all combinations from the ablation experiments on the PV-Multi-Defect-main
dataset, the best results were achieved using two or three improvement methods, excluding
data enhancement. Figure 7 shows a comparison of mAP50 values, mAP50-95 values,
recall rate, and loss in the YOLOv8n model’s experimental results. Results on the PV-
Multi-Defect-main dataset are detailed in Table 6.

Analyzing these experimental results, it is clear that the methods proposed in this article
enhance the accuracy of detecting defects in photovoltaic panels. Among the single
improvement methods, apart from data enhancement, the GhostConv and MCSENet
schemes performed particularly well. GhostConv increases the number of Ghost pairs
through a linear operation with low computational complexity, making the model lighter

Table 5 Effect comparison of different improvement methods based on YOLOv8.

Improved model mAP50 mAP50-95 Precision Recall

YOLOv8+GoldYOLO 0.848 0.533 0.756 0.870

YOLOv8+C2f_DCNv2 0.836 0.513 0.731 0.766

YOLOv8+C2f_DCNv3 0.834 0.529 0.817 0.767

YOLOv8+ODconv 0.827 0.515 0.664 0.842

YOLOv8+BiFPN 0.821 0.503 0.731 0.812

YOLOv8+CA 0.817 0.456 0.725 0.811

YOLOv8+ECA 0.819 0.513 0.767 0.746

YOLOv8+MLCA 0.834 0.514 0.791 0.799

YOLOv8+CBAM 0.819 0.469 0.724 0.805

YOLOv8+EMA 0.827 0.528 0.758 0.830

YOLOv8+LSKA 0.841 0.527 0.816 0.800

YOLOv8+Small target detection head 0.829 0.530 0.756 0.790

Ours 0.861 0.551 0.813 0.816
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and reducing both the number of parameters and computational complexity. This results
in a parameter reduction of 0.32 million and a decrease in GFLOPs by 0.1 billion. The
mAP50, mAP50-95, precision, and recall improved by 3.6%, 3.5%, 3%, and 4%,
respectively, while FPS remained consistent with the baseline model.

MCSENet boosts the extraction of defect features and suppresses background noise
through squeeze-excitation channels, significantly improving detection accuracy and recall
without increasing computational load. Specifically, mAP50 improved by 3.2%, mAP50-95
by 2.6%, accuracy by 1.6%, and recall by 10%. The parameters and FPS increased only
slightly.

BoTNet’s introduction of MHSA enhances detection accuracy by about 1 to 2
percentage points, albeit with increased computational requirements. The Focaler-CIoU

Figure 7 mAP50, mAP50-95, recall, loss comparison of model test results on the PV-Multi-Defect-main dataset.
Full-size DOI: 10.7717/peerj-cs.2776/fig-7
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loss function reconstructs the original IoU loss via linear interval mapping, effectively
addressing sample imbalance and improving detection accuracy. Compared to the CIOU
loss function in the baseline model, mAP50 increased by 4.5%, and recall improved by
12.3%, highlighting the challenge of sample imbalance in the detection process. Data
enhancement further boosts dataset accuracy by 6 to 7 percentage points.

In the proposed model, GhostConv generates Ghost features through linear operations,
MCSENet enhances defect features while suppressing background information, and
BoTNet’s MHSA enhances the network model’s feature extraction capability.
Focaler-CIoU addresses the issue of unbalanced sample targets. The integration of these
four modules in YOLOv8 enhances model performance on the PV-Multi-Defect-main
dataset, with a slight decrease in model parameters, GFLOPs, and FPS. mAP50 increases to
86.1%, and mAP50-95 to 55.1%. Accuracy rises to 81.3%, and recall to 81.6%. Detection
results for some defect samples are shown in Fig. 8, and the P-R curves of the improved
models on the PV-Multi-Defect-main dataset are displayed in Fig. 9.

Ablation experiments on the PVEL-AD dataset
Figure 10 shows the comparison of mAP50, mAP50-95, recall rate, and loss from the
ablation experiments on the PVEL-AD dataset. In the proposed model, the loss function
steadily decreases and converges after about 300 epochs on the PVEL-AD dataset. The
improved model demonstrates strong performance on this dataset, with the ablation
experiment results presented in Table 7.

In Table 7, an image enhancement method based on an improved CycleGAN is
mentioned, which primarily addresses issues such as uneven brightness and stain
interference in photovoltaic panels. To prevent academic ethics concerns and ensure rigor
and objectivity, this method is not described in detail here. Furthermore, the enhanced
images are not displayed, as this article has not yet been published, and I cannot present
results that have not been peer-reviewed. If this article is successfully published, I will
contact PeerJ to include a proper citation. This CycleGAN-based image enhancement

Table 6 Comparison of the ablation results of PV-Multi-Defect-main dataset.

GhostConv BoTNet MCSENet Focaler-CIoU Data enhance mAP50 mAP50-95 Precision Recall Parameter FLOPs (G) FPS

0.813 0.506 0.777 0.712 3,006,623 8.1 263

√ 0.849 0.541 0.807 0.752 2,998,207 8.0 270

√ 0.828 0.537 0.795 0.748 3,220,767 8.3 226

√ 0.845 0.532 0.793 0.819 2,872,945 8.1 277

√ 0.857 0.539 0.795 0.835 3,006623 8.1 270

√ 0.884 0.597 0.857 0.824 3,006,623 8.1 255

√ √ √ 0.838 0.516 0.803 0.798 3,228,271 8.2 239

√ √ 0.843 0.533 0.798 0.756 3,018,719 8.1 266

√ √ √ 0.835 0.525 0.804 0.814 3,218,863 8.3 236

√ √ √ √ 0.861 0.551 0.813 0.816 3,219,567 8.2 232

√ √ √ √ √ 0.926 0.660 0.907 0.875 3,219,567 8.3 236
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method was applied exclusively to the PVEL-AD dataset and the reverse-enhanced images,
while the PVMD dataset was left unenhanced because its image quality is sufficiently high
and does not require enhancement. I believe the primary focus of this article is to propose
an improved YOLOv8-based defect detection model for photovoltaic panel

Figure 8 Presentation of test results. From left to right: original image, YOLOv8n, MCSENet, GhostConv, BoTNet, Focaler-CIoU, data
enhancement, our model. Full-size DOI: 10.7717/peerj-cs.2776/fig-8
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electroluminescence defect images, rather than to introduce an image enhancement
algorithm.

As illustrated in Fig. 10 and Table 7, the proposed model achieves significant
improvements. These improvements arise because the baseline YOLOv8 model has
limitations in feature extraction and bounding box localization, leading to horizontal and
vertical misidentification of defects. Additionally, the defect bounding box annotations
only cover part of the defect area, limiting effective detection. The introduction of
GhostConv enhances feature extraction, allowing the model to more effectively capture
subtle features at defect edges, thereby significantly improving detection accuracy.
Figure 11 compares the performance of YOLOv8n and the proposed model in addressing
horizontal and vertical misidentification of defect types. The precision-recall (P-R) curves
for the improved models on the PVEL-AD dataset are shown in Fig. 9.

Comparative experiment
In order to validate the advancements and innovations of the photovoltaic panel defect
detection algorithm proposed in this article, we selected the PV-Multi-Defect-main dataset
for testing under identical experimental conditions, without employing any dataset
enhancement processing methods. The experimental environment and training
parameters were consistent with those utilized in our proposed model, as detailed in
Section “Environment and Training Parameters.” The algorithms tested include RT-DETR
(Zhao et al., 2024), versions v5–v8 of the YOLO series (Linyi et al., 2023), and SSD (Liu

Figure 9 Precision-recall (P-R) curves of each improved model on the PV-Multi-Defect-main (left) and PVEL-AD (right) datasets.
Full-size DOI: 10.7717/peerj-cs.2776/fig-9
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Figure 10 mAP50, mAP50-95, recall, loss comparison of model test results on the PVEL-AD dataset.
Full-size DOI: 10.7717/peerj-cs.2776/fig-10

Table 7 Comparison of the ablation results of PVEL-AD dataset.

Ghost
Conv

BoT
Net

MCSE
Net

Focaler-
CIoU

CycleGAN image
enhance

mAP50 mAP50-
95

Precision Recall Parameter
(M)

GFLOPs
(G)

FPS

0.645 0.457 0.797 0.588 6.4 8.2 214

√ 0.826 0.587 0.834 0.774 6.1 8.1 212

√ 0.760 0.536 0.723 0.708 6.8 8.4 194

√ 0.737 0.517 0.761 0.707 6.4 8.2 175

√ 0.762 0.524 0.747 0.726 6.4 8.2 218

√ √ √ √ 0.840 0.589 0.875 0.759 6.8 8.3 160

√ √ √ √ √ 0.935 0.680 0.883 0.899 6.8 8.2 184
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et al., 2016). The comparative results are presented in Table 8. From the table, it can be
seen that the models YOLOv7n, RT-DETR, and SSD have a larger computational load and
a bigger model size. The original models of YOLOv8n and YOLOv6n show better
detection performance, achieving a balance between the number of parameters and
detection accuracy. YOLOv5n has the smallest computational load, but its detection
accuracy is relatively low. Compared to these object detection models, the improved
detection model proposed in this article for photovoltaic panel defect electroluminescence
images achieves the highest detection accuracy while maintaining a relatively low
computational load. Additionally, Fig. 12 illustrates the P-R curve comparison of defect
detection performance among various YOLO series target detection networks applied to
the PV-Multi-Defect-main dataset.

From a comparison of these experimental results, it is evident that the photovoltaic
panel defect detection model introduced in this article achieves commendable accuracy
while maintaining a parameter count comparable to that of other models.

Figure 11 Comparison of defect effects of horizontal and vertical error types, original picture (left),
YOLOv8 (mid), improved model (right). Full-size DOI: 10.7717/peerj-cs.2776/fig-11

Table 8 Compare the experimental results with the different model.

Model mAP50 mAP50-95 Precision Recall Parameter (M) GFLOPs (G) FPS

RT-DETR 0.743 0.459 0.706 0.690 9,485,311 16.8 70

SSD 0.795 0.443 0.685 0.576 42,683,899 – –

YOLOv8n 0.813 0.506 0.777 0.712 3,006,623 8.1 208

YOLOv7n 0.779 0.465 0.708 0.696 37,218,132 105.2 218

YOLOv6n 0.819 0.509 0.789 0.731 4,234,239 11.9 205

YOLOv5n 0.787 0.506 0.752 0.744 2,503,919 7.2 191

Ours 0.861 0.551 0.813 0.816 3,228,271 8.2 180
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CONCLUSIONS
In this article, a novel defect detection method for photovoltaic (PV) panels is proposed by
improving the YOLOv8 baseline model. The research specifically addresses the challenges
in accurately detecting defects in PV panels. A multi-channel squeeze-excitation network
(MCSENet) is presented, which enhances channel representation through multi-channel
squeeze-excitation operations, thereby improving the feature expression capability. The
impact of GhostConv convolution on model accuracy and computational complexity is
analyzed and tested, while the Bottleneck Transformer Network is introduced to enhance
the feature extraction capabilities of the backbone network. Additionally, the Focaler-CIoU
is incorporated into the loss function to replace CIoU, optimizing loss computation and
improving detection accuracy. The proposed method also includes data augmentation
techniques tailored to PV panel defect datasets.

The method is comprehensively evaluated on the PV-Multi-Defect-main and PVEL-AD
datasets, and experimental results demonstrate that the proposed approach significantly
enhances defect detection performance. Specifically, the method reduces false negatives
and false positives, making it a robust and effective solution for PV panel defect detection.
However, the findings also reveal certain limitations. For example, when MCSENet
performs the squeeze-excitation operation, the extracted features may excessively
dominate the original feature map during the fusion process, potentially diluting the
original feature information. To mitigate this, the number of channels for SE

Figure 12 P-R curves for different comparison schemes.
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operations was empirically set to 3 in this study, which might have constrained the
detection accuracy.

Therefore, future research should focus on improving the feature fusion process after
each SE operation. By introducing a more balanced fusion mechanism—where the
SE-extracted features and the original feature map are first merged and then scaled
appropriately—it may be possible to reduce the overemphasis on extracted features,
thereby further enhancing the feature extraction capability of MCSENet. Additionally,
further exploration is needed to assess the practical deployment of this method in
real-world PV panel production and maintenance scenarios, as well as its scalability to
other defect detection tasks.
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